CN116283265A - 低温烧结NiCuZn功率铁氧体及制备方法 - Google Patents

低温烧结NiCuZn功率铁氧体及制备方法 Download PDF

Info

Publication number
CN116283265A
CN116283265A CN202310397521.4A CN202310397521A CN116283265A CN 116283265 A CN116283265 A CN 116283265A CN 202310397521 A CN202310397521 A CN 202310397521A CN 116283265 A CN116283265 A CN 116283265A
Authority
CN
China
Prior art keywords
temperature
nicuzn
sintering
power ferrite
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310397521.4A
Other languages
English (en)
Inventor
兰中文
罗元杰
邬传健
孙科
余忠
蒋晓娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310397521.4A priority Critical patent/CN116283265A/zh
Publication of CN116283265A publication Critical patent/CN116283265A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

低温烧结NiCuZn功率铁氧体及制备方法,涉及电子材料技术。本发明的低温烧结NiCuZn功率铁氧体,包括主成分和添加剂,所述主成分包括47.5~50.5mol%Fe2O3、25~28mol%ZnO和10~12mol%NiO,其余为CuO;以主成分的重量为计算基准,添加剂包括:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3。本发明的材料在高频下具有低损耗。

Description

低温烧结NiCuZn功率铁氧体及制备方法
技术领域
本发明涉及电子材料技术,特别涉及功率铁氧体的制备技术。
背景技术
现代武器装备、航空、航天工程等对电子系统的体积、重量和性能的要求越来越严格,特别是星载、弹载、机载武器系统以及民用领域所需要的电子组件、部件,更是向着小、轻、薄和高可靠性、高性能的方向发展。在有源器件领域,随着各种微电子工艺的出现,已经实现了各种晶体管、场效应管等有源器件的小型集成化;而在无源器件领域,LTCC技术是目前实现无源集成的主流技术,在此基础上发展出了低温共烧铁氧体材料(Low TemperatureCo-fired Ferrites,LTCF),其基本工艺流程与LTCC相同,目前国际上尚有湿法工艺、干法工艺与混合工艺等不同的技术路线,一时难分高下,在LTCF工艺中应用最为广泛的就是NiCuZn铁氧体材料,同时由于LTCF工艺中需要与银电极实现共烧,因此实现NiCuZn铁氧体的低温烧结和降低其高频下的损耗成为了至关重要的问题。
中国专利文献CN112979299A公开的《一种低温烧结铁氧体材料及其制备方法》,其主成分为四元系配方,比例范围为:Fe2O3:46~50mol%;ZnO:25~30mol%;NiO:12~16mol%;余量为CuO。添加剂及含量以氧化物计算为:BBSZ(1.6~2wt%);Co2O3(0.1~0.2wt%);TiO2(0.8~1.2wt%);CaCO3(0.3~0.5wt%)。其材料起始磁导率ui为80~96,抗直流偏置特性H70%为950~800A/m,20℃~80℃比温度系数≤2x10-6℃,实现了在900℃下的低温烧结。
中国专利文献CN108706968B公开的《一种低温烧结抗直流偏置NiCuZn铁氧体及其制备方法》,其主料包括47.0~50.0mol%Fe2O3、18~22mol%NiO、18~22mol%ZnO,0.1~0.4mol%Co2O3,其余为CuO,添加剂包括0.03~0.08wt%Bi2O3、0.000~0.025wt%CuO、0.3~0.6wt%BZB。制备出的的材料烧结温度在880~900℃,起始磁导率70~92,较高的抗叠加直流外磁场525A/m~725A/m,样品密度4.9g/cm3,饱和磁感应强度Bs达到350mT以上。
中国专利文献CN112979299A公开的《一种功率型低温烧结铁氧体材料及其制备方法》,其主成分为五元系配方,以Co2O3、NiO、ZnO、Fe2O3、CuO为初始原料按摩尔比为Co2O3:NiO:ZnO:Fe2O3:CuO=0.01:(0.25-x):0.48:(0.25+x):0.99的比例配制而成,添加剂包括0.16~0.20wt%的Bi2O3,0.08~0.12wt%的WO3,0.1~0.15wt%的Nb2O5,所制备出的铁氧体材料起始磁导率≥200,饱和磁感应强度Bs≥400mT,在25℃、1MHz 30mT下,功率损耗密度Pcv≤300kW/m3
中国专利文献CN113603472A公开的《一种基于LTCC技术的NiCuZn铁氧体制备方法》,其主成分为NiO、ZnO、Fe2O3、CuO,按照分子式(Ni0.28Cu0.14Zn0.58O)1.03(Fe2O3)0.97进行配料,添加剂包括0.3wt%Bi2O3和0.2~0.8wt%Co2O3,烧结温度为925℃,实验所制备的NiCuZn铁氧体为纯相,饱和磁化强度达到了51.891emu/g,矫顽力为4.9175Oe。
中国专利文献CN101388268B公开的一种《高磁导率低温烧结NiCuZn铁氧体材料》,其主成分为四元系配方,比例范围为:Fe2O3:41~52.8mol%;ZnO:20~45mol%;NiO:2~15mol%;余量为CuO。添加剂包括0.15~0.25wt%MoO3、0.12~0.45wt%In2O3,烧结温度为910~950℃,材料的起始磁导率高达2650,在100kHz和0.25mT的测试条件下比损耗系数小于8.0×10-6
从上述所公开的专利文件可以总结出如下几点:一是都实现了NiCuZn铁氧体材料在900℃的低温烧结。二是利用了不同的添加剂实现了铁氧体的起始磁导率的提高和抗直流偏置特性的改善。三是大多数的专利对于铁氧体的损耗特别是高频下的损耗没有比较完整的描述,无法使NiCuZn铁氧体兼顾高起始磁导率和低高频损耗两种特性。
发明内容
本发明所要解决的技术问题是,主要针对NiCuZn功率铁氧体在LTCC工艺中的运用,提供一种高频低损耗NiCuZn功率铁氧体材料及制备方法,能实现低温烧结,降低高频下的损耗,以便适用于电子元件向小型化、轻量化和高频化的运用。
本发明解决所述技术问题采用的技术方案是,低温烧结NiCuZn功率铁氧体,包括主成分和添加剂,所述主成分包括47.5~50.5mol%Fe2O3、25~28mol%ZnO和10~12mol%NiO,其余为CuO;
以主成分的重量为计算基准,添加剂包括:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3
本发明还提供低温烧结NiCuZn功率铁氧体制备方法,其特征在于,包括以下制备步骤:
(1)预烧料制备
以Fe2O3、ZnO、NiO和CuO作为原料,按照主成分47.5~50.5mol%Fe2O3、25~28mol%ZnO和10~12mol%NiO,其余为CuO的比例称取原料;对原料一次球磨,然后烘干,在780~820℃的温度下预烧,获得NiCuZn功率铁氧体预烧料;
(2)掺杂处理
以步骤(1)获得的NiCuZn功率铁氧体预烧料的重量为参照基准,按预烧料重量百分比加入以下添加剂:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3,然后进行二次球磨6~8h;
(3)成型
将二次球磨所得的球磨料烘干后,加入PVA有机粘合剂进行造粒,然后压制成所需的样品生坯;
(4)烧结
将成型的生坯件进行高温烧结,烧结温度为880~920℃。
进一步的,所述步骤(4)为:
将成型的生坯件进行高温烧结,以1~2℃的升温速率从室温上升到300℃,再以2~3℃的升温速率上升到最高烧结温度点,烧结温度为880~920℃,保温时间3~5h。
本发明的材料在高频下具有低损耗:1MHz 30mT 25℃条件下,功率损耗密度Pcv低于250kW/m3,在25℃下起始磁导率μi大于600、饱和磁感应强度Bs大于350mT。
附图说明
图1为添加V2O5助熔剂但未加入BTO添加剂时NiCuZn铁氧体的扫描电镜图。
图2为添加V2O5和0.03wt%BTO添加剂时NiCuZn铁氧体的扫描电镜图。
图3为添加V2O5和0.06wt%BTO添加剂时NiCuZn铁氧体的扫描电镜图。
图4为本发明制备的NiCuZn功率铁氧体平均晶粒尺寸D随BTO含量的变化图。
图5为本发明制备的NiCuZn功率铁氧体起始磁导率和饱和磁感应强度随BTO的变化图。
图6为25℃下功率损耗密度Pcv(1MHz 30mT,1MHz 50mT)随BTO添加量的变化图。
具体实施方式
本发明的核心思想是:MHz级高频范围内NiCuZn功率铁氧体实现低温烧结和高频下损耗的降低。本发明的主配方采用了Cu含量较高的缺铁配方,CuO作为低熔点的物质,在烧结过程中容易形成液相,产生液相传质现象从而促进烧结的进行和样品致密化的实现。对于MHz下NiCuZn材料的损耗主要可以分为磁滞损耗Ph和涡流损耗Pe,降低磁滞损耗可以通过增大样品的起始磁导率,起始磁导率和微观下的晶粒尺寸和晶粒的致密化程度息息相关。本发明采用了V2O5和BTO两种添加剂的共同作用来实现微观下晶粒尺寸的调控,V2O5作为助熔剂促进晶粒的生长和样品烧结的致密化,而BTO因其富集于晶界处的特性和其本身高的电阻率、高熔点的特性可以阻碍晶粒的生长,从而起到细化晶粒的作用,在两者互相制衡的作用下,改善了铁氧体晶粒的均匀性问题,因BTO的加入较好的控制了晶粒尺寸,降低了高频下的涡流损耗,而Cu含量在主配方的提高及V2O5助熔剂的添加,降低了铁氧体的烧结温度,使其在低温下实现致密化的烧结。
本发明的材料包括主成分和添加剂,所述主成分包括47.5~50.5mol%Fe2O3、25~28mol%ZnO和10~12mol%NiO,其余为CuO;所述添加剂以主成分的重量为计算基准,包括:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3
作为制备方法的实施方式,本发明提供一种低温烧结的功率型NiCuZn铁氧体材料的制备方法,包括以下步骤:
(1)NiCuZn铁氧体预烧料制备
a)以Fe2O3、ZnO、NiO和CuO作为原料,按照主成分47.5~50.5mol%Fe2O3
25~28mol%ZnO和10~12mol%NiO,其余为CuO的比例称取原料;
b)将以上粉料在行星式球磨机中进行一次球磨2~4h,球料水比为3:1:1.2。
c)所得的球磨料烘干、过筛后,在780~820℃的温度下预烧1~3h,获得NiCuZn功率铁氧体预烧料。
(2)掺杂处理以步骤(1)获得的NiCuZn功率铁氧体预烧料为参照基准,按预烧料重量百分比加入以下添加剂:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3
将以上粉料在行星式球磨机中进行二次球磨6~8h;球料水比为2.5:1:1.2。
(3)样品成型
将二次球磨后的球磨料烘干后,按重量百分比加入8~15wt%的PVA有机粘合剂进行造粒;根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为200MPa。
(4)样品烧结
将成型的生坯件置于箱式炉中进行高温烧结,以1~2℃的升温速率从室温上升到300℃,再以2~3℃的升温速率上升到最高烧结温度点,烧结温度为880~920℃,保温时间3~5h。
实施例:
以下通过不同参数的实施例和对比例的比较对本发明作进一步的说明。
本发明提供一种基于复合添加V2O5-BaTiO3的低温烧结NiCuZn功率铁氧体制备方法,包括以下制备步骤:
(1)NiCuZn铁氧体预烧料制备
以Fe2O3、ZnO、NiO和CuO作为原料,按照主成分48mol%Fe2O3、27.5mol%ZnO和11mol%NiO,其余为CuO的比例称取原料;
将以上粉料在行星式球磨机中进行一次球磨3h,球料水比为3:1:1.2。
所得的球磨料经过烘干、过筛后,在800℃的温度下预烧2h,获得NiCuZn功率铁氧体预烧料。
(2)掺杂处理
以步骤(1)获得的NiCuZn功率铁氧体预烧料为参照基准,进行实施例,添
加剂含量如下表所示:
Figure BDA0004178121390000051
(3)将预烧料和各组添加剂在行星式球磨机中进行二次球磨6h,球料水比为2.5:1:1.2。
(4)样品成型
将二次球磨所得的球磨料烘干后,按重量百分比加入10wt%的PVA有机粘合剂进行造粒;
根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为200MPa。
(5)样品烧结
将成型的生坯件置于箱式炉中进行高温烧结,以1~2℃的升温速率从室温上升到300℃,再以2~3℃的升温速率上升到最高烧结温度点,烧结温度为900℃,保温时间3h。
(6)测试
采用同惠TH2826精密LCR测试仪测试样品的电感L,换算成起始磁导率。用FA1204B分析天平通过阿基米德排水法测量密度d,磁性能采用岩崎SY 8232B-H分析仪进行测试。
实验与数据
实施例1-2和对比例的样品基本性能见下表(25℃):
Figure BDA0004178121390000061
图1可见在不添加BTO时,平均晶粒尺寸为2~3μm。
图2可见随着BTO的添加,晶粒明显细化,晶粒尺寸减小。
图3可见随着BTO的添加,晶粒尺寸进一步减小。
图4可见,晶粒尺寸在不断减小,说明了BTO的阻碍晶粒生长的作用。
图5可见,随着非磁性物质BTO含量的上升,铁氧体的起始磁导率和饱和磁感应强度下降。
图6说明添加适量的BTO可以降低NiCuZn铁氧体的高频损耗。
本发明主要采用的是二元系的掺杂,相较于多元系掺杂来说引入的非磁性物质减少,可以有效的提高铁氧体的起始磁导率,同时利用BTO的高电阻率的特性,及其主要富集在晶界的特性,使铁氧体的涡流损耗得到明显的降低,从而降低铁氧体总的功率损耗密度,在微观形貌上获得致密化的小晶粒尺寸的样品,使样品的高频损耗获得比较显著的改善。

Claims (7)

1.低温烧结NiCuZn功率铁氧体,包括主成分和添加剂,其特征在于,
所述主成分包括47.5~50.5mol%Fe2O3、25~28mol%ZnO和10~12mol%NiO,其余为CuO;
以主成分的重量为计算基准,添加剂包括:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3
2.低温烧结NiCuZn功率铁氧体制备方法,其特征在于,包括以下制备步骤:
(1)预烧料制备
以Fe2O3、ZnO、NiO和CuO作为原料,按照主成分47.5~50.5mol%Fe2O3、25~28mol%ZnO和10~12mol%NiO,其余为CuO的比例称取原料;对原料一次球磨,然后烘干,在780~820℃的温度下预烧,获得NiCuZn功率铁氧体预烧料;
(2)掺杂处理
以步骤(1)获得的NiCuZn功率铁氧体预烧料的重量为参照基准,按预烧料重量百分比加入以下添加剂:0.3~0.7wt%V2O5、0.02~0.08wt%BaTiO3,然后进行二次球磨6~8h;
(3)成型
将二次球磨所得的球磨料烘干后,加入PVA有机粘合剂进行造粒,然后压制成所需的样品生坯;
(4)烧结
将成型的生坯件进行高温烧结,烧结温度为880~920℃。
3.如权利要求2所述的低温烧结NiCuZn功率铁氧体制备方法,其特征在于,所述步骤(4)为:
将成型的生坯件进行高温烧结,以1~2℃的升温速率从室温上升到300℃,再以2~3℃的升温速率上升到最高烧结温度点,烧结温度为880~920℃,保温时间3~5h。
4.如权利要求2所述的低温烧结NiCuZn功率铁氧体制备方法,其特征在于,所述步骤(1)中,预烧时间为1~3h。
5.如权利要求2所述的低温烧结NiCuZn功率铁氧体制备方法,其特征在于,所述步骤(1)中,一次球磨时间为2~4h;按重量,球料水的比例为球:料:水=3:1:1.2。
6.如权利要求2所述的低温烧结NiCuZn功率铁氧体制备方法,其特征在于,所述步骤(2)中,二次球磨时间为6~8h;按重量,球料水的比例为球:料:水=2.5:1:1.2。
7.如权利要求2所述的低温烧结NiCuZn功率铁氧体制备方法,其特征在于,所述步骤(3)为:将二次球磨所得的球磨料烘干后,以烘干后的球磨料的重量为基准,按重量百分比加入8~15wt%的PVA有机粘合剂进行造粒;根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为200MPa。
CN202310397521.4A 2023-04-14 2023-04-14 低温烧结NiCuZn功率铁氧体及制备方法 Pending CN116283265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310397521.4A CN116283265A (zh) 2023-04-14 2023-04-14 低温烧结NiCuZn功率铁氧体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310397521.4A CN116283265A (zh) 2023-04-14 2023-04-14 低温烧结NiCuZn功率铁氧体及制备方法

Publications (1)

Publication Number Publication Date
CN116283265A true CN116283265A (zh) 2023-06-23

Family

ID=86799693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310397521.4A Pending CN116283265A (zh) 2023-04-14 2023-04-14 低温烧结NiCuZn功率铁氧体及制备方法

Country Status (1)

Country Link
CN (1) CN116283265A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587194A (zh) * 2004-08-19 2005-03-02 浙江大学 低损耗、低温度系数和高磁导率铁氧体材料及其制备方法
CN101206941A (zh) * 2006-12-21 2008-06-25 横店集团东磁股份有限公司 一种高磁导率低温共烧NiCuZn铁氧体的制备方法
JP2013133263A (ja) * 2011-12-27 2013-07-08 Panasonic Corp フェライト磁性材料及びその製造方法、それを用いたフェライト焼成体並びにアンテナモジュール
CN105174931A (zh) * 2015-08-29 2015-12-23 电子科技大学 NiCuZn铁氧体材料的制备方法
CN108503349A (zh) * 2018-03-21 2018-09-07 江西国创产业园发展有限公司 一种耐大电流低温烧结NiCuZn铁氧体材料及其制备方法
CN108706968A (zh) * 2018-06-05 2018-10-26 电子科技大学 一种低温烧结抗直流偏置NiCuZn铁氧体及制备方法
CN110655397A (zh) * 2019-11-04 2020-01-07 宝鸡文理学院 一种宽温高磁导率低损耗NiCuZn软磁铁氧体材料及其制备方法
CN112661501A (zh) * 2021-01-08 2021-04-16 广安市华蓥山领创电子有限公司 一种高频功率转换用NiZn铁氧体材料及制备方法
JP2022061825A (ja) * 2020-10-07 2022-04-19 株式会社村田製作所 フェライト焼結体および巻線型コイル部品
CN114605142A (zh) * 2022-03-28 2022-06-10 电子科技大学 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587194A (zh) * 2004-08-19 2005-03-02 浙江大学 低损耗、低温度系数和高磁导率铁氧体材料及其制备方法
CN101206941A (zh) * 2006-12-21 2008-06-25 横店集团东磁股份有限公司 一种高磁导率低温共烧NiCuZn铁氧体的制备方法
JP2013133263A (ja) * 2011-12-27 2013-07-08 Panasonic Corp フェライト磁性材料及びその製造方法、それを用いたフェライト焼成体並びにアンテナモジュール
CN105174931A (zh) * 2015-08-29 2015-12-23 电子科技大学 NiCuZn铁氧体材料的制备方法
CN108503349A (zh) * 2018-03-21 2018-09-07 江西国创产业园发展有限公司 一种耐大电流低温烧结NiCuZn铁氧体材料及其制备方法
CN108706968A (zh) * 2018-06-05 2018-10-26 电子科技大学 一种低温烧结抗直流偏置NiCuZn铁氧体及制备方法
CN110655397A (zh) * 2019-11-04 2020-01-07 宝鸡文理学院 一种宽温高磁导率低损耗NiCuZn软磁铁氧体材料及其制备方法
JP2022061825A (ja) * 2020-10-07 2022-04-19 株式会社村田製作所 フェライト焼結体および巻線型コイル部品
CN112661501A (zh) * 2021-01-08 2021-04-16 广安市华蓥山领创电子有限公司 一种高频功率转换用NiZn铁氧体材料及制备方法
CN114605142A (zh) * 2022-03-28 2022-06-10 电子科技大学 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Similar Documents

Publication Publication Date Title
Huq et al. Ni-Cu-Zn ferrite research: A brief review
JP3108803B2 (ja) Mn−Znフェライト
CN106673642A (zh) 一种巨介电低损耗ccto基陶瓷材料及其制备方法
Zhou et al. Grain growth, densification, and gyromagnetic properties of LiZnTi ferrites with H3BO3-Bi2O3-SiO2-ZnO glass addition
CN105236948B (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN105884342B (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
Zhu et al. Influence of B2O3–MoO3 addition on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites
CN107417266A (zh) 一种无稀土石榴石铁氧体材料及其制备方法
Wang et al. Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with Nb2O5 and MoO3 additions
Jia et al. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application
CN112321291A (zh) 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN107954706B (zh) 一种高磁导率软磁铁氧体材料及其制备方法
Yang et al. Effects of Li2CO3 addition on the microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites
Shen et al. Sintering, microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites doped with B2O3
EP1101736A1 (en) Mn-Zn ferrite and production thereof
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
Yang et al. Effects of Bi 2 O 3–MnO 2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
JP3907642B2 (ja) フェライト材料及びフェライト材料の製造方法
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN112430075A (zh) 一种铁氧体磁性材料及其制造方法
Wang et al. Synthesis of low-temperature sintered M-type barium ferrites with enhanced microstructure, magnetic and dielectric properties
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
CN116283265A (zh) 低温烧结NiCuZn功率铁氧体及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination