CN108892501B - 一种铁氧体材料及其制备方法 - Google Patents

一种铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN108892501B
CN108892501B CN201810874298.7A CN201810874298A CN108892501B CN 108892501 B CN108892501 B CN 108892501B CN 201810874298 A CN201810874298 A CN 201810874298A CN 108892501 B CN108892501 B CN 108892501B
Authority
CN
China
Prior art keywords
sintering
zno
ferrite
cao
ferrite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810874298.7A
Other languages
English (en)
Other versions
CN108892501A (zh
Inventor
周廷栋
冯宁博
刘文斌
宋天秀
蔡擎
王宏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN201810874298.7A priority Critical patent/CN108892501B/zh
Publication of CN108892501A publication Critical patent/CN108892501A/zh
Application granted granted Critical
Publication of CN108892501B publication Critical patent/CN108892501B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种铁氧体材料及其制备方法,属于磁性材料领域。铁氧体材料主要是具有较高磁导率和能够在较低烧结温度下制备获得的锰锌铁氧体。锰锌铁氧体通过将原料混合后,经压实、烧结制成。按重量百分比计,锰锌铁氧体包括68.8‑69.6wt%的Fe2O3、15.1‑15.8%的Mn3O4、15.1‑15.5%的ZnO、0.02‑0.05wt%的Bi2O3、0.01‑0.04wt%的Co2O3、0.01‑0.03wt%的CaO、0.005‑0.02wt%的Nb2O5。本发明提出的铁氧体材料具有起始磁导率高、密度大的优点,且能够在被降低了的烧结温度下通过烧结而制备。

Description

一种铁氧体材料及其制备方法
技术领域
本发明涉及磁性材料领域,具体而言,涉及一种铁氧体材料及其制备方法。
背景技术
高磁导率MnZn铁氧体材料的应用非常广泛,是一种功能性的软磁材料。它在通讯、电子仪表、计算机等领域的应用中都居于主导地位。
现在社会正处于信息化时代,手机等通讯及网络设施的更新换代频率的加快,对用于脉冲变压器、磁记录介质等方面的高磁导率MnZn铁氧体磁芯材料的需求也越来越多。
日常生活中常见的照明变压器、电子节能镇流器等也都离不开高磁导率铁氧体材料。随着高性能电子元器件的需求量的大幅度增长,高磁导率锰锌铁氧体材料作为锰锌铁氧体的一大类系,在抗电磁干扰、滤波器、电子电路、商业生产、服务以及民用生活等领域的脉冲变压器中都得到非常广泛的应用。
随着电子技术的发展,在抗电磁干扰噪声滤波器、电子电路宽带变压器、综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明等领域脉冲变压器中需要大量特性优良的高磁导率MnZn铁氧体材料。高磁导率锰锌铁氧体材料需要更高磁导率、高工作频率、低温度系数和更宽频带,以适应数字技术、光纤通信中小型化和宽频带的要求。
为了获得理想的性能,目前对于铁氧体材料多采用高烧结温度的方式来进行制备,而这会显著地增加工艺难度、提高制作成本。
公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
基于现有技术的不足,本发明提供了一种铁氧体材料及其制备方法,以部分或全部地改善、甚至解决以上问题。
本发明是这样实现的:
在第一方面,本发明实施例的提供了一种铁氧体材料。
铁氧体材料主要包括锰锌铁氧体,且锰锌铁氧体由主成分和辅助成分制成。
其中,主成分包括Fe2O3、Mn3O4以及ZnO,辅助成分包括Bi2O3、Co2O3、CaO、Nb2O5,按重量百分比计,68.8-69.6wt%的Fe2O3、15.1-15.8%的Mn3O4、15.1-15.5%的ZnO、0.02-0.05wt%的Bi2O3、0.01-0.04wt%的Co2O3、0.01-0.03wt%的CaO、0.005-0.02wt%的Nb2O5
在第二方面,本发明实施例提供了一种铁氧体材料的制备方法。
制备方法包括:将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合,在经压实处理后再进行烧结。
有益效果:
本发明实施例提供的铁氧体材料及其制备方法具有以下优点:
1)铁氧体材料的烧结温度较低。现有的铁氧体烧结温度高,不仅浪费能源,很不经济,而且会促进二次再结晶而致使铁氧体磁性能恶化。在有液相参与的烧结过程中,温度过高使液相量增加,液相的粘度下降而致使铁氧体产品变形。
2)铁氧体材料在烧结过程中,只需简单的控制氧分压即可,便于大规模、工业化生产。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下针对本发明实施例的一种铁氧体材料及其制备方法进行具体说明:
本发明示例中提供的铁氧体材料主要包括锰锌铁氧体。
锰锌铁氧体由主成分和辅助成分制成。
其中,主成分包括Fe2O3、Mn3O4以及ZnO。辅助成分包括Bi2O3、Co2O3、CaO、Nb2O5
按重量百分比计,锰锌铁氧体的制作原料包括:
68.8-69.6wt%的Fe2O3、15.1-15.8%的Mn3O4、15.1-15.5%的ZnO、0.02-0.05wt%的Bi2O3、0.01-0.04wt%的Co2O3、0.01-0.03wt%的CaO、0.005-0.02wt%的Nb2O5
在本发明的其他示例中,锰锌铁氧体的制作原料包括:
68.86~68.96%的Fe2O3、15.50~15.70%的Mn3O4、15.30~15.40%的ZnO、0.03~0.05%的Bi2O3、0.02~0.04的Co2O3、0.02~0.03%的CaO、0.01~0.02%的Nb2O5
显然,各原料的纯度的提高将有利于改善最终产品的品质。发明人认识到纯度低的原材料在烧结过程中会形成巨晶,从而使导磁率降低损耗增大。因此原料被选择为纯度高、杂质少、粒度细和活性高的材料。一种示例中,Fe2O3纯度大于99.9%,Mn3O4纯度大于98.5%,ZnO纯度大于99.5%。
本发明的示例中,锰锌铁氧体通过适当的配方设计,结合工艺的选择获得了期望和理想的性能。锰锌铁氧体的制作方法主要涉及到固相烧结过程。
而其配方中引入Bi2O3和Co2O3进行复合掺杂。Bi2O3(熔点825℃)和Co2O3的熔点相对于Fe2O3、Mn3O4、ZnO、CaO及Nb2O5更低,因此,在烧结过程中会形成一定量的液相,从而可以促进晶粒生长,并促进烧结体的致密化程度结合压实操作,提高最终产品的烧结密度和起始磁导率。例如,在一些示例中,所获得铁氧体材料的最高起始磁导率达到5390、密度4.9g/cm3。烧结过程中由Bi2O3和Co2O3引入的液相可降低烧结温度,提高铁氧体密度。通过适当的选择烧结温度,可以调节液相的黏度、表面张力,进而控制产品的颗粒或气孔的尺寸(实质上调节锰锌铁氧体的致密度)。
基于以上,本发明实施例中提供的铁氧体材料的制备方法包括:将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合,在经压实后再进行烧结。
为了能够使锰锌铁氧体的各制作原料更容易接触、反应,Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5是以颗粒物的形式混合的。颗粒物的粒度能够被适当地选择,例如60μm、50μm、30μm甚至更小。进一步,混合可以通过剧烈的搅拌、研磨等方式来进行。尤其是,通过研磨混合,既可以起到粒度细化,同时加强混合均匀性。
另外,在较佳的示例中,作为主要成分的Fe2O3、Mn3O4、ZnO被预先混合。即,将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合之前,对第一成分进行预混合。特别地,一种可替代的方案中,预混合的方法包括:在水参与的情况下,Fe2O3、Mn3O4、ZnO进行湿磨,湿磨时球料比为15:1。在通过湿磨进行预混合之后,进行预烧结。预烧结的方法例如可以是:将通过湿磨进行预混合制得的第一浆料120℃烘干、并进行950℃烧结获得预烧料。以上所述及的在水参与的情况下,通常是加去离子水。一些情况下,去离子水也可以采用酒精(无水乙醇)替代。
基于以上预先将Fe2O3、Mn3O4、ZnO混合的方案中,锰锌铁氧体中的全部原料的混合方式可以是:将预烧料与Bi2O3、Co2O3、CaO以及Nb2O5在水参与的情况下进行湿磨,然后,进行烘干并造粒获得混合粒料。混合粒料中的水通过120℃烘干而被脱除。进一步为了方便压制、提高密度,造粒步骤采用的造粒剂为聚乙烯醇。造粒后的颗粒物质的颗粒表面光滑,易于接触、混合。
前述各物料混合后进行的压实处理的方法包括预压制、在预压制之后进行的冷等静压。采用分步骤进行压制可以使各颗粒状的物料之间更易于接触且彼此之间的间隙更小,分布更均衡。作为示例性的说明,预压制的压制条件为10MPa,冷等静压的压制条件为200MPa。特别地,压制处理获得产品的形状可以被自由地选择,具体依据铁氧体材料产品的应用的场景为限。例如,在本实施例中,通过压制混合后的材料被制作为圆环形结构,且规格为Φ16mm×Φ8mm×5mm。
等静压技术是一种利用密闭高压容器内待加工制品在各向均等的超高压的压力状态下成型。等静压工作原理为帕斯卡定律:“在密闭容器内的介质(液体或气体)压强,可以向各个方向均等地传递。”本示例中选择为冷等静压(Cold Isostatic Pressing,CIP)。冷等静压是在常温下,通常用橡胶或塑料作为包套模具材料,以液体为压力介质对粉体材料成型,为进一步烧结,煅造或热等静压工序提供坯体。冷等静压可采用冷等静压机来实施。
在造粒过程中添加有造粒剂,而由于烧结温度相对较高,直接进行高温烧结容易导致铁氧体材料出现裂痕、气孔等。因此,本发明示例中,烧结方法包括:排胶步骤以及在排胶步骤之后执行的烧结步骤。其中,排胶步骤包括将混合粒料以0.5~2℃/min的升温速率加热至550℃,并在550℃保温4~5小时获得排胶料。优选地,烧结步骤包括在氧分压为6~10%的空气氛围中、以2~4℃/min的升温速率将排胶料加热到1300~1350℃并保温4~6小时,然后随炉冷却。
优选地,排胶料的烧结温度(最终烧结温度)被选择为1330℃。烧结过程中的烧结温度通常需要被适当地选择,且常常并不易被掌握,尤其涉及到产品原料组成比较复杂,且性能要求较严苛的情况下。实际上,在铁氧体的烧结制作过程中,适当提高烧结温度能够促进固相反应彻底进行,同时促进晶粒充分均匀生长(更致密),又要控制烧结温度不能过高,以免造成晶粒出现不连续生长,降低铁氧体材料的磁性能。
另外,烧结温度与烧结气氛也需要适当地配合。由于锰、铁均是多价态元素,其烧结过程很大程度上涉及到变价。而对于锰锌铁氧体,需要抑制二价锌离子的缺失(如氧化锌热分级,产生的锌单质挥发。这还导致气孔的增多、内应力增大),同时保持一定的二价铁离子的含量。氧分压太低,会导致Fe3+离子被还原成Fe2+离子,MnZn铁氧体中Fe2+十离子含量逐渐增加,使得铁氧体材料的磁导率下降。
通过控制烧结过程中的升温速率可以在一定程度上控制排胶速度,避免是产品出现疏松多孔的结构,有利于保持其密度、防止开裂。另外,在烧结完成后,随炉冷却可以是产品避免骤冷骤热,利于化学反应进行更加彻底。
进一步地,在随炉冷却的过程中同样控制空气氛围的氧分压,以进一步控制化学反应过程。
本发明实施例中,铁氧体材料,更具体而言,锰锌铁氧体主要利用了固相烧结进行制作。先用主配方(主要成分)预烧,然后再用辅助配方(辅助成分)掺杂,最后用高温烧结,才能得到单一的铁氧体。特别地,锰锌铁氧体的坯体经冷等静压后,降低了最终的烧结温度。
以下结合实施例对本发明的一种铁氧体材料及其制备方法作进一步的详细描述。
实施例1
1)配料:主配方各组分的比例,Fe2O3:69.4wt%,Mn3O4:15.4wt%,ZnO:15.2wt%。按总质量30g计算,Fe2O3为20.82g,Mn3O4为4.62g,ZnO为4.56g。球450g,加入适量去离子水,湿磨3h。
2)预烧:将球磨后的浆料于120℃烘干,再加热到950℃,保温2h,得到主配方的原材料26.973g。
3)复合掺杂:将这26.973g原材料,加入0.04wt%的Bi2O3,0.03wt%的Co2O3,0.01wt%的CaO,0.005wt%的Nb2O5。加入适量去离子水,湿磨10h。
4)造粒:将上述浆料于120℃烘干,加入10%的聚乙烯醇(PVA)造粒。
5)压环:造粒后用10MPa的压力,预压成Φ16mm×Φ8mm×5mm的圆环,再在冷等静压机上用200MPa的压力压实。
6)排胶:将上述圆环升温到550℃,保温4.5h,升温速度为1℃/min,进行排胶处理。
7)烧结:设定最高烧结温度1300℃,以3℃/min的升温速度在空气中烧结,然后控制氧分压为6-10%,保温5h后随炉冷却。
实施例2
步骤1)~7)与实施例1一致,设定最高烧结温度1310℃。
实施例3
步骤1)~7)与实施例1一致,设定最高烧结温度1320℃。
实施例4
步骤1)~7)与实施例1一致,设定最高烧结温度1330℃。
实施例5
步骤1)~7)与实施例1一致,设定最高烧结温度1340℃。
实施例6
步骤1)~7)与实施例1一致,设定最高烧结温度1350℃。
上述实施例1~6,在不同烧结温度下,得到了铁氧体材料的起始磁导率和密度的关系,见表1。
表1烧结温度与起始磁导率和密度关系表
烧结温度(℃) 起始磁导率 密度(g/cm<sup>3</sup>)
1300 1937 4.5
1310 4493 4.7
1320 4992 4.8
1330 5390 4.9
1340 5129 4.7
1350 4888 4.6
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (14)

1.一种降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述铁氧体材料主要包括锰锌铁氧体,所述锰锌铁氧体的主成分包括Fe2O3、Mn3O4以及ZnO,所述锰锌铁氧体的辅助成分包括Bi2O3、Co2O3、CaO、Nb2O5,按重量百分比计,68.8-69.6wt%的Fe2O3、15.1-15.8%的Mn3O4、15.1-15.5%的ZnO、0.02-0.05wt%的Bi2O3、0.01-0.04wt%的Co2O3、0.01-0.03wt%的CaO、0.005-0.02wt%的Nb2O5,所述制备方法包括:将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合,在经压实处理后再进行烧结;其中,所述压实处理的方法包括预压制、在所述预压制之后进行的冷等静压;在所述烧结之后进行随炉冷却;在所述随炉冷却的过程中控制空气氛围的氧分压。
2.根据权利要求1所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5是以颗粒物的形式混合的。
3.根据权利要求1所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合之前,对所述主成分进行预混合以及在预混合后被执行的预烧结。
4.根据权利要求3所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述预混合的方法包括:Fe2O3、Mn3O4、ZnO加入去离子水进行湿磨,湿磨时球料比为15:1。
5.根据权利要求3所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述预烧结的方法包括:将通过湿磨进行预混合制得的浆料120℃烘干、并进行950℃烧结获得预烧料。
6.根据权利要求5所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合的方法包括:将所述预烧料与Bi2O3、Co2O3、CaO以及Nb2O5加入去离子水进行湿磨,然后,进行烘干并造粒获得混合粒料。
7.根据权利要求6所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述烘干的温度为120℃。
8.根据权利要求6所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述造粒采用的造粒剂为聚乙烯醇。
9.根据权利要求6所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述预压制的压制条件为10MPa,所述冷等静压的压制条件为200MPa。
10.根据权利要求9所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述烧结包括:排胶步骤以及在排胶步骤之后执行的烧结步骤。
11.根据权利要求10所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,将Fe2O3、Mn3O4、ZnO、Bi2O3、Co2O3、CaO以及Nb2O5混合的方法包括:将所述预烧料与Bi2O3、Co2O3、CaO以及Nb2O5加入去离子水进行湿磨,然后,进行烘干并造粒获得混合粒料;所述排胶步骤包括将所述混合粒料以0.5~2℃/min的升温速率加热至550℃,并在550℃保温4~5小时获得排胶料。
12.根据权利要求11所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,所述烧结步骤包括在氧分压为6~10%的空气氛围中、以2~4℃/min的升温速率将所述排胶料加热到1300~1350℃并保温4~6小时,然后随炉冷却。
13.根据权利要求1所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,按重量百分比计,68.86~68.96%的Fe2O3、15.50~15.70%的Mn3O4、15.30~15.40%的ZnO、0.03~0.05%的Bi2O3、0.02~0.04的Co2O3、0.02~0.03%的CaO、0.01~0.02%的Nb2O5
14.根据权利要求1所述的降低铁氧体材料的磁损耗和烧结温度的制备方法,其特征在于,Fe2O3纯度大于99.9%,Mn3O4纯度大于98.5%,ZnO纯度大于99.5%。
CN201810874298.7A 2018-08-02 2018-08-02 一种铁氧体材料及其制备方法 Expired - Fee Related CN108892501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810874298.7A CN108892501B (zh) 2018-08-02 2018-08-02 一种铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810874298.7A CN108892501B (zh) 2018-08-02 2018-08-02 一种铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108892501A CN108892501A (zh) 2018-11-27
CN108892501B true CN108892501B (zh) 2021-11-23

Family

ID=64353081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810874298.7A Expired - Fee Related CN108892501B (zh) 2018-08-02 2018-08-02 一种铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108892501B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330126A (ja) * 2004-05-18 2005-12-02 Nec Tokin Corp MnZnフェライト及びその製造方法
CN100425570C (zh) * 2006-02-27 2008-10-15 乳源东阳光磁性材料有限公司 一种宽温叠加特性优异的锰锌系铁氧体
CN101388269B (zh) * 2008-07-11 2011-09-28 临沂中瑞电子有限公司 一种高磁导率高饱和磁通密度高居里温度锰锌铁氧体材料
CN107352992A (zh) * 2017-07-04 2017-11-17 浙江大学 一种宽频宽温低损耗锰锌铁氧体的粉末粒度控制方法

Also Published As

Publication number Publication date
CN108892501A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN107311637B (zh) 一种基于核壳结构晶粒制备低功率损耗锰锌铁氧体的方法
CN101575206B (zh) 高频大功率镍锌基软磁铁氧体材料及其制造方法
US7524433B2 (en) Ferrite material
JP2021011421A (ja) 低損失ガーネットフェライト材料の調製方法
CN108947513B (zh) 一种低压低温烧结制备的功率镍锌铁氧体及其制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN113087507A (zh) 低介硅酸镁微波介质陶瓷材料及其制备方法
CN115448713B (zh) 一种高频低损耗高饱和磁通密度的镍锌铁氧体材料及其制备方法
JPH10163017A (ja) 低温焼成用高周波軟磁性材料およびそれを用いたインダクターの製造方法
CN104230321A (zh) M型钙永磁铁氧体及其制备方法
CN113603472B (zh) 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN104230322A (zh) M型钙永磁铁氧体及其制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN108892501B (zh) 一种铁氧体材料及其制备方法
CN109704749B (zh) 超高频低损耗软磁铁氧体材料及磁芯的制备方法和应用
CN111499376A (zh) 5g通讯高介陶瓷滤波器用陶瓷粉体及制备方法
CN114605142A (zh) 一种ltcf变压器用复合铁氧体基板材料及其制备方法
JP2008160052A (ja) フェライト磁石の製造方法
CN109734432B (zh) 一种车载用宽温抗应力铁氧体材料和磁芯、及其制造方法
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
CN113387695A (zh) 一种5g通信用低介高品质微波介质陶瓷及其制备方法
CN111943659A (zh) 一种高频低损耗高电阻率镍锌铁氧体材料的制备工艺
CN111825440A (zh) 锰锌铁氧体及其制备方法和应用
KR101282194B1 (ko) Y형 페라이트 및 이로 제조된 페라이트 성형체
JP4706837B2 (ja) Li系フェライト焼結体の製造方法及びLi系フェライト焼結体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211123