CN106830919A - 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法 - Google Patents

低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN106830919A
CN106830919A CN201710112487.6A CN201710112487A CN106830919A CN 106830919 A CN106830919 A CN 106830919A CN 201710112487 A CN201710112487 A CN 201710112487A CN 106830919 A CN106830919 A CN 106830919A
Authority
CN
China
Prior art keywords
low
ball
powder
medium ceramics
temperature sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710112487.6A
Other languages
English (en)
Inventor
李玲霞
吕笑松
乔坚栗
罗伟嘉
郭千瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710112487.6A priority Critical patent/CN106830919A/zh
Publication of CN106830919A publication Critical patent/CN106830919A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种低温烧结钨锰铁矿结构微波介质陶瓷,其组成表达式为CuZrNb2O8。先将CuO、ZrO2和Nb2O5作为原料,按摩尔比1:1:1配料,经球磨罐、干燥、过筛后于700~800℃预烧,合成CuZrNb2O8熔块;再外加质量百分比2~4%的聚乙烯醇二次球磨,再经烘干,分别过40和80目筛,得到CuZrNb2O8粉料。压力成型后坯体于890℃~920℃烧结,制成低温烧结钨锰铁矿结构微波介质陶瓷。本发明的介电常数εr为27.4~28.8,品质因数Q×f值为16600~27500GHz,谐振频率温度系数τf为‑71~‑85ppm/℃,可满足LTCC技术要求;且制备工艺简单,过程无污染,具有重要的工业应用价值。

Description

低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法
技术领域
本发明属于一种以成分为特征的陶瓷组合物,特别涉及一种以CuZrNb2O8为化学式的钨锰铁矿结构微波介质陶瓷材料及其制备方法。
背景技术
随着通信技术的不断进步,通信整机和系统正朝着小型化、轻型化、多功能、高集成化及高可靠性、高性能的方向发展,对元器件的小型化、集成化以至模块化要求愈来愈高。低温共烧陶瓷技术(Low Temperature Co-fired Ceramic,LTCC)是近年来兴起的一种的无源集成组件技术。目前,基于LTCC技术的微波器件已开始广泛应用于手机、蓝牙模块、GPS、WLAN、汽车电子等设备中,用于LTCC封装的微波介质瓷料由于具有低的介电损耗、优良的高频高Q、高温度稳定性、高热传导率等特性,已成为军事、航空航天、汽车、计算机和医疗等领域的选用材料。
目前LTCC材料大致分为三大类:(1)微晶玻璃系、玻璃/陶瓷复合系。该体系主要通过添加低软化点玻璃来降低电子陶瓷材料的烧结温度,该方面美国Dupont、Ferro等公司技术比较成熟,但对材料研究的核心技术保密,此外,添加玻璃后的陶瓷材料的电性能和物理性能恶化明显,物相可控性较差,发展前景并不明朗。(2)低熔点氧化物/陶瓷复合系。相比添加玻璃,添加低熔点氧化物对电性能以及物理性能的恶化程度较小,但是某些低熔点氧化物(如B2O3或V2O5)会与粘合剂PVA(或PVB)发生胶凝反应或难以均匀分散在基体材料中,不能获得高密度的生瓷带。(3)低固有烧结温度体系:主要包括钒酸盐、碲酸盐以及钼酸盐等,其中钒酸盐的烧结温度低,但有毒性;碲酸盐有极低的烧结温度和较低的损耗,但某些碲酸盐和银发生反应且成本较高,这限制了其在LTCC技术中的应用;钼酸盐烧结温度低,介电损耗低且不与银反应,但介电常数较低。
发明内容
本发明的目的在于解决现有低固有烧结温度微波介质陶瓷材料中介电常数较低的问题,该微波介质陶瓷材料从近年来出现的可中温烧结的中介电常数钨锰铁矿型ZnZrNb2O8体系出发,通过铜离子完全取代锌离子形成CuZrNb2O8新体系,提供一种具有低烧结温度、中介电常数、以满足LTCC组件特性需求的微波介质陶瓷材料及其制备方法。另外它的化学组成及制备工艺简单且无污染。
本发明通过如下技术方案予以实现。
一种低温烧结钨锰铁矿结构微波介质陶瓷,其组成表达式为CuZrNb2O8
该低温烧结钨锰铁矿结构微波介质陶瓷采用简单的传统固相反应法制备,具体步骤如下:
(1)将CuO、ZrO2和Nb2O5作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入球磨罐中,加入去离子水和氧化锆球后球磨6~12h;
(2)将步骤(1)球磨后的原料放入干燥箱中,在100℃下烘干,然后过40目筛;
(3)将步骤(2)烘干过筛后的粉料放入中温炉中,于700~800℃预烧,保温4~6h,合成CuZrNb2O8熔块;
(4)将步骤(3)得到的熔块外加质量百分比为2~4%的聚乙烯醇PVB放入球磨罐中,加入去离子水和氧化锆球后二次球磨12~24h,然后在干燥箱中烘干,分别过40和80目筛,得到CuZrNb2O8粉料;
(5)将步骤(4)得到的粉料用粉末压片机压力成型为生坯;
(6)将步骤(5)得到的坯体于890℃~920℃烧结,保温4~6h,之后随炉自然冷却至室温,制成低温烧结钨锰铁矿结构微波介质陶瓷;(技术术语应该前后表述一致。)
所述步骤(1)的原料为质量纯度≥99%分析纯试剂。
所述步骤(1)和(4)中粉料与去离子水和磨球的体积比为1:2:1。
所述步骤(1)和(4)中采用行星式球磨机进行球磨,球磨机转速为400转/分。
所述步骤(5)坯体为Φ10mm×5mm的圆柱体,以2~4MPa的压力成型。
本发明制备的新型低温度烧结CuZrNb2O8微波介质陶瓷,其烧结温度为890~920℃,介电常数εr为27.4~28.8,品质因数Q×f值为16600~27500GHz,谐振频率温度系数τf为-71~-85ppm/℃;该微波介质陶瓷材料具有单斜钨锰铁矿结构,烧成温度低,且介电常数较高,可满足LTCC技术要求。此外,本发明制备工艺简单,过程无污染,具有重要的工业应用价值。
附图说明
图1为本发明实施例4中钨锰铁矿结构微波介质陶瓷的扫描电镜图片;
图2为本发明实施例4中钨锰铁矿结构微波介质陶瓷的X射线衍射图谱。
具体实施方式
下面通过具体实施例对本发明作进一步说明,具体实施例如下。
实施例1
将分析纯CuO(纯度≥99%)、ZrO2(纯度≥99%)和Nb2O5(纯度≥99.9%)作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入尼龙球磨罐中,按粉料与球磨介质和磨球的体积比为1:2:1加入去离子水和氧化锆球,在行星式球磨机上球磨6h;然后在红外干燥箱中于100℃烘干,过40目筛,预烧合成CuZrNb2O8熔块,预烧温度为800℃,保温时间为4h;将预烧后的熔块外加质量百分比为2%的PVB作为粘合剂二次球磨12h,在红外干燥箱中于100℃烘干,分别过40和80目筛,得到CuZrNb2O8粉体;利用粉末压片机在4MPa压力下单向加压,压成Φ10mm×5mm的圆柱体生坯;将坯体放入烧结炉中,于550℃保温4h排除粘结剂PVB,在890℃下烧结,保温时间为4h,之后随炉自然冷却至室温,最终得到具有中介电常数低温烧结钨锰铁矿结构的微波介质陶瓷。
采用网络分析仪测试本实施例制品在微波频段下的介电性能,测试结果如下:
介电常数为27.4;品质因数为16600GHz;谐振频率温度系数为-71ppm/℃。
实施例2
将分析纯CuO(纯度≥99%)、ZrO2(纯度≥99%)和Nb2O5(纯度≥99.9%)作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入尼龙球磨罐中,按粉料与球磨介质和磨球的体积比为1:2:1加入去离子水和氧化锆球,在行星式球磨机上球磨6h;然后在红外干燥箱中于100℃烘干,过40目筛,预烧合成CuZrNb2O8熔块,预烧温度为800℃,保温时间为4h;将预烧后的熔块外加质量百分比为4%的PVB作为粘合剂二次球磨12h,在红外干燥箱中于100℃烘干,分别过40和80目筛,得到CuZrNb2O8粉体;利用粉末压片机在4MPa压力下单向加压,压成Φ10mm×5mm的圆柱体生坯;将坯体放入烧结炉中,于550℃保温4h排除粘结剂PVB,在900℃下烧结,保温时间为4h,之后随炉自然冷却至室温,最终得到具有中介电常数低温烧结钨锰铁矿结构的微波介质陶瓷。
采用网络分析仪测试本实施例制品在微波频段下的介电性能,测试结果如下:
介电常数为28.2;品质因数为21300GHz;谐振频率温度系数为-77ppm/℃。
实施例3
将分析纯CuO(纯度≥99%)、ZrO2(纯度≥99%)和Nb2O5(纯度≥99.9%)作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入尼龙球磨罐中,按粉料与球磨介质和磨球的体积比为1:2:1加入去离子水和氧化锆球,在行星式球磨机上球磨12h;然后在红外干燥箱中于100℃烘干,过40目筛,预烧合成CuZrNb2O8熔块,预烧温度为700℃,保温时间为6h;将预烧后的熔块外加质量百分比为4%的PVB作为粘合剂二次球磨24h,在红外干燥箱中于100℃烘干,分别过40和80目筛,得到CuZrNb2O8粉体;利用粉末压片机在4MPa压力下单向加压,压成Φ10mm×5mm的圆柱体生坯;将坯体放入烧结炉中,于550℃保温4h排除粘结剂PVB,在905℃下烧结,保温时间为6h,之后随炉自然冷却至室温,最终得到具有中介电常数低温烧结钨锰铁矿结构的微波介质陶瓷。
采用网络分析仪测试本实施例制品在微波频段下的介电性能,测试结果如下:
介电常数为28.6;品质因数为25600GHz;谐振频率温度系数为-79ppm/℃。
实施例4
将分析纯CuO(纯度≥99%)、ZrO2(纯度≥99%)和Nb2O5(纯度≥99.9%)作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入尼龙球磨罐中,按粉料与球磨介质和磨球的体积比为1:2:1加入去离子水和氧化锆球,在行星式球磨机上球磨12h;然后在红外干燥箱中于100℃烘干,过40目筛,预烧合成CuZrNb2O8熔块,预烧温度为700℃,保温时间为6h;将预烧后的熔块外加质量百分比为4%的PVB作为粘合剂二次球磨24h,在红外干燥箱中于100℃烘干,分别过40和80目筛,得到CuZrNb2O8粉体;利用粉末压片机在4MPa压力下单向加压,压成Φ10mm×5mm的圆柱体生坯;将坯体放入烧结炉中,于550℃保温4h排除粘结剂PVB,在910℃下烧结,保温时间为6h,之后随炉自然冷却至室温,最终得到具有中介电常数低温烧结钨锰铁矿结构的微波介质陶瓷。
图1为实施例4中钨锰铁矿结构微波介质陶瓷的扫描电镜图片,由图片可以看出陶瓷有较高的致密度,晶粒大小均匀,晶界平直,气孔含量很少,总体上表面组织较平整。
图2为实施例4中钨锰铁矿结构微波介质陶瓷的X射线衍射图谱,由图中可以看出陶瓷与ZnZrNb2O8体系相似,呈单斜结构,且整个衍射角度范围内没有其他晶相生成。
采用网络分析仪测试本实施例制品在微波频段下的介电性能,测试结果如下:
介电常数为28.8;品质因数为27500GHz;谐振频率温度系数为-81ppm/℃。
实施例5
将分析纯CuO(纯度≥99%)、ZrO2(纯度≥99%)和Nb2O5(纯度≥99.9%)作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入尼龙球磨罐中,按粉料与球磨介质和磨球的体积比为1:2:1加入去离子水和氧化锆球,在行星式球磨机上球磨12h;然后在红外干燥箱中于100℃烘干,过40目筛,预烧合成CuZrNb2O8熔块,预烧温度为700℃,保温时间为6h;将预烧后的熔块外加质量百分比为4%的PVB作为粘合剂二次球磨24h,在红外干燥箱中于100℃烘干,分别过40和80目筛,得到CuZrNb2O8粉体;利用粉末压片机在4MPa压力下单向加压,压成Φ10mm×5mm的圆柱体生坯;将坯体放入烧结炉中,于550℃保温4h排除粘结剂PVB,在915℃下烧结,保温时间为6h,之后随炉自然冷却至室温,最终得到具有中介电常数低温烧结钨锰铁矿结构的微波介质陶瓷。
采用网络分析仪测试本实施例制品在微波频段下的介电性能,测试结果如下:
介电常数为28.7;品质因数为26400GHz;谐振频率温度系数为-84ppm/℃。
实施例6
将分析纯CuO(纯度≥99%)、ZrO2(纯度≥99%)和Nb2O5(纯度≥99.9%)作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入尼龙球磨罐中,按粉料与球磨介质和磨球的体积比为1:2:1加入去离子水和氧化锆球,在行星式球磨机上球磨12h;然后在红外干燥箱中于100℃烘干,过40目筛,预烧合成CuZrNb2O8熔块,预烧温度为700℃,保温时间为6h;将预烧后的熔块外加质量百分比为4%的PVB作为粘合剂二次球磨24h,在红外干燥箱中于100℃烘干,分别过40和80目筛,得到CuZrNb2O8粉体;利用粉末压片机在4MPa压力下单向加压,压成Φ10mm×5mm的圆柱体生坯;将坯体放入烧结炉中,于550℃保温4h排除粘结剂PVB,在920℃下烧结,保温时间为6h,之后随炉自然冷却至室温,最终得到具有中介电常数低温烧结钨锰铁矿结构的微波介质陶瓷。
采用网络分析仪测试本实施例制品在微波频段下的介电性能,测试结果如下:
介电常数为28.5;品质因数为23400GHz;谐振频率温度系数为-85ppm/℃。
以上各实施例的检测方法如下:
(1)制品的直径和厚度使用千分尺进行测量;
(2)根据Hakki-Coleman介质谐振法,使用Agilent 8720ES矢量网络分析仪测试样品微波频段下的介电性能。频率温度系数τf值在25℃~85℃下测定。
由通过图1可以看出样品的表面形貌较均匀,晶粒较为致密,平均晶粒尺寸小于4μm;从图2可以看出CuZrNb2O8陶瓷的晶体结构和ZnZrNb2O8类似,均为钨锰铁矿相;通过各实施例可以看出,本发明中微波介质陶瓷具有低的烧成温度,其烧结温度为890~920℃,且εr在27.4~28.8之间,介电常数较高,品质因数Q×f值为16600~27500GHz,谐振频率温度系数τf在-71~-85ppm/℃范围内可调。特别是在910℃烧结时,CuZrNb2O8陶瓷的介电常数为28.8,品质因数为27500GHz,谐振频率温度系数为-81ppm/℃。其次,以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,这不能因此理解为对本发明专利的限制。应当指出的是,本领域技术人员在不脱离本发明构思的前提下,还可以做出若干调整和进一步改进,这些都属于本发明的保护范围。所以,本发明专利的保护范围应以所述权利要求为准。

Claims (5)

1.一种低温烧结钨锰铁矿结构微波介质陶瓷,其组成表达式为CuZrNb2O8
该低温烧结钨锰铁矿结构微波介质陶瓷采用简单的传统固相反应法制备,具体步骤如下:
(1)将CuO、ZrO2和Nb2O5作为原料,按摩尔比1:1:1进行称量配料,将称量好的粉料放入球磨罐中,加入去离子水和氧化锆球后球磨6~12h;
(2)将步骤(1)球磨后的原料放入干燥箱中,在100℃下烘干,然后过40目筛;
(3)将步骤(2)烘干过筛后的粉料放入中温炉中,于700~800℃预烧,保温4~6h,合成CuZrNb2O8熔块;
(4)将步骤(3)得到的熔块外加质量百分比为2~4%的聚乙烯醇PVB放入球磨罐中,加入去离子水和氧化锆球后二次球磨12~24h,然后在干燥箱中烘干,分别过40和80目筛,得到CuZrNb2O8粉料;
(5)将步骤(4)得到的粉料用粉末压片机压力成型为生坯;
(6)将步骤(5)得到的坯体于890℃~920℃烧结,保温4~6h,之后随炉自然冷却至室温,制成低温烧结钨锰铁矿结构微波介质陶瓷。
2.根据权利要求所述的低温烧结钨锰铁矿结构微波介质陶瓷,其特征在于,所述步骤(1)的原料为质量纯度≥99%分析纯试剂。
3.根据权利要求所述的低温烧结钨锰铁矿结构微波介质陶瓷,其特征在于,所述步骤(1)和(4)中粉料与去离子水和磨球的体积比为1:2:1。
4.根据权利要求所述的低温烧结钨锰铁矿结构微波介质陶瓷,其特征在于,所述步骤(1)和(4)中采用行星式球磨机进行球磨,球磨机转速为400转/分。
5.根据权利要求所述的低温烧结钨锰铁矿结构微波介质陶瓷,其特征在于,所述步骤(5)坯体为Φ10mm×5mm的圆柱体,以2~4MPa的压力成型。
CN201710112487.6A 2017-02-28 2017-02-28 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法 Pending CN106830919A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710112487.6A CN106830919A (zh) 2017-02-28 2017-02-28 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710112487.6A CN106830919A (zh) 2017-02-28 2017-02-28 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN106830919A true CN106830919A (zh) 2017-06-13

Family

ID=59137093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710112487.6A Pending CN106830919A (zh) 2017-02-28 2017-02-28 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106830919A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125668A (zh) * 2020-09-22 2020-12-25 研创光电科技(赣州)有限公司 一种中介低损耗ltcc微波介电陶瓷材料及其制备方法
CN112851346A (zh) * 2021-02-25 2021-05-28 电子科技大学 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法
CN115010490A (zh) * 2022-06-29 2022-09-06 安徽大学 一种超低损耗铌锆酸锌系微波介质陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381229A (zh) * 2008-10-28 2009-03-11 昆明理工大学 低温共烧铌酸锌基微波介质陶瓷及其制备方法
CN102603297A (zh) * 2012-04-05 2012-07-25 天津大学 一种新型低温烧结微波介质陶瓷及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381229A (zh) * 2008-10-28 2009-03-11 昆明理工大学 低温共烧铌酸锌基微波介质陶瓷及其制备方法
CN102603297A (zh) * 2012-04-05 2012-07-25 天津大学 一种新型低温烧结微波介质陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINGXIA LI ET AL.: "Microstructure and microwave dielectric characteristics of ZnZrNb2O8 and (Zn0.95M0.05)ZrNb2O8 (M = Ni, Mg, Co and Mn) ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125668A (zh) * 2020-09-22 2020-12-25 研创光电科技(赣州)有限公司 一种中介低损耗ltcc微波介电陶瓷材料及其制备方法
CN112851346A (zh) * 2021-02-25 2021-05-28 电子科技大学 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法
CN115010490A (zh) * 2022-06-29 2022-09-06 安徽大学 一种超低损耗铌锆酸锌系微波介质陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106904960B (zh) 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法
CN104844193B (zh) 高q值锂镁钛系微波介质陶瓷及其低温烧结的实现方法
CN108911746B (zh) 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN104003722A (zh) 可低温烧结的超低介电常数微波介电陶瓷Li3AlV2O8及其制备方法
CN106830919A (zh) 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN106904969A (zh) 一种谐振频率温度系数可调的中介电常数微波介质陶瓷
CN110229004A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN107382317A (zh) 一种镁镍锆铌系微波介质陶瓷
CN108569903B (zh) 一种低温烧结ltcc微波介质陶瓷及制备方法
CN107555986B (zh) 一种低损耗岩盐矿结构微波介质陶瓷及制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN105801109A (zh) 低损耗温度稳定型低介电常数微波介电陶瓷Li2Mg2TiO5
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
CN110698199A (zh) 一种采用分步预烧法制备的低损耗微波介质陶瓷
CN104710175B (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN110256066A (zh) 一种频率温度特性优异的中温烧结微波介质材料
CN107056277B (zh) 一种低温烧结中介电常数微波介质材料及其制备方法
CN104446433B (zh) 温度稳定型超低介电常数微波介电陶瓷Li3Al2P3O12
CN105732031A (zh) 一种镍掺杂的Li3Mg2NbO6陶瓷材料及制备方法
CN111302795A (zh) 一种锂镁铌铝钨系微波介质陶瓷及其制备方法
CN116835982B (zh) 一种层状结构微波介质谐振器的制备方法
CN104003719A (zh) 可低温烧结的微波介电陶瓷LiTi2V3O12及其制备方法
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN105948729A (zh) 温度稳定型超低介电常数微波介电陶瓷LiBSiO4

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170613

WD01 Invention patent application deemed withdrawn after publication