CN116693288A - 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法 - Google Patents

一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法 Download PDF

Info

Publication number
CN116693288A
CN116693288A CN202310699620.8A CN202310699620A CN116693288A CN 116693288 A CN116693288 A CN 116693288A CN 202310699620 A CN202310699620 A CN 202310699620A CN 116693288 A CN116693288 A CN 116693288A
Authority
CN
China
Prior art keywords
microwave dielectric
dielectric ceramic
ordering
cuo
perovskite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310699620.8A
Other languages
English (en)
Inventor
李�昊
刘飞
刘绍军
王弢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Super Porcelain Material Technology Shenzhen Co ltd
Original Assignee
Super Porcelain Material Technology Shenzhen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Super Porcelain Material Technology Shenzhen Co ltd filed Critical Super Porcelain Material Technology Shenzhen Co ltd
Priority to CN202310699620.8A priority Critical patent/CN116693288A/zh
Publication of CN116693288A publication Critical patent/CN116693288A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,所述方法为,采用CuO掺杂微波介质陶瓷,所述微波介质陶瓷为存在B位阳离子有序的复合钙钛矿结构Ba(B′1/3B″2/3)O3基陶瓷,其中B'选自Mg、Zn、Co、Mn、Ni中的至少一种或多种,所述B″选自Ta,Nb中的至少一种,通过掺入CuO可以促使Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化,从而提升微波介质陶瓷的品质因数Q。

