CN113603481B - 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法 - Google Patents

一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN113603481B
CN113603481B CN202110794900.8A CN202110794900A CN113603481B CN 113603481 B CN113603481 B CN 113603481B CN 202110794900 A CN202110794900 A CN 202110794900A CN 113603481 B CN113603481 B CN 113603481B
Authority
CN
China
Prior art keywords
presintering
composite ceramic
lithium
temperature
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110794900.8A
Other languages
English (en)
Other versions
CN113603481A (zh
Inventor
苏豪凯
孙亚辉
高峰
李颉
杨燕
梁峥
武剑
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110794900.8A priority Critical patent/CN113603481B/zh
Publication of CN113603481A publication Critical patent/CN113603481A/zh
Application granted granted Critical
Publication of CN113603481B publication Critical patent/CN113603481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法,属于电子材料技术领域。所述复合陶瓷的结构式为Li2‑2xMg3‑6xZr1‑2xTixVxO6‑6.5x,x的取值范围为0.05~0.07。本发明提供的锆酸镁锂系复合陶瓷,以Li2Mg3ZrO6作为主料,采用偏相Li2TiO3和V2O5进行复合,使得烧结特性、品质因数、介电常数得到了改善,温度系数向正方向稳步移动,得到了较高品质因数、高温度稳定性、中等介电常数、低烧结温度的复合陶瓷材料,可用作天线基板材料使用。

Description

一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法
技术领域
本发明属于电子材料技术领域,具体涉及一种低制备成本、低损耗、高温度稳定性介电陶瓷Li2-2xMg3-6xZr1-2xTixVxO6-6.5x及其制备方法。
背景技术
随着微波通信和无线技术的发展,介质材料被广泛应用于微波器件,如天线基板、滤波器和谐振器等。与此同时,市场的发展与进步,又对材料的介电性能提出了新的要求,如更低的介质损耗、更高的温度稳定性、更广的介电常数范围等等,这激发了学术界对介电陶瓷进一步的研究。现如今,人类生活的各个领域都已离不开微波通信,在全球巨大市场的推动下,微波通信技术具有巨大的研发意义与商业价值。
由于微波通信的系统不断地向体积小,密度高方向发展,因而要求电子元件也具有小尺寸、集成化特性。很多微波通信器件都需要采用具有高介电常数的微波介电陶瓷来代替传统的空腔振荡器。当把材料充入腔体后,工作在同样频率下腔体的体积可以较之前大幅缩小,但它同时要满足品质因数高,即介质损耗要小;频率稳定性要高,即温度系数要趋近于零。按照理论可知,微波器件的线密度尺寸缩小与介电常数的平方根
Figure BDA0003162314080000011
成反比,谐振器在低频段(<3GHz)的同轴线,其线度公式为:
Figure BDA0003162314080000012
在高频段(90Gc/s),小段介质线的直径:
Figure BDA0003162314080000013
频率温度系数:
Figure BDA0003162314080000014
在-20~80℃范围内要求接近于零。因此用于微波频段的介质一般要求满足以下4个要求:
(1)高介电常数
(2)低介质损耗(高Q值)
(3)温度膨胀系数小
(4)低谐振率温度系数
Figure BDA0003162314080000021
Tε为介电常数εr的温度系数;α为热膨胀系数。
过去几十年里,已经发展出相当数量的介电陶瓷,如Mg2SiO4、BaTi4O9,同时,具有NaCl结构或岩盐结构的锂基材料也得到发展,如LiFeO2、Li2ZrO3、Li2TiO3、Li2Mg3ZrO6、Li3Mg2NbO6。其中Li2Mg3ZrO6材料由于其优异的介电性能而受到关注:高品质因数(206,756GHz)、中等介电常数(12.9)以及温度系数(-40.4ppm/℃)。然而,其介电性能还可以进一步得到改善。目前,通常采用离子掺杂改性的方法来调节材料的性能,即采用某种离子取代原材料中的部分离子,来获得某些性能的提升。然而,在一项性能提高的同时,其它性能往往会受到限制,且由于其烧结温度太高,导致无法被应用于LTCC工艺,且制备成本较高。目前通过添加助烧剂实现低温烧结的材料,介电性能又达不到理想效果。Zhang(S.Zhang,H.Su,H.Zhang,Y.Jing,X.Tang,Microwave dielectric properties of CaWO4–Li2TiO3ceramics added with LBSCAglass for LTCC applications,Ceramics International42(14)(2016)15242-15246.)等人曾采用多相复合的方式,将CaWO4与Li2TiO3复合并添加LiF,改善了材料的温度系数与烧结特性,但品质因数低于复合前的材料。Lai(Y.Lai,C.Hong,L.Jin,X.Tang,H.Zhang,X.Huang,J.Li,H.Su,Temperature stability and high-Qf of low temperature firing Mg2SiO4–Li2TiO3 microwave dielectric ceramics,Ceramics International 43(18)(2017)16167-16173.)等人将Mg2SiO4和Li2TiO3复合,使得材料介电性能提高,但无法稳步提高材料的温度稳定性。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种高温度稳定性锆酸镁锂系复合陶瓷,其特征在于,所述复合陶瓷的结构式为Li2-2xMg3-6xZr1-2xTixVxO6-6.5x,其中x的取值范围为0.05~0.07。
进一步的,所述复合陶瓷是先按照化学配比称取原料,一次球磨,烘干,在1000~1200℃下预烧1~6h,得到前驱体;再将V2O5添加至前驱体中,进行二次球磨,烘干,造粒,压制成型;最后在850~950℃下烧结得到的。
一种高温度稳定性锆酸镁锂系复合陶瓷的制备方法,包括以下步骤:
步骤1:以碳酸锂(Li2CO3)、氧化镁(MgO)和氧化锆(ZrO2)作为原料,按照化学式Li2Mg3ZrO6中各元素的比例折算出各原料的质量,进行称料,一次球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1000~1200℃,预烧时间为1~6h,完成后自然冷却至室温,得到Li2Mg3ZrO6粉料;
步骤2:以碳酸锂(Li2CO3)、二氧化钛(TiO2)作为原料,按照化学式Li2TiO3中各元素的比例折算出碳酸锂(Li2CO3)和二氧化钛(TiO2)原料的质量,进行称料,混合球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1000~1200℃,预烧时间为1~6h,完成后自然冷却至室温,得到Li2TiO3粉料;
步骤3:将步骤1得到的Li2Mg3ZrO6粉料、步骤2得到的Li2TiO3粉料和V2O5按照Li2- 2xMg3-6xZr1-2xTixVxO6-6.5x、x=0.05~0.07的比例混合,二次球磨后烘干,过筛;
步骤4:在步骤3得到的混合粉料中加入PVA粘结剂,造粒,压制成型后,放入烧结炉内850~950℃下烧结1~6h,完成后自然冷却至室温,得到所述锆酸镁锂系复合陶瓷。
进一步的,步骤1、步骤2和步骤3中所述球磨的转速为220~360转/分,球磨时间为16-24h,球磨介质为去离子水。
本发明还提供了上述高温度稳定性锆酸镁锂系复合陶瓷作为天线基板材料的应用。
与现有技术相比,本发明的有益效果为:
本发明提供的一种高温度稳定性锆酸镁锂系复合陶瓷,以Li2Mg3ZrO6作为主料,采用偏相Li2TiO3和V2O5进行复合,使得烧结特性、品质因数、介电常数得到了改善,温度系数向正方向稳步移动,得到了较高品质因数(209377~211875GHz)、高温度稳定性(温度系数在±5ppm/℃附近)、中等介电常数(14.1~14.4)、低烧结温度(850~950℃)的复合陶瓷材料,可用作天线基板材料使用。
附图说明
图1为本发明提供的一种高温度稳定性锆酸镁锂系复合陶瓷的制备方法流程图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种高温度稳定性锆酸镁锂系复合陶瓷的制备方法,包括以下步骤:
步骤1:以碳酸锂(Li2CO3)、氧化镁(MgO)和氧化锆(ZrO2)作为原料,按照化学式Li2Mg3ZrO6中各元素的比例折算出各原料的质量,称取7.3892g的Li2CO3、12.093g的MgO和12.322g的ZrO2,放入球磨罐中混合、一次球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1150℃,预烧时间为4h,完成后自然冷却至室温,得到Li2Mg3ZrO6粉料;
步骤2、以碳酸锂(Li2CO3)、二氧化钛(TiO2)作为原料,按照化学式Li2TiO3中各元素的比例折算出碳酸锂(Li2CO3)和二氧化钛(TiO2)原料的质量,称取7.3892g的碳酸锂、7.984g的TiO2,放入球磨罐中混合球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1175℃,预烧时间为4h,完成后自然冷却至室温,得到Li2TiO3粉料;
步骤3、将步骤1得到的Li2Mg3ZrO6粉料、步骤2得到的Li2TiO3粉料和V2O5按照Li2- 2xMg3-6xZr1-2xTixVxO6-6.5x(x=0.01,0.03,0.05,0.07,0.09,0.1)的比例混合,二次球磨后烘干,过筛;其中,x=0.01,0.03,0.09,0.1作为对比;
步骤4、在步骤3得到的混合粉料中加入PVA粘结剂,造粒,压制成型后,放入烧结炉内875℃下烧结4h,完成后自然冷却至室温,得到所述锆酸镁锂系复合陶瓷。
实施例1得到的复合陶瓷的介电常数、品质因数和温度系数如下:
x值 0.01 0.03 0.05 0.07 0.09 0.1
介电常数 13.1 13.5 14.1 14.4 13.9 13.8
品质因数(GHz) 208656 209189 211875 209455 208369 207891
温度系数(ppm/℃) -34.8 -19.5 -5.3 +6.1 +12.5 +19.3
实施例2
本实施例与实施例1相比,区别在于:步骤4中,烧结温度调整为900℃;其余步骤与实施例1完全相同。
实施例2得到的复合陶瓷的介电常数、品质因数和温度系数如下:
x值 0.01 0.03 0.05 0.07 0.09 0.1
介电常数 13.2 13.6 14.2 14.3 13.7 13.5
品质因数(GHz) 207665 209034 210057 209649 208377 207681
温度系数(ppm/℃) -32.1 -19.3 -5.2 +6.1 +14.3 +17.3
实施例3
本实施例与实施例1相比,区别在于:步骤4中,烧结温度调整为925℃;其余步骤与实施例1完全相同。
实施例3得到的复合陶瓷的介电常数、品质因数和温度系数如下:
x值 0.01 0.03 0.05 0.07 0.09 0.1
介电常数 12.9 13.4 14.1 14.3 13.9 13.7
品质因数(GHz) 207689 208898 209758 209377 208486 207826
温度系数(ppm/℃) -31.7 -18.6 -5.4 +5.9 +14.3 +20.6

Claims (5)

1.一种高温度稳定性锆酸镁锂系复合陶瓷,其特征在于,所述复合陶瓷的结构式为Li2-2xMg3-6xZr1-2xTixVxO6-6.5x,其中x的取值范围为0.05~0.07;
所述锆酸镁锂系复合陶瓷是采用以下方法制备得到的:
步骤1:以碳酸锂、氧化镁和氧化锆作为原料,按照化学式Li2Mg3ZrO6中各元素的比例折算出各原料的质量,进行称料,一次球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1000~1200℃,预烧时间为1~6h,完成后自然冷却至室温,得到Li2Mg3ZrO6粉料;
步骤2:以碳酸锂、二氧化钛作为原料,按照化学式Li2TiO3中各元素的比例折算出碳酸锂和二氧化钛原料的质量,进行称料,混合球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1000~1200℃,预烧时间为1~6h,完成后自然冷却至室温,得到Li2TiO3粉料;
步骤3:将步骤1得到的Li2Mg3ZrO6粉料、步骤2得到的Li2TiO3粉料和V2O5按照Li2-2xMg3- 6xZr1-2xTixVxO6-6.5x、x=0.05~0.07的比例混合,二次球磨后烘干,过筛;
步骤4:在步骤3得到的混合粉料中加入粘结剂,造粒,压制成型后,放入烧结炉内850~950℃下烧结1~6h,完成后自然冷却至室温,得到所述锆酸镁锂系复合陶瓷。
2.一种高温度稳定性锆酸镁锂系复合陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1:以碳酸锂、氧化镁和氧化锆作为原料,按照化学式Li2Mg3ZrO6中各元素的比例折算出各原料的质量,进行称料,一次球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1000~1200℃,预烧时间为1~6h,完成后自然冷却至室温,得到Li2Mg3ZrO6粉料;
步骤2:以碳酸锂、二氧化钛作为原料,按照化学式Li2TiO3中各元素的比例折算出碳酸锂和二氧化钛原料的质量,进行称料,混合球磨后烘干,过筛;然后放入烧结炉中进行预烧,预烧温度为1000~1200℃,预烧时间为1~6h,完成后自然冷却至室温,得到Li2TiO3粉料;
步骤3:将步骤1得到的Li2Mg3ZrO6粉料、步骤2得到的Li2TiO3粉料和V2O5按照Li2-2xMg3- 6xZr1-2xTixVxO6-6.5x、x=0.05~0.07的比例混合,二次球磨后烘干,过筛;
步骤4:在步骤3得到的混合粉料中加入粘结剂,造粒,压制成型后,放入烧结炉内850~950℃下烧结1~6h,完成后自然冷却至室温,得到所述锆酸镁锂系复合陶瓷。
3.根据权利要求2所述的高温度稳定性锆酸镁锂系复合陶瓷的制备方法,其特征在于,步骤1、步骤2和步骤3中所述球磨的转速为220~360转/分,球磨时间为16-24h,球磨介质为去离子水。
4.权利要求1所述高温度稳定性锆酸镁锂系复合陶瓷作为天线基板材料的应用。
5.权利要求2或3所述方法得到的高温度稳定性锆酸镁锂系复合陶瓷作为天线基板材料的应用。
CN202110794900.8A 2021-07-14 2021-07-14 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法 Active CN113603481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110794900.8A CN113603481B (zh) 2021-07-14 2021-07-14 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110794900.8A CN113603481B (zh) 2021-07-14 2021-07-14 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113603481A CN113603481A (zh) 2021-11-05
CN113603481B true CN113603481B (zh) 2022-05-03

Family

ID=78337535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110794900.8A Active CN113603481B (zh) 2021-07-14 2021-07-14 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113603481B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395514B2 (ja) * 1995-04-25 2003-04-14 松下電器産業株式会社 誘電体磁器組成物
CN104230328B (zh) * 2014-08-19 2016-01-13 浙江大学 一种中温烧结低介微波介质陶瓷材料及其制备方法
CN104710175B (zh) * 2015-02-09 2017-07-11 陕西师范大学 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN106145931B (zh) * 2016-06-20 2018-10-26 电子科技大学 一种超低损耗微波介质陶瓷材料及其制备方法
CN107382305B (zh) * 2017-07-14 2020-10-27 电子科技大学 微波介质陶瓷材料及制备方法
CN110357618B (zh) * 2019-06-20 2021-08-24 安徽理工大学 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN111170733A (zh) * 2020-01-15 2020-05-19 三桥惠(佛山)新材料有限公司 一种低介电损耗介质陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113603481A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN111302788B (zh) 一种具有高Qf值低介电常数的陶瓷材料及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN112321299A (zh) 超低损耗的钇铝石榴石微波介质陶瓷材料及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN111635223A (zh) 一种复合微波介质陶瓷及其制备方法
CN113896530A (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN103467084B (zh) 一种高介电常数锂铌钛系低温烧结陶瓷及其制备方法
CN105060878A (zh) 低介电常数高品质因数微波介质陶瓷及其制备方法
CN113603481B (zh) 一种高温度稳定性锆酸镁锂系复合陶瓷及其制备方法
CN106316395A (zh) 一种高介电常数、高品质因子的微波介质陶瓷及制备方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN104944937A (zh) 一种ZnAl2O4/Li4Ti5O12微波介质陶瓷材料及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN109231982A (zh) 一种钛酸镁基微波介质陶瓷的制备方法
CN109437901A (zh) 一种钙钛矿结构的微波介质陶瓷及其制备方法
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN104692792A (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN105669199B (zh) 一种微波介质陶瓷及其制备方法
CN110357628B (zh) 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法
CN109650886B (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN103896572B (zh) 可低温烧结的温度稳定型微波介电陶瓷Li3PO4及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant