CN108455986B - 一种复合微波介质陶瓷材料及其制备方法 - Google Patents

一种复合微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108455986B
CN108455986B CN201810208464.XA CN201810208464A CN108455986B CN 108455986 B CN108455986 B CN 108455986B CN 201810208464 A CN201810208464 A CN 201810208464A CN 108455986 B CN108455986 B CN 108455986B
Authority
CN
China
Prior art keywords
powder
ceramic material
microwave dielectric
dielectric ceramic
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810208464.XA
Other languages
English (en)
Other versions
CN108455986A (zh
Inventor
李恩竹
杨鸿宇
杨鸿程
张树人
钟朝位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810208464.XA priority Critical patent/CN108455986B/zh
Publication of CN108455986A publication Critical patent/CN108455986A/zh
Application granted granted Critical
Publication of CN108455986B publication Critical patent/CN108455986B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子陶瓷及其制造领域,具体涉及一种复合微波介质陶瓷材料及其制备方法。该材料化学式为Zn0.15+0.35xTi0.55‑0.05xNb0.3+0.7xO2+2x(x=0.2‑0.8mol),其原料组成为ZnO、TiO2、Nb2O5,通过固相法制得;具有中等介电常数(40‑84),低损耗(1.10×10‑4‑3.02×10‑4),频率温度系数近零。通过调节x数值调节两相的含量,在保证低的烧结温度的同时,起到改善微波介电性能的作用。适用于多层介质谐振器、微波天线、微波电容器、滤波器等微波器件的制造。

Description

一种复合微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷及其制造领域,具体涉及一种复合微波介质陶瓷材料及其制备方法。
背景技术
微波介质陶瓷是指应用于微波(300MHz到300GHz)频段电路中作为介质材料并实现一种或多种功能的陶瓷材料,是现代通信技术中的基础。微波介质陶瓷现已被广泛应用于介质谐振器、滤波器、介质基片、介质波导回路、微波电容、双工器、天线等微波元器件。
微波介质陶瓷的实际应用应当满足以下要求:(1)介电常数适中以利于器件的小型化;(2)高的品质因数Q×f值和低的损耗(其中Q~1/tanδ,f是谐振频率);(3)近零的谐振频率温度系数。
Zn0.5Ti0.5NbO4陶瓷具有良好的微波介电性能:εr=34、Q×f=42500GHz,烧结温度适中(1100℃-1200℃),但τf=-52ppm/℃,较大的谐振频率温度稳定系数限制了其应用。在大量文献报道中发现,对Zn0.5Ti0.5NbO4进行性能改善主要通过离子掺杂以及复合两种方法。
对Zn0.5Ti0.5NbO4进行离子掺杂不会大幅提高烧结温度,但离子掺杂后体系的品质因数Q×f值欠佳。如Zn位被Ca2+、Co2+离子取代,Ti位被Zr4+、Sn4+离子取代,Nb位被Ta5+取代,超过一定取代量均会导致Zn0.15Nb0.3Ti0.55O2相的出现,该相作为离子掺杂过程中引入的杂质相,因此未被引起重视。
对Zn0.5Ti0.5NbO4进行复合可以大幅改善体系介电常数、品质因数以及谐振频率温度稳定系数,但是体系烧结致密所需的烧结温度过高。如利用TiO2进行复合,TiO2烧结温度为1400℃,耗能较大并且对设备要求较高。
发明内容
针对上述存在问题或不足,为解决在保证Zn0.5Ti0.5NbO4陶瓷的应用前提下,其参数优化以及制备温度的问题;本发明提供了一种复合微波介质陶瓷材料及其制备方法。
该复合微波介质陶瓷材料化学式为Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x(x=0.2-0.8mol),其原料组成为ZnO、TiO2、Nb2O5,通过固相法制得;具有中等介电常数(40-84),低损耗1.10×10-4-3.02×10-4,频率温度系数近零。
制备上述复合微波介质陶瓷材料的步骤如下:
步骤1:将氧化锌(ZnO)、二氧化钛(TiO2)、氧化铌(Nb2O5)的原始粉料按照化学式Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x(x=0.2-0.8mol)配料。
步骤2:将步骤1制备的配料按照粉料、氧化锆球、去离子水质量比为1:4-5:2-3进行行星球磨,混合4-8小时,取出后在80℃-100℃下烘干,以40-60目筛网过筛,然后在800℃-1000℃大气氛围中预烧3-6小时。
步骤3:再将步骤2预烧后的粉料按照粉料、氧化锆球、去离子水质量比1:4-5:1-2,行星球磨混合2-6小时,取出后在80℃-100℃下烘干,烘干后添加剂量占原料总质量的2~5%的PVA溶液作为粘结剂造粒,压制成型,最后在1100℃-1150℃大气气氛中烧结4-6小时,即制得微波介质陶瓷材料。
本发明将离子掺杂中出现的杂质相直接以复合的方式引入,设计出Zn0.5Ti0.5NbO4相与Zn0.15Nb0.3Ti0.55O2相的复合体系Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x,通过调节x数值调节两相的含量,在保证低的烧结温度的同时,起到改善微波介电性能的作用。本发明利用了Zn0.15Nb0.3Ti0.55O2相这一离子掺杂中的杂质相具有调节介电常数以及谐振频率温度稳定系数的作用,以及适中的烧结温度(1100℃-1200℃)。
综上所述,本发明提供的Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x陶瓷,其烧结温度低,介电常数可调,损耗小,具有优异的微波性能。
附图说明
图1为实施例1-5的XRD衍射花样;
图2(A)为烧结1150℃,x=0.4时样品的表面形貌图,图2(B)为烧结1100℃,x=0.516时样品的表面形貌图。
具体实施方式
下面结合附图和实施例详述本发明。
本发明材料化学式Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x(x=0.2-0.8mol),通过固相法制得本材料,具体步骤同上述步骤一样。
具体实施例的成分和微波介电性能如下
Figure BDA0001596530170000031
Figure BDA0001596530170000041
从上表可以看出,随着x的增多,样品的介电常数逐渐降低,品质因数逐渐升高,谐振频率温度稳定系数也从+300左右降低至-77左右,在实施例3中取得了近零的谐振频率温度稳定系数,并且样品保持优异的微波介电性能。
以实施例1、2、3、4、5(No.1-5)为例,其XRD衍射花样如图1所示。
从图中衍射花样的变化可以看出。在实施例1中,样品的衍射花样与Zn0.15Nb0.3Ti0.55O2卡片(JCPDS#79-1186)吻合,未检测到第二相。随着Zn0.5Ti0.5NbO4相含量的增加,样品出现Zn0.5Ti0.5NbO4相(JCPDS#48-0323),并且从右侧局部图的衍射峰相对强度变化可以看出Zn0.5Ti0.5NbO4的30°左右的(111)晶面成为最强衍射峰,说明此时样品的主晶相已经转变为Zn0.5Ti0.5NbO4,并且该相的相含量也逐渐增加。在实施例5中仅检测到Zn0.5Ti0.5NbO4相。
以实施例12、3(No.12、3)为例,其SEM扫描电镜图如图2所示。
图2(A)为烧结1150℃,x=0.4时样品的表面形貌图,图2(B)为烧结1100℃,x=0.516时样品的表面形貌图。从图中可以看出在这两个组分下样品致密,并且(A)图具有较大的平均晶粒尺寸,约为5.37μm。(B)图晶粒尺寸较小,约为1.65μm。
综上可见,本发明将离子掺杂中出现的杂质相直接以复合的方式引入,设计出Zn0.5Ti0.5NbO4相与Zn0.15Nb0.3Ti0.55O2相的复合体系Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x,通过调节x数值调节两相的含量,在保证低的烧结温度的同时,起到改善微波介电性能的作用。

Claims (2)

1.一种复合微波介质陶瓷材料,其特征在于:
化学式为Zn0.15+0.35xTi0.55-0.05xNb0.3+0.7xO2+2x,x=0.2-0.8mol,其原料组成为ZnO、TiO2、Nb2O5,通过固相法制得;介电常数40-84,损耗1.10×10-4-3.02×10-4,频率温度系数近零。
2.如权利要求1所述复合微波介质陶瓷材料的制备方法,具体如下:
步骤1:将氧化锌ZnO、二氧化钛TiO2、氧化铌Nb2O5的原始粉料按照化学式Zn0.15+ 0.35xTi0.55-0.05xNb0.3+0.7xO2+2x,x=0.2-0.8mol配料;
步骤2:将步骤1制备的配料按照粉料、氧化锆球、去离子水质量比为1:4-5:2-3进行行星球磨,混合4-8小时,取出后在80℃-100℃下烘干,以40-60目筛网过筛,然后在800℃-1000℃大气氛围中预烧3-6小时;
步骤3:再将步骤2预烧后的粉料按照粉料、氧化锆球、去离子水质量比1:4-5:1-2,行星球磨混合2-6小时,取出后在80℃-100℃下烘干,烘干后添加剂量占原料总质量的2~5%的PVA溶液作为粘结剂造粒,压制成型,最后在1100℃-1150℃大气气氛中烧结4-6小时,即制得微波介质陶瓷材料。
CN201810208464.XA 2018-03-14 2018-03-14 一种复合微波介质陶瓷材料及其制备方法 Expired - Fee Related CN108455986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810208464.XA CN108455986B (zh) 2018-03-14 2018-03-14 一种复合微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810208464.XA CN108455986B (zh) 2018-03-14 2018-03-14 一种复合微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108455986A CN108455986A (zh) 2018-08-28
CN108455986B true CN108455986B (zh) 2020-10-23

Family

ID=63217455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810208464.XA Expired - Fee Related CN108455986B (zh) 2018-03-14 2018-03-14 一种复合微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108455986B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574663B (zh) * 2018-12-14 2021-03-26 电子科技大学 一种Ni-Ti-Ta基微波介质陶瓷材料及其制备方法
CN115925415B (zh) * 2022-10-26 2023-11-21 云南银峰新材料有限公司 一种离子改性的微波介质陶瓷、其制备方法及微波元器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040048004A (ko) * 2002-12-02 2004-06-07 전자부품연구원 중간 유전율을 가지는 저온 동시소성 세라믹 조성물 및 그제조방법
CN101391890A (zh) * 2008-10-21 2009-03-25 华南理工大学 中低温烧结的中介电常数微波介质陶瓷及其制备方法
CN101462874A (zh) * 2008-11-28 2009-06-24 西安交通大学 一种低温烧结中介电常数微波介质陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040048004A (ko) * 2002-12-02 2004-06-07 전자부품연구원 중간 유전율을 가지는 저온 동시소성 세라믹 조성물 및 그제조방법
CN101391890A (zh) * 2008-10-21 2009-03-25 华南理工大学 中低温烧结的中介电常数微波介质陶瓷及其制备方法
CN101462874A (zh) * 2008-11-28 2009-06-24 西安交通大学 一种低温烧结中介电常数微波介质陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
反应烧结法制备ZnTiNb2O8基陶瓷及其微波介电性能研究;阮盼;《中国优秀硕士学位论文全文数据库工程科技I辑》;20170515;第B015-142页 *

Also Published As

Publication number Publication date
CN108455986A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN106083033B (zh) 一种微波介质陶瓷材料及其制备方法
CN107140981B (zh) 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN106007703B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN112457010B (zh) 岩盐型重构超晶格结构微波介质陶瓷材料及制备方法
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN104108929B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107244916B (zh) 一种铌酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN105254293A (zh) 一种微波介质陶瓷材料及其制备方法
CN108455986B (zh) 一种复合微波介质陶瓷材料及其制备方法
CN113896530B (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
US20090105063A1 (en) Dielectric Ceramic Composition
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN112979314B (zh) 一种中等介电常数高q微波介质陶瓷材料及其制备方法
CN109467432B (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
CN103408299B (zh) 一种钛酸锌钡体系陶瓷低温烧结材料及制备方法
CN107721421B (zh) 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN106904969A (zh) 一种谐振频率温度系数可调的中介电常数微波介质陶瓷
CN110903085B (zh) TiO2基微波陶瓷基板材料及制备方法和应用
CN105130418A (zh) 一种Li-Nb-Ti系微波介质陶瓷材料
CN109467433B (zh) 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN109650886B (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201023