CN111348908A - 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法 - Google Patents
一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN111348908A CN111348908A CN202010172786.0A CN202010172786A CN111348908A CN 111348908 A CN111348908 A CN 111348908A CN 202010172786 A CN202010172786 A CN 202010172786A CN 111348908 A CN111348908 A CN 111348908A
- Authority
- CN
- China
- Prior art keywords
- sintering
- temperature
- sio
- lizn
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/20—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明提供了一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法,这种材料包括Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4两种成分,其中,所述Li2(Mg0.96Ni0.04)SiO4与所述LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2。该无助烧剂低温烧结复合介电陶瓷材料具有低介电常数、高品质因数、高相对密度、较稳定的温度特性以及低烧结温度等优异特性,此外,该复合介电陶瓷能够与银浆有较好的匹配共烧特性,可以广泛应用于低温共烧陶瓷技术领域。
Description
【技术领域】
本发明涉及微波介电陶瓷材料技术领域,特别涉及一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法。
【背景技术】
低温共烧陶瓷(LTCC)技术是一种实现无源器件三维大规模集成而非表贴的封装方法,可应用于航天航空、通讯终端、物联网传感器等军民产品中。一般来说,LTCC的内埋电极材料为银,其熔点为961℃,然而,为保证金属电极材料能够在介电陶瓷上实施多层电路印刷的可靠性,920℃以下为更适合的烧结温度。目前,添加低熔点的玻璃和多组分氧化物是实现低温烧结的常用方法,但这又往往会导致介电性能的恶化。因此,能在不恶化介电性能的前提下降低致密化温度是一个值得研究的课题。
具备低介电性能εr值,高Q×f值和接近零的τf值的材料可以降低信号传输延迟、提高信号传输质量和较高的热稳定性。其中硅酸盐陶瓷具有较低介电常数和较好的热稳定性,磷酸盐具有较低的烧结温度和较高的Q×f值,因此得到了研究人员的广泛关注。
经研究,Li2(Mg0.96Ni0.04)SiO4陶瓷的介电性能εr=5.69,品质因数Q×f=28,448GHz(16GHz);谐振频率温度系数τf=15.3ppm/℃,致密化温度为1150℃;LiZn0.93Co0.07PO4陶瓷的介电性能为εr=5.43,品质因数Q×f=35,446GHz(16GHz);τf=-77.4ppm/℃,致密化温度为850℃,见参考文献[1,2]。然而,Li2(Mg0.96Ni0.04)SiO4的烧结温度过高,不能满足LTCC的要求,并且其品质因数Q×f值有待提高。而LiZn0.93Co0.07PO4的绝对τf值较大,具有较低的介电性能εr、较高的品质因数Q×f值和较低的烧结温度,而Li2(Mg0.96Ni0.04)SiO4具有较小的绝对τf值,因此,若能结合两者材料的优势互补,则可以为LTCC技术的发展提供一种新的材料尝试。
参考文献:
[1]R.Peng,Y.Li*,G.Yu,Y.Lu,S.Li,Effect of Co2+substitution on themicrowave dielectric properties of LiZnPO4 ceramics,Journal of ElectronicMaterials 47(12)(2018)7281-7287。
[2]R.Peng,H.Su,D.An,Y.Lu,Z.Tao,D.Chen,L.Shi,Y.Li*,The sintering anddielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion dopingbased on calculation and experiment,Journal of Materials Research andTechnology 2019.https://doi.org/10.1016/j.jmrt.2019.11.061。
【发明内容】
鉴于此,本发明要解决的技术问题,在于提供一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法,该无助烧剂低温烧结复合介电陶瓷材料具有低介电常数、高品质因数、高相对密度、较稳定的温度特性以及低致密化温度的优异特性。
本发明的思路是:根据介质陶瓷材料在高频通信领域应用的工程需求,当前的Li2(Mg0.96Ni0.04)SiO4材料烧结温度过高,不能满足LTCC工艺要求,同时其Q×f值有待提高;而LiZn0.93Co0.07PO4材料虽然具有较低的εr、较高的Q×f值和较低的烧结温度,但τf的绝对值太大,温度稳定性较差,因此,将LiZn0.93Co0.07PO4陶瓷添加到Li2(Mg0.96Ni0.04)SiO4陶瓷中会产生许多好处。首先,LiZn0.93Co0.07PO4陶瓷具有较低的致密化温度,可以作为传热介质,在不添加烧结助剂的情况下,可以实现Li2(Mg0.96Ni0.04)SiO4陶瓷的低温烧结。其次,与Li2(Mg0.96Ni0.04)SiO4微波介电陶瓷相比,由它们两相组成的Li2(Mg0.96Ni0.04)SiO4+LiZn0.93Co0.07PO4复合陶瓷应该具有更高的Q×f值和更低的εr值,并且其热稳定性优于LiZn0.93Co0.07PO4陶瓷。但在复合过程中,LiZn0.93Co0.07PO4的用量太高或太低都不能更好的改善Li2(Mg0.96Ni0.04)SiO4陶瓷材料的微波性能:用量太低,Li2(Mg0.96Ni0.04)SiO4陶瓷的性能改观不大;用量太高,由于大量LiZn0.93Co0.07PO4的添加会恶化Li2(Mg0.96Ni0.04)SiO4陶瓷的微波性能。
为此,第一方面,本发明提供了一种无助烧剂低温烧结复合介电微波陶瓷材料,包括Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4两种成分,其中,所述Li2(Mg0.96Ni0.04)SiO4与所述LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2。
第二方面,本发明提供了一种无助烧剂低温烧结复合介电陶瓷材料的制备工艺,包括下述步骤:
步骤一:采用氧化物法,按分子式摩尔比分别准备制备Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4两种材料所需的氧化物,分别称为Li2(Mg0.96Ni0.04)SiO4前驱物和LiZn0.93Co0.07PO4前驱物;将所述Li2(Mg0.96Ni0.04)SiO4前驱物和LiZn0.93Co0.07PO4前驱物分别与去离子水混合后,分别在行星式球磨机中进行一次球磨,一次球磨的时间为12小时;经过滤干燥后过筛,所得粉料分别进行预烧后,即为Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4陶瓷预烧料,其中Li2(Mg0.96Ni0.04)SiO4前驱体的预烧温度为830℃,LiZn0.93Co0.07PO4前驱体的预烧温度为630℃,升温速率均为5℃/min,保温时间为4h;
步骤二:将所述Li2(Mg0.96Ni0.04)SiO4和所述LiZn0.93Co0.07PO4陶瓷预烧料混合后进行第二次球磨,二次球磨的时间为12小时,经过滤干燥后过筛,进行低温烧结后即可得到无助烧剂低温烧结复合介电陶瓷材料,其中,所述Li2(Mg0.96Ni0.04)SiO4与所述LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2;所述低温烧结的温度为880~920℃,低温烧结过程的升温速率为5℃/min,保温时间为4h。
与现有技术相比,本发明的有益效果为:
(1)本发明的无助烧剂低温烧结复合介电陶瓷材料,具有低介电常数、高品质因数、高相对密度以及低烧结温度的优异特性,其中,介电常数εr为5.78,品质因数Q×f为48168GHz,相对密度为96.1%,τf值为-44.7ppm/℃,烧结温度为900℃。
(2)本发明的无助烧剂低温烧结复合介电陶瓷材料的制备方法,将两种材料分别预烧再混合烧结,而非一次性烧结,大大保证了材料的活性,而且在880~920℃低的烧结温度下,改善了Li2(Mg0.96Ni0.04)SiO4微波介电陶瓷的烧结特性、微观形态和电学性能,并于导电金属银可以匹配共烧,适用于低温共烧陶瓷技术领域。
【附图说明】
图1为本发明所涉及的无助烧剂低温烧结复合介电陶瓷材料的制备工艺流程图;
图2至图7分别为实施例1至实施例6的无助烧剂低温烧结复合介电陶瓷材料烧结后的扫描电镜图;
图8至图9分别为对比例1和对比例2的无助烧剂低温烧结复合介电陶瓷材料烧结后的扫描电镜图。
图10为实施例4的无助烧剂低温烧结复合介电陶瓷材料与银烧结后的扫描电镜图。
【具体实施方式】
本发明的实施例通过提供一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法和用途,能在不恶化介电性能的前提下降低致密化温度,从而使得无助烧剂低温烧结复合介电陶瓷材料取得了具有低介电常数、高品质因数、高相对密度、较稳定的温度特性以及低致密化温度的优异特性的效果。
实施例1-6
本实施例1-6提供一种无助烧剂低温烧结复合介电陶瓷材料,包括Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4两种成分。其制备流程如图1所示,包含配料、一次球磨、预烧、二次球磨、造粒成型和低温烧结的步骤。其中,复合介电陶瓷材料中Li2(Mg0.96Ni0.04)SiO4与LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2。具体来说:
其中,采用氧化法制备所述Li2(Mg0.96Ni0.04)SiO4,其原料包含下述摩尔百分比的各成份,且各成份的摩尔百分比之和为100%:
采用氧化法制备所述LiZn0.93Co0.07PO4,其原料包含下述摩尔百分比的各成份,且各成份的摩尔百分比之和为100%:
无助烧剂低温烧结复合介电陶瓷材料具体制备工艺为:
①按摩尔百分比计,称取33.34%的Li2CO3、31.9968%的MgO、1.3332%的NiO和33.33%的SiO2混合后得到用于制备Li2(Mg0.96Ni0.04)SiO4前驱物;称取20%的Li2CO3、38.5493%的ZnO、1.4507%的Co2O3和40%的NH4H2PO4混合后得到LiZn0.93Co0.07PO4前驱物;
②将所述Li2(Mg0.96Ni0.04)SiO4前驱物和LiZn0.93Co0.07PO4前驱物分别与去离子水混合后,分别在行星式球磨机中进行一次球磨,一次球磨的时间为12小时;
③经过滤干燥后过筛,所得粉料分别进行预烧后,即为Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4陶瓷预烧料,其中Li2(Mg0.96Ni0.04)SiO4前驱体的预烧温度为830℃,LiZn0.93Co0.07PO4前驱体的预烧温度为630℃,升温速率均为5℃/min,保温时间为4h;
④将所述Li2(Mg0.96Ni0.04)SiO4和所述LiZn0.93Co0.07PO4陶瓷预烧料混合后进行第二次球磨,二次球磨的时间为12小时,经过滤干燥后过筛,进行低温烧结后即可得到无助烧剂低温烧结复合介电陶瓷材料,其中,所述Li2(Mg0.96Ni0.04)SiO4与所述LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2;所述低温烧结的温度为900℃,低温烧结过程的升温速率为5℃/min,保温时间为4h。
实施例1-6的配方具体比例如表1所示:
表1实施例1-6复合介电陶瓷材料的配方
将实施例1~6及对比例1~2的无助烧剂低温烧结复合介电陶瓷材料进行性能测试,包含电学性能测试、微观结构测试等,测试结果如表2所示。其中,介电常数εr、品质因数Q×f用Agilent N5230A Network Analyzer(300MHz-20GHz)进行测试;相对密度用阿基米德排水法进行测试;扫描电镜图像(SEM)用JEOL JSM-6490LV进行测试。
表2实施例1-6复合介电陶瓷材料的性能测试结果
由实施例1-6的测试结果表2可以看出,在900℃的烧结温度下,随着LiZn0.93Co0.07PO4量的增加,该无助烧剂低温烧结复合介电陶瓷材料的相对密度和Q×f值呈现出先增加后减小的趋势,τf值和介电常数和逐渐减小且在实施例4中,该陶瓷材料表现出最佳属性。
由对比例1-2可看出,复合陶瓷材料的相对密度明显下降,从而恶化材料的微波介电性能,这是由于其复合的比例不同所造成,因此过多或过少的LiZn0.93Co0.07PO4添加量都无法获得较好的介电特性。
同时由图2~7可以看出,在烧结温度固定在900℃时,实施例4中所得到的材料晶粒生长最均匀,致密化程度最高,并且微观结构的变化趋势与测得相对密度值一致,都呈现先上升后下降的趋势。
实施例7-10
实施例7-10,复合陶瓷材料的配方完全与实施例4一致,与实施例4的区别在于低温烧结时烧结温度分别为880℃,890℃,910℃,920℃,其他工艺参数与实施例4均相同。表3为对比例3-6复合介电陶瓷材料的性能测试结果。
表3实施例7-10复合介电陶瓷材料的性能测试结果
由实施例7-10可看出,在配方一致的前提下,复合陶瓷材料的微波介电性能与其烧结温度有着一定的关系。在880℃下,复合陶瓷材料的烧结密度最低为86.4%,其Qf值也是最低;在890-920℃下,复合陶瓷材料的烧结密度均超过了90%以上,其Qf值较高,具备应用价值,但综合来看,烧结温度为900℃,复合材料电性能达到最优,烧结密度也最大,因此,由实施例4工艺所制作出的复合介电陶瓷材料性能最佳。
最后,为了探究银与本发明复合陶瓷材料的匹配共烧特性。将实施例4的陶瓷与银浆在900℃下共同烧结,其SEM图见于图10。从横截面的SEM图可以看出,陶瓷与银产生了明显的异质界面,表明银与复合陶瓷材料之间具有良好的兼容性,可以应用于低温共烧陶瓷技术领域。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。
Claims (2)
1.一种无助烧剂低温烧结复合介电陶瓷材料,其特征在于:包括Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4两种成分,其中,所述Li2(Mg0.96Ni0.04)SiO4与所述LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2。
2.一种无助烧剂低温烧结复合介电陶瓷材料的制备方法,其特征在于:
步骤一:采用氧化物法,按分子式摩尔比分别准备制备Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4两种材料所需的氧化物,分别称为Li2(Mg0.96Ni0.04)SiO4前驱物和LiZn0.93Co0.07PO4前驱物;将所述Li2(Mg0.96Ni0.04)SiO4前驱物和LiZn0.93Co0.07PO4前驱物分别与去离子水混合后,分别在行星式球磨机中进行一次球磨,一次球磨的时间为12小时;经过滤干燥后过筛,所得粉料分别进行预烧后,即为Li2(Mg0.96Ni0.04)SiO4和LiZn0.93Co0.07PO4陶瓷预烧料,其中Li2(Mg0.96Ni0.04)SiO4前驱体的预烧温度为830℃,LiZn0.93Co0.07PO4前驱体的预烧温度为630℃,升温速率均为5℃/min,保温时间为4h;
步骤二:将所述Li2(Mg0.96Ni0.04)SiO4和所述LiZn0.93Co0.07PO4陶瓷预烧料混合后进行第二次球磨,二次球磨的时间为12小时,经过滤干燥后过筛,进行低温烧结后即可得到无助烧剂低温烧结复合介电陶瓷材料,其中,所述Li2(Mg0.96Ni0.04)SiO4与所述LiZn0.93Co0.07PO4的摩尔比为0.3:0.7~0.8:0.2;所述低温烧结的温度为880~920℃,低温烧结过程的升温速率为5℃/min,保温时间为4h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010172786.0A CN111348908B (zh) | 2020-03-12 | 2020-03-12 | 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010172786.0A CN111348908B (zh) | 2020-03-12 | 2020-03-12 | 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111348908A true CN111348908A (zh) | 2020-06-30 |
CN111348908B CN111348908B (zh) | 2022-05-03 |
Family
ID=71190716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010172786.0A Active CN111348908B (zh) | 2020-03-12 | 2020-03-12 | 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111348908B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111995389A (zh) * | 2020-08-26 | 2020-11-27 | 工业和信息化部电子第五研究所华东分所 | 一种复合介电陶瓷材料及其制备方法和用途 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104973857A (zh) * | 2015-07-31 | 2015-10-14 | 华南理工大学 | 一种低介电常数聚阴离子型微波介质陶瓷及制备方法 |
CN106946557A (zh) * | 2017-03-14 | 2017-07-14 | 电子科技大学 | 一种复合体系ltcc材料及其制备方法 |
CN107382299A (zh) * | 2017-08-08 | 2017-11-24 | 电子科技大学 | 一种低介微波介质陶瓷的低温制备方法 |
-
2020
- 2020-03-12 CN CN202010172786.0A patent/CN111348908B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104973857A (zh) * | 2015-07-31 | 2015-10-14 | 华南理工大学 | 一种低介电常数聚阴离子型微波介质陶瓷及制备方法 |
CN106946557A (zh) * | 2017-03-14 | 2017-07-14 | 电子科技大学 | 一种复合体系ltcc材料及其制备方法 |
CN107382299A (zh) * | 2017-08-08 | 2017-11-24 | 电子科技大学 | 一种低介微波介质陶瓷的低温制备方法 |
Non-Patent Citations (2)
Title |
---|
PENG RUI等: "Effect of Co2+ substitution on the microwave dielectric properties of LiZnPO4 ceramics", 《JOURNAL OF ELECTRONIC MATERIALS》 * |
PENG RUI等: "The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment", 《JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111995389A (zh) * | 2020-08-26 | 2020-11-27 | 工业和信息化部电子第五研究所华东分所 | 一种复合介电陶瓷材料及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
CN111348908B (zh) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112919894B (zh) | 一种频率稳定型低介微波介质陶瓷材料及其制备方法 | |
CN101583579B (zh) | 无玻璃微波介电陶瓷及其制法 | |
CN108610047B (zh) | 一种超低温烧结微波陶瓷材料及其制备方法 | |
CN108358632B (zh) | 一种超低温烧结高Q×f值微波介质材料及其制备方法 | |
CN110563463B (zh) | 一种低介微波介质陶瓷材料及其ltcc材料 | |
CN106699150B (zh) | 一种低温烧结低介c0g微波介质材料及其制备方法 | |
CN114874010B (zh) | 一种微波陶瓷材料DyVO4及其制备方法 | |
CN109231967B (zh) | Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法 | |
CN113004028A (zh) | 一种硅基低介微波介质陶瓷及其制备方法 | |
US11897815B2 (en) | Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor and low-temperature preparation method thereof | |
CN111574212A (zh) | 一种低温烧结低介微波陶瓷材料及制备方法 | |
CN113666731A (zh) | 一种硅酸盐微波介质陶瓷材料及其制备方法 | |
CN114751734A (zh) | 一种低温烧结Mg-Ti-Nb多层陶瓷电容器用介质材料及其制备方法 | |
CN111807831B (zh) | 一种微波介电陶瓷材料及其制备方法和用途 | |
CN111348908B (zh) | 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法 | |
CN114031402A (zh) | 一种低温烧结微波介质材料MgZrNb2O8及其制备方法 | |
CN106986636B (zh) | 一种低温烧结微波陶瓷材料及其制备方法 | |
KR102716712B1 (ko) | 초고주파 소자용 복합체 세라믹스 조성물과 그에 의한 세라믹 기판 및 이의 제조방법 | |
CN112079631B (zh) | 一种近零温度系数低介ltcc材料及其制备方法 | |
CN104891952A (zh) | 一种低温烧结低介玻璃陶瓷复合基板材料及其制备方法 | |
KR20200081774A (ko) | 고주파 소자용 유전체 세라믹스 조성물, 그에 의한 고주파 소자용 세라믹 기판 및 그의 제조방법 | |
CN112830780B (zh) | 一种调控剂、ltcc微波介质材料及其制备方法 | |
CN115231955A (zh) | 微波真空器件用氧化铝陶瓷金属化方法 | |
CN114093668A (zh) | 一种中介电常数低温共烧多层陶瓷电容器用介质陶瓷及制备方法 | |
JP3909366B2 (ja) | 低誘電率磁器組成物とその磁器組成物を用いた電子回路用基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |