CN108358633B - 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 - Google Patents

一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 Download PDF

Info

Publication number
CN108358633B
CN108358633B CN201810507512.5A CN201810507512A CN108358633B CN 108358633 B CN108358633 B CN 108358633B CN 201810507512 A CN201810507512 A CN 201810507512A CN 108358633 B CN108358633 B CN 108358633B
Authority
CN
China
Prior art keywords
dielectric material
microwave dielectric
low
temperature
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810507512.5A
Other languages
English (en)
Other versions
CN108358633A (zh
Inventor
李波
邱磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810507512.5A priority Critical patent/CN108358633B/zh
Publication of CN108358633A publication Critical patent/CN108358633A/zh
Application granted granted Critical
Publication of CN108358633B publication Critical patent/CN108358633B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于介质陶瓷领域,提供一种低温烧结Ca5Mn4‑xMgxV6O24微波介质材料及其制备方法,用以解决现有微波介质材料在低烧结温度和高Q×f值难以兼顾的问题;本发明采用M g元素来部分取代Mn,能够提高原子堆积率和阳离子有序度,同时还能控制晶粒均匀生长,从而大大提高了品质因数(Q×f),并且降低了烧结温度;即使其同时实现低烧结温度和高Q×f值,具体为:烧结温度为815~890℃,介电常数为9~12,Q×f值为50000~63000GHz,谐振频率温度系数为:‑77ppm/℃~‑72ppm/℃;同时,本发明微波介质材料制备工艺简单,材料价格低廉、储量丰富,使得高性能的微波陶瓷基板实现低成本工化生产成为可能。

Description

一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
技术领域
本发明属于介质陶瓷领域,具体涉及一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法。
背景技术
微波介质陶瓷是指应用于微波频段电路中作为介质材料完成一定功能的陶瓷,在现代通信技术中不可或缺,通常被应用在移动电话,卫星,军事雷达等重要领域中。随着电子信息技术不断地向高频化和数字化发展,器件小型化,集成化以及模块化在现代通讯工具中发挥着越来越大的作用。低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)技术因其集成密度高,高频特性好,被广泛应用于制造集成电子元器件。
一般应用于LTCC技术的微波介质材料应具有以下特点:(1)适宜的介电常数;(2)高的品质因数(Q×f)以降低损耗,一般要求Q×f≥10000GHz;(3)较小的谐振频率温度系数,低的谐振频率温度系数意味着器件的中心频率随温度变化小,有利于提高工作的稳定性;(4)与银或铜有良好的共烧性,这就要求介质材料烧结温度要低于950℃。近些年来国内外的研究人员对LTCC陶瓷材料进行了广泛的研究和探索,许多微波介质材料为了满足LTCC的温度要求(烧结致密温度低于950℃)一般都会采用添加微晶玻璃以及低熔点氧化物等助烧剂。例如R.Umemura等人2006年在Journal of Alloys and Compounds中发表的文章Low-temper ature sintering-microwave dielectric property relations in Ba3(VO4)2ceramic中报道了Ba3(VO 4)2中掺入0.5wt%B2O3能够把烧结温度从1600℃降到950℃,但是在烧结温度降低的同时,恶化了其微波介电性能,如Q×f值从62347GHz降到了41065GHz;可以看出添加助烧剂的方法虽然能起到降烧的作用,但是所形成的结构难于控制,同时所形成的其他相往往具有相对较高的介质损耗,大大提高材料的介质损耗,使得制备出来的微波介质材料介电性能大幅恶化,且制备工艺复杂,能耗高,因此开发不需要添加助烧剂的低温烧结高Q×f值的微波陶瓷迫在眉睫。
进一步研究发现,钒酸盐微波介质材料具有很低的烧结温度;例如Yao等人在Ceramics International中发表的文章Low temperature sintering and microwavedielectric properties of Ca5Ni4(VO4)6ceramics中报道了Ca5Ni4(VO4)6微波介质陶瓷在875℃下烧结的微波介电性能:介电常数9.5、品质因数Q×f=54100GHz、谐振频率温度系数-60ppm/℃;Journal of Material s Science:Materials in Electronics 2016,27(7):7292-7296Microwave dielectric properties of low temperature sinteringCa5Mn4(VO4)6中报道了Ca5Mn4(VO4)6微波介质材料在875℃温度下烧结,具有良好的微波介电性能:相对介电常数11.2、品质因数Q×f=33800GHz,谐振频率温度系数-70ppm/℃。与此同时,提高Q×f值的方法有很多,如氧化物的添加、热处理和烧结条件的改变等等,但相似原子半径的元素取代能在不改变材料本身晶体结构的条件下,改变原子堆积率,提高阳离子有序度,从而大幅提高Q×f值;如Ogawa等人在Journal of the European CeramicSociety中发表的文章Crystal structure of corundum type Mg4(Nb(2-x)Tax)O9microwave dielectric ceramics with low dielectric loss中报道了Mg4Nb2O9微波介质陶瓷中的Nb元素被一定量的Ta元素取代,其Q×f值从x=0时的194000GHz提高到x=2时的3 47000GHz。
基于此,本发明提供一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法。
发明内容
本发明的目的在于提供一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法,用以解决现有微波介质材料在低烧结温度和高Q×f值难以兼顾的问题;本发明微波介质材料采用Mg取代Mn,形成:Ca5Mn4-xMgxV6O24,其中,1≤x≤2,使其实现低烧结温度和高Q×f值的良好性能,具体为:烧结温度为815~890℃,介电常数为9~12,Q×f值为50000~63000GHz,谐振频率温度系数为:-77ppm/℃~-72ppm/℃。
为实现上述目的,本发明采用的技术方案为:
一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料,其特征在于,所述微波介质材料的化学组成式为:Ca5Mn4-xMgxV6O24,其中,1≤x≤2。
进一步的,所述微波介质材料的晶相为Ca5Mn4V6O24
所述微波介质材料烧结温度为815~890℃,介电常数为9~12,Q×f值为50000~63000G Hz,谐振频率温度系数为:-77ppm/℃~-72ppm/℃。
上述低温烧结Ca5Mn4-xMgxV6O24微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1.配料:
以CaCO3、MnCO3、Mg(OH)2和V2O5为原料,按照化学组成式Ca5Mn4-xMgxV6O24的摩尔比进行配料,其中,1≤x≤2;
步骤2.一次球磨:
将步骤1配好的料进行一次球磨,球磨后将所得浆料烘干并过筛,得到干燥粉体;
步骤3.预烧:
将步骤2所得干燥粉体在775~825℃条件下预烧,保温2~4小时,得到预烧料;
步骤4.二次球磨:
将步骤3所得预烧料进行二次球磨,球磨后将所得浆料烘干并过筛,得到二次球磨料;
步骤5.造粒、成型:
将步骤4所得二次球磨料添加相当于所述二次球磨料质量5~7%的聚乙烯醇溶液混合后进行造粒,并在20MPa~30MPa压力下压制成生坯;
步骤6.烧结:
将步骤5所得生坯,经排胶处理后在温度为815~890℃,空气氛围下烧结2~5小时,得到最终的Ca5Mn4-xMgxV6O24微波介质材料。
本发明的有益效果在于:
(1)本发明提供低温烧结Ca5Mn4-xMgxV6O24微波介质材料的晶相为Ca5Mn4V6O24,采用Mg元素来部分取代Mn,能够提高原子堆积率和阳离子有序度,同时还能控制晶粒均匀生长,从而大大提高了品质因数(Q×f),并且降低了烧结温度;即使其同时实现低烧结温度和高Q×f值,具体为:烧结温度为815~890℃,介电常数为9~12,Q×f值为50000~63000GH z,谐振频率温度系数为:-77ppm/℃~-72ppm/℃;最优的:微波介质材料Ca5Mn2.4Mg1.6V6O24在845℃烧结,微波介电性能为:介电常数10.45、品质因数Q×f=63000GHz、谐振频率温度系数-72ppm/℃。
(2)本发明微波介质材料制备工艺简单,其烧结温度低(烧结温度<900℃),有利于节约能源;其制备工艺不需添加任何助烧剂,所形成相易于控制,在保持了出色的介电性能的同时,有效简化了制备工艺;同时,制备工艺中原材料价格低廉、储量丰富,使得高性能的微波陶瓷基板实现低成本工化生产成为可能。
附图说明
图1为实施例1制备得Ca5Mn4-xMgxV6O24微波介质材料的XRD衍射分析图。
图2为实施例1制备得Ca5Mn4-xMgxV6O24微波介质材料的表面SEM图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明。
实施例1
将CaCO3、MnCO3、Mg(OH)2和V2O5的粉末总共100g按照Ca5Mn2.8Mg1.2V6O24的摩尔比进行配料;所得混合料置于尼龙罐中,球磨6~8小时,以锆球作为磨球,去离子水作为球磨介质,料:水:球=1:1:5,球磨完烘干后过60目筛,得到干燥粉体;将干燥粉体在800℃下预烧2~4小时得到预烧料;将预烧料进行二次球磨,球磨完经过100℃烘干,并且过60目筛;将烘干并过60目筛的二次球磨料进行造粒,所用粘结剂采用质量浓度为5%的聚乙烯醇溶液,在20MPa~30MPa压力下压制成生坯;将生坯经排胶处理后在845℃温度下烧结2~5 小时;其微波介电性能如下:介电常数10.78、品质因数Q×f=56199GHz、谐振频率温度系数-75ppm/℃。
实施例2
将CaCO3、MnCO3、Mg(OH)2和V2O5的粉末总共100g按照Ca5Mn2.8Mg1.2V6O24的摩尔比进行配料;所得混合料置于尼龙罐中,球磨6~8小时,以锆球作为磨球,去离子水作为球磨介质,料:水:球=1:1:5,球磨完烘干后过60目筛,得到干燥粉体;将干燥粉体在800℃下预烧2~4小时得到预烧料;将预烧料进行二次球磨,球磨完经过100℃烘干,并且过60目筛;将烘干并过60目筛的二次球磨料进行造粒,所用粘结剂采用质量浓度为5%的聚乙烯醇溶液,在20MPa~30MPa压力下压制成生坯;将生坯经排胶处理后在860℃温度下烧结2~5 小时;其微波介电性能如下:介电常数11.11、品质因数Q×f=55154GHz、谐振频率温度系数-77ppm/℃。
实施例3
将CaCO3、MnCO3、Mg(OH)2和V2O5的粉末总共100g按照Ca5Mn2.4Mg1.6V6O24的摩尔比进行配料;所得混合料置于尼龙罐中,球磨6~8小时,以锆球作为磨球,去离子水作为球磨介质,料:水:球=1:1:5,球磨完烘干后过60目筛,得到干燥粉体;将干燥粉体在800℃下预烧2~4小时得到预烧料;将预烧料进行二次球磨,球磨完经过100℃烘干,并且过60目筛;将烘干并过60目筛的二次球磨料进行造粒,所用粘结剂采用质量浓度为5%的聚乙烯醇溶液,在20MPa~30MPa压力下压制成生坯;将生坯经排胶处理后在845℃温度下烧结2~5 小时;其微波介电性能如下:介电常数10.45、品质因数Q×f=63000GHz、谐振频率温度系数-72ppm/℃。
实施例4
将CaCO3、MnCO3、Mg(OH)2和V2O5的粉末总共100g按照Ca5Mn2.4Mg1.6V6O24的摩尔比进行配料;所得混合料置于尼龙罐中,球磨6~8小时,以锆球作为磨球,去离子水作为球磨介质,料:水:球=1:1:5,球磨完烘干后过60目筛,得到干燥粉体;将干燥粉体在800℃下预烧2~4小时得到预烧料;将预烧料进行二次球磨,球磨完经过100℃烘干,并且过60目筛;将烘干并过60目筛的二次球磨料进行造粒,所用粘结剂采用质量浓度为5%的聚乙烯醇溶液,在20MPa~30MPa压力下压制成生坯;将生坯经排胶处理后在860℃温度下烧结2~5 小时;其微波介电性能如下:介电常数10.94、品质因数Q×f=60444GHz、谐振频率温度系数-76ppm/℃。
实施例5
将CaCO3、MnCO3、Mg(OH)2和V2O5的粉末总共100g按照Ca5Mn2.4Mg1.6V6O24的摩尔比进行配料;所得混合料置于尼龙罐中,球磨6~8小时,以锆球作为磨球,去离子水作为球磨介质,料:水:球=1:1:5,球磨完烘干后过60目筛,得到干燥粉体;将干燥粉体在800℃下预烧2~4小时得到预烧料;将预烧料进行二次球磨,球磨完经过100℃烘干,并且过60目筛;将烘干并过60目筛的二次球磨料进行造粒,所用粘结剂采用质量浓度为5%的聚乙烯醇溶液,在20MPa~30MPa压力下压制成生坯;将生坯经排胶处理后在875℃温度下烧结2~5 小时;其微波介电性能如下:介电常数10.83、品质因数Q×f=60862GHz、谐振频率温度系数-77ppm/℃。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (3)

1.一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料,其特征在于,所述微波介质材料的化学组成式为:Ca5Mn4-xMgxV6O24,其中,1≤x≤2;所述微波介质材料的晶相为Ca5Mn4V6O24
2.按权利要求1所述低温烧结Ca5Mn4-xMgxV6O24微波介质材料,其特征在于,所述微波介质材料烧结温度为815~890℃,介电常数为9~12,Q×f值为50000~63000GHz,谐振频率温度系数为-77ppm/℃~-72ppm/℃。
3.按权利要求1所述低温烧结Ca5Mn4-xMgxV6O24微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1.配料:
以CaCO3、MnCO3、Mg(OH)2和V2O5为原料,按照化学组成式Ca5Mn4-xMgxV6O24的摩尔比进行配料,其中,1≤x≤2;
步骤2.一次球磨:
将步骤1配好的料进行一次球磨,球磨后将所得浆料烘干并过筛,得到干燥粉体;
步骤3.预烧:
将步骤2所得干燥粉体在775~825℃条件下预烧,保温2~4小时,得到预烧料;
步骤4.二次球磨:
将步骤3所得预烧料进行二次球磨,球磨后将所得浆料烘干并过筛,得到二次球磨料;
步骤5.造粒、成型:
将步骤4所得二次球磨料添加相当于所述二次球磨料质量5~7%的聚乙烯醇溶液混合后进行造粒,并在20MPa~30MPa压力下压制成生坯;
步骤6.烧结:
将步骤5所得生坯,经排胶处理后在温度为815~890℃,空气氛围下烧结2~5小时,得到最终的Ca5Mn4-xMgxV6O24微波介质材料。
CN201810507512.5A 2018-05-24 2018-05-24 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 Active CN108358633B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810507512.5A CN108358633B (zh) 2018-05-24 2018-05-24 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810507512.5A CN108358633B (zh) 2018-05-24 2018-05-24 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108358633A CN108358633A (zh) 2018-08-03
CN108358633B true CN108358633B (zh) 2021-02-05

Family

ID=63012376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810507512.5A Active CN108358633B (zh) 2018-05-24 2018-05-24 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108358633B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357627A (zh) * 2019-08-01 2019-10-22 电子科技大学 低温烧结微波介质材料Ca5Ni4-xMgxV6O24及其制备方法
CN112898021B (zh) * 2021-03-29 2022-05-31 电子科技大学 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法
CN116283282B (zh) * 2022-12-09 2024-03-08 玉林师范学院 钒基低介电常数微波介质陶瓷材料及其制备方法
CN116693288A (zh) * 2023-06-14 2023-09-05 超瓷材料技术(深圳)有限公司 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022255A1 (de) * 1992-04-24 1993-11-11 Siemens Matsushita Components Gmbh & Co. Kg Sinterkeramik für hochstabile thermistoren und verfahren zu ihrer herstellung
CN102531570A (zh) * 2011-12-31 2012-07-04 嘉兴佳利电子股份有限公司 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN103570349A (zh) * 2012-07-26 2014-02-12 深圳市国华新材料科技股份有限公司 掺杂改性的复合钙钛矿型微波介质陶瓷Ba(Co,Nb)O3及其制备方法
CN106830933A (zh) * 2017-01-12 2017-06-13 天津大学 一种热稳定高q值锂镁铌系微波介质陶瓷
CN107879739A (zh) * 2017-12-07 2018-04-06 天津大学 一种镁钴锆铌系微波介质陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022255A1 (de) * 1992-04-24 1993-11-11 Siemens Matsushita Components Gmbh & Co. Kg Sinterkeramik für hochstabile thermistoren und verfahren zu ihrer herstellung
CN102531570A (zh) * 2011-12-31 2012-07-04 嘉兴佳利电子股份有限公司 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN103570349A (zh) * 2012-07-26 2014-02-12 深圳市国华新材料科技股份有限公司 掺杂改性的复合钙钛矿型微波介质陶瓷Ba(Co,Nb)O3及其制备方法
CN106830933A (zh) * 2017-01-12 2017-06-13 天津大学 一种热稳定高q值锂镁铌系微波介质陶瓷
CN107879739A (zh) * 2017-12-07 2018-04-06 天津大学 一种镁钴锆铌系微波介质陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hirotaka Ogawa et al..Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss.《Journal of the European Ceramic Society》.2003,第2485-2488页. *
Microwave dielectric properties of low temperature sintering Ca5Mn4(VO4)6 ceramics;Guo-guang Yao et al.;《J Mater Sci: Mater Electron》;20160325;第7292-7296页 *
复合钙钛矿型Ba[(Co1-xMgx)1/3Nb2/3]O3 基微波陶瓷的结构与性能;刘亮 等;《粉末冶金材料科学与工程》;20180228;第23卷(第1期);第78-83页 *

Also Published As

Publication number Publication date
CN108358633A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
CN107140981B (zh) 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法
CN110423117A (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN105254293A (zh) 一种微波介质陶瓷材料及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN114874010A (zh) 一种微波陶瓷材料DyVO4及其制备方法
CN113896530B (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN103408299B (zh) 一种钛酸锌钡体系陶瓷低温烧结材料及制备方法
CN112979314B (zh) 一种中等介电常数高q微波介质陶瓷材料及其制备方法
CN103467084B (zh) 一种高介电常数锂铌钛系低温烧结陶瓷及其制备方法
CN111606709A (zh) 一种超低温烧结微波介质材料及其制备方法
CN108455986B (zh) 一种复合微波介质陶瓷材料及其制备方法
CN111646796B (zh) 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN111548158B (zh) 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN104710175A (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN113582690A (zh) 一种超低温烧结微波介质材料Zn2V2O7及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant