CN114671682A - 微波介质陶瓷材料及其制备方法 - Google Patents

微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114671682A
CN114671682A CN202210410829.3A CN202210410829A CN114671682A CN 114671682 A CN114671682 A CN 114671682A CN 202210410829 A CN202210410829 A CN 202210410829A CN 114671682 A CN114671682 A CN 114671682A
Authority
CN
China
Prior art keywords
dielectric ceramic
microwave dielectric
ceramic material
ball milling
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210410829.3A
Other languages
English (en)
Inventor
孙轲
王秀红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Gaoyusheng New Material Technology Co ltd
Original Assignee
Wuxi Gaoyusheng New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Gaoyusheng New Material Technology Co ltd filed Critical Wuxi Gaoyusheng New Material Technology Co ltd
Priority to CN202210410829.3A priority Critical patent/CN114671682A/zh
Publication of CN114671682A publication Critical patent/CN114671682A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种微波介质陶瓷材料及其制备方法,所述微波介质陶瓷材料为BaO‑Pr2O3‑TiO2系微波介质陶瓷,由主料和置换改性剂制得;所述主料包括Ba6‑3xPr8+2xTi18O54;所述置换改性剂包括Bi2O3、Sm2O3、Ga2O3和Ta2O5。借此,本发明解决了现有的BaO‑Pr2O3‑TiO2系微波介质陶瓷综合介电性能难以调节的问题。

Description

微波介质陶瓷材料及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种微波介质陶瓷材料及其制备方法。
背景技术
随着通信频段向微波频段发展,信号覆盖范围减小,基站的建设数量大幅增加。在建设皮基站、飞基站的情况下,通信设备的微型化变得尤为重要。相比于传统的金属滤波器,陶瓷介质滤波器具有更高的介电常数,更高的品质因数及较小的谐振频率温度系数,在保持高通信质量的同时有利于设备的小型化。
在高介电常数微波介质陶瓷中,钨青铜结构的BaO–Ln2O3–TiO2(Ln代表镧系元素)体系具有较高的介电常数和较低的损耗,是一种极具应用潜力的材料。BaO–Pr2O3–TiO2陶瓷介电常数较高,并且原料中的Pr6O11具有强氧化性,对抑制Ti4+还原有重要作用。但该材料品质因数较低,谐振频率温度系数正值较大。在现有技术中,有报道在BaO–Pr2O3–TiO2的A位用Sm部分置换Pr,在 1350~1425℃下烧结,其介电常数在78.1~83.8,谐振频率温度系数在-11.5 ppm/℃~+5.1ppm/℃范围,品质因数在7100GHz~9700GHz之间。该组分材料随着Sm掺量的增加,谐振频率温度系数向负值偏移,品质因数逐渐变大,但介电常数逐渐减小。因此在掺入Sm的同时保持较高的介电常数,是进一步提高该体系材料综合微波介电性能的关键。
综上可知,现有技术在实际使用上显然存在不便与缺陷,所以有必要加以改进。
发明内容
针对上述的缺陷,本发明的目的在于提供一种微波介质陶瓷材料及其制备方法,解决现有的BaO-Pr2O3-TiO2系微波介质陶瓷综合介电性能难以调节的问题。
本发明第一方面提供一种微波介质陶瓷材料,所述微波介质陶瓷材料为 BaO-Pr2O3-TiO2系微波介质陶瓷,由主料和置换改性剂制得;
所述主料包括Ba6-3xPr8+2xTi18O54
所述置换改性剂包括Bi2O3、Sm2O3、Ga2O3和Ta2O5
根据所述的微波介质陶瓷材料,所述微波介质陶瓷材料的名义成分化学式为Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54,其中,x的取值范围是0.5~0.7,y的取值范围是0.4~0.5。
根据所述的微波介质陶瓷材料,所述微波介质陶瓷材料的材料介电常数为 85~92,品质因数在9300~11000GHz,谐振频率温度系数在-9.5~+8.8ppm/℃范围,热震温差为115℃~130℃。
根据所述的微波介质陶瓷材料,所述微波介质陶瓷材料的名义成分化学式为Ba4.5(Pr0.53Sm0.4Bi0.07)9Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba4.35(Pr0.53Sm0.4Bi0.07)9.1Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba4(Pr0.48Sm0.45Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba4(Pr0.43Sm0.5Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba3.9(Pr0.43Sm0.5Bi0.07)9.4Ti17.5(Ga0.5Ta0.5)0.5O54
本发明第二方面提供一种制备上述任意一项所述微波介质陶瓷材料的制备方法,包括以下步骤:
(1)配料前将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2~4小时;根据所述微波介质陶瓷材料的名义成分化学式 Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54,以化学纯的BaCO3、Pr6O11、Sm2O3、 TiO2、Bi2O3、Ga2O3和Ta2O5为原料,计算各化学试剂用量并进行称量混合,
(2)将混合后的粉体以去离子水为介质进行湿法球磨,球磨时长为7~9小时,球磨转速280~350转/分钟,每30分钟换向一次;其中,0.5≤x≤0.7,0.4≤ y≤0.5;
(3)将步骤(2)球磨后的粉体在120~150℃烘干,在1100~1150℃预烧4 小时,升温速率为3℃/min;
(4)将预烧后的粉体进行二次球磨,以去离子水为介质进行湿法球磨,球磨时长为7~9小时,球磨转速280~350转/分钟,每30分钟换向一次;
(5)将二次球磨后的粉体150℃烘干,加入质量分数为6%~8%的聚乙烯醇造粒,过筛后干压;
(6)生坯在箱式炉中以3℃/min升温至600℃,保温1.5~2小时;随后以3℃/min升温至1300~1320℃,保温4~5小时,制得所述微波介质陶瓷材料。
根据所述的微波介质陶瓷材料的制备方法,所述干压压力为90~110Mpa,所述坯体的干压密度为2.1g/cm3~2.3g/cm3
根据所述的微波介质陶瓷材料的制备方法,在所述步骤(2)中球磨时长为 7小时,转速为300转/分钟;
在所述步骤(3)将步骤(2)球磨后的粉体在130℃烘干3小时,在1100℃预烧4小时,升温速率为3℃/min;
在所述步骤(5)中加入质量分数为10%的8wt.%聚乙烯醇溶液造粒。
根据所述的微波介质陶瓷材料的制备方法,在所述步骤(5)中,在造粒时,将造粒粉体过60目筛,在过筛后将造粒粉体装入模具,在100MPa压制得到圆柱生坯。
本发明提供的BaO-Pr2O3-TiO2系微波介质陶瓷材料,由主料和置换改性剂制得;所述主料包括Ba6-3xPr8+2xTi18O54;所述置换改性剂包括Bi2O3、Sm2O3、 Ga2O3和Ta2O5。由此利用BaO-Pr2O3-TiO2陶瓷的容忍因子较大,对A位的镧系元素和B位的钛元素同时进行置换,实现调节BaO-Ln2O3-TiO2系陶瓷的综合介电性能。实现了在保持较高品质因数和近零谐振频率温度系数的同时,进一步提高了介电常数,有利于微波器件的小型化。此外,本发明提供的该微波介质陶瓷材料的制备方法,加工不含有毒原料,对环境无污染,制备工艺简单,便于工业大批量生产。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的,本说明书中针对“一个实施例”、“实施例”、“示例实施例”等的引用,指的是描述的该实施例可包括特定的特征、结构或特性,但是不是每个实施例必须包含这些特定特征、结构或特性。此外,这样的表述并非指的是同一个实施例。进一步,在结合实施例描述特定的特征、结构或特性时,不管有没有明确的描述,已经表明将这样的特征、结构或特性结合到其它实施例中是在本领域技术人员的知识范围内的。
此外,在说明书及后续的权利要求当中使用了某些词汇来指称特定组件或部件,所属领域中具有通常知识者应可理解,制造商可以用不同的名词或术语来称呼同一个组件或部件。本说明书及后续的权利要求并不以名称的差异来作为区分组件或部件的方式,而是以组件或部件在功能上的差异来作为区分的准则。在通篇说明书及后续的权利要求书中所提及的“包括”和“包含”为一开放式的用语,故应解释成“包含但不限定于”。以外,“连接”一词在此系包含任何直接及间接的电性连接手段。间接的电性连接手段包括通过其它装置进行连接。
此外,未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明第一方面提供了一种微波介质陶瓷材料,所述微波介质陶瓷材料为 BaO-Pr2O3-TiO2系微波介质陶瓷,由主料和置换改性剂制得;
所述主料包括Ba6-3xPr8+2xTi18O54
所述置换改性剂包括Bi2O3、Sm2O3、Ga2O3和Ta2O5
