CN101583579B - 无玻璃微波介电陶瓷及其制法 - Google Patents

无玻璃微波介电陶瓷及其制法 Download PDF

Info

Publication number
CN101583579B
CN101583579B CN2007800437492A CN200780043749A CN101583579B CN 101583579 B CN101583579 B CN 101583579B CN 2007800437492 A CN2007800437492 A CN 2007800437492A CN 200780043749 A CN200780043749 A CN 200780043749A CN 101583579 B CN101583579 B CN 101583579B
Authority
CN
China
Prior art keywords
sintering
dielectric ceramic
formula
microwave dielectric
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800437492A
Other languages
English (en)
Other versions
CN101583579A (zh
Inventor
金孝泰
金宗熙
南明和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Ceramic Engineering and Technology KICET
Original Assignee
Korea Institute of Ceramic Engineering and Technology KICET
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Ceramic Engineering and Technology KICET filed Critical Korea Institute of Ceramic Engineering and Technology KICET
Publication of CN101583579A publication Critical patent/CN101583579A/zh
Application granted granted Critical
Publication of CN101583579B publication Critical patent/CN101583579B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明提供可低温烧结的无玻璃微波介电陶瓷及其制法。该无玻璃微波介电陶瓷组合物包括(M1-x 2+M’x 2+)N4+B2O6(其中,M和M’彼此不同,各为Ba、Ca和Sr中的一种元素;N为Sn、Zr和Ti中的一种元素;以及0<x<1),M2+(N1-y 4+N’y 4+)B2O6(其中,M为Ba、Ca和Sr中的一种元素;N和N’彼此不同,各为Sn、Zr和Ti中的一种元素;以及0<y<1),或(M1-x 2+M’x 2+)(N1-y 4+N’y 4+)B2O6(其中,M和M’彼此不同,各为Ba、Ca和Sr中的一种元素;N和N’彼此不同,各为Sn、Zr和Ti中的一种元素;0<x<1;以及0<y<1)。此外,该无玻璃微波介电陶瓷组合物可进一步包括大约1重量%至7重量%的烧结剂,其式为0.12CuO+0.88Bi2O3。如此,可在最低达875℃的低温下烧结该无玻璃微波介电陶瓷组合物。

Description

无玻璃微波介电陶瓷及其制法
技术领域
本发明涉及一种微波介电陶瓷及其制法,尤其涉及一种可与内导体一起烧结并具有优良的微波介电特性的无玻璃微波介电陶瓷及其制法。 
背景技术
近来,使通迅无所不在的移动通讯终端,例如手机和个人数字助理(PDA),以及蓝牙(bluetooth)产品市场正在快速发展,因而要求构成这些产品的高频设备,例如微波滤波器、双工器、谐振器以及集成电路板的尺寸更小,重量更轻,并进行堆叠和表面贴装。 
此类高频设备包括介电陶瓷材料。用于高频设备的介电陶瓷应当具有如下所述的特定介电特性。 
首先,为了缩小设备尺寸,该介电陶瓷应当具有高介电常数εr,这是因为降低了介电陶瓷中与介电常数的平方根成反比关系的微波波长。不过,提供给射频(RF)/微波模块板的微波传输线应当具有低介电常数,以提高速度。 
其次,为了提供工作效率,该介电陶瓷应当在工作频率范围内具有高Q(quality factor)值。换句话说,该介电陶瓷应当具有低介电损耗tanδ,即Q值的倒数。Q值的评估通常基于Q值与相应谐振频率的乘积,Qxf,或介电损耗,即Q值的倒数。 
再次,为使工作频率准确运作,该介电陶瓷的谐振频率温度系数τf接近于零。 
并且,最近开发中的堆叠高频设备的方法包括在介电陶瓷绿带上印刷导电图形,将经过印刷的绿带进行堆叠,然后对其进行烧结。通过这种方法,可将诸如电感、电容、电阻等大量元件集成在单个模块中而无需额外的导线,因此大大缩小了封装尺寸。 
但是,该方法要求由银或铜构成的具有良好导电性的内导体与该 介电陶瓷一起烧结,因而对低温共烧陶瓷(LTCC)有强烈需求。该LTCC可在大约低于950℃的温度下烧结,但具有高Q值和低谐振频率。不过,最近开发的大多数LTCC的微波介电特性严重恶化,例如致密化不足、由于添加烧结剂而导致低的介电常数、Q值降低、谐振频率温度系数增加等等。 
此外,典型的LTCC由组合结构包括玻璃基并混合氧化铝(Al2O3)粉末填料的陶瓷材料形成。但是,据报道,该典型LTCC难以控制陶瓷浆料形成期间的流变,具有不均匀的玻璃组分以及不均衡的扩散等缺点。因此,不含玻璃或含最少量玻璃的无玻璃(或非玻璃)LTCC组合物引起相当大的关注。 
发明内容
本发明要解决的问题 
因此,本发明提供一种具有优良的微波介电特性的无玻璃微波介电陶瓷及其制法。 
本发明还提供一种可通过将低温烧结剂添加至无玻璃微波介电陶瓷而使其在低温下烧结的低温共烧微波介电陶瓷及其制法。 
解决问题的手段 
本发明实施例提供包括组分M2+N4+B2O6的微波介电陶瓷,其中M可由两种不同的二价金属替代,和/或N由两种不同的四价金属替代。 
有益效果 
依据一实施例的微波介电陶瓷包括组分M2+N4+B2O6。这里,M可由两种不同的二价金属替代,和/或N由两种不同的四价金属替代。如此,所述无玻璃基的微波介电陶瓷具有优良的微波介电特性,因而可有效应用于高频设备。 
此外,通过将Bi2O3-CuO基烧结剂添加至该微波介电陶瓷组合物,该微波介电陶瓷可在低温烧结而不会发生介电特性恶化。因此,该微波介电陶瓷可有效应用于低温共烧陶瓷设备,其具有优良的微波介电特性。 
附图说明
图1描述依据本发明一实施例的BaZr(MO3)2陶瓷的微波介电特性。 
图2显示图1的BaZr(MO3)2陶瓷的扫描电子显微镜(SEM)图像。 
图3显示依据本发明另一实施例在1,050℃烧结2小时的Ba(Zr1-xTix)B2O6陶瓷的SEM图像。 
图4显示依据本发明又一实施例添加5重量%(wt%)的0.88Bi2O3-0.12CuO作为烧结剂,在900℃烧结2小时的BaZr(BO3)2陶瓷的SEM图像。 
具体实施方式
[最佳模式] 
依据本发明一实施例,无玻璃微波介电陶瓷组合物包括由式M2+N4+B2O6表示的组分,其中M为Ba、Ca或Sr,N为Sn、Zr或Ti。 
M可由Ba、Ca、Sr中的两种不同元素替代,从而形成由式(M1-x 2+M’x 2+)N4+B2O6(其中,M和M’彼此不同,各为Ba、Ca和Sr中的一种元素;N为Sn、Zr和Ti中的一种元素;以及0<x<1)表示的组分。此外,N也可由Sn、Zr、Ti中的两种不同元素替代,从而形成由式M2+(N1-y 4+N’y 4+)B2O6(其中,M为Ba、Ca和Sr中的一种元素;N和N’彼此不同,各为Sn、Zr和Ti中的一种元素;以及0<y<1)表示的组分。另外,还可同时将M和N分别以Ba、Ca、Sr中的两种不同元素以及Sn、Zr、Ti中的两种不同元素替代,从而形成由式(M1-x 2+M’x 2+)(N1-y 4+N’y 4+)B2O6(其中,M和M’彼此不同,各为Ba、Ca和Sr中的一种元素;N和N’彼此不同,各为Sn、Zr和Ti中的一种元素;0<x<1;以及0<y<1)表示的组分。 
此外,该无玻璃微波介电陶瓷组合物进一步包括由式0.12CuO+0.88Bi2O3表示的烧结剂。该烧结剂在该介电陶瓷组合物中的浓度介于1重量%(wt%)至7重量%。 
依据本发明另一实施例,无玻璃微波介电陶瓷材料的制法包括:混合并粉碎上述介电陶瓷组分的其中一种;干燥并煅烧上述经混合和粉碎的介电陶瓷组合物;将所述经干燥和煅烧的介电陶瓷组合物与由式0.12CuO+0.88Bi2O3表示的烧结剂混合并粉碎,从而获得样品;并干燥该样品;成型干燥后的样品;并烧结成型后的样品。加入1重量% 至7重量%的该烧结剂。成型后的样品的烧结可在875C至1,000℃之间进行。如此,该无玻璃微波介电陶瓷材料可在低温烧结而其微波介电特性不会严重恶化。 
[发明模式] 
依据一实施例,微波介电陶瓷具有如式1所示的陶瓷组分: 
M2+N4+B2O6    (1) 
其中M为二价金属元素,例如Ba、Ca、Sr等,N为四价金属元素,例如Sn、Zr、Ti等。发明人发现该微波介电陶瓷具有白云石结构以及各向异性热膨胀特性。 
此外,可对式1进行修改,用两种不同的金属元素替代所述金属元素M或N。也就是说,式1的修改方式为:用两种不同的二价金属元素替代金属元素M,和/或用两种不同的四价金属元素替代金属元素N。这样,微波介电陶瓷的式1即更改为下列各式的其中一种: 
(M1-x 2+M’x 2+)N4+B2O6            (2) 
M2+(N1-y 4+N’y 4+)B2O6            (3) 
[0034] (M1-x 2+M’x 2+)(N1-y 4+N’y 4+)B2O6 (4) 
其中,0<x<1,0<y<1。所述M和M’可为彼此不同的任意二价金属元素,例如Ba、Ca、Sr等,所述N和N’可为彼此不同的任意四价金属元素,例如Sn、Zr、Ti等。 
发明人发现式1至4的微波介电陶瓷的烧结温度大约高于1,100℃。如此高的烧结温度使该陶瓷难以应用于LTCC。因此,为了降低烧结温度,将用于低温烧结的包括CuO和Bi2O3的烧结剂添加至式1至4的微波介电陶瓷组合物。该烧结剂用如下式表示: 
[0037] αwt%(0.12CuO+0.88Bi2O3)    (5) 
其中,1≤α≤7。 
总之,由于式1至4的微波介电陶瓷烧结温度高于1,100℃,因此难以应用于LTCC。但是,当将包括共晶点大约为600±20℃的CuO和Bi2O3的烧结剂添加至式1至4的微波介电陶瓷时,可较佳地将烧结温度降低至875℃至1,000℃之间,更佳地,烧结温度在875℃至925℃之 间,更佳地,烧结温度为875℃。烧结期间,CuO和Bi2O3在该陶瓷内界面形成液相,以加速该陶瓷的致密化。因此,该微波介电陶瓷可在低温烧结并具有优良的微波介电特性。 
下面参照附图详细描述特定实施例。不过,本发明可以以不同形式实施,并不限于这些实施例。提供这些实施例的目的是使发明的揭露更为充分完整,并向本领域的技术人员充分传达本发明的思想。 
例1至例5
这些例子中,制备基本由式1的组分构成的BaZr(BO3)2陶瓷,在不同的烧结温度下烧结,并测量其微波介电特性。 
具体地说,称量试剂BaCO3、ZrO2以及B2O3或H3BO3,以形成组分BaZr(BO3)2。使用去离子水作为分散溶剂,将经过称量的试剂与氧化锆球混合并粉碎24小时。干燥所述经过混合和粉碎的样品,然后在900℃至1,150℃之间煅烧4小时,以合成具有白云石结构的固溶体(六角对称)。使用湿式球磨机将合成粉末再次粉碎24小时,以形成平均颗粒直径约为1微米的细粉。将2wt%的聚乙烯醇(PVA)粘结剂水溶液加入该细粉中,在1ton/cm2压力下将该细粉压成直径为10毫米,厚度为5至6毫米的圆柱形。在400℃对该圆柱形样品热处理1小时,以去除粘结剂,然后在1,100℃至1,300℃之间烧结2小时。用SiC砂纸研磨该经烧结样品的两边。然后,使用阻抗分析仪(美国安捷伦4294A)测量在1MHZ的介电常数(εr),介电损耗(tanδ)以及电容温度系数(TCC)。这里,在-25℃至125℃的温度范围内测量TCC。此外,使用网络分析仪(美国安捷伦8720ES)采用柱状谐振器和空腔谐振器方法测量微波区内的介电特性。这里,在25℃至80℃的温度范围内测量谐振频率温度系数(τf)。 
表1和图1显示烧结温度范围介于1,100℃至1,300℃时所述样品的微波介电特性。 
【表1】 
  例   烧结温度  (℃)   频率  (GHz)   介电常数  (εr)   Q值  (Q)  温度系数 (τf:ppm/℃)
  1   1,100   15.3276   11.16   902   -0.3
  2   1,150   15.0991   10.71   1,003   -6.1
  3   1,200   7.4247   11.25   2,073   -13.7
  4   1,250   13.0001   11.99   587   -2.1
  5   1,300   13.0600   11.82   652   -1.4
请参照表1和图1,在1,100℃烧结的BaZr(BO3)2陶瓷在频率15GHz的Q值约为900。上述各例中,例3在1,200℃烧结2小时的BaZr(BO3)2陶瓷的Q值最高,为2073。图2显示例3的扫描电子显微镜(SEM)图像。 
而例4和例5中,当烧结温度增至1,250℃以上时,Q值大大降低。这可能是因为BaZr(BO3)2相被分解而产生BaZrO3相。 
例6至例9
这些例子中,制备基本由式1的组分构成的CaZr(BO3)2陶瓷,并测量其在不同的烧结温度下的微波介电特性。将CaCO3、ZrO2以及B2O3或H3BO3作为起始原料。除烧结温度外,样品制备和测量程序基本与例1至5中描述的相同。例6至例9中,样品在1,000℃至1,150℃的温度区间烧结2小时。 
表2显示例6至例9中制备的CaZr(BO3)2陶瓷的微波介电特性。 
【表2】 
  例   烧结温度  (℃)   频率  (GHz)   介电常数  (εr)   Q值  (Q)  温度系数 (τf:ppm/℃)
  6   1,000   16.5118   -   1,555   -
  7   1,050   16.3868   -   1,873   -
  8   1,100   16.1439   7.4   1,914   -9.6
  9   1,150   16.2759    -   1,761   -
例10至例13
这些例子中,制备基本由式1的组分构成的SrZr(BO3)2陶瓷,并测量其在不同的烧结温度下的微波介电特性。将SrCO3、ZrO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表3显示例10至例13中制备的SrZr(BO3)2陶瓷的微波介电特性。 
【表3】 
  例   烧结温度  (℃)   频率  (GHz)   介电常数  ectric  (εr)   Q值  (Q)   温度系数  (τf:ppm/℃)
  10   1,000   16.5607   -   1,002   -
  11   1,050   16.3841   -   1,275   -
  12   1,100   16.1126   7.0   2,074   -9.1
  13   1,150   15.8069   -   933   -
例14至例17
这些例子中,制备基本由式1的组分构成的SrSn(BO3)2陶瓷,并测量其在不同的烧结温度下的微波介电特性。将SrCO3、SnO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表4显示例14至例17中制备的SrSn(BO3)2陶瓷的微波介电特性。 
【表4】 
  例   烧结温度  (℃)   频率  (GHz)   介电常数  (εr)   Q值  (Q)   温度系数  (τf:ppm/℃)
  14   1,000   17.2340   -   665   -
  15   1,050   16.6507   -   1,030   -
  16   1,100   16.1751   7.1   1,150   -3.9
  17   1,150   15.8567   -   960   -
例18至例21
这些例子中,制备基本由式1的组分构成的CaSn(BO3)2陶瓷,并测量其在不同的烧结温度下的微波介电特性。将CaCO3、SnO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表5显示例18至例21中制备的CaSn(BO3)2陶瓷的微波介电特性。 
【表5】 
  例   烧结温度  (℃)   频率  (GHz)   介电常数  (εr)  Q值 (Q)   温度系数  (τf:ppm/℃)
  18   1,000   17.7197   -  480   -
  19   1,050   17.4157   -  567   -
  20   1,100   17.2590   5.6  790   -4.6
  21   1,150   16.9775   -  640   -
例22至例29
这些例子中,制备基本由式3的组分构成的Ba(Zr1-xTix)B2O6陶瓷,其中0<x<1,并测量其在不同的烧结温度下的微波介电特性。将BaCO3、ZrO2、TiO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表6显示在不同的Zr/Ti摩尔分数和不同烧结温度下, Ba(Zr,Ti)B2O6陶瓷的微波介电特性。图3显示例22在1,050℃烧结2小时的SEM图像。 
【表6】 
Figure DEST_PATH_RE-GSB00000785437300041
此外,测量例22至24的Ba(Zr1/2Ti1/2)B2O6陶瓷在不同的烧结温度1,050℃、1,100℃、1,150℃的低频介电特性,其结果显示于表7,如例27至29所示。 
【表7】 
Figure DEST_PATH_RE-GSB00000785437300042
例30至例33
这些例子中,制备基本由式3的组分构成的Ba(Sn1-xZrx)B2O6陶瓷,其中0<x<1,并测量其在不同的烧结温度下的微波介电特性。将BaCO3、SnO2、ZrO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表8显示在不同的Sn/Zr摩尔分数和不同烧结温度下,Ba(Sn,Zr)B2O6陶瓷的微波介电特性。 
【表8】 
Figure DEST_PATH_RE-GSB00000785437300043
Figure DEST_PATH_RE-GSB00000785437300051
例34至例37
这些例子中,将包括CuO和Bi2O3的低温烧结剂添加至例1至例5的BaZr(BO3)2陶瓷,以制成可在低于1,000℃的低温下烧结的陶瓷材料。 
具体地说,称量试剂CuO和Bi2O3以形成具有式5所示组分的烧结剂。然后,将1重量%至7重量%,组分为0.12CuO+0.88Bi2O3的烧结剂添加至如例1至5所述经煅烧和合成的BaZr(BO3)2粉末。然后执行样品制备和测量程序,其与例1至例5中煅烧后的程序相同。不过,烧结条件不同于例1至例5。当前例是在875℃至925℃的温度区间烧结2小时。表9显示添加5wt%组分为0.12CuO+0.88Bi2O3的烧结剂的BaZr(BO3)2陶瓷的微波介电特性。图4显示在900℃烧结2小时的SEM图像。 
【表9】 
Figure DEST_PATH_RE-GSB00000785437300052
请参照表9和图4,添加5wt%具有组分0.12CuO+0.88Bi2O3的烧结剂的BaZr(BO3)2陶瓷在900℃烧结2小时后的介电常数为11.8,Q值为880,温度系数约为1ppm/℃。因此,该陶瓷具有优良的微波介电特性,尽管其烧结温度低至900℃。 
例38至例43
这些例子中,制备基本由式1的组分构成的BaSnB2O6、CaZrB2O6、SrZrB2O6、BaZrB2O6、CaSnB2O6和SrSnB2O6陶瓷,并测量其在不同的烧结温度下的微波介电特性。除烧结温度不同外,当前例中的样品制备和测量程序基本与例1至5中描述的相同。当前例中,烧结温度固定为1100℃。 
此外,如例1至例5所述煅烧并合成BaSnB2O6、CaZrB2O6、SrZrB2O6、BaZrB2O6、CaSnB2O6和SrSnB2O6陶瓷粉末。然后,将5重量%具有组分0.12CuO+0.88Bi2O3的烧结剂分别添加至上述陶瓷粉末,并在900℃烧结。其他程序与例1至5所述程序类似。 
表10显示上述制备样品的微波介电特性。表10中,BC指具有组分0.12CuO+0.88Bi2O3的烧结剂。 
【表10】 
例44至例46
这些例子中,制备基本由式2的组分构成的(Ba1-xCax)ZrB2O6陶瓷,其中0<x<1,并测量其在不同的烧结温度下的微波介电特性。将BaCO3、CaCO3、ZrO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表11显示在不同的Ba/Ca摩尔分数和不同烧结温度下,(Ba1-xCax)ZrB2O6陶瓷的微波介电特性。 
【表11】 
  例   组分  (Ba/Ca)   频率  烧结温度 Sintering (℃)   介电常数(εr)   Q值  (Q)   温度系数  (ppm/℃)
  44   1/1   100MHz   1,075   11.59   1960   -
  45   1/3   100MHz   1,075   13.29   1738   -
  46   3/1   100MHz   1,075   10.17   1670   -
例47
本例中,制备基本由式4的组分构成的(Ba1-xCax)(Zr1-yTiy)B2O6陶瓷,其中0<x<1,0<y<1,并测量其在不同的烧结温度下的微波介电特性。将BaCO3、CaCO3、ZrO2、TiO2以及B2O3或H3BO3作为起始原料。样品制备和测量程序基本与例6至9中描述的相同。 
表12显示在一定Ba/Ca和Zr/Ti摩尔分数和烧结温度下,(Ba1-xCax)(Zr1-yTiy)B2O6陶瓷的微波介电特性。 
【表12】 
  例   组分  (Ba/Ca和Zr/Ti)   频率   烧结温度  (℃)   介电常数Dielectric  (εr)  Q值 (Q)   温度系数  (ppm/℃)
  47   1/1   100MHz   1,000   13.17  130    -
例48至例50
这些例子中,制备基本由式2至4的组分构成的(Ba1-xCax)ZrB2O6、Ba(Zr1-xTix)B2O6以及(Ba1-xCax)(Zr1-yTiy)B2O6陶瓷,其中0<x<1,0<y<1。然后,将3wt%具有组分0.12CuO+0.88Bi2O3的烧结剂添加至上述陶瓷粉末,并在900℃至925℃的温度区间烧结。表13显示上述制备样品的微波介电特性。 
【表13】 
  例   组分   频率   烧结温度  (℃)   介电常数  (εr)   Q值  (Q)   温度系数  (ppm/℃)
  48   (Ba1/2Ca1/2)ZrB2O6+  3wt%(0.88Bi2O3+0.12CuO)   100MHz   925   14.09   1570   -
  49   Ba(Zr1/2Ti1/2)B2O6+  3wt%(0.88Bi2O3+0.12CuO)   100MHz   925   15.82   320   -
  50   (Ba1/2Ca1/2)(Zr1/2Ti1/2)B2O6+  3wt%(0.88Bi2O3+0.12CuO)   100MHz   925   17.24   210   -
[0109] 如上所述,基本由式1至4的组分构成并添加Bi2O3-CuO基烧结剂的陶瓷可在900℃至925℃的低温区间烧结而不会严重恶化其介电特性。因此,依据本发明实施例的陶瓷非常适合用于包括银或铜作为内电极的电容、微波LTCC设备和基板。 
对于本领域技术人员显而易见的是:依据粉末的特性,例如平均颗粒尺寸、分布和特定表面、起始原料的纯度、杂质含量和烧结条件,在允许的误差范围内实现最优微波介电特性的烧结温度可略微改变。 
尽管参照具体实施例描述了无玻璃微波介电陶瓷及其制法,本发明并不限于这些实施例。本领域的技术人员可在不背离本发明范围和精神下对这些实施例作各种变更。 

Claims (9)

1.一种介电陶瓷组合物,包含由式(M1-x 2+M’x 2+)N4+B2O6表示的组分,其中M和M’彼此不同,各为Ba、Ca和Sr中的一种元素,N为Sn、Zr和Ti中的一种元素,以及0<x<1。
2.如权利要求1所述的介电陶瓷组合物,进一步包括烧结剂,该烧结剂包括CuO和Bi2O3
3.如权利要求1所述的介电陶瓷组合物,进一步包括由式0.12CuO+0.88Bi2O3表示的烧结剂。
4.如权利要求2所述的介电陶瓷组合物,其中,该介电陶瓷组合物中的该烧结剂的含量为1重量%至7重量%。
5.一种介电陶瓷组合物,包含由式M2+(N1-y 4+N’y 4+)B2O6表示的组分,其中M为Ba、Ca和Sr中的一种元素;N和N’彼此不同,各为Sn、Zr和Ti中的一种元素;以及0<y<1。
6.一种介电陶瓷组合物,包含由式(M1-x 2+M’x 2+)(N1-y 4+N’y 4+)B2O6表示的组分,其中M和M’彼此不同,各为Ba、Ca和Sr中的一种元素;N和N’彼此不同,各为Sn、Zr和Ti中的一种元素;0<x<1;以及0<y<1。
7.一种制造微波介电陶瓷材料的方法,包含:
称量、混合并粉碎权利要求1、5和6中任一项所述的介电陶瓷组合物;
干燥并煅烧所述经混合和粉碎的介电陶瓷组合物;
将所述经干燥和煅烧的介电陶瓷组合物与由式0.12CuO+0.88Bi2O3表示的烧结剂混合并粉碎,从而获得样品;
干燥该样品;
成型该干燥后的样品;以及
烧结该成型后的样品。
8.如权利要求7所述的方法,其中,加入1重量%至7重量%的该烧结剂。
9.如权利要求7所述的方法,其中,所述成型后的样品的烧结在875℃至1,000℃之间进行。
CN2007800437492A 2006-11-30 2007-11-22 无玻璃微波介电陶瓷及其制法 Expired - Fee Related CN101583579B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020060120128 2006-11-30
KR10-2006-0120128 2006-11-30
KR20060120128 2006-11-30
PCT/KR2007/005906 WO2008066282A1 (en) 2006-11-30 2007-11-22 Glass-free microwave dielectric ceramics and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN101583579A CN101583579A (zh) 2009-11-18
CN101583579B true CN101583579B (zh) 2012-12-05

Family

ID=39468032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800437492A Expired - Fee Related CN101583579B (zh) 2006-11-30 2007-11-22 无玻璃微波介电陶瓷及其制法

Country Status (5)

Country Link
US (1) US8101536B2 (zh)
JP (3) JP5410982B2 (zh)
KR (1) KR101161614B1 (zh)
CN (1) CN101583579B (zh)
WO (1) WO2008066282A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032318B (zh) * 2015-03-12 2018-06-22 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷材料及其制备方法
JP2017022232A (ja) * 2015-07-09 2017-01-26 株式会社村田製作所 電子部品およびその製造方法
TWI634092B (zh) * 2015-07-23 2018-09-01 菲洛公司 與鎳電極倂用之cog介電組成物及形成電子組件之方法
CN107848872B (zh) 2015-08-05 2020-11-06 费罗公司 高介电常数ltcc介电组合物和装置
WO2017113218A1 (zh) * 2015-12-30 2017-07-06 深圳市大富科技股份有限公司 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
WO2017113221A1 (zh) * 2015-12-30 2017-07-06 深圳市大富科技股份有限公司 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
WO2017113223A1 (zh) * 2015-12-30 2017-07-06 深圳市大富科技股份有限公司 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN112142459A (zh) * 2020-09-04 2020-12-29 临沂金成电子有限公司 一种具有高介电常数的微波陶瓷材料的制备方法
CN113563052A (zh) * 2021-08-20 2021-10-29 华中科技大学温州先进制造技术研究院 一种硼酸盐基低介微波介质陶瓷及其制备方法
CN116396074B (zh) * 2023-04-10 2024-06-07 江苏科技大学 一种低损耗介电材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242347A (zh) * 1999-07-28 2000-01-26 浙江大学 铅基微波介质陶瓷及其制造方法
CN1453241A (zh) * 2003-05-23 2003-11-05 华中科技大学 微波调谐钛酸锶钡复合陶瓷
CN1724462A (zh) * 2005-07-04 2006-01-25 浙江大学 低温烧结(Ca,Mg)TiO3系微波介质陶瓷及制备工艺

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246255A (ja) * 1984-05-18 1985-12-05 株式会社東芝 回路基板およびその製造方法
DE3476010D1 (en) * 1983-09-09 1989-02-09 Toshiba Kk Circuit substrate and producing method of the same
JPS60180953A (ja) * 1984-02-27 1985-09-14 株式会社東芝 回路基板
JPS60118666A (ja) * 1983-11-30 1985-06-26 太陽誘電株式会社 誘電体磁器組成物
JPS6191528A (ja) * 1984-10-12 1986-05-09 Toshiba Corp 焦電形赤外線検出素子
JPS63280488A (ja) * 1987-05-12 1988-11-17 Toshiba Corp 回路基板
JPH01183448A (ja) * 1988-01-19 1989-07-21 Toshiba Corp 回路基板
JPH09241070A (ja) * 1996-03-11 1997-09-16 Mitsubishi Materials Corp 誘電体磁器組成物
JP3595090B2 (ja) * 1996-11-29 2004-12-02 京セラ株式会社 誘電体磁器組成物
JP3411190B2 (ja) * 1997-06-30 2003-05-26 京セラ株式会社 誘電体磁器組成物
JP2000203878A (ja) 1999-01-13 2000-07-25 Asahi Glass Co Ltd ガラスセラミックス組成物
JP2000252106A (ja) 1999-03-03 2000-09-14 Marcon Electronics Co Ltd セラミックバリスタ
JP4066312B2 (ja) * 2001-11-20 2008-03-26 日立金属株式会社 誘電体磁器組成物
JP2003229669A (ja) * 2002-02-01 2003-08-15 Tdk Corp 多層セラミック基板、その製造方法および製造装置
JP2004083310A (ja) * 2002-08-23 2004-03-18 Nagoya Industrial Science Research Inst 低温焼成誘電体磁器組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242347A (zh) * 1999-07-28 2000-01-26 浙江大学 铅基微波介质陶瓷及其制造方法
CN1453241A (zh) * 2003-05-23 2003-11-05 华中科技大学 微波调谐钛酸锶钡复合陶瓷
CN1724462A (zh) * 2005-07-04 2006-01-25 浙江大学 低温烧结(Ca,Mg)TiO3系微波介质陶瓷及制备工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Myung-Hwa Nam et al..Low-Temperature Sintering and Dielectric Properties of BaSn(BO3)2 Ceramics.《Journal of the Korean Ceramic Society》.2006,第43卷(第2期),第92-97页. *
Yuhua Wang et al..Identification of charge transfer (CT) transition in (Gd,Y)BO3:Eu phosphor under 100–300nm.《Journal of Solid State Chemistry》.2004,第177卷(第7期),第2242-2248页. *
YuhuaWangetal..Identificationofchargetransfer(CT)transitionin(Gd Y)BO3:Eu phosphor under 100–300nm.《Journal of Solid State Chemistry》.2004

Also Published As

Publication number Publication date
JP5410982B2 (ja) 2014-02-05
US20100120607A1 (en) 2010-05-13
JP2013063909A (ja) 2013-04-11
KR101161614B1 (ko) 2012-07-03
JP5580871B2 (ja) 2014-08-27
US8101536B2 (en) 2012-01-24
JP2013091599A (ja) 2013-05-16
WO2008066282A1 (en) 2008-06-05
JP2010510955A (ja) 2010-04-08
JP5580870B2 (ja) 2014-08-27
CN101583579A (zh) 2009-11-18
KR20090091795A (ko) 2009-08-28

Similar Documents

Publication Publication Date Title
CN101583579B (zh) 无玻璃微波介电陶瓷及其制法
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN1359358A (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN112919894B (zh) 一种频率稳定型低介微波介质陶瓷材料及其制备方法
US8420560B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic
Tang et al. Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu (B2O5) addition
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN105347781B (zh) 一种陶瓷材料及其制备方法
WO2023159896A1 (zh) 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
Bijumon et al. Influence of glass additives on the microwave dielectric properties of Ca5Nb2TiO12 ceramics
Pang et al. Sintering behavior and microwave dielectric properties of Ba6− 3xNd8+ 2xTi18O54 (x= 2/3) ceramics coated by H3BO3-TEOS sol–gel
CN104387057B (zh) 一种温度稳定型钛基尖晶石微波介质陶瓷及其低温制备方法
Varghese et al. Effect of glass fillers in Cu2ZnNb2O8 ceramics for advanced microwave applications
KR102189481B1 (ko) 고주파 소자용 유전체 세라믹스 조성물, 그에 의한 고주파 소자용 세라믹 기판 및 그의 제조방법
CN1267378C (zh) 介电陶瓷与介电器件
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN102633500B (zh) 一种介电可调的低温共烧陶瓷材料及其制备方法
KR101849470B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
US7226882B2 (en) Dielectric material and method of producing the same
CN113292338B (zh) 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法
JP3909366B2 (ja) 低誘電率磁器組成物とその磁器組成物を用いた電子回路用基板の製造方法
JP2003146752A (ja) 誘電体磁器組成物
KR100915909B1 (ko) 기판용 저온 소성 유전체 세라믹스 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20171122

CF01 Termination of patent right due to non-payment of annual fee