CN107117967A - 一种低温烧结复合微波介质陶瓷材料及其制备方法 - Google Patents

一种低温烧结复合微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107117967A
CN107117967A CN201710388582.9A CN201710388582A CN107117967A CN 107117967 A CN107117967 A CN 107117967A CN 201710388582 A CN201710388582 A CN 201710388582A CN 107117967 A CN107117967 A CN 107117967A
Authority
CN
China
Prior art keywords
hours
agent
phase
drop
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710388582.9A
Other languages
English (en)
Other versions
CN107117967B (zh
Inventor
李恩竹
杨鸿宇
孙怀宝
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710388582.9A priority Critical patent/CN107117967B/zh
Publication of CN107117967A publication Critical patent/CN107117967A/zh
Application granted granted Critical
Publication of CN107117967B publication Critical patent/CN107117967B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于电子陶瓷及其制造领域,涉及一种低温烧结复合微波介质陶瓷材料及其制备方法。本发明提供的材料,由质量百分比97%~99.5%的(Zn1‑xCox)0.5Ti0.5(Nb1‑yTay)O4基料和质量百分比0.5%~3%的降烧剂组成,x=0.05~0.95,y=0.05~0.95;主晶相ZnTiNb2O8相,次晶相Zn0.17Nb0.33Ti0.5O2相。本发明在Zn0.5Ti0.5NbO4基础上进行离子掺杂Co2O3和Ta2O5,并在离子掺杂后的体系上掺杂0.5~3wt.%降烧剂,低于900℃烧结温度下烧结致密,在保证微波介电性能优异的前提下,且能够调节体系较正的τf值,介电常数20~34,损耗≤10‑4,频率温度系数稳定‑10ppm/℃≤τf≤+10ppm/℃,制备工艺简单,易于工业化生产。

Description

一种低温烧结复合微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷及其制造领域,涉及一种低温烧结复合微波介质陶瓷材料及其制备方法。
背景技术
微波介质陶瓷随着移动通信产业的快速发展,对其需求日益增加,作为现代通信系统的基础材料,微波介质陶瓷材料被广泛应用于介质谐振器、滤波器、介质波导回路、微波电容、双工器、天线等微波元器件,适用于卫星通信及移动通讯基站。
低温共烧陶瓷LTCC(Low Temperature Co-fired Ceramics)技术能够将多个不同类型、不同性能的无源元件集成在一个封装内,是无源集成的主流技术。但LTCC技术要求陶瓷材料能够与Ag、Cu等金属共烧,而一般陶瓷的烧结温度高于1000℃无法实现,因此降低陶瓷材料的烧结温度是应用于LTCC的门槛。
在微波介质陶瓷材料的制备过程中,评判体系性能主要在于以下三点:(1)适宜的介电常数;(2)低的损耗tanδ和高的品质因数Q×f值;(3)稳定近零的谐振频率温度系数。
通常情况下,降烧剂具有负的τf值,在陶瓷-玻璃的混合体系中,根据混合对数规则,为了得到近零的谐振频率温度系数,采取基料为τf为正值的配比。而(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4(x=0.05~0.95,y=0.05~0.95)陶瓷在1150℃~1200℃烧结下具有较好的微波介电性能及较正的谐振频率温度系数:1175℃,εr=45.15、Q×f=16774GHz、τf=90.17ppm/℃(x=0.3,y=0.4)。
但其烧结温度仍尚高(1150℃~1200℃),不能直接与Ag、Cu等低熔点金属共烧,因此需要引入低熔点的烧结助剂。常用的办法有:(1)低熔点氧化物;(2)低熔点玻璃料烧结助剂;(3)改善工艺条件。相对比而言,低熔点氧化物或低熔点玻璃烧结助剂的工艺相对简单(在基料烧结后按质量比加入),易于批量生产。
发明内容
针对上述存在问题或不足,本发明提供了一种低温烧结复合微波介质陶瓷材料及其制备方法。
本发明提供的材料,由质量百分比97%~99.5%的(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4(x=0.05~0.95,y=0.05~0.95)基料和质量百分比0.5%~3%的降烧剂组成。
基料原料组分是ZnO、Co2O3、TiO2、Nb2O5和Ta2O5按照化学通式(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4配比,x=0.05~0.95,y=0.05~0.95;
降烧剂原料组分的重量百分比为:32.42%≤Li2CO3≤40.04%,42.54%≤H3BO3≤54.26%,2.56%≤SiO2≤6.33%,0%<ZnO≤2.54%,0%<Al2O3≤18.25%;以及微量的添加物0%<MnCO3≤0.4%和0%<CuO≤1.2%,两者重量比为1:3。
主晶相为ZnTiNb2O8相,次晶相为Zn0.17Nb0.33Ti0.5O2相,烧结温度≤900℃,体系致密,具有中等介电常数(20~34),损耗≤10-4,频率温度系数稳定(-10ppm/℃≤τf≤+10ppm/℃),制备工艺简单,易于工业化生产。
其制备方法如下:
步骤1:将ZnO、Co2O3、TiO2、Nb2O5和Ta2O5的原始粉料按照(Zn1-xCox)0.5Ti0.5(Nb1- yTay)O4(x=0.05~0.95,y=0.05~0.95)化学通式进行配料;
步骤2:将步骤1所得配料装入球磨罐,以锆球及去离子水作为研磨介质,按照配料:锆球:去离子水质量比1:3~7:1~3行星球磨4~7小时,然后在80~100℃烘干,以40~60目筛网过筛,最后在800~1200℃大气气氛中预烧2~4小时合成主晶相ZnTiNb2O8相;
步骤3:按32.42%≤Li2CO3≤40.04%,42.54%≤H3BO3≤54.26%,2.56%≤SiO2≤6.33%,0%<ZnO≤2.54%,0%<Al2O3≤18.25%,0%<MnCO3≤0.4%,0%<CuO≤1.2%,MnCO3:CuO重量比1:3配料,然后装入球磨罐中,球磨4~7小时,待烘干过筛后,再于500℃~800℃下预烧2~6小时,最后在1100℃~1500℃保温1~5小时熔融玻璃渣,将制备的玻璃渣再破碎球磨成粉制得降烧剂;
步骤4:在步骤2制得的预烧粉料中加入占预烧粉料质量百分比的0.5%~3%的降烧剂,以粉体:锆球:去离子水质量比1:3~7:1~3,行星球磨3~6小时,再取出烘干后,以丙烯酸溶液作为粘结剂造粒,压制成型,最后在850℃~900℃大气气氛中烧结2~6小时,制成微波介质陶瓷材料。
综上所述,本发明在Zn0.5Ti0.5NbO4基础上进行离子掺杂Co2O3和Ta2O5,并在离子掺杂后的体系上掺杂0.5~3wt.%降烧剂,低于900℃烧结温度下烧结致密,在保证微波介电性能优异的前提下,且能够调节体系较正的τf值。
附图说明
图1为实施例x=0.3,y=0.4时掺杂1wt.%降烧剂的收缩曲线图;
图2(a)为实施例x=0.3,y=0.4时掺杂1wt.%降烧剂,850℃~900℃下烧结的XRD图谱;图2(b)为实施例x=0.3,y=0.4时掺杂0.5~3wt.%降烧剂,在900℃下烧结后的XRD图谱;
图3为x=0.3,y=0.4掺杂1wt.%降烧剂在850℃~900℃下烧结后的SEM图,其中(a)对应实施例2,(b)对应实施例6,(c)对应实施例10。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4,x=0.3,y=0.4。
步骤1、将各组成原料按表中参数配料,按照粉料:锆球:去离子水质量比1:5:2行星球磨6小时,然后100℃烘干,以60目筛网过筛,最后在1000℃大气气氛中预烧3小时。
步骤2、将降烧剂原料按表中参数配料,球磨7小时,烘干过筛后,在800℃下预烧3小时,然后1200℃保温3小时熔融玻璃渣,将玻璃渣破碎球磨成粉制得降烧剂。
步骤3、将制得的降烧剂粉料按照预烧料的质量百分比0.5~3wt.%加入预烧料中,并进行二次球磨,按照粉料:锆球:去离子水质量比1:5:1行星球磨4小时,然后在100℃烘箱中烘干,烘干后用丙烯酸造粒,并压制成型,最后在850℃~900℃大气气氛中烧结4小时,制成微波介质陶瓷材料。
图1展示了该复合陶瓷体系掺杂1wt.%降烧剂的收缩曲线,从曲线中可以看出,未掺杂降烧剂时,样品开始收缩的温度大概位于800℃附近,并且当温度达到1100℃时,收缩率不足6%,而当掺杂1wt.%降烧剂时,体系开始收缩的温度提前200℃,并且在1100℃时体系的收缩率最大可达到23%,明显大于为掺杂降烧剂时的体系收缩率,进一步说明降烧剂的加入使得陶瓷材料在较低温度下实现致密化,能够有效的促进烧结过程。
图2(a)为x=0.3,y=0.4掺杂1wt.%降烧剂后在850℃~900℃下烧结后的XRD图谱;图2(b)为x=0.3,y=0.4掺杂0.5~3wt.%降烧剂后在900℃下烧结后的XRD图谱。
从图2(a)可以看出,在不同烧结温度下,该样品呈现出两种物相,其中主晶相为ZnTiNb2O8(JCPDS#48-0323),次晶相为Zn0.17Nb0.33Ti0.5O2(JCPDS#39-0291)。从图2(b)中看出,掺杂不同量降烧剂后,该样品仍然只有两种物相ZnTiNb2O8(JCPDS#48-0323),Zn0.17Nb0.33Ti0.5O2(JCPDS#39-0291)。
以实施例2、6、10为例,探讨不同烧结温度(850℃-900℃)下样品的晶粒生长情况,从SEM图(图3)可以看出,在三个温度下样品的晶粒尺寸小。在850℃时,晶粒尺寸大小约为0.6μm,并且尺寸分布均匀,在875℃时,出现异常大的晶粒,同时表面可以看到出现气孔,在900℃时,表面观察不到气孔,样品致密,并且异常大晶粒数量增多。
各实施例的成分和微波介电性能如下表格
从上表格数据可以看出,降烧剂的加入,使得该体系在低于900℃烧结温度下烧结致密。并且掺杂1wt.%降烧剂的体系的谐振频率温度系数均在±10ppm/℃范围内,微波介电性能优异(以实施例2,6,10为例),说明本发明降烧剂的加入,低于900℃烧结温度下烧结致密,并能够调节体系较正的τf值。
综上所述,本发明在Zn0.5Ti0.5NbO4基础上进行离子掺杂Co2O3和Ta2O5,并在离子掺杂后的体系上掺杂0.5~3wt.%降烧剂,低于900℃烧结温度下烧结致密,在保证微波介电性能优异的前提下,且能够调节体系较正的τf值。

Claims (2)

1.一种低温烧结复合微波介质陶瓷材料,其特征在于:
由质量百分比97%~99.5%的(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4基料和质量百分比0.5%~3%的降烧剂组成,x=0.05~0.95,y=0.05~0.95;
基料原料组分是ZnO、Co2O3、TiO2、Nb2O5和Ta2O5按化学通式(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4配比,x=0.05~0.95,y=0.05~0.95;
降烧剂原料组分的重量百分比为:32.42%≤Li2CO3≤40.04%,42.54%≤H3BO3≤54.26%,2.56%≤SiO2≤6.33%,0%<ZnO≤2.54%,0%<Al2O3≤18.25%,0%<MnCO3≤0.4%和0%<CuO≤1.2%,MnCO3:CuO的重量比为1:3;
其主晶相为ZnTiNb2O8相,次晶相为Zn0.17Nb0.33Ti0.5O2相,烧结温度≤900℃,体系致密,介电常数20~34,损耗≤10-4,频率温度系数-10ppm/℃≤τf≤+10ppm/℃。
2.如权利要求1所述低温烧结复合微波介质陶瓷材料,其制备方法如下:
步骤1、将ZnO、Co2O3、TiO2、Nb2O5和Ta2O5的原始粉料按照(Zn1-xCox)0.5Ti0.5(Nb1-yTay)O4化学通式进行配料,x=0.05~0.95,y=0.05~0.95;
步骤2、将步骤1所得配料装入球磨罐,以锆球及去离子水作为研磨介质,按照配料:锆球:去离子水质量比1:3~7:1~3行星球磨4~7小时,然后在80~100℃烘干,以40~60目筛网过筛,最后在800~1200℃大气气氛中预烧2~4小时合成主晶相ZnTiNb2O8相;
步骤3、按32.42%≤Li2CO3≤40.04%,42.54%≤H3BO3≤54.26%,2.56%≤SiO2≤6.33%,0%<ZnO≤2.54%,0%<Al2O3≤18.25%,0%<MnCO3≤0.4%,0%<CuO≤1.2%,MnCO3:CuO重量比1:3配料,然后装入球磨罐中,球磨4~7小时,待烘干过筛后,再于500℃~800℃下预烧2~6小时,最后在1100℃~1500℃保温1~5小时熔融玻璃渣,将制备的玻璃渣再破碎球磨成粉制得降烧剂;
步骤4、在步骤2制得的预烧粉料中加入占预烧粉料质量百分比的0.5%~3%的降烧剂,以粉体:锆球:去离子水质量比1:3~7:1~3,行星球磨3~6小时,再取出烘干后,以丙烯酸溶液作为粘结剂造粒,压制成型,最后在850℃~900℃大气气氛中烧结2~6小时,制成微波介质陶瓷材料。
CN201710388582.9A 2017-05-27 2017-05-27 一种低温烧结复合微波介质陶瓷材料及其制备方法 Expired - Fee Related CN107117967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710388582.9A CN107117967B (zh) 2017-05-27 2017-05-27 一种低温烧结复合微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710388582.9A CN107117967B (zh) 2017-05-27 2017-05-27 一种低温烧结复合微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107117967A true CN107117967A (zh) 2017-09-01
CN107117967B CN107117967B (zh) 2020-06-16

Family

ID=59728537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710388582.9A Expired - Fee Related CN107117967B (zh) 2017-05-27 2017-05-27 一种低温烧结复合微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107117967B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721421A (zh) * 2017-10-30 2018-02-23 电子科技大学 一种Zn‑Nb‑Ti系LTCC材料及其制备方法
CN109467433A (zh) * 2018-12-14 2019-03-15 电子科技大学 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN109574663A (zh) * 2018-12-14 2019-04-05 电子科技大学 一种Ni-Ti-Ta基微波介质陶瓷材料及其制备方法
CN110922184A (zh) * 2019-12-18 2020-03-27 广东国华新材料科技股份有限公司 一种复合微波介质陶瓷及其制备方法
CN113896530A (zh) * 2021-11-03 2022-01-07 电子科技大学 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617144A (zh) * 2012-04-05 2012-08-01 天津大学 一种新型温度稳定型钽铌酸盐微波介质陶瓷
CN102815944A (zh) * 2012-08-27 2012-12-12 天津大学 一种钴掺杂铌钛酸锌微波介质陶瓷及其制备方法
CN103232235A (zh) * 2013-04-25 2013-08-07 电子科技大学 一种低温烧结复合微波介质陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617144A (zh) * 2012-04-05 2012-08-01 天津大学 一种新型温度稳定型钽铌酸盐微波介质陶瓷
CN102815944A (zh) * 2012-08-27 2012-12-12 天津大学 一种钴掺杂铌钛酸锌微波介质陶瓷及其制备方法
CN103232235A (zh) * 2013-04-25 2013-08-07 电子科技大学 一种低温烧结复合微波介质陶瓷材料及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721421A (zh) * 2017-10-30 2018-02-23 电子科技大学 一种Zn‑Nb‑Ti系LTCC材料及其制备方法
CN107721421B (zh) * 2017-10-30 2020-09-25 电子科技大学 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN109467433A (zh) * 2018-12-14 2019-03-15 电子科技大学 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN109574663A (zh) * 2018-12-14 2019-04-05 电子科技大学 一种Ni-Ti-Ta基微波介质陶瓷材料及其制备方法
CN109467433B (zh) * 2018-12-14 2021-03-30 电子科技大学 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
US11390564B2 (en) * 2018-12-14 2022-07-19 University Of Electronic Science And Technology Of China Ceramic material and method for preparing the same
CN110922184A (zh) * 2019-12-18 2020-03-27 广东国华新材料科技股份有限公司 一种复合微波介质陶瓷及其制备方法
CN113896530A (zh) * 2021-11-03 2022-01-07 电子科技大学 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN113896530B (zh) * 2021-11-03 2022-07-29 电子科技大学 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
US11724966B2 (en) 2021-11-03 2023-08-15 University Of Electronic Sci. And Tech. Of China Microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
CN107117967B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN107117967A (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN106007703B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN104108929B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN110282968A (zh) 一种微波介质陶瓷材料及其制备方法
CN112457010B (zh) 岩盐型重构超晶格结构微波介质陶瓷材料及制备方法
CN107244916B (zh) 一种铌酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN105693241A (zh) 高品质因数锂镁铌系微波介质陶瓷及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN107721421B (zh) 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN112979314B (zh) 一种中等介电常数高q微波介质陶瓷材料及其制备方法
CN107555986B (zh) 一种低损耗岩盐矿结构微波介质陶瓷及制备方法
CN104016670B (zh) 一种低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN103467084B (zh) 一种高介电常数锂铌钛系低温烧结陶瓷及其制备方法
CN105130418A (zh) 一种Li-Nb-Ti系微波介质陶瓷材料
CN109467433B (zh) 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN104177085A (zh) 一种钼基温度稳定型微波介质陶瓷及其制备方法
CN108455986B (zh) 一种复合微波介质陶瓷材料及其制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN105314976B (zh) Ti基低损耗中K值微波介质陶瓷及其制备方法
CN112608144B (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN101265097B (zh) 一种低温烧结的复合微波介质陶瓷及其制备方法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200616