CN114031402A - 一种低温烧结微波介质材料MgZrNb2O8及其制备方法 - Google Patents

一种低温烧结微波介质材料MgZrNb2O8及其制备方法 Download PDF

Info

Publication number
CN114031402A
CN114031402A CN202111577497.XA CN202111577497A CN114031402A CN 114031402 A CN114031402 A CN 114031402A CN 202111577497 A CN202111577497 A CN 202111577497A CN 114031402 A CN114031402 A CN 114031402A
Authority
CN
China
Prior art keywords
microwave dielectric
sintering
mgzrnb
dielectric material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111577497.XA
Other languages
English (en)
Other versions
CN114031402B (zh
Inventor
周晓华
倪鹏
唐斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111577497.XA priority Critical patent/CN114031402B/zh
Publication of CN114031402A publication Critical patent/CN114031402A/zh
Application granted granted Critical
Publication of CN114031402B publication Critical patent/CN114031402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子材料及其制造领域,具体提供一种低温烧结微波介质材料MgZrNb2O8及其制备方法,用以解决微波介质材料MgZrNb2O8烧结温度过高、无法与Ag电极共烧形成LTCC陶瓷的问题。本发明通过在预合成MgZrNb2O8基料中添加ZnO‑B2O3玻璃作为助烧剂,大大降低微波介质材料MgZrNb2O8的烧结温度至925~975℃,进而实现与Ag电极共烧形成LTCC陶瓷;并且,微波介电性能仍然优异:介电常数为10~21、Q×f值为33000~40000GHz、谐振频率温度系数为‑80~‑70ppm/℃,在微波介质陶瓷中具有广阔的应用场景。另外,本发明提供低温烧结微波介质材料的制备方法,采用的传统固相法,工艺简单,易于工业化生产,并且低温烧结具有节省能源的显著优势。

Description

一种低温烧结微波介质材料MgZrNb2O8及其制备方法
技术领域
本发明属于电子材料及其制造领域,涉及低温烧结微波介质材料,具体提供一种低温烧结微波介质材料MgZrNb2O8及其制备方法。
背景技术
低温烧结微波介质材料是目前微波元器件的研究热点,但是微波介质材料的烧结温度普遍偏高,如何降低烧结温度实现与Ag共烧成为研究难点,铌酸盐因其优异的微波性能吸引了众多国内外学者的广泛研究。
S.D.Ramarao,V.R.K.Murthy等人在文献“Crystal structure refinement andmicrowave dielectric properties of new low dielectric loss AZrNb2O8(A:Mn,Zn,Mgand Co)ceramics”中于1500℃的烧结温度下制备出MgZrNb2O8微波介质材料,其性能为εr=9.6、Q×f=58500GHz、τf=-31.5ppm/℃;但是,其烧结温度非常高(1500℃),根本无法与低电阻率的金属导体(银、铜等)共同烧结。
为了降低烧结温度,H.T.Wu等人在文献“Effect of H3BO3 addition on thesintering behavior and microwave dielectric properties of wolframite-typeMgZrNb2O8 ceramics”中通过在MgZrNb2O8陶瓷中添加H3BO3将烧结温度降低到1200℃,具体性能如下:εr=23.72、Q×f=58930、τf=-13.19ppm/℃;Xin Tang等人在文献“Low-Temperature Sintering and Microwave Dielectric Properties of MgZrNb2O8Ceramics with BaCu(B2O5)Addition”中通过在MgZrNb2O8陶瓷中添加BaCu(B2O5)成功地将烧结温度从1300℃降低到1100℃,在1100℃烧结温度下其微波性能为:εr=25.96、Q×f=65064GHz、τf=-47ppm/℃。上述两种方法虽然使MgZrNb2O8陶瓷的烧结温度有所降低,但是均没有将烧结温度降低到950℃,仍然没有办法与Ag电极共烧从而形成LTCC陶瓷。
基于此,本发明提供了一种低温烧结微波介质材料MgZrNb2O8及其制备方法。
发明内容
本发明的目的在于针对微波介质材料MgZrNb2O8烧结温度过高、无法与Ag电极共烧形成LTCC陶瓷的问题,提供一种低温烧结微波介质材料MgZrNb2O8及其制备方法,通过在预合成MgZrNb2O8基料中添加ZnO-B2O3玻璃作为助烧剂,大大降低微波介质材料MgZrNb2O8的烧结温度至925~975℃,进而实现与Ag电极共烧形成LTCC陶瓷。
为实现上述目的,本发明采用的技术方案如下:
一种低温烧结微波介质材料,其特征在于,所述低温烧结微波介质材料由MgZrNb2O8与ZnO-B2O3玻璃组成,其中,ZnO-B2O3玻璃占总料的比例为20~40wt%,MgZrNb2O8占总料的比例为60~80wt%。
进一步的,上述低温烧结微波介质材料MgZrNb2O8的制备方法,其特征在于,包括以下步骤:
步骤1:将分析纯4MgCO3·Mg(OH)2·5H2O、ZrO2、Nb2O5粉体按化学式MgZrNb2O8的摩尔比进行配料;
步骤2:将混合料球磨、烘干、过筛,得到干燥粉体;
步骤3:将步骤2得干燥粉体置于高温烧结炉中,以3min/℃升温速率升温至1200℃,预烧4小时,获得主晶相MgZrNb2O8的预烧料;
步骤4:将纯ZnO与H3BO3粉体按照质量比为3:5通过玻璃加工工艺制备成ZnO-B2O3玻璃;
步骤5:将预烧料与ZnO-B2O3玻璃混合,并再次球磨、烘干、过筛,得干燥粉体;
步骤6:将步骤5得干燥粉体用丙烯酸造粒,并在10~20MPa下压制成生坯;
步骤7:将生坯置于烧结炉中,以3min/℃升温速率升温至925~975℃,烧结4小时,得到所述的微波介质材料。
进一步的,所述步骤2与步骤5中,球磨工艺具体为:按照原料:去离子水:锆球为1:2:5的质量比将混合料于尼龙罐中球磨6小时,烘干工艺具体为:100℃烘干。
本发明的有益效果在于:
1.本发明提供了一种低温烧结微波介质材料,通过在预合成MgZrNb2O8基料中添加ZnO-B2O3玻璃作为助烧剂,由于在烧结过程中低熔点氧化物B2O3在800℃形成液相加快传质,从而加快晶粒生长,在主晶相MgZrNb2O8外引入新的次晶相Zn3(BO2)2与Zn4O(BO2)6,极大的降低了烧结温度,实现了925~975℃的低温烧结,尤其是950℃的低温烧结,能够实现与Ag电极共烧形成LTCC陶瓷。
2.本发明提供的低温烧结微波介质材料,由于助烧剂的引入,微波介质材料的微波介电性能(如Q×f值)存在一定下降,但微波介电性能仍然优异:介电常数为10~21、Q×f值为33000~40000GHz、谐振频率温度系数为-80~-70ppm/℃,在微波介质陶瓷中具有广阔的应用场景:如在MgZrNb2O8基料中添加30wt%的ZnO-B2O3时能够在950℃烧结并获得Q×f值为39325GHz。
3.本发明提供的低温烧结微波介质材料,采用的传统固相法,工艺简单,易于工业化生产,并且低温烧结具有节省能源的显著优势。
附图说明
图1为实施例3中950℃烧结微波介质材料MgZrNb2O8的XRD图。
图2为实施例3中950℃烧结微波介质材料MgZrNb2O8的SEM图。
图3为实施例5中975℃烧结微波介质材料MgZrNb2O8的XRD图。
图4为实施例5中975℃烧结微波介质材料MgZrNb2O8的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明共提供六个实施例,每个实施例中,低温烧结微波介质材料由MgZrNb2O8与Zn O-B2O3玻璃组成,其中,ZnO-B2O3玻璃为xwt%,x=25、30、35;低温烧结微波介质材料均采用相同制备方法制备,具体包括以下步骤:
步骤1:将分析纯4MgCO3·Mg(OH)2·5H2O、ZrO2、Nb2O5粉体按化学式MgZrNb2O8的摩尔比进行配料;
步骤2:按照原料:去离子水:锆球为1:2:5的质量比将混合料于尼龙罐中球磨6小时,然后料浆在100℃烘干,并将干燥粉体通过80目的筛网;
步骤3:将步骤2干燥粉体置于烧结炉中,得在1200℃预烧4小时,获得主晶相为MgZrNb2O8的预烧料;
步骤4:将纯ZnO与H3BO3粉体按照质量比为3:5通过常规的玻璃加工工艺制备成ZnO-B2O3玻璃;
步骤5:将预烧料与25~35wt%的ZnO-B2O3玻璃混合;按照预烧料:锆球:去离子水为1:5:2的质量比加工混合料于尼龙罐中球磨4小时,然后料浆在100℃烘干;
步骤6:将干燥粉体用丙烯酸造粒,并在10~20MPa下压制成生坯;
步骤7:将生坯在烧结炉中于925~975℃烧结4小时,得到所述的微波介质材料。
上述六个实施例的具体工艺参数及微波介电性能如下表所示:
编号 组成 烧结温度 烧结时长 ε<sub>r</sub> Q×f(GHz) τ<sub>f</sub>(ppm/℃)
实施例1 0wt.%ZnO-B<sub>2</sub>O<sub>3</sub> 1340 4 26.63 53195 -55.80
实施例2 25wt.%ZnO-B<sub>2</sub>O<sub>3</sub> 950 4 18.94 36742 -72.12
实施例3 30wt.%ZnO-B<sub>2</sub>O<sub>3</sub> 950 4 20.47 39325 -74.65
实施例4 35wt.%ZnO-B<sub>2</sub>O<sub>3</sub> 950 4 19.24 33742 -78.54
实施例5 25wt.%ZnO-B<sub>2</sub>O<sub>3</sub> 975 4 19.87 36110 -72.46
实施例6 30wt.%ZnO-B<sub>2</sub>O<sub>3</sub> 975 4 18.29 34197 -75.03
上述六个实施例中,实施例3制备得低温烧结微波介质材料的XRD图如图1所示、SEM图如图2所示,由图可见,所述微波介质材料的主晶相为MgZrNb2O8,添加ZnO-B2O3后形成少量的Zn3(BO2)2和Zn4O(BO2)6;实施例5制备得低温烧结微波介质材料的XRD图如图3所示、SEM图如图4所示,其结果呈现与图1与图2基本相同。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (3)

1.一种低温烧结微波介质材料,其特征在于,所述低温烧结微波介质材料由MgZrNb2O8与ZnO-B2O3玻璃组成,其中,
ZnO-B2O3玻璃占总料的比例为20~40wt%,
MgZrNb2O8占总料的比例为60~80wt%。
2.按权利要求1所述低温烧结微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1:将分析纯4MgCO3·Mg(OH)2·5H2O、ZrO2、Nb2O5粉体按化学式MgZrNb2O8的摩尔比进行配料;
步骤2:将混合料球磨、烘干、过筛,得到干燥粉体;
步骤3:将步骤2得干燥粉体置于高温烧结炉中,以3min/℃升温速率升温至1200℃,预烧4小时,获得主晶相MgZrNb2O8的预烧料;
步骤4:将纯ZnO与H3BO3粉体按照质量比为3:5通过玻璃加工工艺制备成ZnO-B2O3玻璃;
步骤5:将预烧料与ZnO-B2O3玻璃混合,并再次球磨、烘干、过筛,得干燥粉体;
步骤6:将步骤5得干燥粉体用丙烯酸造粒,并在10~20MPa下压制成生坯;
步骤7:将生坯置于烧结炉中,以3min/℃升温速率升温至925~975℃,烧结4小时,得到所述的微波介质材料。
3.按权利要求2所述低温烧结微波介质材料的制备方法,其特征在于,所述步骤2与步骤5中,球磨工艺具体为:按照原料:去离子水:锆球为1:2:5的质量比将混合料于尼龙罐中球磨6小时,烘干工艺具体为:100℃烘干。
CN202111577497.XA 2021-12-22 2021-12-22 一种低温烧结微波介质材料MgZrNb2O8及其制备方法 Active CN114031402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111577497.XA CN114031402B (zh) 2021-12-22 2021-12-22 一种低温烧结微波介质材料MgZrNb2O8及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111577497.XA CN114031402B (zh) 2021-12-22 2021-12-22 一种低温烧结微波介质材料MgZrNb2O8及其制备方法

Publications (2)

Publication Number Publication Date
CN114031402A true CN114031402A (zh) 2022-02-11
CN114031402B CN114031402B (zh) 2023-04-07

Family

ID=80141018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111577497.XA Active CN114031402B (zh) 2021-12-22 2021-12-22 一种低温烧结微波介质材料MgZrNb2O8及其制备方法

Country Status (1)

Country Link
CN (1) CN114031402B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124340A (zh) * 2022-06-29 2022-09-30 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用
CN116813341A (zh) * 2023-06-27 2023-09-29 安徽大学 一种中介电低损耗低温共烧陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951424A (zh) * 2014-03-24 2014-07-30 济南大学 利用湿化学工艺低温精细合成钨锰铁矿结构MgZrNb2O8介质陶瓷纳米粉体
CN104609850A (zh) * 2015-01-22 2015-05-13 华中科技大学 一种低温共烧微波介质陶瓷基板材料及其制备方法
CN112851346A (zh) * 2021-02-25 2021-05-28 电子科技大学 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951424A (zh) * 2014-03-24 2014-07-30 济南大学 利用湿化学工艺低温精细合成钨锰铁矿结构MgZrNb2O8介质陶瓷纳米粉体
CN104609850A (zh) * 2015-01-22 2015-05-13 华中科技大学 一种低温共烧微波介质陶瓷基板材料及其制备方法
CN112851346A (zh) * 2021-02-25 2021-05-28 电子科技大学 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM JR等: "Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO–B2O3 glass additions for LTCC applications", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
WU HT等: "Effect of H3BO3 addition on the sintering behavior and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124340A (zh) * 2022-06-29 2022-09-30 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用
CN115124340B (zh) * 2022-06-29 2023-02-28 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用
CN116813341A (zh) * 2023-06-27 2023-09-29 安徽大学 一种中介电低损耗低温共烧陶瓷材料及其制备方法
CN116813341B (zh) * 2023-06-27 2024-04-16 安徽大学 一种中介电低损耗低温共烧陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114031402B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN114031402B (zh) 一种低温烧结微波介质材料MgZrNb2O8及其制备方法
WO2018010633A1 (zh) 一种cbs系ltcc材料及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN109231967B (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
CN113149645B (zh) 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
CN109534806A (zh) 一种Li系微波介电陶瓷材料及其制备方法和用途
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN114804897A (zh) 一种陶瓷用烧结助剂及制法、锆酸锌微波介质陶瓷及制法
CN112876229B (zh) 一种微波陶瓷及其制备方法
CN101811869A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN104671775A (zh) 一种Ba-Nd-Ti体系LTCC材料及制备方法
CN112010650A (zh) 一种低温烧结高品质因素微波介质陶瓷及其制备方法
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN105060892A (zh) 一种近零频率温度系数的复合钽酸盐微波介质陶瓷
CN112898022A (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN101265097B (zh) 一种低温烧结的复合微波介质陶瓷及其制备方法
CN103951429B (zh) 一种低温烧结低损耗微波介质陶瓷材料
CN110357628B (zh) 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法
CN103896572B (zh) 可低温烧结的温度稳定型微波介电陶瓷Li3PO4及其制备方法
CN111205066A (zh) 一种微波介质陶瓷的制备方法
CN114634353B (zh) 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法
CN116396074B (zh) 一种低损耗介电材料及其制备方法和应用
CN113292338B (zh) 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法
CN115353383B (zh) 一种低温烧结的微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant