CN111606709A - 一种超低温烧结微波介质材料及其制备方法 - Google Patents

一种超低温烧结微波介质材料及其制备方法 Download PDF

Info

Publication number
CN111606709A
CN111606709A CN202010528085.6A CN202010528085A CN111606709A CN 111606709 A CN111606709 A CN 111606709A CN 202010528085 A CN202010528085 A CN 202010528085A CN 111606709 A CN111606709 A CN 111606709A
Authority
CN
China
Prior art keywords
sintering
temperature
microwave dielectric
microwave
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010528085.6A
Other languages
English (en)
Inventor
李波
邓亚平
姚朋玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010528085.6A priority Critical patent/CN111606709A/zh
Publication of CN111606709A publication Critical patent/CN111606709A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子陶瓷及其制造领域,具体提供一种超低温烧结微波介质陶瓷材料及其制备方法,用以克服目前微波陶瓷材料烧结温度普遍偏高的缺点,实现了低于670℃的超低温烧结。本发明陶瓷材料主晶相为Ba3V2O8,通过添加占主晶相质量百分比为6~12wt%的低熔点化合物Li2CO3,形成液相促进晶粒生长,大大降低烧结温度,实现650~670℃的超低温烧结,且具备优异的微波性能;同时,Li2CO3的添加能够调整陶瓷材料谐振频率温度系数,能够获得近零值,大大扩展材料的适用性;最后,本发明提供的超低温烧结微波介质材料制备工艺简单,所有原料成本低廉、来源丰富,有利于工业化生产,可广泛应用于低温共烧陶瓷体系、多层介质谐振器、滤波器等微波器件的制造。

Description

一种超低温烧结微波介质材料及其制备方法
技术领域
本发明属于电子陶瓷及其制造领域,涉及一种微波介质陶瓷材料,具体涉及超低温烧结微波介质陶瓷材料及其制备方法。
背景技术
微波介质陶瓷具有稳定的介电常数、较高的品质因数和近零的频率温度系数,可以制成介质稳频振荡器、介质谐振器、微波介质天线等,广泛应用于微波技术各个领域。低温烧结微波介质陶瓷是目前主要趋势,但很多微波介质陶瓷的烧结温度偏高,因此,如何降低烧结温度成为一个急需解决的问题;添加助烧剂是降低烧结温度的一个主要途径,助烧剂通常是低熔点的氧化物或玻璃来形成液相促进晶粒生长。近年出现了超低温共烧陶瓷(ULTCC),具有节省能源和时间的优势。例如,Di Zhou等人在文献Microwave DielectricProperties of Li2WO4 Ceramic with Ultra-Low Sintering Temperature中在640℃制备的Li2WO4陶瓷具有较高的Q×f值,是适合于超低温烧结的微波介质陶瓷。
钒酸盐固有烧结温度低、微波性能优良,国内外学者对低温烧结钒酸盐陶瓷进行了研究。比如,Unnimaya等人在文献“Structure and microwave dielectric propertiesof 5BaO–2V2O5 binary ceramic system”中于1300℃的烧结温度下制备出Ba3V2O8微波介质陶瓷,其性能为εr=12.3、Q×f=52197GHz、τf=41ppm/℃;同时,通过添加0.5wt%的B2O3到Ba3V2O8陶瓷,烧结温度降低至950℃,且微波性能较为优异:εr=12.5,Q×f=41,065GHz,τf=38.8ppm/℃;但是,该Ba3V2O8微波介质陶瓷的烧结温度仍然偏高,远远达不到超低温烧结的要求。
基于此,本发明提供一种超低温烧结微波介质材料及其制备方法。
发明内容
本发明的目的在于提供一种超低温烧结微波介质陶瓷材料及其制备方法,用以克服目前微波陶瓷材料烧结温度普遍偏高的缺点,实现了低于670℃的超低温烧结。本发明陶瓷材料主晶相为Ba3V2O8,通过添加占主晶相质量百分比为6~12wt%的低熔点化合物Li2CO3,形成液相促进晶粒生长,以降低烧结温度,实现超低温烧结(烧结温度为650~670℃,介电常数为13~14,Q×f值为28000~34000GHz,谐振频率温度系数为-9~52ppm/℃)。
为实现上述目的,本发明所实施的技术方案为:
一种超低温烧结微波介质材料,其特征在于:所述微波介质材料包括:主晶相、以及占主晶相质量百分比为6~12wt%的添加剂;其中:
所述主晶相为:Ba3V2O8
所述添加剂为:Li2CO3
进一步的,所述微波介质材料的烧结温度为650~670℃,介电常数为13~14,Q×f值为28000~34000GHz,谐振频率温度系数为-9~52ppm/℃。
上述超低温烧结微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1.配料:以分析纯BaCO3、V2O5为原料,按化学式Ba3V2O8的摩尔比进行配料;
步骤2.一次球磨:以去离子水和锆球为介质,按照料:水:球为1:1.5:5(质量比)的比例在尼龙罐中湿磨混合原料6~8小时,球磨后出料置于烘箱中110℃烘干;
步骤3.过筛:用60目筛网过筛干燥料;
步骤4.预烧:将过筛料在空气中以750~800℃预烧3~4小时,得到主晶相为Ba3V2O8的预烧料;
步骤5.添加Li2CO3:将预烧料与占预烧料质量百分比为6~12wt%的Li2CO3粉末混合;
步骤6.二次球磨:以去离子水和锆球为介质,按照预烧料:球:水为1:5:1.5(质量比)的比例置于尼龙罐中湿磨混合7小时,球磨后出料置于烘箱中于110℃烘干;
步骤7.造粒成型:将干燥料与PVA溶液进行混合、造粒,然后在10~20MPa的压力下压制成生坯;
步骤8.烧结:将生坯在空气中以650~670℃的温度烧结5小时,得到所述的微波介质材料。
本发明的有益效果在于:
1.本发明提供超低温烧结微波介质材料,通过在主晶相Ba3V2O8中添加低熔点化合物Li2CO3,形成液相促进晶粒生长,大大降低烧结温度,实现650~670℃的超低温烧结,且具备优异的微波性能;为实现ULTCC技术提供了候选材料,具有节省能源和时间的优势;
2.本发明提供超低温烧结微波介质材料的主晶相为Ba3V2O8,通过添加低熔点化合物Li2CO3,调整其谐振频率温度系数,在添加10wt%的Li2CO3时获得近零值(τf=4.7);大大扩展材料的适用性;
3.本发明提供的超低温烧结微波介质材料制备工艺简单,所有原料成本低廉、来源丰富,有利于工业化生产,可广泛应用于低温共烧陶瓷体系、多层介质谐振器、滤波器等微波器件的制造。
附图说明
图1为实施例2制备得微波介质材料Ba3V2O8+8wt%Li2CO3的XRD图。
图2为实施例2制备得微波介质材料Ba3V2O8+8wt%Li2CO3的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明共提供4个实施例,每个实施例提供的低温烧结微波陶瓷材料具有主晶相Ba3V2O8、属于六方晶系,以及占主晶相质量百分比为x wt%的Li2CO3,其中,x=6、8、10、12。
上述低温烧结微波陶瓷材料的制备方法,包括以下步骤:
步骤1.配料:以分析纯BaCO3、V2O5为原料,按化学式Ba3V2O8的摩尔比进行配料;
步骤2.一次球磨:以去离子水和锆球为介质,按照料:水:球为1:1.5:5的比例在尼龙罐中湿磨混合原料6~8小时,球磨后出料置于烘箱中110℃烘干;
步骤3.过筛:用60目筛网过筛干燥料;
步骤4.预烧:将过筛料在空气中以750~800℃预烧3~4小时,得到主晶相为Ba3V2O8的预烧料;
步骤5.添加Li2CO3:将预烧后的Ba3V2O8粉末与x wt%的Li2CO3(x=6,8,10,12)粉末混合;
步骤6.二次球磨:以去离子水和锆球为介质,按照预烧料:球:水为1:5:1.5的比例置于尼龙罐中湿磨混合7小时,球磨后出料置于烘箱中于110℃烘干;
步骤7.造粒成型:将干燥料与PVA溶液进行混合、造粒,然后在10~20MPa的压力下压制成生坯;
步骤8.烧结:将生坯在空气中以650~670℃的温度烧结5小时,得到所述的微波介质材料。
上述4个实施例的具体公开参数及制备得超低温烧结微波陶瓷材料微波介电性能如下表所示:
编号 组成 烧结温度 烧结时长 ε<sub>r</sub> Q×f值 τ<sub>f</sub>
实施例1 x=6 670 5 13.66 28901 51.6
实施例2 x=8 660 5 13.07 33129 13.3
实施例3 x=10 650 5 13.62 31756 4.7
实施例4 x=12 650 5 13.37 30262 -8.7
由上可见,实施例2中超低温烧结微波陶瓷材料Ba3V2O8+8wt%Li2CO3的XRD图如图1所示,由图可见,添加Li2CO3不会改变吸收峰的位置,Ba3V2O8晶相保持六方晶系不变;SEM图如图2所示,由图可见,由于Li2CO3熔点(618℃)低于烧结温度,因此烧结过程会形成大量液相聚集在晶界处,使晶界变得模糊。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (3)

1.一种超低温烧结微波介质材料,其特征在于:所述微波介质材料包括:主晶相、以及占主晶相质量百分比为6~12wt%的添加剂;其中:
所述主晶相为:Ba3V2O8
所述添加剂为:Li2CO3
2.按权利要求1所述超低温烧结微波介质材料,其特征在于,所述微波介质材料的烧结温度为650~670℃,介电常数为13~14,Q×f值为28000~34000GHz,谐振频率温度系数为-9~52ppm/℃。
3.按权利要求1所述超低温烧结微波介质材料的制备方法,其特征在于,,包括以下步骤:
步骤1.配料:以分析纯BaCO3、V2O5为原料,按化学式Ba3V2O8的摩尔比进行配料;
步骤2.一次球磨:以去离子水和锆球为介质,按照料:水:球为1:1.5:5的比例在尼龙罐中湿磨混合原料6~8小时,球磨后出料置于烘箱中110℃烘干;
步骤3.过筛:用60目筛网过筛干燥料;
步骤4.预烧:将过筛料在空气中以750~800℃预烧3~4小时,得到主晶相为Ba3V2O8的预烧料;
步骤5.添加Li2CO3:将预烧料与占预烧料质量百分比为6~12wt%的Li2CO3粉末混合;
步骤6.二次球磨:以去离子水和锆球为介质,按照预烧料:球:水为1:5:1.5的比例置于尼龙罐中湿磨混合7小时,球磨后出料置于烘箱中于110℃烘干;
步骤7.造粒成型:将干燥料与PVA溶液进行混合、造粒,然后在10~20MPa的压力下压制成生坯;
步骤8.烧结:将生坯在空气中以650~670℃的温度烧结5小时,得到所述的微波介质材料。
CN202010528085.6A 2020-06-11 2020-06-11 一种超低温烧结微波介质材料及其制备方法 Pending CN111606709A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010528085.6A CN111606709A (zh) 2020-06-11 2020-06-11 一种超低温烧结微波介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010528085.6A CN111606709A (zh) 2020-06-11 2020-06-11 一种超低温烧结微波介质材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111606709A true CN111606709A (zh) 2020-09-01

Family

ID=72194107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010528085.6A Pending CN111606709A (zh) 2020-06-11 2020-06-11 一种超低温烧结微波介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111606709A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898022A (zh) * 2021-03-29 2021-06-04 电子科技大学 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN113004026A (zh) * 2021-04-22 2021-06-22 无锡市高宇晟新材料科技有限公司 Ltcc微波介质陶瓷材料及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409325A (zh) * 2018-05-15 2018-08-17 湖南先导电子陶瓷科技产业园发展有限公司 一种超低温烧结的高q值微波介质陶瓷材料制备工艺及产品
CN110066170A (zh) * 2019-04-30 2019-07-30 电子科技大学 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409325A (zh) * 2018-05-15 2018-08-17 湖南先导电子陶瓷科技产业园发展有限公司 一种超低温烧结的高q值微波介质陶瓷材料制备工艺及产品
CN110066170A (zh) * 2019-04-30 2019-07-30 电子科技大学 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG K等: "Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3-xSrx(VO4)2 solid solutions", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
JOUNG MR等: "Low-Temperature Sintering and Microwave Dielectric Properties of the Li2CO3-Added Ba2V2O7 Ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898022A (zh) * 2021-03-29 2021-06-04 电子科技大学 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN112898022B (zh) * 2021-03-29 2022-06-03 电子科技大学 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN113004026A (zh) * 2021-04-22 2021-06-22 无锡市高宇晟新材料科技有限公司 Ltcc微波介质陶瓷材料及其制造方法
CN113004026B (zh) * 2021-04-22 2023-01-13 无锡市高宇晟新材料科技有限公司 Ltcc微波介质陶瓷材料及其制造方法

Similar Documents

Publication Publication Date Title
CN110423117B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN108610047B (zh) 一种超低温烧结微波陶瓷材料及其制备方法
CN107140981B (zh) 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法
CN108249902B (zh) 一种硅酸盐基低介微波介质陶瓷及其制备方法
CN111763083B (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN111606709A (zh) 一种超低温烧结微波介质材料及其制备方法
CN113321496A (zh) 复合微波介质陶瓷材料及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN112979314B (zh) 一种中等介电常数高q微波介质陶瓷材料及其制备方法
EP1341189A1 (en) Microwave dielectric porcelain composition and dielectric resonator
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN111320473B (zh) 一种低烧微波介质陶瓷材料及其制备方法
CN107253856A (zh) 一种近零谐振频率温度系数的微波介质材料及其制备方法
CN110734284A (zh) 一种中介高q微波介质陶瓷材料及其制备方法
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN111646796B (zh) 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN109437901A (zh) 一种钙钛矿结构的微波介质陶瓷及其制备方法
CN108751983A (zh) 用于高频陶瓷电容器的微波陶瓷介质及其制备方法
CN104692792A (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN111499383A (zh) 低温烧结微波介质材料Ba2V2+xO7及其制备方法
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN113582690A (zh) 一种超低温烧结微波介质材料Zn2V2O7及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200901

RJ01 Rejection of invention patent application after publication