CN114605142B - 一种ltcf变压器用复合铁氧体基板材料及其制备方法 - Google Patents

一种ltcf变压器用复合铁氧体基板材料及其制备方法 Download PDF

Info

Publication number
CN114605142B
CN114605142B CN202210312988.XA CN202210312988A CN114605142B CN 114605142 B CN114605142 B CN 114605142B CN 202210312988 A CN202210312988 A CN 202210312988A CN 114605142 B CN114605142 B CN 114605142B
Authority
CN
China
Prior art keywords
sintering
ltcf
powder
transformer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210312988.XA
Other languages
English (en)
Other versions
CN114605142A (zh
Inventor
贾利军
符伟乐
许伦
陈志浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210312988.XA priority Critical patent/CN114605142B/zh
Publication of CN114605142A publication Critical patent/CN114605142A/zh
Application granted granted Critical
Publication of CN114605142B publication Critical patent/CN114605142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种LTCF变压器用复合铁氧体基板材料及制备方法,属于电子陶瓷技术领域。所述复合铁氧体基板材料包括主料、辅料和Bi2O3助剂,辅料占主料质量的5~15wt%,Bi2O3助剂占主料质量的0.5~1.5wt%。本发明铁氧体基板材料,除了具有较低的烧结温度外,同时还具有良好的功率特性:高的相对起始磁导率,高的饱和磁感应强度,高的居里温度,以及较低的室温功耗。制得的功率基板材料既满足了LTCF工艺要求,又具备片式变压器等功率铁氧体器件所需关键基板材料的优良磁性能。

Description

一种LTCF变压器用复合铁氧体基板材料及其制备方法
技术领域
本发明属于电子陶瓷技术领域,具体涉及一种高磁导率、高居里温度、高饱和磁感应强度、低功耗的LTCF变压器用复合铁氧体基板材料及其制备方法。
背景技术
由于在室温下具有较高的饱和磁感应强度、磁谱特性可调范围宽、功耗较低、温度稳定性较好等特点,NiZn铁氧体材料被广泛应用于各类功率变压器的制造。作为开关电源模块的重要组成部分,变压器的体积是制约其小型化、集成化发展的关键因素。低温共烧铁氧体(LTCF)技术的出现为各类磁性器件的小型化提供了一种行之有效的解决方案。然而,为了获得优良的频谱特性和低损耗特性,NiZn铁氧体通常要求在1200℃附近的高温条件下烧结,远高于LTCF技术的工艺要求(≤920℃)。因而,实现与LTCF技术兼容的低温烧结工艺并改善低烧NiZn铁氧体的功率性能尤其是兼顾高磁导率和高居里温度是亟待解决的问题。
目前,围绕NiZn铁氧体材料的低温烧结和功率性能的研究主要集中在低熔点氧化物掺杂改性和基本配方优化方面。申请号为202110189617.2的发明专利,公开了一种功率型低温烧结铁氧体材料及其制备方法,该发明改变尖晶石结构中Co、Zn、Fe的配比,并辅以Bi2O3、WO3和Nb2O5等助剂,900℃烧结2.5小时获得样品饱和磁感应强度~400mT、相对起始磁导率~200、功耗~300Kw/m3@1MHz,30mT,该方法制得材料的磁导率偏低,且未见温度特性相关报导。申请号为202010717904.1的发明专利,公开了一种高磁导率宽温功率型镍锌LTCF材料及其制备方法,该方法在缺铁NiCuZn铁氧体配方中添加MnCO3、Bi2O3助剂,并采用精细制粉工艺,制备得到的材料性能如下:相对起始磁导率450~512、居里温度172~185℃、功耗108~135kW/m3(100~300kHz@30mT,20℃),未涉及饱和磁感应强度的报道。“Reimann T,Capraro B,Bartsch H,et al.Ni-Cu-Zn ferrites with high Curietemperature for multilayer inductors with increased operating temperatures[J].International Journal of Applied Ceramic Technology,2020,18(1):129-137”文章通过调整配方中镍铜的比例实现了高居里温度(307℃),相对起始磁导率为135~250,该方法制得样品的起始磁导率偏低,且未见饱和磁感应强度和功耗的报道。“Wang X,ZhangD,Wang G,et al.Synthesis of V2O5-Doped and low-sintered NiCuZn ferrite withuniform grains and enhanced magnetic properties[J].Ceramics International,2020,46(8):10652-10657.”文章添加V2O5助剂获得相对起始磁导率约为693,品质因数达47.6的NiCuZn铁氧体材料,未见饱和磁感应强度、功耗、居里温度等参数的报道。综上所述,适应LTCF变压器小型集成化、高性能应用需求,改善功率铁氧体基板的综合性能指标(高磁导率、高居里温度、高饱和磁感应强度、低功耗等)亟需更优的解决方案。
发明内容
本发明的目的在于,针对现有低温烧结NiZn功率铁氧体基板材料存在的起始磁导率、饱和磁感应强度和居里温度偏低、功耗偏高等缺陷,提出一种LTCF变压器用复合铁氧体基板材料及其制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种LTCF变压器用复合铁氧体基板材料,由主料NiCuZn铁氧体(NCZF)和辅料LiZn铁氧体(LZMBF)低温共烧而成。首先,主料NiCuZn铁氧体选择重掺杂Zn2+离子的缺铁配方并辅以适量低熔点Bi2O3助剂,通过减弱氧四面体位(A位)和八面体位(B位)间的交换作用,降低磁晶各向异性从而提高起始磁导率;同时,缺铁配方有利于减小磁损耗。其次,辅料LiZn铁氧体选择Zn2+、Mn3+、Bi3+离子取代配方,在保证低温烧结同时兼具高的居里温度和高的饱和磁感应强度。高温烧结过程中,部分Li+、Mn2+、Bi3+等金属离子扩散进入NCZF铁氧体晶格结构形成固熔体,由于发生晶格畸变,促进晶粒生长和致密化,保障材料具有高的起始磁导率和高的饱和磁感应强度。所述复合铁氧体基板材料包括主料、辅料和Bi2O3助剂,辅料占主料质量的5~15wt%,Bi2O3助剂占主料质量的0.5~1.5wt%;其中,所述主料以各自标准物计的含量为:Fe2O3 48~49mol%,ZnO 25.5~31mol%,NiO 10~15.5mol%,CuO 10~10.5mol%;所述辅料以各自标准物计的含量为:Fe2O3 77.23mol%,ZnO 5.34mol%,Li2CO314mol%,Mn3O4 3.33mol%,Bi2O3 0.1mol%。
一种LTCF变压器用复合铁氧体基板材料的制备方法,包括以下步骤:
步骤1、预烧料制备:
1.1以分析纯的氧化铁、氧化锌、氧化镍、氧化铜作为原料,按照“Fe2O3 48~49mol%,ZnO 25.5~31mol%,NiO 10~15.5mol%,CuO 10~10.5mol%”的摩尔比例计算出各原料的质量后,称料,然后将称好的粉料放入行星式球磨机中进行一次球磨,一次球磨时间为5~6h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后放入刚玉坩埚中,在850℃~900℃下预烧1.5~2.5h,随炉冷却至室温后,取出,得到NCZF预烧料,即主料;
步骤2、加入烧结助剂和辅料进行二次球磨:
将步骤1得到的NCZF预烧料过筛后,加入相当于预烧料质量0.5~1.5wt%的Bi2O3助剂和5~15wt%的LZMBF粉料,随后在行星式球磨机中进行二次球磨8~12h,球磨完成后取料烘干,得到复合铁氧体二磨料;
步骤3、成型,烧结:
3.1将步骤2得到的二磨料过筛后,加入相当于粉料质量8~10wt%的聚乙烯醇(PVA)水溶液进行造粒,然后用液压机在8~10Mpa压力下压制成环形素坯样品;
3.2将步骤3.1得到的样品放入烧结炉中,以2℃/min的速率升温至880℃~920℃,保温4~6h,烧结完成后,随炉自然冷却至室温,得到所述LTCF变压器用复合铁氧体基板材料。
进一步地,步骤2中,LZMBF粉料的制备过程如下:按照Fe2O3 77.23mol%,ZnO5.34mol%,Li2CO3 14mol%,Mn3O4 3.33mol%,Bi2O3 0.1mol%的摩尔百分比计算并称取Fe2O3、ZnO、Li2CO3、Mn3O4、Bi2O3原料,以去离子水作为分散剂,在球磨机中混磨6小时后出料、烘干、过筛;然后,将过筛后的混磨料放入氧气氛炉中以2℃/min的速率升至800℃后保温2小时,随炉冷却至室温后取出,即可得到LZMBF粉料。
与现有技术相比,本发明的有益效果为:
1、本发明采用协同调控NiCuZn铁氧体和LiZn铁氧体晶格中各金属离子占位,改变A、B位磁矩以及A、B位之间的交换作用,以此达到显著降低磁晶各向异性改善起始磁导率同时获得较高的饱和磁感应强度和居里温度的效果。进一步地,在选择NiCuZn铁氧体缺铁配方基础上,通过对LiZn铁氧体进行氧气氛处理,抑制Fe2+离子的产生,从而对材料的磁损耗进行了优化。
2、本发明在对复合铁氧体材料的晶体结构进行优化的基础上,引入超细LZMBF粉料,通过颗粒级配工艺精细调控晶粒生长与致密化过程,从而改善材料的微观结构,保障材料具有较高的磁导率和饱和磁感应强度的同时有效控制磁损耗的增加。
3、本发明制得的LTCF变压器用复合铁氧体基板材料,除了具有较低的烧结温度(~900℃)外,同时还具有良好的功率特性:高的相对起始磁导率(>400),高的饱和磁感应强度(>350mT),高的居里温度(≥200℃),以及较低的室温功耗(<100kW/m3,100kHz@30mT)。制得的功率基板材料既满足了LTCF工艺要求,又具备片式变压器等功率铁氧体器件所需关键基板材料的优良磁性能。
附图说明
图1为对比例(a)和实施例3(b)得到的铁氧体样品的SEM图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
一种LTCF变压器用复合铁氧体基板材料,在协同调控NiCuZn铁氧体和LiZn铁氧体晶格中各金属离子占位分布的基础上,引入颗粒级配工艺,获得致密多晶结构,使得得到的复合铁氧体材料具有高的起始磁导率、高的居里温度、高的饱和磁感应强度以及低的功耗。
实施例1
一种LTCF变压器用复合铁氧体基板材料的制备方法,具体步骤如下:
步骤1、预烧料制备:
1.1以分析纯的氧化铁(Fe2O3)、氧化锌(ZnO)、氧化镍(NiO)、氧化铜(CuO)作为原料,按照“Fe2O3 48.5mol%,ZnO 30.9mol%,NiO 10.3mol%,CuO 10.3mol%”的摩尔比例计算出各原料的质量后,称料,然后将称好的粉料放入行星式球磨机中进行一次球磨,一次球磨时间为6h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后放入刚玉坩埚中,在875℃下预烧2h,随炉冷却至室温后,取出,得到NCZF预烧料;
步骤2、加入烧结助剂和辅料进行二次球磨:
将步骤1得到的NCZF预烧料过筛后,加入相当于预烧料质量1wt%的Bi2O3助剂和12wt%的LZMBF粉料,随后在行星式球磨机中进行二次球磨12h,球磨完成后取料烘干,得到复合铁氧体二磨料;
步骤3、成型,烧结:
3.1将步骤2得到的二磨料过筛后,加入相当于粉料质量8wt%的聚乙烯醇(PVA)水溶液进行造粒,然后用液压机在9Mpa压力下压制成环形素坯样品;
3.2将步骤3.1得到的样品放入烧结炉中,以2℃/min的速率升温至900℃,保温5h,烧结完成后,随炉自然冷却至室温,得到所述LTCF变压器用复合铁氧体基板材料。
进一步地,步骤2中,LZMBF粉料的制备过程如下:按照Fe2O3 77.23mol%,ZnO5.34mol%,Li2CO3 14mol%,Mn3O4 3.33mol%,Bi2O3 0.1mol%的摩尔百分比计算并称取Fe2O3、ZnO、Li2CO3、Mn3O4、Bi2O3原料,以去离子水作为分散剂,在球磨机中混磨6小时后出料、烘干、过筛;然后,将过筛后的混磨料放入氧气氛炉中以2℃/min的速率升至800℃后保温2小时,随炉冷却至室温后取出,即可得到LZMBF粉料。
实施例1制备得到的复合铁氧体材料性能为:相对起始磁导率561;饱和磁感应强度374.4mT;室温功耗71.82kW/m3(100kHz@30mT);居里温度为200℃。
实施例2
本实施例与实施例1相比,区别在于:步骤2中掺入的LZMBF粉料占预烧料质量的15wt%,其余步骤与实施例1皆相同。
实施例2制备得到的复合铁氧体材料性能为:相对起始磁导率550;饱和磁感应强度371.6mT;室温功耗70.73kW/m3(100kHz@30mT);居里温度为208℃。
实施例3
本实施例与实施例1相比,区别在于:步骤1的主料的配比为:Fe2O3 48.5mol%,ZnO29.61mol%,NiO 11.59mol%,CuO 10.3mol%,按此配比称取原料,其余步骤与实施例1皆相同。
实施例3制备得到的复合铁氧体材料性能为:相对起始磁导率438;饱和磁感应强度395.5mT;室温功耗85.61kW/m3(100kHz@30mT);居里温度为226℃。
对比例
对比例与实施例1相比,区别在于:步骤2中不掺入LZMBF粉料,其余步骤与实施例1皆相同。
对比例制备得到的铁氧体材料性能为:相对起始磁导率474.56;饱和磁感应强度338.2mT;室温功耗65.23kW/m3(100kHz@30mT);居里温度为153℃。
图1(a)、图1(b)分别为对比例、实施例3的显微图像,从图中可以看出,引入LZMBF粉料有利于得到更为致密的显微结构。表1是对比例和实施例的性能参数。通过重掺杂Zn2+离子,减弱NCZF的磁晶各向异性,保障复合铁氧体材料具有较高的磁导率;同时协同调制Zn2+、Mn3+、Bi3+等金属离子在LZMBF晶格的占位分布,改变复合材料的等效分子磁矩从而提高饱和磁感应强度和居里温度。此外,精细调控复相铁氧体的晶粒生长过程,获得致密多晶结构有效控制了磁损耗的增加。
表1对比例和实施例的性能参数
Figure BDA0003567832970000061

Claims (1)

1.一种LTCF变压器用复合铁氧体基板材料的制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备:
1.1以氧化铁、氧化锌、氧化镍、氧化铜作为原料,按照“Fe2O3 48~49mol%,ZnO 25.5~31mol%,NiO 10~15.5mol%, CuO 10~10.5mol%”的摩尔比例计算出各原料的质量后,称料,然后将称好的粉料进行一次球磨,一次球磨时间为5~6 h;
1.2 将步骤1.1得到的一次球磨料烘干、过筛后,在850℃~900℃下预烧1.5~2.5h,随炉冷却至室温后,取出,得到NCZF预烧料;
步骤2、加入烧结助剂和辅料进行二次球磨:
将步骤1得到的NCZF预烧料过筛后,加入相当于预烧料质量0.5~1.5wt%的Bi2O3助剂和5~15wt%的LZMBF粉料,随后进行二次球磨8~12h,球磨完成后取料烘干,得到复合铁氧体二磨料;其中,LZMBF粉料的制备过程如下:按照Fe2O3 77.23mol%,ZnO 5.34mol%,Li2CO314mol%, Mn3O4 3.33mol%,Bi2O0.1mol%的摩尔百分比称取Fe2O3、ZnO、Li2CO3、Mn3O4、Bi2O3原料,以去离子水作为分散剂,在球磨机中混磨6小时后出料、烘干、过筛;然后,将过筛后的混磨料放入氧气氛炉中以2℃/min的速率升至800℃后保温2小时,随炉冷却至室温后取出,即可得到LZMBF粉料;
步骤3、成型,烧结:
3.1 将步骤2得到的二磨料过筛后,加入相当于粉料质量8~10 wt%的聚乙烯醇水溶液造粒,然后压制成样品;
3.2 将步骤3.1得到的样品放入烧结炉中,升温至880℃~920℃,保温4~6 h,烧结完成后,随炉自然冷却至室温,得到所述LTCF变压器用复合铁氧体基板材料。
CN202210312988.XA 2022-03-28 2022-03-28 一种ltcf变压器用复合铁氧体基板材料及其制备方法 Active CN114605142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210312988.XA CN114605142B (zh) 2022-03-28 2022-03-28 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210312988.XA CN114605142B (zh) 2022-03-28 2022-03-28 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114605142A CN114605142A (zh) 2022-06-10
CN114605142B true CN114605142B (zh) 2023-04-04

Family

ID=81866796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210312988.XA Active CN114605142B (zh) 2022-03-28 2022-03-28 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114605142B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283265A (zh) * 2023-04-14 2023-06-23 电子科技大学 低温烧结NiCuZn功率铁氧体及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255355C (zh) * 2004-08-19 2006-05-10 浙江大学 低温度系数、低损耗和高饱和磁通密度铁氧体材料制备方法
CN101552072B (zh) * 2008-12-31 2012-02-01 电子科技大学 移相器用低损耗LiZn铁氧体材料及制备方法
CN108885938B (zh) * 2016-03-25 2021-05-07 日立金属株式会社 MnZn铁氧体磁芯及其制备方法
CN106830915A (zh) * 2017-02-16 2017-06-13 珠海乾牌环保科技有限公司 一种高Bs高强度软磁铁氧体材料及其制备方法
CN112239358B (zh) * 2020-10-30 2022-11-29 成都子之源绿能科技有限公司 微波LiZnTiMn旋磁铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN114605142A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN107473727B (zh) 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN101575206B (zh) 高频大功率镍锌基软磁铁氧体材料及其制造方法
CN105198395B (zh) 一种耐热冲击功率镍锌铁氧体及其制备方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
CN101640090B (zh) 一种高性能掺杂镍锌系铁氧体软磁材料及制备方法
CN106810233A (zh) 高频低损耗锰锌铁氧体及其制造方法
CN108706968B (zh) 一种低温烧结抗直流偏置NiCuZn铁氧体及制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN106495677A (zh) 一种高强度耐热冲击功率镍锌铁氧体及其制备方法
CN112573912A (zh) 一种中宽频宽温低损耗MnZn铁氧体材料制备方法
CN107857581A (zh) 一种低温烧结NiCuZn铁氧体材料及其制备方法
CN113563062A (zh) 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
CN114605142B (zh) 一种ltcf变压器用复合铁氧体基板材料及其制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN110483032B (zh) 基于ltcc技术的低温烧结yig铁氧体及制备方法
CN113603472B (zh) 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN104230321A (zh) M型钙永磁铁氧体及其制备方法
CN106747392B (zh) 一种Ho/Co复合掺杂Ni-Zn铁氧体陶瓷的制备方法
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN113284731B (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
WO2012151714A1 (zh) 一种高磁导率NiCuZn铁氧体材料
JP2011195415A (ja) MnZn系フェライト粉末、MnZn系フェライトコアの製造方法及びフェライトコア
CN110723967B (zh) 一种抗直流偏置低温烧结铁氧体材料及其制备方法
JP2007297232A (ja) 酸化物磁性材料の製造方法
JP4031886B2 (ja) Ni−Zn系フェライトの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant