CN106904960B - 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法 - Google Patents

一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法 Download PDF

Info

Publication number
CN106904960B
CN106904960B CN201710149952.3A CN201710149952A CN106904960B CN 106904960 B CN106904960 B CN 106904960B CN 201710149952 A CN201710149952 A CN 201710149952A CN 106904960 B CN106904960 B CN 106904960B
Authority
CN
China
Prior art keywords
sio
tio
ball milling
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710149952.3A
Other languages
English (en)
Other versions
CN106904960A (zh
Inventor
苏桦
赖元明
唐晓莉
张怀武
荆玉兰
李元勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710149952.3A priority Critical patent/CN106904960B/zh
Publication of CN106904960A publication Critical patent/CN106904960A/zh
Application granted granted Critical
Publication of CN106904960B publication Critical patent/CN106904960B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于微波电子陶瓷材料及其制造领域,具体涉及一种Mg2SiO4‑Li2TiO3复合体系LTCC材料及其制备方法。本发明提供的LTCC材料,基于Mg2SiO4和Li2TiO3复合体系,通过固相法获得;实现烧结温度800~950℃低于960℃(Ag熔点),εr=9.0~18.0,且具有50,000~250,000GHz的高Qf值和近零τf=‑15~15ppm/℃,在LTCC技术领域具有很高的应用前景和价值。可广泛应用于LTCC基板、叠层微波器件和模块中。