Description

一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳 离子有序化的方法
技术领域
本发明属于微波介质陶瓷制备技术领域,具体涉及一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法。
背景技术
微波介质陶瓷是近几十年来发展起来的一种新型的功能介质陶瓷,是应用于微波频率电路中作为传输介质完成一种或多种功能的介质材料,在5G及毫米波通讯被用作谐振器、滤波器、介质基片和介电天线等。复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷(其中B'=Mg,Zn,Co,Ni等,B″=Ta,Nb等,B'和B″位能由多种元素占据)具有适中的介电常数和高的品质因数Q并且已经获得了商业化的应用,通常认为Ba(B′1/3B″2/3)O3微波介质陶瓷品质因数Q与其晶体结构中B位阳离子1:2有序正相关。为了获得高有序的Ba(B′1/3B″2/3)O3微波介质陶瓷,需要对Ba(B′1/3B″2/3)O3微波介质陶瓷在制备过程中进行高温烧结和长时间的退火处理来促进其有序化。高温烧结和长时间的退火处理不仅造成Ba(B′1/3B″2/3)O3微波介质陶瓷制备周期较长,而且烧结和退火过程中容易造成Ba(B′1/3B″2/3)O3微波介质陶瓷中Zn和Co等元素的挥发,在陶瓷中形成点缺陷影响其微波介电性能。
发明内容
针对现有技术的不足,本发明的目的在于提供一种促进复合钙钛矿结构Ba(B′1/ 3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法。
为了实现上述目的,本发明采用如下技术方案:
本发明一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,所述方法为,采用CuO掺杂微波介质陶瓷,所述微波介质陶瓷为存在B位阳离子有序的复合钙钛矿结构Ba(B′1/3B″2/3)O3基陶瓷,其中B'选自Mg、Zn、Co、Mn、Ni中的至少一种或多种,所述B″选自Ta,Nb中的至少一种或多种。
通常Ba(B′1/3B″2/3)O3微波介质陶瓷品质因数Q与其晶体结构中B位阳离子1:2有序正相关。发明人发现,通过掺入CuO可以促使Ba(B′1/3B″2/3)O3微波介质陶瓷有序化,从而提升微波介质陶瓷的品质因数Q。
B位阳离子1:2有序化是指当B位阳离子1:2有序时,二价B′位离子(Co2+、Zn2+、Mg2+、Mn2+和Ni2+等)和五价B″位离子(Nb5+和Ta5+等)沿[111]方向重复排列为1层B′和2层B″的{…B′-B″-B″-B′-B″-B″-B′-B″-B″…}有序结构。有序度:表征B位阳离子1:2有序化的程度。
优选的方案,所述CuO掺杂微波介质陶瓷,CuO的掺杂量为0.05~0.4wt%,优选为0.1~0.4wt%,进一步优选为0.2~0.3wt%。
将CuO的掺杂量控制在上述范围内,最终材料的性能最优。
优选的方案,所述B'选自Zn和/或Co,所述B″选自Nb。
优选的方案,所述CuO掺杂微波介质陶瓷的过程为:将Ba(B′1/3B″2/3)O3预烧粉、纳米CuO粉末、粘结剂、润滑剂球磨获得球磨料,球磨料干燥、造粒后,进行压制成型获得生坯,生坯于1300-1600℃,优选为1300℃烧结即得。
Ba(B′1/3B″2/3)O3微波介质陶瓷有序化过程受物质传输过程影响,在固相烧结过程中为基于空位扩散进行物质传输的体积扩散和晶界扩散,本发明通过添加低熔点纳米氧化物CuO在烧结初期形成晶界共晶液相,固相反应烧结转变为基于粘性流动的液相烧结极大加快了Ba(B′1/3B″2/3)O3微波介质陶瓷的物质传输过程,使得Ba(B′1/3B″2/3)O3微波介质陶瓷在低温快速实现致密化和有序化,避免了长时间退火处理工艺,减少了Ba(B′1/3B″2/3)O3微波介质陶瓷制备周期。CuO促进Ba(B′1/3B″2/3)O3微波介质陶瓷致密化和有序化机制如图1所示,在烧结初期,当烧结温度超过1040℃时纳米CuO颗粒逐渐分解并形成液态薄膜富集于晶界处,陶瓷烧结过程转变为黏性流动的液相烧结,显著促进了物质传输过程,在低温快速实现致密化和B位阳离子1:2有序化。而在烧结后期晶界处液态富Cu薄膜又固溶于基体中,不存在导致介电损耗明显增大的晶界第二相或者非晶相。CuO的加入能明显的降低了Ba(B′1/ 3B″2/3)O3微波介质陶瓷烧结温度和退火时间,提高了Ba(B′1/3B″2/3)O3微波介质陶瓷的品质因数Q值。
优选的方案,所述纳米CuO粉末的粒径≤100nm。
优选的方案,所述纳米CuO粉末的加入量为Ba(B′1/3B″2/3)O3预烧粉质量的0.05~0.4wt%,优选为0.1~0.4wt%,进一步优选为0.2~0.3wt%。