在该实施例中,针对现有技术的缺陷,考虑到BaO-Pr2O3-TiO2陶瓷的容忍因子较大,对A位的镧系元素和B位的钛元素同时进行置换,可以调节 BaO-Ln2O3-TiO2系陶瓷的综合介电性能。具体的,所述微波介质陶瓷材料由主料和置换改性剂制得;所述主料包括Ba6-3xPr8+2xTi18O54;所述置换改性剂包括 Bi2O3、Sm2O3、Ga2O3和Ta2O5
在本发明的一个实施例中,所述微波介质陶瓷材料的名义成分化学式为 Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54,其中,x的取值范围是0.5~0.7, y的取值范围是0.4~0.5。具体的,所述微波介质陶瓷材料的名义成分化学式为 Ba4.5(Pr0.53Sm0.4Bi0.07)9Ti17.5(Ga0.5Ta0.5)0.5O54;或者 Ba4.35(Pr0.53Sm0.4Bi0.07)9.1Ti17.5(Ga0.5Ta0.5)0.5O54;或者 Ba4(Pr0.48Sm0.45Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54;或者 Ba4(Pr0.43Sm0.5Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54;或者 Ba3.9(Pr0.43Sm0.5Bi0.07)9.4Ti17.5(Ga0.5Ta0.5)0.5O54
而该微波介质陶瓷材料的材料介电常数为85~92,品质因数在9300~11000 GHz,谐振频率温度系数在-9.5~+8.8ppm/℃范围,热震温差为115℃~130℃。由此可见,在将A/B位离子置换后容易保持固溶体结构,通过A/B位协同置换来解决现有技术中的BaO-Pr2O3-TiO2系陶瓷介电常数偏小,且综合微波介电性能难以调节的问题。
本发明第二方面提供了一种制备上述任意一实施例所述微波介质陶瓷材料的制备方法,包括以下步骤:
(1)配料前将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2~4小时;根据所述微波介质陶瓷材料的名义成分化学式 Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54,以化学纯的BaCO3、Pr6O11、Sm2O3、 TiO2、Bi2O3、Ga2O3和Ta2O5为原料,计算各化学试剂用量并进行称量混合,
(2)将混合后的粉体以去离子水为介质进行湿法球磨,球磨时长为7~9小时,球磨转速280~350转/分钟,每30分钟换向一次;其中,0.5≤x≤0.7,0.4≤ y≤0.5;
(3)将步骤(2)球磨后的粉体在120~150℃烘干,在1100~1150℃预烧4 小时,升温速率为3℃/min;
(4)将预烧后的粉体进行二次球磨,以去离子水为介质进行湿法球磨,球磨时长为7~9小时,球磨转速280~350转/分钟,每30分钟换向一次;
(5)将二次球磨后的粉体150℃烘干,加入质量分数为6%~8%的聚乙烯醇造粒,过筛后干压;
(6)生坯在箱式炉中以3℃/min升温至600℃,保温1.5~2小时;随后以 3℃/min升温至1300~1320℃,保温4~5小时,制得所述微波介质陶瓷材料。
其中,所述干压压力为90~110Mpa,所述坯体的干压密度为2.1g/cm3~2.3 g/cm3
与现有技术相比,本发明的微波介质陶瓷材料的制备方法通过A/B位协同置换,获得了谐振频率温度系数近零且连续可调,介电常数更高的材料,有利于微波器件的小型化。在A位Sm置换的基础上,加入Bi元素,提高该体系的介电常数。此外,Ga3+和Ta5+的B位置换具有抑制Ti4+还原的作用,对提高品质因数具有促进作用。并且由于原料中含有Bi2O3,在烧结过程中存在液相烧结现象,降低了成瓷温度,节约能源,降低制造成本。此外,本发明制备的BaO–Pr2O3–TiO2系微波介质陶瓷具有较优异的综合性能,介电常数在85~92,品质因数在9300GHz~11000GHz,谐振频率温度系数在-9.5ppm/℃~+8.8 ppm/℃范围。热震温差为115℃~130℃,抗热震性能良好。
在本发明的一个实施例中,在所述步骤(2)中球磨时长为7小时,转速为 300转/分钟;
在所述步骤(3)将步骤(2)球磨后的粉体在130℃烘干3小时,在1100℃预烧4小时,升温速率为3℃/min;
在所述步骤(5)中加入质量分数为10%的8wt.%聚乙烯醇溶液造粒。而在所述步骤(5)中,在造粒时,将造粒粉体过60目筛,在过筛后将造粒粉体装入模具,在100MPa压制得到圆柱生坯。
在本发明的一个实施例中,制备上述任意一实施例所述微波介质陶瓷材料的制备方法,包括以下步骤:
(1)以化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3、Ta2O5为原料,配料前将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2~4小时;
(2)按照名义分子式Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54称取原料,以去离子水为介质进行湿法球磨,球磨时长7~9小时,转速为280~350rpm, 30min换向一次;其中,0.5≤x≤0.7,0.4≤y≤0.5;
(3)球磨后粉体在120~150℃烘干3小时,以3℃/min升温至 1100~1150℃,并保温4小时,完成预烧;
(4)将预烧后的粉体进行第二次球磨,工艺与步骤2)相同;
(5)将二次球磨的粉体在120~150℃烘干3小时,之后研磨造粒,所添加粘结剂为6~8ωt.%的聚乙烯醇溶液,将造粒粉体过筛,在90~110Mpa下干压成型;
(6)将生坯在600℃保温1.5~2小时排胶,随后继续升温至1290~1310℃保温4~5小时,烧结过程的升温速率为3℃/min,自然冷却至室温得到陶瓷熟坯。
以下进一步描述本发明具体实施例,并对照比较例阐明本发明微波介质陶瓷材料的特点和性能优势。
实施例1(x=0.5y=0.4)
一种微波介质陶瓷材料,其名义成分为
Ba4.5(Pr0.53Sm0.4Bi0.07)9Ti17.5(Ga0.5Ta0.5)0.5O54,制备方法包括以下步骤:
(1)配料前,将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2小时。将化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3、Ta2O5粉体按照名义化学式Ba4.5(Pr0.53Sm0.4Bi0.07)9Ti17.5(Ga0.5Ta0.5)0.5O54进行称量混合;
(2)将混合后的粉体与去离子水混合后进行球磨,球磨时长7小时,转速为300rpm,30分钟换向一次;
(3)球磨后的混合浆料在130℃烘干3小时,1100℃保温4小时预烧,升温速率3℃/分钟;
(4)研磨预烧粉体,确保无团聚颗粒。之后二次球磨,工艺步骤与步骤(2) 相同。
(5)加入粉体质量分数10%的8wt%聚乙烯醇溶液,研磨造粒,造粒粉体过60目筛。
(6)将造粒粉体装入模具,在100MPa压制得到圆柱生坯,生坯密度为 2.2g/cm3
(7)生坯在600℃保温2小时排胶,随后继续升温至1310℃保温4小时,烧结过程的升温速率为3℃/min,自然冷却至室温得到该微波介质陶瓷材料。
制备所得微波介质陶瓷的性能参数见表1。
实施例2(x=0.55y=0.4)
一种微波介质陶瓷材料,其名义成分为
Ba4.35(Pr0.53Sm0.4Bi0.07)9.1Ti17.5(Ga0.5Ta0.5)0.5O54,制备方法包括以下步骤:
(1)配料前,将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2小时。将化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3、Ta2O5粉体按照名义化学式Ba4.35(Pr0.53Sm0.4Bi0.07)9.1Ti17.5(Ga0.5Ta0.5)0.5O54进行称量混合;
(2)将混合后的粉体与去离子水混合后进行球磨,球磨时长7小时,转速为300rpm,30分钟换向一次;
(3)球磨后的混合浆料在130℃烘干3小时,1100℃保温4小时预烧,升温速率3℃/min;
(4)研磨预烧粉体,确保无团聚颗粒。之后二次球磨,工艺步骤与步骤(2) 相同。
(5)加入粉体质量分数10%的8wt.%聚乙烯醇溶液,研磨造粒,造粒粉体过60目筛。
(6)将造粒粉体装入模具,在100MPa压制得到圆柱生坯,生坯密度为 2.1g/cm3
(7)生坯在600℃保温2小时排胶,随后继续升温至1290℃保温4小时,烧结过程的升温速率为3℃/min,自然冷却至室温得到该微波介质陶瓷材料。
制备所得微波介质陶瓷的性能参数见表1。
实施例3(x=2/3y=0.45)
一种微波介质陶瓷材料,其名义成分为
Ba4(Pr0.48Sm0.45Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54,制备方法包括以下步骤:
(1)配料前,将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2小时。将化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3、Ta2O5粉体按照名义化学式Ba4(Pr0.48Sm0.45Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54进行称量混合;
(2)将混合后的粉体与去离子水混合后进行球磨,球磨时长7小时,转速为300rpm,30分钟换向一次;
(3)球磨后的混合浆料在130℃烘干3小时,1100℃保温4小时预烧,升温速率3℃/min;
(4)研磨预烧粉体,确保无团聚颗粒。之后二次球磨,工艺步骤与步骤(2) 相同。
(5)加入粉体质量分数10%的8wt.%聚乙烯醇溶液,研磨造粒,造粒粉体过60目筛。
(6)将造粒粉体装入模具,在100MPa压制得到圆柱生坯,生坯密度为 2.1g/cm3
(7)生坯在600℃保温2小时排胶,随后继续升温至1310℃保温4小时,烧结过程的升温速率为3℃/min,自然冷却至室温得到该微波介质陶瓷材料。
制备所得微波介质陶瓷的性能参数见表1。
实施例4(x=2/3y=0.5)
一种微波介质陶瓷材料,其名义成分为
Ba4(Pr0.43Sm0.5Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54,制备方法包括以下步骤:
(1)配料前,将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2小时。将化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3、Ta2O5粉体按照名义化学式Ba4(Pr0.43Sm0.5Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54进行称量混合;
(2)将混合后的粉体与去离子水混合后进行球磨,球磨时长7小时,转速为300rpm,30分钟换向一次;
(3)球磨后的混合浆料在130℃烘干3小时,1100℃保温4小时预烧,升温速率3℃/min;
(4)研磨预烧粉体,确保无团聚颗粒。之后二次球磨,工艺步骤与步骤(2) 相同。
(5)加入粉体质量分数10%的8wt.%聚乙烯醇溶液,研磨造粒,造粒粉体过60目筛。
(6)将造粒粉体装入模具,在100MPa压制得到圆柱生坯,生坯密度为 2.1g/cm3
(7)生坯在600℃保温2小时排胶,随后继续升温至1300℃保温4小时,烧结过程的升温速率为3℃/min,自然冷却至室温得到该微波介质陶瓷材料。
制备所得微波介质陶瓷的性能参数见表1。
实施例5(x=0.7y=0.5)
一种微波介质陶瓷材料,其名义成分为
Ba3.9(Pr0.43Sm0.5Bi0.07)9.4Ti17.5(Ga0.5Ta0.5)0.5O54,制备方法包括以下步骤:
配料前,将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2小时。将化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3、Ta2O5粉体按照名义化学式 Ba3.9(Pr0.43Sm0.5Bi0.07)9.4Ti17.5(Ga0.5Ta0.5)0.5O54进行称量混合;
(2)将混合后的粉体与去离子水混合后进行球磨,球磨时长7小时,转速为300rpm,30分钟换向一次;
(3)球磨后的混合浆料在130℃烘干3小时,1100℃保温4小时预烧,升温速率3℃/min;
(4)研磨预烧粉体,确保无团聚颗粒。之后二次球磨,工艺步骤与步骤(2) 相同。
(5)加入粉体质量分数10%的8wt.%聚乙烯醇溶液,研磨造粒,造粒粉体过60目筛。
(6)将造粒粉体装入模具,在100MPa压制得到圆柱生坯,生坯密度为 2.1g/cm3
(7)生坯在600℃保温2小时排胶,随后继续升温至1300℃保温4小时,烧结过程的升温速率为3℃/min,自然冷却至室温得到该微波介质陶瓷材料。制备所得微波介质陶瓷的性能参数见表1。
实施例1~5中微波介质陶瓷材料的微波介电性能和和抗热震性能测试结果。
Figure BDA0003603609030000101
表1
由此可见,本发明实施例中所制备的BaO–Pr2O3–TiO2系微波介质陶瓷材料在保持较高品质因数和近零谐振频率温度系数的同时,进一步提高了介电常数,有利于微波器件的小型化。在A位Sm,Pr共存的基础上,引入Bi进行置换,一方面增加了体系的介电常数,另外也具有降低烧结温度的作用。在B位用等摩尔量的Ga,Nb取代,一方面抑制了Ti4+的还原,降低损耗,促进了品质因数的提高;另一方面,也起到减小谐振频率温度系数的作用。此外,本发明无需引入温度补偿材料,通过A/B位协同置换,就可实现对综合微波介电性能的调控,谐振频率温度系数连续可调。所得陶瓷材料介电常数在85~92,品质因数在 9300~11000GHz,谐振频率温度系数在-9.5ppm/℃~+8.8ppm/℃范围。热震温差为115℃~130℃,抗热震性能良好。而且该微波介质陶瓷材料的加工不含有毒原料,对环境无污染,制备工艺简单,便于工业大批量生产。
综上所述,本发明提供的BaO-Pr2O3-TiO2系微波介质陶瓷材料,由主料和置换改性剂制得;所述主料包括Ba6-3xPr8+2xTi18O54;所述置换改性剂包括Bi2O3、 Sm2O3、Ga2O3和Ta2O5。由此利用BaO-Pr2O3-TiO2陶瓷的容忍因子较大,对A 位的镧系元素和B位的钛元素同时进行置换,实现调节BaO-Ln2O3-TiO2系陶瓷的综合介电性能。实现了在保持较高品质因数和近零谐振频率温度系数的同时,进一步提高了介电常数,有利于微波器件的小型化。此外,本发明提供的该微波介质陶瓷材料的制备方法,加工不含有毒原料,对环境无污染,制备工艺简单,便于工业大批量生产。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (8)

1.一种微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料为BaO-Pr2O3-TiO2系微波介质陶瓷,由主料和置换改性剂制得;
所述主料包括Ba6-3xPr8+2xTi18O54
所述置换改性剂包括Bi2O3、Sm2O3、Ga2O3和Ta2O5
2.根据权利要求1所述的微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的名义成分化学式为Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54,其中,x的取值范围是0.5~0.7,y的取值范围是0.4~0.5。
3.根据权利要求1所述的微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的材料介电常数为85~92,品质因数在9300~11000GHz,谐振频率温度系数在-9.5~+8.8ppm/℃范围,热震温差为115℃~130℃。
4.根据权利要求2所述的微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的名义成分化学式为Ba4.5(Pr0.53Sm0.4Bi0.07)9Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba4.35(Pr0.53Sm0.4Bi0.07)9.1Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba4(Pr0.48Sm0.45Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba4(Pr0.43Sm0.5Bi0.07)28/3Ti17.5(Ga0.5Ta0.5)0.5O54;或者
Ba3.9(Pr0.43Sm0.5Bi0.07)9.4Ti17.5(Ga0.5Ta0.5)0.5O54
5.一种制备权利要求1~4任意一项所述微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)配料前将Pr6O11和Sm2O3分别在600℃和950℃下煅烧2~4小时;根据所述微波介质陶瓷材料的名义成分化学式Ba6-3x(Pr0.93-ySmyBi0.07)8+2xTi17.5(Ga0.5Ta0.5)0.5O54,以化学纯的BaCO3、Pr6O11、Sm2O3、TiO2、Bi2O3、Ga2O3和Ta2O5为原料,计算各化学试剂用量并进行称量混合,
(2)将混合后的粉体以去离子水为介质进行湿法球磨,球磨时长为7~9小时,球磨转速280~350转/分钟,每30分钟换向一次;其中,0.5≤x≤0.7,0.4≤y≤0.5;
(3)将步骤(2)球磨后的粉体在120~150℃烘干,在1100~1150℃预烧4小时,升温速率为3℃/min;
(4)将预烧后的粉体进行二次球磨,以去离子水为介质进行湿法球磨,球磨时长为7~9小时,球磨转速280~350转/分钟,每30分钟换向一次;
(5)将二次球磨后的粉体150℃烘干,加入质量分数为6%~8%的聚乙烯醇造粒,过筛后干压;
(6)生坯在箱式炉中以3℃/min升温至600℃,保温1.5~2小时;随后以3℃/min升温至1300~1320℃,保温4~5小时,制得所述微波介质陶瓷材料。
6.根据权利要求5所述的微波介质陶瓷材料的制备方法,其特征在于,所述干压压力为90~110Mpa,所述坯体的干压密度为2.1g/cm3~2.3g/cm3
7.根据权利要求5所述的微波介质陶瓷材料的制备方法,其特征在于,在所述步骤(2)中球磨时长为7小时,转速为300转/分钟;
在所述步骤(3)将步骤(2)球磨后的粉体在130℃烘干3小时,在1100℃预烧4小时,升温速率为3℃/min;
在所述步骤(5)中加入质量分数为10%的8wt.%聚乙烯醇溶液造粒。
8.根据权利要求5所述的微波介质陶瓷材料的制备方法,其特征在于,在所述步骤(5)中,在造粒时,将造粒粉体过60目筛,在过筛后将造粒粉体装入模具,在100MPa压制得到圆柱生坯。
CN202210410829.3A 2022-04-19 2022-04-19 微波介质陶瓷材料及其制备方法 Pending CN114671682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210410829.3A CN114671682A (zh) 2022-04-19 2022-04-19 微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210410829.3A CN114671682A (zh) 2022-04-19 2022-04-19 微波介质陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114671682A true CN114671682A (zh) 2022-06-28

Family

ID=82078419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210410829.3A Pending CN114671682A (zh) 2022-04-19 2022-04-19 微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114671682A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504769A (zh) * 2022-10-21 2022-12-23 无锡市高宇晟新材料科技有限公司 微波介质陶瓷材料及其制备方法、应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264348A (zh) * 2018-01-30 2018-07-10 华中科技大学 一种高介电常数低损耗微波介质陶瓷及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264348A (zh) * 2018-01-30 2018-07-10 华中科技大学 一种高介电常数低损耗微波介质陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENG WANG等: "A/B-site cosubstituted Ba4Pr28/3Ti18O54 microwave dielectric ceramics with temperature stable and high Q in a wide range", 《CERAMICS INTERNATIONAL》 *
GENG WANG等: "Microwave dielectric characteristics of tungsten bronze-type Ba4Nd28/ 3Ti18-yGa4y/3O54 ceramics with temperature stable and ultra-low loss", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
JIN HUANG等: "The effect of co-substitution on the microwave dielectric properties of Ba6-3xNd8+2xTi18O54(x=2/3) ceramics", 《CERAMICS INTERNATIONAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504769A (zh) * 2022-10-21 2022-12-23 无锡市高宇晟新材料科技有限公司 微波介质陶瓷材料及其制备方法、应用
CN115504769B (zh) * 2022-10-21 2023-11-03 无锡市高宇晟新材料科技有限公司 微波介质陶瓷材料及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN106927804A (zh) 一种微波介质陶瓷温频特性调控剂及其ltcc材料
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN112851344B (zh) 一种中介电常数微波介质陶瓷及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN112851346B (zh) 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法
CN102850048B (zh) 一种铌镁钛酸铋陶瓷材料及其制备方法
CN111995383A (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN110483042A (zh) 一种新型的单相微波介质陶瓷材料及其制备方法
CN114671682A (zh) 微波介质陶瓷材料及其制备方法
CN111470864A (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN111138193A (zh) 一种中介电常数微波介质陶瓷材料及其制备方法与应用
JP2000007429A (ja) 誘電体材料及びその製造方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN114656255A (zh) 钛酸镁锂复合微波介质陶瓷材料及其制备方法
CN111423227B (zh) 具有中介电常数高Qf的微波介质陶瓷材料及其制备方法
JP2004256360A (ja) マイクロ波誘電体磁器組成物およびその製造方法
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN102030527B (zh) 一种BaO-TiO 2系微波电容器介质材料及其制备方法
CN110862256A (zh) 一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用
CN114180957B (zh) 一种微波介质陶瓷及其制备方法与应用
CN113292338B (zh) 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法
CN112250436B (zh) 一种陶瓷材料及其制备方法与应用
CN115466110B (zh) 陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220628