Description

一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法
技术领域
本发明属于微波电子陶瓷材料及其制造领域,涉及一种具有谐振频率温度系数近零(τf~ 0ppm/℃)和高Qf值特性的低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)材料及其制备方法,具体为一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法。
背景技术
随着微电子技术的发展,LTCC技术受到广泛关注。LTCC技术广泛用于国防军工、汽车及信息资讯产品中。其最大的特点是LTCC材料能在低烧结温度(<960℃)下烧结。
随着微波通信技术和雷达系统的发展,可利用的通信频率从微波扩展到毫米波。微波通信频率的高端化及大的信息传输量要求开发高Qf值和趋于零的τf值。高Qf值是为了降低能量散失和增强频率选择性,趋于零的τf值是为了保证频率的稳定性。
Mg2SiO4微波介电陶瓷由于具有高Qf值被广泛研究。Ohsato等(Ohsato H,TsunookaT, Sugiyama T,et al.Forsterite ceramics for millimeterwave dielectrics[J].Journal of Electroceramics, 2006,17(2):445-450)对Mg2SiO4介电性能进行了研究,研究发现Mg2SiO4微波介电陶瓷具有高Qf值(~270,000GHz)。但其烧结温度高(~1450℃),且谐振频率温度系数τf偏离零较大 (~-67ppm/℃)。使其不能满足LTCC应用需求。
Li2TiO3微波介电陶瓷具有较低烧结温度和谐振频率正温度系数。Bian等(Bian JJ,Dong Y F.New high Q microwave dielectric ceramics with rock saltstructures:(1-x)Li2TiO3+xMgO system(0≤x≤0.5)[J].Journal of the EuropeanCeramic Society,2010,30(2):325-330)研究发现Li2TiO3在1300℃下烧结,其介电性能:εr~22,Qf~65,000GHz,τf~20ppm/℃。同样由于其烧结温度高,且谐振频率温度系数τf偏离零较大使其不能满足于LTCC应用需求。将两种正负τf的微波介电材料进行复合,可得到近零τf的微波介电复合陶瓷。再添加一定的助烧剂可实现低温烧结,同时获得高Qf值和温度稳定型的LTCC材料。
发明内容
针对上述存在问题或不足,本发明提供了一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法,该材料能在低温(800~950℃)烧结实现致密化,且介电常数在9~18间可调,使其在LTCC集成基板和器件中具有良好的应用前景。
该温度稳定型高Qf值LTCC材料,包含Mg2SiO4、LiTiO2和Li2TiSiO5三相,化学通式为(1-x)Mg2SiO4–xLi2TiO3-yLiF,其中x(0.35~0.85),y(6~10wt%);
Mg2SiO4的原料组成为:MgO和SiO2按摩尔比MgO:SiO2=2:1配料;Li2TiO3的原料组成为:Li2CO3和TiO2按摩尔比Li2CO3:TiO2=2:1配料;LiF为助烧剂,所占比例y为Mg2SiO4与Li2TiO3之和质量百分比。
其烧结温度为800~950℃,εr=9.0~18.0,Q×f值50,000~250,000GHz,τf=-15~15ppm/℃。
上述LTCC材料的具体制备方法如下:
步骤1、将分析纯的MgO和SiO2按摩尔比MgO:SiO2=2:1配料;然后将其进行一次球磨使配料混合均匀,按照配料与去离子水质量比1:0.8~1.5加入去离子水,在球磨转速250~300 rpm下,球磨4~12h,球磨后将所得粉料在100~120℃下烘干备用。
步骤2、将步骤1所得的烘干粉料过40~100目筛网,过筛后放入坩埚中压实,按2~5℃/min 的升温速率升至1150~1350℃进行预烧,保温3~5h,随炉冷却得到Mg2SiO4预烧料。
步骤3、将分析纯的Li2CO3和TiO2按摩尔比Li2CO3:TiO2=2:1配料;将配好的原料进行一次球磨使配料混合均匀,按照配料与去离子水质量比1:0.8~1.5加入去离子水,在球磨转速 250~300rpm下,球磨4~12h,球磨后将所得粉料在100~120℃下烘干备用。
步骤4、将步骤3所得的烘干粉料过40~100目筛网,过筛后放入坩埚中压实,按2~5℃/min 的升温速率升至800~900℃进行预烧,保温3~5h,随炉冷却得到Li2TiO3预烧料。
步骤5、将步骤2和步骤4得到预烧料以及LiF,按照(1-x)Mg2SiO4–xLi2TiO3-yLiF配比进行称量配料,其中x=0.35~0.85,y=6~10wt%;然后按照配料与去离子水质量比1:0.8~1.5 加入去离子水,在球磨转速250~300rpm下,球磨4~12h,球磨后将粉料在100~120℃下烘干备用。
步骤6、将步骤5所得烘干粉料添加入占其20wt%~30wt%的PVA溶液作为粘结剂,进行造粒并在6~10MPa单轴干压成型。
步骤7、将步骤6所得产物放入烧结炉中,按2~5℃/min的升温速率升至400~600℃排胶3~6h,然后随炉冷却至室温,获得排胶后的生坯样品。
步骤8、将步骤7所得生坯样品再放入烧结炉中,按2~5℃/min的升温速率升至800℃~950 ℃进行烧结,并保温3~6h,后随炉冷却至室温,即可获得温度稳定型高Qf值LTCC材料。
所述步骤6中PVA溶液的浓度为8~10wt%。
本发明提供的LTCC材料,基于Mg2SiO4和Li2TiO3复合体系,通过固相法获得;实现烧结温度800~950℃低于960℃(Ag熔点),εr=9.0~18.0,且具有50,000~250,000GHz的高Qf 值和近零τf=-15~15ppm/℃,在LTCC技术领域具有很高的应用前景和价值。可广泛应用于 LTCC基板、叠层微波器件和模块中。
附图说明
图1为样品在850℃烧结下的X-射线衍射(XRD)图谱;
图2为样品在850℃烧结下的介电性能图。
具体实施方式
下面以实施例结合附图对本发明做进一步的详细说明。
步骤1:将分析纯的MgO和SiO2按摩尔比MgO:SiO2=2:1称料配置原料;将配好的原料进行一次球磨使原料混合均匀,按照粉料与去离子水质量比1:1加入去离子水,在球磨转速 300rpm下,球磨4h。球磨完将粉料在120℃下烘干备用。
步骤2:将步骤1所得的烘干粉料过60目筛网,过筛后放入坩埚中压实,按2℃/min的升温速率升至1350℃进行预烧,保温4h,随炉冷却得到Mg2SiO4预烧料。
步骤3:将分析纯的Li2CO3和TiO2按摩尔比Li2CO3:TiO2=2:1称料配置原料;将配好的原料进行一次球磨使原料混合均匀,按照粉料与去离子水质量比1:1加入去离子水,在球磨转速300rpm下,球磨4h。球磨完将粉料在120℃下烘干备用。
步骤4:将步骤3所得的烘干粉料过60目筛网,过筛后放入坩埚中压实,按2℃/min的升温速率升至900℃进行预烧,保温4h,随炉冷却得到Li2TiO3预烧料。
步骤5:将步骤2和步骤4得到预烧料按照(1-x)Mg2SiO4–xLi2TiO3-yLiF(其中x=0.35~0.85, y=6~10wt%)配比进行称量;按照配得粉料与去离子水质量比1:1加入去离子水,在球磨转速300rpm下,球磨4h。球磨完将粉料在120℃下烘干备用。
步骤6:将步骤5所得粉料添加入占其20wt%的PVA溶液作为粘结剂,进行造粒并在10MPa单轴干压成直径×厚度=12mm×6mm圆柱;
步骤7:将步骤6所得产物放入烧结炉中,按2℃/min的升温速率升至600℃排胶4h,然后随炉冷却至室温,获得排胶后的生坯样品;
步骤8:将步骤7所得生坯样品再放入烧结炉中,按2℃/min的升温速率升至850℃进行烧结,并保温4h,后随炉冷却至室温,获得温度稳定型高Qf值的LTCC材料。
实施例选取了当x=0.35,0.45,0.55,0.65,0.75和0.85的值。
图1为850℃烧结时,实施例x不同取值对应的XRD图谱。从图中可以看出样品含有Mg2SiO4、LiTiO2和Li2TiSiO5三相的特征峰。
图2为850℃烧结时,实施例x不同取值对应的εr值、Qf值和τf值。
从实施例可见,本发明提供的LTCC材料,基于Mg2SiO4和Li2TiO3复合体系,通过固相法获得;实现烧结温度800~950℃低于960℃(Ag熔点),且具有高Qf值和近零τf,在LTCC技术领域具有很高的应用前景和价值。

Claims (3)

1.一种Mg2SiO4-Li2TiO3复合体系LTCC材料,其特征在于:包含Mg2SiO4、LiTiO2和Li2TiSiO5三相,其化学通式为(1-x)Mg2SiO4–xLi2TiO3-yLiF,x=0.35~0.85,y=6~10wt%;
Mg2SiO4的原料组成为:MgO和SiO2按摩尔比MgO:SiO2=2:1;
Li2TiO3的原料组成为:Li2CO3和TiO2按摩尔比Li2CO3:TiO2=2:1;
LiF为助烧剂,所占比例y为Mg2SiO4与Li2TiO3之和质量百分比;
烧结温度为800~950℃,εr=9.0~18.0,Q×f值50,000~250,000GHz,τf=-15~15ppm/℃。
2.如权利要求1所述Mg2SiO4-Li2TiO3复合体系LTCC材料的制备方法,包括以下步骤:
步骤1、将分析纯的MgO和SiO2按摩尔比MgO:SiO2=2:1配料;然后将其进行一次球磨使配料混合均匀,按照配料与去离子水质量比1:0.8~1.5加入去离子水,在球磨转速250~300rpm下,球磨4~12h,球磨后将所得粉料在100~120℃下烘干备用;
步骤2、将步骤1所得的烘干粉料过40~100目筛网,过筛后放入坩埚中压实,按2~5℃/min的升温速率升至1150~1350℃进行预烧,保温3~5h,随炉冷却得到Mg2SiO4预烧料;
步骤3、将分析纯的Li2CO3和TiO2按摩尔比Li2CO3:TiO2=2:1配料;将配好的原料进行一次球磨使配料混合均匀,按照配料与去离子水质量比1:0.8~1.5加入去离子水,在球磨转速250~300rpm下,球磨4~12h,球磨后将所得粉料在100~120℃下烘干备用;
步骤4、将步骤3所得的烘干粉料过40~100目筛网,过筛后放入坩埚中压实,按2~5℃/min的升温速率升至800~900℃进行预烧,保温3~5h,随炉冷却得到Li2TiO3预烧料;
步骤5、将步骤2和步骤4得到预烧料以及LiF,按照(1-x)Mg2SiO4–xLi2TiO3-yLiF配比进行称量配料,其中x=0.35~0.85,y=6~10wt%;然后按照配料与去离子水质量比1:0.8~1.5加入去离子水,在球磨转速250~300rpm下,球磨4~12h,球磨后将粉料在100~120℃下烘干备用;
步骤6、将步骤5所得烘干粉料添加入占其20wt%~30wt%的PVA溶液作为粘结剂,进行造粒并在6~10MPa单轴干压成型;
步骤7、将步骤6所得产物放入烧结炉中,按2~5℃/min的升温速率升至400~600℃排胶3~6h,然后随炉冷却至室温,获得排胶后的生坯样品;
步骤8、将步骤7所得生坯样品再放入烧结炉中,按2~5℃/min的升温速率升至800℃~950℃进行烧结,并保温3~6h,后随炉冷却至室温,即可获得Mg2SiO4-Li2TiO3复合体系LTCC材料。
3.如权利要求2所述Mg2SiO4-Li2TiO3复合体系LTCC材料的制备方法,其特征在于:所述步骤6中PVA溶液的浓度为8~10wt%。
CN201710149952.3A 2017-03-14 2017-03-14 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法 Expired - Fee Related CN106904960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710149952.3A CN106904960B (zh) 2017-03-14 2017-03-14 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710149952.3A CN106904960B (zh) 2017-03-14 2017-03-14 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106904960A CN106904960A (zh) 2017-06-30
CN106904960B true CN106904960B (zh) 2020-01-14

Family

ID=59187110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710149952.3A Expired - Fee Related CN106904960B (zh) 2017-03-14 2017-03-14 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106904960B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382299A (zh) * 2017-08-08 2017-11-24 电子科技大学 一种低介微波介质陶瓷的低温制备方法
PL241887B1 (pl) * 2018-03-09 2022-12-19 Instytut Tech Elektronowej Taśma ceramiczna na mikrofalowe podłoża LTCC
CN110183227B (zh) * 2019-04-29 2021-09-10 杭州电子科技大学 一种Li2MoO4-Mg2SiO4基复合陶瓷微波材料及其制备方法
CN110357607B (zh) * 2019-09-03 2022-03-01 广东国华新材料科技股份有限公司 一种mas-lt复合微波介质陶瓷及其制备方法
US20220119315A1 (en) * 2020-02-05 2022-04-21 Ferro Corporation M7 LTCC-Silver System And Related Dielectric Compositions For High Frequency Applications
CN114685152B (zh) * 2020-12-28 2022-11-04 山东国瓷功能材料股份有限公司 一种毫米波天线模组用低温共烧陶瓷材料及其制备方法
CN113563061B (zh) * 2021-09-26 2021-12-21 广东康荣高科新材料股份有限公司 一种用于单腔滤波器的低介电常数介质材料及其制备方法
CN114031393A (zh) * 2021-11-29 2022-02-11 成都理工大学 一种谐振频率温度系数近零的微波介电材料及其制备方法
CN115057695B (zh) * 2022-06-29 2023-09-05 安徽大学 高q值低介电常数ltcc粉、ltcc材料及制备方法、生瓷带及制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632534B2 (ja) * 2000-12-27 2011-02-16 京セラ株式会社 誘電体磁器及びその製造方法
CN102674828A (zh) * 2012-05-16 2012-09-19 桂林电子科技大学 一种低介电损耗温度稳定型微波介电陶瓷材料及其制备方法
CN103274688A (zh) * 2013-05-31 2013-09-04 上海大学 无玻璃相的两相复合微波介质陶瓷材料Li2TiO3-Li2WO4的制备方法
CN105801119A (zh) * 2016-05-11 2016-07-27 电子科技大学 一种微波介电ltcc材料及其制备方法
CN105801109A (zh) * 2016-04-01 2016-07-27 桂林理工大学 低损耗温度稳定型低介电常数微波介电陶瓷Li2Mg2TiO5
CN106116550A (zh) * 2016-06-26 2016-11-16 桂林理工大学 一种硅酸盐Li2SiO3作为温度稳定型高品质因数微波介电陶瓷的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632534B2 (ja) * 2000-12-27 2011-02-16 京セラ株式会社 誘電体磁器及びその製造方法
CN102674828A (zh) * 2012-05-16 2012-09-19 桂林电子科技大学 一种低介电损耗温度稳定型微波介电陶瓷材料及其制备方法
CN103274688A (zh) * 2013-05-31 2013-09-04 上海大学 无玻璃相的两相复合微波介质陶瓷材料Li2TiO3-Li2WO4的制备方法
CN105801109A (zh) * 2016-04-01 2016-07-27 桂林理工大学 低损耗温度稳定型低介电常数微波介电陶瓷Li2Mg2TiO5
CN105801119A (zh) * 2016-05-11 2016-07-27 电子科技大学 一种微波介电ltcc材料及其制备方法
CN106116550A (zh) * 2016-06-26 2016-11-16 桂林理工大学 一种硅酸盐Li2SiO3作为温度稳定型高品质因数微波介电陶瓷的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
低温烧结硅酸镁陶瓷及其微波介电性能研究;杨桃;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20160215;第B015-296页 *

Also Published As

Publication number Publication date
CN106904960A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
CN106904960B (zh) 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN106007703B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN110423117A (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN107434411A (zh) 低介高品质因数ltcc微波介质材料及其制备方法
CN103613369A (zh) 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN113149645B (zh) 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
CN108911746B (zh) 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN107986774A (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN107117967A (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN106830919A (zh) 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN107721421A (zh) 一种Zn‑Nb‑Ti系LTCC材料及其制备方法
CN110256066A (zh) 一种频率温度特性优异的中温烧结微波介质材料
CN109467433A (zh) 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN105060887A (zh) 一种低温烧结低损耗微波介质陶瓷材料
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN105314976B (zh) Ti基低损耗中K值微波介质陶瓷及其制备方法
CN108793994A (zh) 一种施主掺杂中介电常数微波介质陶瓷及其制备方法
CN104944947B (zh) 一种微波旋磁‑介电复合陶瓷材料及其制备方法
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN112830780A (zh) 一种调控剂、ltcc微波介质材料及其制备方法
CN105198422A (zh) 一种Li3Ni2NbO6微波介质材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200114

CF01 Termination of patent right due to non-payment of annual fee