优选的方案,所述粘结剂为石蜡,润滑剂为硬脂酸,其中石蜡的加入量为Ba(B′1/ 3B″2/3)O3预烧粉质量的5-10wt%,硬脂酸的加入量为Ba(B′1/3B″2/3)O3预烧粉质量的2-4wt.%。
优选的方案,压制成型的压力为1000-2000kg/cm3,压制成型的时间为1-3min。
优选的方案,所述烧结的过程为:先以1℃/min的升温速率升温至400℃保温1h,然后以1℃/min升温速率升温至600℃保温1h,然后再以5℃/min升温速率升温至1300℃烧结10h,最后以1℃/min的降温速率降温至1000℃后随炉冷。
原理与优势
Ba(B′1/3B″2/3)O3微波介质陶瓷在制备过程中通常需要进行高温烧结(大于1400℃)和长时间的退火处理(通常为20-60小时)来促进其有序化。高温烧结和长时间的退火处理不仅造成Ba(B′1/3B″2/3)O3微波介质陶瓷制备周期较长,而且烧结和退火过程中容易造成Ba(B′1/3B″2/3)O3微波介质陶瓷中Zn和Co等元素的挥发,在陶瓷中形成点缺陷影响其微波介电性能。
本发明通过添加低熔点纳米氧化物CuO在烧结初期形成晶界共晶液相,固相反应烧结转变为基于粘性流动的液相烧结极大加快了Ba(B′1/3B″2/3)O3微波介质陶瓷的物质传输过程,使得Ba(B′1/3B″2/3)O3微波介质陶瓷在低温快速实现致密化和高有序化,避免了长时间退火处理工艺,减少了Ba(B′1/3B″2/3)O3微波介质陶瓷制备周期。CuO促进Ba(B′1/3B″2/3)O3微波介质陶瓷致密化和有序化机制如图1所示,在烧结初期,当烧结温度超过1040℃时纳米CuO颗粒逐渐分解并形成液态薄膜富集于晶界处,陶瓷烧结过程转变为黏性流动的液相烧结,显著促进了物质传输过程,在低温快速实现致密化和B位阳离子1:2有序化。而在烧结后期晶界液态富Cu薄膜又固溶于基体中,不存在导致介电损耗明显增大的晶界第二相或者非晶相。CuO的加入能明显的降低了Ba(B′1/3B″2/3)O3微波介质陶瓷烧结温度和退火时间,提高了Ba(B′1/3B″2/3)O3微波介质陶瓷的品质因数Q值。
附图说明
图1CuO促进陶瓷致密化和有序化机理。
图2 0.05-0.4wt%CuO掺杂BCZN微波陶瓷在1300℃烧结10h的相对密度图。
图3在1300℃烧结不同CuO掺杂量BCZN陶瓷的相对密度、有序度、介电性能与烧结温度的关系。
具体实施方式
实施例1
1.CuO掺杂Ba(Co,Zn)1/3Nb2/3O3陶瓷粉末制备:
将BaCoO3、ZnO、Co3O4和Nb2O5高纯粉末按Ba(Co,Zn)1/3Nb2/3O3陶瓷化学计量比称量,称量误差不超过±0.001g;将精确称量的原材料放入尼龙球磨罐中,以直径5mm和10mm二氧化锆球为球磨介质,酒精为溶剂,酒精、大小氧化锆球与原材料质量比为2:1:1:1。在行星球磨机中进行湿混球磨,转速设定为300r/min,运行1h停10min,运行总时长为24h。将湿混后的粉末浆料与二氧化锆磨球分离,放入烧杯中于鼓风干燥箱内进行干燥,由于溶剂为酒精,为防止酒精爆沸,设定鼓风干燥箱温度为75℃进行干燥。将干燥后的粉末放入刚玉坩埚中,在节能快速升温电阻炉中在1150℃预烧合成了Ba(Co,Zn)1/3Nb2/3O3单相。将预烧好的粉末分别加入0.05-0.4wt%的纳米CuO粉末,5wt%的石蜡和3wt%的硬脂酸进行湿混球磨和造粒。造粒后粉末采用压制成型的方法,压制压力为1500kg/cm3保压3min,得到CuO掺杂Ba(Co,Zn)1/3Nb2/3O3陶瓷生胚。
2.CuO掺杂Ba(Co,Zn)1/3Nb2/3O3陶瓷烧结工艺:采用热脱脂工艺,以1℃/min速率升温至400℃保温1h,然后以1℃/min速率升温至600℃保温1h完成排胶工艺。Ba(Co,Zn)1/ 3Nb2/3O3陶瓷排胶后样品以5℃/min升温至1300℃烧结10h,以1℃/min降温至1000℃后随炉冷。
3.CuO掺杂Ba(Co,Zn)1/3Nb2/3O3陶瓷性能测试:
如图2所示,随着CuO添加量的增加,CuO掺杂BCZN微波陶瓷的相对密度明显提高,1300℃烧结0.2wt%和0.4wt%掺杂CuO样品的相对密度分别为96.5%和97.1%,而1300℃烧结未掺杂样品的相对密度仅为87.1%;如图3所示,CuO添加量为0,0.05wt%,0.1wt%,0.2wt%,0.4wt%的Ba(Co,Zn)1/3Nb2/3O3陶瓷的有序度分别为38.6%,47.1%,61.4%,69.2%,70.6%。说明CuO的加入Ba(Co,Zn)1/3Nb2/3O3陶瓷有序化程度和致密化程度明显提升。CuO添加量为0.2wt%时,由于致密度和有序度的提升,Ba(Co,Zn)1/3Nb2/3O3陶瓷在1300℃烧结10小时的Q×f值(f为测试中心频率,为7GHz)从21,200GHz增加到69,300GHz。当CuO添加量增大为0.4wt%时,Ba(Co,Zn)1/3Nb2/3O3陶瓷Q×f值略微下降。

Claims (5)

1.一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,其特征在于:所述方法为,采用CuO掺杂微波介质陶瓷,所述微波介质陶瓷为存在B位阳离子有序的复合钙钛矿结构Ba(B′1/3B″2/3)O3基陶瓷,其中B'选自Mg、Zn、Co、Mn、Ni中的至少一种或多种,所述B″选自Ta,Nb中的至少一种或多种。
2.根据权利要求1所述的一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,其特征在于:所述CuO掺杂微波介质陶瓷,CuO的掺杂量为0.05~0.4wt%。
3.根据权利要求1或2所述的一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,其特征在于:所述CuO掺杂微波介质陶瓷的过程为:将Ba(B′1/3B″2/3)O3预烧粉、纳米CuO粉末、粘结剂、润滑剂球磨获得球磨料、球磨料干燥、造粒后,进行压制成型获得生坯,生坯于1300-1600℃烧结即得。
4.根据权利要求1或2所述的一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,其特征在于:所述纳米CuO粉末的粒径≤100nm。
5.根据权利要求4所述的一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法,其特征在于:所述纳米CuO粉末的加入量为Ba(B′1/3B″2/3)O3预烧粉质量的0.05~0.4wt%。
CN202310699620.8A 2023-06-14 2023-06-14 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法 Pending CN116693288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310699620.8A CN116693288A (zh) 2023-06-14 2023-06-14 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310699620.8A CN116693288A (zh) 2023-06-14 2023-06-14 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法

Publications (1)

Publication Number Publication Date
CN116693288A true CN116693288A (zh) 2023-09-05

Family

ID=87833589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310699620.8A Pending CN116693288A (zh) 2023-06-14 2023-06-14 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法

Country Status (1)

Country Link
CN (1) CN116693288A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487842A (en) * 1982-05-26 1984-12-11 Nippon Hoso Kyokai Low-loss microwave dielectric material
JP2005097114A (ja) * 2004-12-06 2005-04-14 Tdk Corp 誘電体組成物の設計方法
CN101062863A (zh) * 2007-04-25 2007-10-31 上海大学 3g移动通信用高q微波介质材料及其制备方法
US20130337369A1 (en) * 2010-11-12 2013-12-19 The University Of Liverpool Mixed metal oxide
CN108358633A (zh) * 2018-05-24 2018-08-03 电子科技大学 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN108911748A (zh) * 2018-08-28 2018-11-30 电子科技大学 具有孪晶结构的超低损耗微波介质陶瓷材料及其制备方法
CN109678502A (zh) * 2018-12-25 2019-04-26 贵阳顺络迅达电子有限公司 一种温度稳定型钙钛矿结构ltcc微波介质材料及其制备方法
CN110330330A (zh) * 2019-07-12 2019-10-15 无锡工艺职业技术学院 一种具有高磁导率的微波介电陶瓷材料及其制备方法
CN111943691A (zh) * 2020-07-31 2020-11-17 东莞市翔通光电技术有限公司 一种钡钴锌铌体系微波介质陶瓷烧结退火工艺
CN113620706A (zh) * 2021-08-13 2021-11-09 东莞市翔通光电技术有限公司 一种微波介质陶瓷制备方法及微波介质陶瓷
CN115010489A (zh) * 2022-05-18 2022-09-06 中国地质大学(武汉) 一种矿物基微波介质陶瓷材料及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487842A (en) * 1982-05-26 1984-12-11 Nippon Hoso Kyokai Low-loss microwave dielectric material
JP2005097114A (ja) * 2004-12-06 2005-04-14 Tdk Corp 誘電体組成物の設計方法
CN101062863A (zh) * 2007-04-25 2007-10-31 上海大学 3g移动通信用高q微波介质材料及其制备方法
US20130337369A1 (en) * 2010-11-12 2013-12-19 The University Of Liverpool Mixed metal oxide
CN108358633A (zh) * 2018-05-24 2018-08-03 电子科技大学 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN108911748A (zh) * 2018-08-28 2018-11-30 电子科技大学 具有孪晶结构的超低损耗微波介质陶瓷材料及其制备方法
CN109678502A (zh) * 2018-12-25 2019-04-26 贵阳顺络迅达电子有限公司 一种温度稳定型钙钛矿结构ltcc微波介质材料及其制备方法
CN110330330A (zh) * 2019-07-12 2019-10-15 无锡工艺职业技术学院 一种具有高磁导率的微波介电陶瓷材料及其制备方法
CN111943691A (zh) * 2020-07-31 2020-11-17 东莞市翔通光电技术有限公司 一种钡钴锌铌体系微波介质陶瓷烧结退火工艺
CN113620706A (zh) * 2021-08-13 2021-11-09 东莞市翔通光电技术有限公司 一种微波介质陶瓷制备方法及微波介质陶瓷
CN115010489A (zh) * 2022-05-18 2022-09-06 中国地质大学(武汉) 一种矿物基微波介质陶瓷材料及其制备方法和应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
刘亮;黄宗炼;肖亚;程立金;刘绍军;: "复合钙钛矿型Ba[(Co_(1-x)Mg_x)_(1/3)Nb_(2/3)]O_3基微波陶瓷的结构与性能", 粉末冶金材料科学与工程, no. 01, 15 February 2018 (2018-02-15) *
周张健: "《无机非金属材料工艺学》", 31 January 2010, 中国轻工业出版社, pages: 342 *
彭森;吴孟强;肖勇;许建明;刘轶;陈黎;张树人;: "SrCO_3掺杂对BMT陶瓷结构及介电性能的影响", 硅酸盐学报, no. 12, 29 November 2011 (2011-11-29) *
李全林: "《前沿领域新材料》", 31 December 2008, 东南大学出版社, pages: 370 *
李家茂;丘泰;樊传刚;: "添加CuO对Ca(Sm_(0.5)Nb_(0.5))O_3陶瓷烧结和微波介电性能的影响", 过程工程学报, no. 06, 15 December 2012 (2012-12-15) *
杨超;刘敬松;张敏芳;游美容;: "不同烧结温度对PMN基铁电陶瓷B位有序度的影响", 无机化学学报, no. 10, 10 October 2013 (2013-10-10), pages 2145 - 2149 *
王俊;雷文;吕文中;: "Ba缺位和烧结工艺对Ba_(1-x)Zn_(1/3)Nb_(2/3)O_3陶瓷离子有序度和微波介电性能的影响", 现代技术陶瓷, no. 01, 28 March 2011 (2011-03-28) *
田中青;黄伟九;余洪滔;梁依经;: "影响Ba(B’_(1/3)B"_(2/3))O_3型微波介质陶瓷介电损耗的因素", 材料导报, no. 08, 15 August 2006 (2006-08-15) *

Similar Documents

Publication Publication Date Title
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN112723875B (zh) 一种氧化镓掺杂氧化锡陶瓷靶材及制备方法
CN111995383A (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
KR101719928B1 (ko) Bi-Te계 세라믹스의 제조방법
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN110156454B (zh) 氧化锌压敏电阻片的制备方法
CN110407579B (zh) 一种具有超高q值微波介质材料及其制备方法
CN116063067B (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN116693288A (zh) 一种促进复合钙钛矿结构Ba(B′1/3B″2/3)O3微波介质陶瓷B位阳离子有序化的方法
CN114605142B (zh) 一种ltcf变压器用复合铁氧体基板材料及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN114213124B (zh) 一种中介电常数微波介质陶瓷材料及其制备方法
CN113004026B (zh) Ltcc微波介质陶瓷材料及其制造方法
CN111848154B (zh) 一种陶瓷电容器介质及其制备方法
CN114671682A (zh) 微波介质陶瓷材料及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN111943659A (zh) 一种高频低损耗高电阻率镍锌铁氧体材料的制备工艺
CN112608144A (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN114031404B (zh) 一种介质陶瓷材料的制备方法
CN111205066A (zh) 一种微波介质陶瓷的制备方法
CN115093220B (zh) 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法
CN108892501B (zh) 一种铁氧体材料及其制备方法
CN114804867B (zh) 适合热压烧结的陶瓷介质材料、陶瓷器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination