CN113321496A - 复合微波介质陶瓷材料及其制备方法 - Google Patents

复合微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113321496A
CN113321496A CN202110742895.6A CN202110742895A CN113321496A CN 113321496 A CN113321496 A CN 113321496A CN 202110742895 A CN202110742895 A CN 202110742895A CN 113321496 A CN113321496 A CN 113321496A
Authority
CN
China
Prior art keywords
dielectric ceramic
ceramic material
microwave dielectric
composite
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110742895.6A
Other languages
English (en)
Other versions
CN113321496B (zh
Inventor
徐浩
彭翔
段冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yibin Redstar Electronics Co ltd
Original Assignee
Yibin Redstar Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yibin Redstar Electronics Co ltd filed Critical Yibin Redstar Electronics Co ltd
Priority to CN202110742895.6A priority Critical patent/CN113321496B/zh
Publication of CN113321496A publication Critical patent/CN113321496A/zh
Application granted granted Critical
Publication of CN113321496B publication Critical patent/CN113321496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于微波介质陶瓷材料领域,尤其是一种复合微波介质陶瓷材料及其制备方法。本发明为解决目前微波介质陶瓷材料品质因数较差,稳定性不高,烧结温度高的问题,提供了一种复合微波介质陶瓷材料及其制备方法。所述复合微波介质陶瓷材料的主要成分包含摩尔比为0.01~0.4:1的钛酸盐和硅酸盐,以及占总质量3~12%的添加剂。制备方法主要是将分散剂与钛酸盐和硅酸盐分别混合后,采用球磨工艺后研磨,再加入和添加剂,烧制成复合微波介质陶瓷材料。本方法通过调整复合介电陶瓷材料中钛酸盐的占比,实现了介电性能灵活可调的目的。所得微波介质陶瓷材料,微波介电损耗较低,在10GHz频率下,Q×F值可稳定达到60000以上。

Description

复合微波介质陶瓷材料及其制备方法
技术领域
本发明属于微波介质陶瓷材料领域,尤其是一种复合微波介质陶瓷材料及其制备方法。
背景技术
微波介质陶瓷材料可用来制作介质基板、介质天线、介质谐振器、等微波器件,具有损耗小、稳定性高、体积小等特点,这些特点满足了通信微波电路对元器件的性能要求。
其中,钛酸盐体系微波介质陶瓷材料,具有优异的介电性能,且原料丰富、价格低廉。目前市面上存在很多该体系的粉体,各有异同,普遍存在的介电性能(尤其是品质因数)差、烧结温度高、稳定性和一致性差等缺点。例如纯Mg2TiO4的微波介电陶瓷粉体,存在有两个缺点制约其广泛应用。第一个是其烧成温度过高,达到1450℃~1470℃,且焙烧温度较窄(5~10℃),因此烧成温度较难控制,只要稍微烧过几度,就会使Mg2TiO4晶粒长大,气孔增大,从而降低材料第二个是Mg2TiO4的谐振频率温度系数为-50ppm/℃,制约了其直接应用;纯MgTiO3陶瓷的烧结致密化温度有所降低,在1450℃左右,τf值比Mg2TiO4容易调节,并且原料来源丰富,成本较低廉。但是,相对来说MgTiO3陶瓷的烧结致密化温度依然很高,εr值偏低,τf的绝对值偏大。
因此,需要开发一种介电性能好,稳定性高,烧结温度低的微波介质陶瓷材料。
发明内容
本发明要解决的技术问题是:目前微波介质陶瓷材料品质因数较差,稳定性不高,烧结温度高的问题。
本发明针对上述技术问题采用的技术方案是:提供一种复合微波介质陶瓷材料及其制备方法。
本发明首先提供了一种复合微波介质陶瓷材料,所述材料的原料包含钛酸盐和硅酸盐;其中,钛酸盐和硅酸盐摩尔比为0.01~0.4:1。
进一步地,所述钛酸盐为钛酸镁、钛酸钙、钛酸锶钙、钛酸钡或钛酸锶钡中的至少一种;所述的硅酸盐为硅酸锌、硅酸镁、堇青石、硅灰石或顽辉石中的至少一种。
进一步地,所述复合微波介质陶瓷材料的原料还包含添加剂。
进一步地,所述添加剂为低熔点氧化物和/或碳酸盐;优选地,所述低熔点氧化物为锂、钠、锌或硅的氧化物中的至少一种;所述碳酸盐为碳酸锂和/或碳酸钠。
进一步地,所述添加剂占所述复合微波介质陶瓷材料总质量的3~12%。
本发明还提供了一种复合微波介质陶瓷材料的制备方法,包括如下步骤:
a.制备钛酸盐粉体:将钛酸盐与水形成的混合物,磨合后干燥、过筛,将所得筛下物煅烧后冷却至室温,得钛酸盐粉体;
b.制备硅酸盐粉体:将硅酸盐与水形成的混合物,磨合后干燥、过筛,将所得筛下物煅烧后冷却至室温,得硅酸盐粉体;
c.制备复合陶瓷粉体:将钛酸盐粉体和硅酸盐粉体按摩尔比例为0.01~0.4:1混合,得到复合陶瓷粉体;
d.烧制复合微波介质陶瓷:将复合陶瓷粉体与水形成的混合物,磨合后干燥、过筛;将所得筛下物煅烧,即得复合微波介质陶瓷材料。
进一步地,所述磨合采用球磨工艺。
进一步地,所述球磨工艺使用的是Φ3锆球。
进一步地,所述球磨工艺中球磨的转速为280~420r/min。
进一步地,所述球磨工艺中球磨时间为16~30h。
进一步地,钛酸盐/硅酸盐/复合陶瓷粉体、锆球、水的质量比为1:2~4:1.5~3.5。
进一步地,磨合前向混合物中加入分散剂。
进一步地,分散剂为分子量7万~400万的聚丙烯酸、氨基磺酸或马来酸酐中的任一种;分散剂制成质量分数为3%~10%的水溶液。
进一步地,分散剂添加量为每300g混合物加入1~5mL分散剂水溶液。
进一步地,所述筛的目数是200~300目。
进一步地,步骤a中煅烧温度为1050~1350℃。
进一步地,步骤b中煅烧温度为1050~1400℃。
进一步地,步骤d中煅烧温度为1300~1380℃。
进一步地,步骤a、b、d所述的锻造过程按照2~4℃/min升温。
进一步地,步骤a、b、d所述的煅烧结束后保温3~5h,随炉降温至室温。
进一步地,步骤d中,在磨合之前还要加入添加剂。
进一步地,所述添加剂是低熔点氧化物和/或碳酸盐。
进一步地,所述添加剂占复合陶瓷粉体总质量的3~12%。
进一步地,所述复合微波介质陶瓷材料在煅烧前压制成型,压制成型前加入聚乙烯醇;所述聚乙烯醇的添加量为混合物总质量的5~6%。
本发明的有益效果为:本发明以钛酸盐为基础,引入硅酸盐材料,配以添加剂降低烧结温度,降低损耗以及调整温度频率系数,完成钛酸盐材料体系的复合掺杂改性,改善了整体烧结特性,通过调整复合介电陶瓷材料中钛酸盐的占比,实现了介电性能灵活可调的目的。本发明所涉及的粉体微波介电损耗较低,10GHz频率下测试,Q×F值可稳定达到60000以上。本发明微波介电性能灵活可调,工艺简便且重复性好,利于大规模批产。
具体实施方式
本发明提供了一种复合微波介质陶瓷材料及其制备方法。
具体地,本发明首先提供了一种复合微波介质陶瓷材料,所述材料的原料包含钛酸盐和硅酸盐;其中,钛酸盐和硅酸盐摩尔比为0.01~0.4:1。
其中,所述钛酸盐为钛酸镁、钛酸钙、钛酸锶钙、钛酸钡、钛酸锶钡中的至少一种;所述的硅酸盐为硅酸锌、硅酸镁,堇青石、硅灰石、顽辉石中的至少一种。
所述复合微波介质陶瓷材料中还含有添加剂;所述添加剂为低熔点氧化物和碳酸盐中的至少一种;所述低熔点氧化物为锂、钠、锌、硅的氧化物中的至少一种;所述碳酸盐为碳酸锂和/或碳酸钠;两种添加剂的总含量占总质量的3~12%。低熔点氧化物的含量过低或者未添加低熔点氧化物,不仅会导致陶瓷材料烧结温度高,还不利于相关相的形成和材料制作过程中的控制。碳酸盐的存在能保证复合介质陶瓷材料的致密度。
然后,本发明还提供了一种复合微波介质陶瓷材料的制备方法,步骤如下:
a.制备钛酸盐粉体:将钛酸盐与水形成的混合物,磨合后干燥、过筛,将所得筛下物煅烧后冷却至室温,得钛酸盐粉体;
b.制备硅酸盐粉体:将硅酸盐与水形成的混合物,磨合后干燥、过筛,将所得筛下物煅烧后冷却至室温,得硅酸盐粉体;
c.制备复合陶瓷粉体:将钛酸盐粉体和硅酸盐粉体按摩尔比例为0.01~0.4:1混合,得到复合陶瓷粉体;
d.烧制复合微波介质陶瓷:将复合陶瓷粉体与水形成的混合物,磨合后干燥、过筛;将所得筛下物煅烧,即得复合微波介质陶瓷材料。
进一步地,若磨合前的混合物混合不均匀,则向混合物中加入分散剂;所述分散剂是指包括聚丙烯酸类(分子量7万-400万)、氨基磺酸、马来酸酐中的任一种,配成质量分数为3%~10%的水溶液;分散剂添加量为每300g混合物加入1~5mL分散剂水溶液。
进一步地,所述磨合采用的是球磨工艺;使用的是Φ3锆球;所述球磨工艺中,球磨的转速为280~420r/min,球磨时间为16~30h;以此保证球磨前的混合物能彻底混合均匀,有利于提高复合介质陶瓷材料的致密度。
进一步地,所述干燥条件是80~120℃,干燥8~24h。
进一步地,步骤a中煅烧温度为1050~1350℃;步骤b中煅烧温度为1050~1400℃;步骤d所述煅烧温度为1300~1380℃;步骤a、b、d的煅烧都按2~4℃/分钟升温至指定范围,然后保温3~5小时,随炉降温至室温。a、b步骤中的温度均为各自盐类粉体的预烧温度,目的是通过预烧,得到陶瓷晶相,利于陶瓷的合成。因为所需复合陶瓷粉体的主晶相由a、b步骤中的得到的两晶相组成,若不经预烧,混合后直接煅烧,则或造成晶相掺杂(如过程中形成其他晶相、所需晶相不足等),从而大幅度影响最终复合陶瓷材料的性能。d步骤中,煅烧工艺参数会直接影响材料烧结过程中的晶相的形成,晶相的变化。若温度过高过低均会影响成品粉体的性能,从而得不到复合陶瓷材料。
进一步地,本方法所述筛的目数是200~300目,用于保证混合物的均匀性,有利于提高最终所得复合陶瓷材料的烧结致密度。
进一步地,步骤d中,在磨合之前还要加入添加剂;所述添加剂是低熔点氧化物和碳酸盐中的至少一种;添加剂的添加量是复合陶瓷粉体总质量3~12%。添加剂的加入不仅进一步促进球磨前的混合物混合均匀,而且其中的碳酸盐还能保证复合陶瓷材料的烧结致密度。
进一步地,步骤d中,所述复合微波介质陶瓷材料在煅烧前压制成型,压制成型前加入聚乙烯醇;所述聚乙烯醇的添加量为混合物总质量的5~6%。聚乙烯醇的作用是为了利于造粒和压制,有利于复合陶瓷材料的烧结致密度。
进一步地,所述压制过程,压力范围是8~10MPa,压制所得复合介质陶瓷材料是直径为Φ12,高度4.5mm的圆柱形坯体。
进一步地,所得复合微波陶瓷材料,微波介电常数为:17~21,Q×F值:>60000@10GH,频率温漂系数(25℃∽85℃):±10ppm/℃。
以下通过实施例对本发明作进一步的解释和说明。
实施例1
称取钛酸锶钙200g,Φ3锆球800g,去离子水600g,用2升行星尼龙罐球磨。球磨转速360r/min,球磨时间24h。磨合完成后用200目网纱过滤料浆,在110℃下干燥;将过筛的钛酸盐混合物在1350℃下煅烧后冷却至室温,得钛酸盐粉体;
称取硅酸镁100g,Φ3锆球400g,去离子水300g,用500ml行星尼龙罐球磨。球磨转速320r/min,球磨时间18h。磨合完成后用200目网纱过滤料浆,在110℃下干燥;将过筛的钛酸盐混合物煅烧后冷却至室温,得硅酸盐粉体;
将钛酸盐粉体175g和硅酸盐粉体25g混合,得到复合陶瓷粉体;
取复合陶瓷粉体200g与锆球800g和水600g混合,加入氧化纳2g、氧化铌2g、氧化锰2g、氧化锌2g,碳酸锂4g,聚丙烯酸类1.5ml采用球磨工艺磨合材料;球磨完成,用200目网纱过滤料浆,在110℃下干燥。
向干燥的复合陶瓷粉体中加入10g聚乙烯醇,在8~10MPa下压制成直径Φ12,高度约4.5mm的圆柱坯体。将圆柱坯体置入冶炼炉中,按2℃/分钟升温至1350℃,保温3小时,随炉降温至室温,烧结致密的圆柱瓷体,即复合介质陶瓷材料。用矢量网络分析仪与封闭金属腔测试,测试结果为Q×F值@10GHz 65828.3,介电常数18.56,瓷体密度3.70.g/cm3
实施例2
称取钛酸钡200g,Φ3锆球800g,去离子水600g,用2升行星尼龙罐球磨。球磨转速360r/min,球磨时间24h。磨合完成后用200目网纱过滤料浆,在110℃下干燥;将过筛的钛酸盐混合物在1350℃下煅烧后冷却至室温,得钛酸盐粉体;
称取硅酸镁100g,Φ3锆球400g,去离子水300g,用500ml行星尼龙罐球磨。球磨转速320r/min,球磨时间18h。磨合完成后用200目网纱过滤料浆,在110℃下干燥;将过筛的钛酸盐混合物煅烧后冷却至室温,得硅酸盐粉体;
将钛酸盐粉体150g和硅酸盐粉体50g混合,得到复合陶瓷粉体;
取复合陶瓷粉体200g与锆球800g和水600g混合,加入氧化纳4g、氧化铌0.5g、氧化锰1g、氧化锌0.5g、碳酸锂4g,聚丙烯酸类2.5ml采用球磨工艺磨合材料;球磨完成,用200目网纱过滤料浆,在110℃下干燥。
向干燥的复合陶瓷粉体中加入10g聚乙烯醇,混匀,在8~10MPa下压制成直径Φ12,高度约4.5mm的圆柱坯体。将圆柱坯体置入冶炼炉中,按2℃/分钟升温至1350℃,保温3小时,随炉降温至室温,烧结致密的圆柱瓷体,即复合介质陶瓷材料。用矢量网络分析仪与封闭金属腔测试,测试结果为Q×F值@10GHz 68451.2,介电常数19.78,瓷体密度3.69.g/cm3
对比例1不采用本发明所述工艺参数
称取钛酸钡200g,Φ3锆球800g,去离子水600g,用2升行星尼龙罐球磨。球磨转速360r/min,球磨时间24h。磨合完成后用200目网纱过滤料浆,在110℃下干燥;将过筛的钛酸盐混合物在1350℃下煅烧后冷却至室温,得钛酸盐粉体;
称取硅酸镁200g,Φ3锆球800g,去离子水600g,用2升行星尼龙罐球磨。球磨转速320r/min,球磨时间18h。磨合完成后用200目网纱过滤料浆,在110℃下干燥;将过筛的钛酸盐混合物煅烧后冷却至室温,得硅酸盐粉体;
将钛酸盐粉体100g和硅酸盐粉体100g混合,得到复合陶瓷粉体;
取复合陶瓷粉体200g与锆球800g和水600g混合,加入氧化纳8g、氧化铌4g、氧化锰4g、氧化锌1g、碳酸锂1g,聚丙烯酸类2.5ml采用球磨工艺磨合材料;球磨完成,用200目网纱过滤料浆,在110℃下干燥。
向干燥的复合陶瓷粉体中加入10g聚乙烯醇溶液,混匀,在8~10MPa下压制成直径Φ12,高度约4.5mm的圆柱坯体。将圆柱坯体置入冶炼炉中,按2℃/分钟升温至1350℃,保温3小时,随炉降温至室温,烧结致密的圆柱瓷体,即复合介质陶瓷材料。用矢量网络分析仪与封闭金属腔测试,测试结果为Q×F值@10GHz 32463.8,介电常数15.77,瓷体密度3.43.g/cm3

Claims (10)

1.复合微波介质陶瓷材料,其特征在于,所述材料的原料包含钛酸盐和硅酸盐;其中,钛酸盐和硅酸盐摩尔比为0.01~0.4:1。
2.根据权利要求1所述的复合微波介质陶瓷材料,其特征在于,所述钛酸盐为钛酸镁、钛酸钙、钛酸锶钙、钛酸钡或钛酸锶钡中的至少一种;所述硅酸盐为硅酸锌、硅酸镁、堇青石、硅灰石或顽辉石中的至少一种。
3.根据权利要求1或2所述的复合微波介质陶瓷材料,其特征在于,所述复合微波介质陶瓷材料的原料还包含添加剂;
进一步地,所述添加剂为低熔点氧化物和/或碳酸盐;优选地,所述低熔点氧化物为锂、钠、锌或硅的氧化物中的至少一种;所述碳酸盐为碳酸锂和/或碳酸钠;
进一步地,所述添加剂占所述复合微波介质陶瓷材料总质量的3~12%。
4.复合微波介质陶瓷材料的制备方法,其特征在于,包括如下步骤:
a.制备钛酸盐粉体:将钛酸盐与水形成的混合物磨合后干燥、过筛,将所得筛下物煅烧后冷却至室温,得钛酸盐粉体;
b.制备硅酸盐粉体:将硅酸盐与水形成的混合物磨合后干燥、过筛,将所得筛下物煅烧后冷却至室温,得硅酸盐粉体;
c.制备复合陶瓷粉体:将钛酸盐粉体和硅酸盐粉体按摩尔比0.01~0.4:1混合,得复合陶瓷粉体;
d.烧制复合微波介质陶瓷:将复合陶瓷粉体与水形成的混合物,磨合后干燥、过筛;将所得筛下物煅烧,即得复合微波介质陶瓷材料。
5.根据权利要求4所述的复合微波介质陶瓷材料的制备方法,其特征在于,所述磨合采用球磨工艺;所述球磨工艺至少满足下列条件中的至少一项:
使用Φ3锆球;
球磨的转速为280~420r/min;
球磨时间为16~30h;
钛酸盐/硅酸盐/复合陶瓷粉体、锆球、水的质量比为1:2~4:1.5~3.5。
6.根据权利要求4或5所述的复合微波介质陶瓷材料的制备方法,其特征在于,磨合前向混合物中加入分散剂;所述分散剂满足下列条件中的至少一项:
分散剂为分子量7万~400万的聚丙烯酸、氨基磺酸或马来酸酐中的任一种;分散剂制成质量分数为3%~10%的水溶液;
分散剂添加量为每300g混合物加入1~5mL分散剂水溶液。
7.根据权利要求4~6任一项所述的复合微波介质陶瓷材料的制备方法,其特征在于,所述筛的目数是200~300目。
8.根据权利要求4~7任一项所述的复合微波介质陶瓷材料的制备方法,其特征在于,所述煅烧满足下列条件中的至少一项:
步骤a中煅烧温度为1050~1350℃;
步骤b中煅烧温度为1050~1400℃;
步骤d中煅烧温度为1300~1380℃;
按照2~4℃/min升温;
煅烧结束后保温3~5h,随炉降温至室温。
9.根据权利要求4~8任一项所述的复合微波介质陶瓷材料的制备方法,其特征在于,步骤d中,在磨合之前还要加入添加剂;所述添加剂满足下列条件中的至少一项:
添加剂是低熔点氧化物和/或碳酸盐;
添加剂的添加量是复合陶瓷粉体总质量的3~12%。
10.根据权利要求4~9任一项所述的复合微波介质陶瓷材料的制备方法,其特征在于,所述复合微波介质陶瓷材料在煅烧前压制成型,压制成型前加入聚乙烯醇;进一步地,所述聚乙烯醇的添加量为混合物总质量的5~6%。
CN202110742895.6A 2021-07-01 2021-07-01 复合微波介质陶瓷材料及其制备方法 Active CN113321496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110742895.6A CN113321496B (zh) 2021-07-01 2021-07-01 复合微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110742895.6A CN113321496B (zh) 2021-07-01 2021-07-01 复合微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113321496A true CN113321496A (zh) 2021-08-31
CN113321496B CN113321496B (zh) 2023-07-25

Family

ID=77425363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110742895.6A Active CN113321496B (zh) 2021-07-01 2021-07-01 复合微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113321496B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582683A (zh) * 2021-09-02 2021-11-02 福州大学 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
CN114213115A (zh) * 2022-01-04 2022-03-22 浙江嘉康电子股份有限公司 一种微波介质材料及其制备方法
CN115959895A (zh) * 2022-12-12 2023-04-14 大富科技(安徽)股份有限公司 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193662A (ja) * 2000-12-27 2002-07-10 Kyocera Corp 誘電体磁器及びその製造方法
US20020165080A1 (en) * 2001-01-24 2002-11-07 Sengupta Louise C. Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
US20030073565A1 (en) * 2001-06-01 2003-04-17 Ellis Marion E. Tunable dielectric compositions including low loss glass
CN1699275A (zh) * 2005-05-13 2005-11-23 中国科学院上海硅酸盐研究所 一种钛酸锶钡基电光复合材料及其制备方法
TW201326083A (zh) * 2011-12-23 2013-07-01 Walsin Technology Corp 微波介電玻璃陶瓷材料及其組成物
CN105254293A (zh) * 2015-11-27 2016-01-20 广东成电华瓷电子科技有限公司 一种微波介质陶瓷材料及其制备方法
CN107522481A (zh) * 2016-06-22 2017-12-29 华新科技股份有限公司 低温共烧微波介电陶瓷材料及其制法
CN111099892A (zh) * 2020-01-03 2020-05-05 山东国瓷功能材料股份有限公司 一种钛酸钡基两相复合微波介质陶瓷材料及其制备方法
CN111116186A (zh) * 2020-01-03 2020-05-08 山东国瓷功能材料股份有限公司 一种低介电常数两相复合微波介质陶瓷材料及其制备方法
CN111499375A (zh) * 2020-03-13 2020-08-07 苏州威洁通讯科技有限公司 一种高品质因数微波介质陶瓷材料及其制备方法
CN111689771A (zh) * 2020-06-28 2020-09-22 厦门松元电子有限公司 一种微波介质陶瓷材料及其制备方法
CN112830775A (zh) * 2021-03-01 2021-05-25 南宁国人射频通信有限公司 一种低介电常数微波介质陶瓷及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193662A (ja) * 2000-12-27 2002-07-10 Kyocera Corp 誘電体磁器及びその製造方法
US20020165080A1 (en) * 2001-01-24 2002-11-07 Sengupta Louise C. Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
US20030073565A1 (en) * 2001-06-01 2003-04-17 Ellis Marion E. Tunable dielectric compositions including low loss glass
CN1699275A (zh) * 2005-05-13 2005-11-23 中国科学院上海硅酸盐研究所 一种钛酸锶钡基电光复合材料及其制备方法
TW201326083A (zh) * 2011-12-23 2013-07-01 Walsin Technology Corp 微波介電玻璃陶瓷材料及其組成物
CN105254293A (zh) * 2015-11-27 2016-01-20 广东成电华瓷电子科技有限公司 一种微波介质陶瓷材料及其制备方法
CN107522481A (zh) * 2016-06-22 2017-12-29 华新科技股份有限公司 低温共烧微波介电陶瓷材料及其制法
CN111099892A (zh) * 2020-01-03 2020-05-05 山东国瓷功能材料股份有限公司 一种钛酸钡基两相复合微波介质陶瓷材料及其制备方法
CN111116186A (zh) * 2020-01-03 2020-05-08 山东国瓷功能材料股份有限公司 一种低介电常数两相复合微波介质陶瓷材料及其制备方法
CN111499375A (zh) * 2020-03-13 2020-08-07 苏州威洁通讯科技有限公司 一种高品质因数微波介质陶瓷材料及其制备方法
CN111689771A (zh) * 2020-06-28 2020-09-22 厦门松元电子有限公司 一种微波介质陶瓷材料及其制备方法
CN112830775A (zh) * 2021-03-01 2021-05-25 南宁国人射频通信有限公司 一种低介电常数微波介质陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG JINGJI等: "Dielectric Tunable Properties of Ba0.4Sr0.6TiO3-Mg2SiO4 Microwave Composite Ceramics", 《FERROELECTRICS》, vol. 388, 20 September 2010 (2010-09-20), pages 75 *
ZHANG JINGJI等: "Dielectric Tunable Properties of Ba0.4Sr0.6TiO3-Mg2SiO4 Microwave Composite Ceramics", 《FERROELECTRICS》, vol. 388, pages 75 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582683A (zh) * 2021-09-02 2021-11-02 福州大学 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
CN114213115A (zh) * 2022-01-04 2022-03-22 浙江嘉康电子股份有限公司 一种微波介质材料及其制备方法
CN115959895A (zh) * 2022-12-12 2023-04-14 大富科技(安徽)股份有限公司 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件
CN115959895B (zh) * 2022-12-12 2024-02-20 大富科技(安徽)股份有限公司 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Also Published As

Publication number Publication date
CN113321496B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN113321496B (zh) 复合微波介质陶瓷材料及其制备方法
CN110423117B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN104692795B (zh) 一种超低损耗钛酸镁锂微波介质陶瓷材料及其制备方法
CN111763083B (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN111943671B (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN113968732B (zh) 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN111995383A (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN108191426B (zh) 一种中温烧结高q值微波介质材料
CN104671773B (zh) 一种低介电常数微波介质陶瓷材料及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN104944940A (zh) 一种温度稳定型钛酸镁基微波介质陶瓷及其制备方法
CN111153694A (zh) 一种微波介质陶瓷材料及制备方法
CN110436917B (zh) 一种中介微波介质陶瓷材料及其制备方法
CN116854472B (zh) 一种微波介质材料及其制备方法
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
CN102491744A (zh) 一种低损耗微波介质陶瓷及其制备方法
CN104710175B (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN110734284A (zh) 一种中介高q微波介质陶瓷材料及其制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant