CN112898022B - 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法 - Google Patents

一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法 Download PDF

Info

Publication number
CN112898022B
CN112898022B CN202110333567.0A CN202110333567A CN112898022B CN 112898022 B CN112898022 B CN 112898022B CN 202110333567 A CN202110333567 A CN 202110333567A CN 112898022 B CN112898022 B CN 112898022B
Authority
CN
China
Prior art keywords
sintering
dielectric material
microwave dielectric
mixing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110333567.0A
Other languages
English (en)
Other versions
CN112898022A (zh
Inventor
李波
韩如意
曹慧敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110333567.0A priority Critical patent/CN112898022B/zh
Publication of CN112898022A publication Critical patent/CN112898022A/zh
Application granted granted Critical
Publication of CN112898022B publication Critical patent/CN112898022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子材料及其制造领域,提供一种超低温烧结微波介质材料Ca2V2O7‑H3BO及其制备方法,用以解决现有微波介质材料Ca2V2O7制备方法中烧结温度偏高、制备得材料微波性能不够好的问题。本发明采用传统固相法,在预合成Ca2V2O7基料中添加H3BO3作为助烧剂,极大的降低了烧结温度,实现了660℃的超低温烧结;同时,助烧剂在不与Ca2V2O7发生任何的化学反应的情况下极大的促进样品的致密化,从而实现超低温烧结的同时,极大的提升微波介质材料的Q×f值:在725~850℃下烧结得材料的Q×f值为34605~43348GHz、在超低温(660℃)下烧结得材料的Q×f值为18749GHz;另外,本发明工艺简单、易于工业化生产,并且超低温烧结具有节省能源的显著优势,可用于生产谐振器、滤波器等微波元器件。

Description

一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
技术领域
本发明属于电子材料及其制造领域,具体提供一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法。
背景技术
超低温烧结微波介质材料是目前微波元器件的研究热点,但是微波介质材料的烧结温度普遍偏高,如何降低烧结温度(不高于660℃)实现与铝共烧成为研究难点。钒酸盐因其固有烧结温度低、微波性能优良吸引了众多国内外学者的广泛研究。
Mi-Ri Joung,Jin-Seong Kim等人在文献“Formation Process and MicrowaveDielectric Properties of the R2V2O7(R=Ba,Sr,and Ca)Ceramics”中于920℃的烧结温度下制备出Ca2V2O7微波介质材料,其性能为εr=12.11、Q×f=15203GHz、τf=-30.87ppm/℃;但是,其烧结温度仍然偏高(950℃),并且微波性能不够好,尤其是Q×f偏低。
基于此,本发明提供一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法。
发明内容
本发明的目的在于针对现有微波介质材料Ca2V2O7制备方法中烧结温度偏高、制备得材料微波性能不够好的问题,提供一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法,该微波介质材料660~850℃下超低温烧结的同时显著提升其微波性能、尤其是微波介质材料的Q×f提升至18749~43348GHz。
为实现上述目的,本发明采用的技术方案如下:
一种超低温烧结微波介质材料,其特征在于,所述微波介质材料由Ca2V2O7与H3BO3组成,其中,H3BO3相比于Ca2V2O7的质量百分比为:1~9wt%。
进一步的,所述微波介质材料的主晶相为Ca2V2O7,属于三斜晶体结构。
上述超低温烧结微波介质材料的制备方法,包括以下步骤:
步骤1:将分析纯CaCO3、V2O5粉体为原料、按化学式Ca2V2O7的摩尔比进行配料,并进行球磨混合后烘干得到干燥粉体;
步骤2:将步骤1得干燥粉体过筛,然后于650~750℃下预烧3~5小时,获得预烧料;
步骤3:将预烧料与H3BO3进行球磨混合后烘干得到干燥粉体,其中,H3BO3占预烧料的质量百分比为:1~9wt%;
步骤4:将步骤3得干燥粉体进行造粒,并压制成生坯;
步骤5:将生坯在烧结炉中于660~850℃烧结3~5小时,得到所述的微波介质材料。
进一步的,所述步骤1与步骤3中,所述球磨混合的具体过程为:以去离子水和锆球为球磨介质,将混合原料于尼龙罐中球磨7~10小时,然后将料浆于80~100℃下烘干。
更进一步的,所述球磨混合过程中,料:去离子水:锆球的质量比为1:2:5。
进一步的,所述步骤4中,造粒采用聚乙烯醇(PVA),生坯在10~20MPa下压制。
本发明的有益效果在于:
1.本发明提供一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法,通过在预合成Ca2V2O7基料中添加H3BO3作为助烧剂,形成在烧结过程中,由于H3BO3的分解并生成了低熔点氧化物B2O3,在500℃形成液相加快传质,从而加快晶粒生长,极大的降低了烧结温度,进而实现复合材料Ca2V2O7-H3BO3于660℃的超低温烧结。
2.为避免传统助烧剂与原料发生反应从而恶化微波介质材料的微波性能的问题,针对微波介质材料Ca2V2O7的制备,本发明采用H3BO3作为助烧剂形成复合材料。能够在不与Ca2 V2O7发生任何的化学反应的情况下极大的促进样品的致密化,从而实现超低温烧结的同时,极大的提升微波介质材料Ca2V2O7-H3BO3的Q×f值;在725~850℃下烧结得到微波介质材料 Ca2V2O7-H3BO3的Q×f值为34605~43348GHz,即便是在超低温(660℃)烧结得到的微波介质材料Ca2V2O7-H3BO3的Q×f值为18749GHz,仍然优于背景技术中微波介质材料Ca2V2O7
3.本发明提供的超低温烧结微波介质材料的制备方法采用传统固相法,其工艺简单、易于工业化生产,并且超低温烧结具有节省能源的显著优势,可用于生产谐振器、滤波器等微波元器件。
附图说明
图1为实施例3中超低温烧结微波介质材料的XRD图。
图2为实施例3中超低温烧结微波介质材料的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明共提供6个实施例,每个实施例的超低温烧结微波介质材料Ca2V2O7-H3BO3中, H3BO3相比于Ca2V2O7的质量百分比为x;x的取值、制备方法中的核心工艺参数及制备得材料的微波介电性能如下表所示:
编号 组成 烧结温度 烧结时长 ε<sub>r</sub> Q×f(GHz) τ<sub>f</sub>(ppm/℃)
实施例1 x=1 850 3 10.15 43348 -113.84
实施例2 x=3 725 3 10.93 36893 -115.36
实施例3 x=3 660 3 7.35 18749 -113.23
实施例4 x=5 725 3 11.11 37461 -115.97
实施例5 x=7 725 3 10.53 34605 -111.07
实施例6 x=9 725 3 10.36 37565 -106.56
更为具体的讲,超低温烧结微波介质材料Ca2V2O7-H3BO3的制备方法,包括以下步骤:
步骤1:将分析纯CaCO3、V2O5粉体按化学式Ca2V2O7的摩尔比配料;
步骤2:按照原料:去离子水:锆球为1:2:5的质量比于尼龙罐中球磨7小时,然后料浆在100℃烘干;
步骤3:将干燥粉体通过80目的筛网,然后在700℃预烧3小时,获得主晶相为Ca2V2O7的预烧料;
步骤4:将预烧料与1~9wt%的H3BO3混合;
步骤5:按照预烧料:锆球:去离子水为1:5:2的质量比于尼龙罐中球磨7小时,然后料浆在100℃烘干;
步骤6:将干燥粉体用聚乙烯醇(PVA)造粒,并在10~20MPa下压制成生坯;
步骤7:将生坯在烧结炉中于660~850℃烧结3小时,得到所述的微波介质材料。
其中,实施例3实现了微波介质材料Ca2V2O7-H3BO3的660℃的超低温烧结,其XRD图与SEM图分别如图1与图2所示,由图可见,在660℃的超低温烧结下,实施例3制备得微波介质材料的主晶相为Ca2V2O7,其XRD图谱与纯相Ca2V2O7(三斜晶体结构)XRD一致,并未有其他任何杂相生成;并且,通过所得SEM图像可以看到液相(深色不规则相)以Ca2 V2O7晶粒(浅色规则相)间媒介的方式促进了反应物的传递,并通过填充晶粒间隙极大的增强了材料的致密度,进而提升了材料的性能。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (6)

1.一种超低温烧结微波介质材料,其特征在于,所述微波介质材料由Ca2V2O7与H3BO3组成,其中,H3BO3相比于Ca2V2O7的质量百分比为:1~9wt%;所述微波介质材料由以下步骤制备:
步骤1:将分析纯CaCO3、V2O5粉体为原料、按化学式Ca2V2O7的摩尔比进行配料,并进行球磨混合后烘干得到干燥粉体;
步骤2:将步骤1得干燥粉体过筛,然后于650~750℃下预烧3~5小时,获得预烧料;
步骤3:将预烧料与H3BO3进行球磨混合后烘干得到干燥粉体,其中,H3BO3占预烧料的质量百分比为:1~9 wt%;
步骤4:将步骤3得干燥粉体进行造粒,并压制成生坯;
步骤5:将生坯在烧结炉中于660~850℃烧结3~5小时,得到所述微波介质材料。
2.按权利要求1所述超低温烧结微波介质材料,其特征在于,微波介质材料的主晶相为Ca2V2O7,属于三斜晶体结构。
3.按权利要求1所述超低温烧结微波介质材料的制备方法,包括以下步骤:
步骤1:将分析纯CaCO3、V2O5粉体为原料、按化学式Ca2V2O7的摩尔比进行配料,并进行球磨混合后烘干得到干燥粉体;
步骤2:将步骤1得干燥粉体过筛,然后于650~750℃下预烧3~5小时,获得预烧料;
步骤3:将预烧料与H3BO3进行球磨混合后烘干得到干燥粉体,其中,H3BO3占预烧料的质量百分比为:1~9 wt%;
步骤4:将步骤3得干燥粉体进行造粒,并压制成生坯;
步骤5:将生坯在烧结炉中于660~850℃烧结3~5小时,得到所述的微波介质材料。
4.按权利要求3所述超低温烧结微波介质材料的制备方法,其特征在于,所述步骤1与步骤3中,所述球磨混合的具体过程为:以去离子水和锆球为球磨介质,将混合原料于尼龙罐中球磨7~10小时,然后将料浆于80~100℃下烘干。
5.按权利要求4所述超低温烧结微波介质材料的制备方法,其特征在于,所述球磨混合过程中,料:去离子水:锆球的质量比为1: 2: 5。
6.按权利要求3所述超低温烧结微波介质材料的制备方法,其特征在于,所述步骤4中,造粒采用聚乙烯醇(PVA),生坯在10~20MPa下压制。
CN202110333567.0A 2021-03-29 2021-03-29 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法 Active CN112898022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110333567.0A CN112898022B (zh) 2021-03-29 2021-03-29 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110333567.0A CN112898022B (zh) 2021-03-29 2021-03-29 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法

Publications (2)

Publication Number Publication Date
CN112898022A CN112898022A (zh) 2021-06-04
CN112898022B true CN112898022B (zh) 2022-06-03

Family

ID=76109351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110333567.0A Active CN112898022B (zh) 2021-03-29 2021-03-29 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法

Country Status (1)

Country Link
CN (1) CN112898022B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671685A (zh) * 2022-03-11 2022-06-28 电子科技大学 一种超低温烧结微波介质材料Ca2V2O7-LiF及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613200A (zh) * 2009-07-21 2009-12-30 西安交通大学 一种低温烧结微波介质陶瓷材料及其制备方法
CN102225784A (zh) * 2011-03-29 2011-10-26 河北联合大学 一种采用微波辐射法合成碱土金属钒酸盐微/纳米材料的方法
CN103030394A (zh) * 2013-01-27 2013-04-10 桂林理工大学 V基低温烧结微波介质陶瓷材料及其制备方法
KR20200081774A (ko) * 2018-12-28 2020-07-08 한국세라믹기술원 고주파 소자용 유전체 세라믹스 조성물, 그에 의한 고주파 소자용 세라믹 기판 및 그의 제조방법
CN111606709A (zh) * 2020-06-11 2020-09-01 电子科技大学 一种超低温烧结微波介质材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613200A (zh) * 2009-07-21 2009-12-30 西安交通大学 一种低温烧结微波介质陶瓷材料及其制备方法
CN102225784A (zh) * 2011-03-29 2011-10-26 河北联合大学 一种采用微波辐射法合成碱土金属钒酸盐微/纳米材料的方法
CN103030394A (zh) * 2013-01-27 2013-04-10 桂林理工大学 V基低温烧结微波介质陶瓷材料及其制备方法
KR20200081774A (ko) * 2018-12-28 2020-07-08 한국세라믹기술원 고주파 소자용 유전체 세라믹스 조성물, 그에 의한 고주파 소자용 세라믹 기판 및 그의 제조방법
CN111606709A (zh) * 2020-06-11 2020-09-01 电子科技大学 一种超低温烧结微波介质材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Crystal phase, microstructure and microwave properties of Ba2VxO7 (1.85≤x≤2.05) ceramics;Deng Yaping 等;《Journal of Materials Science: Materials in Electronics》;20200326;第31卷;第7053-7059页 *
Fabrication of Ca2V2O7 microspheres and its application in lithium-ion batteries;Zhang Shaoyan 等;《Materials Letters》;20160728;第183卷;第311-314页 *
Formation Process and Microwave Dielectric Properties of the R2V2O7 (R=Ba, Sr, and Ca) Ceramics;Mi-Ri Joung 等;《Journal of the American Ceramic Society》;20091123;第92卷(第12期);第3092-3094页 *
中介电常数低温共烧微波介质陶瓷及其器件研究;童建喜;《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》;20070815(第2期);第89页第1-2段,第97页第2段 *

Also Published As

Publication number Publication date
CN112898022A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN113999019B (zh) 一种氮化硅陶瓷造粒粉的制备方法
CN101830697A (zh) 一种中温烧结高q中介微波陶瓷及其制备方法
CN114031402B (zh) 一种低温烧结微波介质材料MgZrNb2O8及其制备方法
CN112209419A (zh) 一种高松装密度热喷涂用球形氧化钇粉的制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN113321496A (zh) 复合微波介质陶瓷材料及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN114702303A (zh) 一种微波介质材料Ca3B2O6及其制备方法
CN113603472B (zh) 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN111606709A (zh) 一种超低温烧结微波介质材料及其制备方法
CN113979744B (zh) 一种镁钙钛微波介质陶瓷粉体及其制备方法和应用
CN110818413A (zh) 一种极低温烧结的钼酸铝基微波介质复合陶瓷及其制备方法
CN113582690B (zh) 一种超低温烧结微波介质材料Zn2V2O7及其制备方法
CN113004026B (zh) Ltcc微波介质陶瓷材料及其制造方法
CN110357628B (zh) 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法
CN111548158B (zh) 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法
CN108147834A (zh) 介电常数可调控的轻质氮化硅天线罩及其制备方法
CN111635246A (zh) 多孔碳化硅陶瓷及其制备方法
CN111348908A (zh) 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法
CN114671685A (zh) 一种超低温烧结微波介质材料Ca2V2O7-LiF及其制备方法
CN112898021B (zh) 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法
CN113402267B (zh) 一种适用于小型化微波器件的铁氧体材料及其制备方法
CN113603481B (zh) 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant