CN113582690B - 一种超低温烧结微波介质材料Zn2V2O7及其制备方法 - Google Patents
一种超低温烧结微波介质材料Zn2V2O7及其制备方法 Download PDFInfo
- Publication number
- CN113582690B CN113582690B CN202110776968.3A CN202110776968A CN113582690B CN 113582690 B CN113582690 B CN 113582690B CN 202110776968 A CN202110776968 A CN 202110776968A CN 113582690 B CN113582690 B CN 113582690B
- Authority
- CN
- China
- Prior art keywords
- microwave dielectric
- dielectric material
- ultralow temperature
- sintering
- ball milling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明属于电子陶瓷及其制造领域,具体提供一种超低温烧结微波介质材料Zn2V2O7及其制备方法,用以解决现有焦钒酸盐体系电子陶瓷的烧结温度偏高、均无法实现超低温烧结的问题。本发明提供的超低温烧结微波介质材料的化学式为:Zn2V2O7,微观结构为单斜晶体结构的Zn2V2O7晶相,能够实现焦钒酸盐体系电子陶瓷在680~740℃下的超低温烧结,且具有优良的微波介电性能:介电常数为8.6~9.7、Q×f值为15000~24000GHz、谐振频率温度系数为‑93~‑54ppm/℃;并且,该超低温烧结微波介质材料相对密度大、晶粒生长均匀、原子堆积率高、微观结构致密,从而获得了低的介电损耗;另外,该超低温烧结微波介质材料制备工艺简单、生产成本低,有利于实现工业化生产。
Description
技术领域
本发明属于电子陶瓷及其制造领域,具体涉及一种超低温烧结微波介质材料Zn2V2O7及其制备方法。
背景技术
随着5G通信的飞速发展,微波介质材料已被广泛应用于谐振器、滤波器、天线等微波器件制备领域。为满足更高频率的工作要求,微波介质材料需要具备低介电常数、低介电损耗及近零谐振频率温度系数。随着微波介质陶瓷的深入研究,从高温烧结向低温烧结甚至超低温烧结方向发展。近年来的研究表明,钼酸盐、钒酸盐、硼酸盐、钨酸盐等为潜在的超低温烧结微波介电材料。其中,钒酸盐以其固有烧结温度低、微波性能优良等优点而被广泛关注,进一步的,焦钒酸盐体系作为钒酸盐中的重要体系,更加受到关注。如Joung等人在文章“Formation and Microwave Dielectric Properties of the Mg2V2O7 Ceramics”,“Formation Process and Microwave Dielectric Properties of the R2V2O7(R=Ba,Sr,and Ca)Ceramics”中报道了Mg2V2O7,Sr2V2O7,Ca2V2O7,Ba2V2O7的晶体结构和微波介电性能。以上已报道的焦钒酸盐体系陶瓷均为三斜晶体结构,其烧结温度分别为:1050℃、1000℃、950℃、900℃。
鉴于焦钒酸盐系列陶瓷的烧结温度偏高,本发明在保证低损耗的应用要求下提供一种超低温烧结微波介质材料Zn2V2O7及其制备方法。
发明内容
本发明的目的在于针对现有焦钒酸盐体系电子陶瓷的烧结温度偏高、均无法实现超低温烧结的问题,提供一种超低温烧结微波介质材料Zn2V2O7及其制备方法,实现焦钒酸盐体系电子陶瓷在680~740℃下的超低温烧结,且微波介质材料Zn2V2O7具备良好的微波介电性能。
为实现上述目的,本发明采用的技术方案为:
一种超低温烧结微波介质材料,其特征在于,所述微波介质材料的化学式为:Zn2V2O7。
进一步的,所述微波介质材料为单斜晶体结构的Zn2V2O7晶相。
进一步的,所述超低温烧结微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1.以分析纯ZnO、V2O5为原料,按照化学式Zn2V2O7的摩尔比进行配料;
步骤2.以酒精、锆球为球磨介质,将原料放入尼龙罐中球磨4~6小时,一次球磨结束后将混合料置于70~80℃烘箱中干燥;
步骤3.对干燥料进行过筛,然后在600~650℃下预烧3~4小时,得到预烧料;
步骤4.以酒精、锆球为球磨介质,将预烧料放入尼龙罐中球磨4~6小时,二次球磨结束后出料置于70~80℃烘箱中干燥;
步骤5.将干燥料与聚乙烯醇(PVA)溶液混合、造粒,在10~20MPa干压得到生坯;
步骤6.将生坯在680~740℃的温度烧结5~6小时,得到所述微波介质材料。
本发明的有益效果在于:
1.本发明提供一种超低温烧结微波介质材料Zn2V2O7,单一晶相为:Zn2V2O7,晶体结构为:单斜晶体结构;所得陶瓷的相对密度大,晶粒生长均匀,原子堆积率高,微观结构致密,从而获得了低的介电损耗;
2.本发明提供的超低温烧结微波介质材料Zn2V2O7的烧结温度为680~740℃,实现超低温烧结,使之有潜力成为下一代超低温烧结微波介电材料;
综上所述,本发明提供超低温烧结微波介质材料Zn2V2O7,能够实现680~740℃的超低温烧结,且具有优良的微波介电性能:介电常数为8.6~9.7、Q×f值为15000~24000GHz、谐振频率温度系数为-93~-54ppm/℃;尤其在720℃烧结温度下拥有最优微波介电性能:εr=9.67、 Q×f=23968GHz、τf=-54.3ppm/℃;并且,该超低温烧结微波介质材料的制备工艺简单、生产成本低,有利于实现工业化生产。
附图说明
图1为实施例3制备得微波介质材料Zn2V2O7在720℃烧结温度下的XRD图。
图2为实施例3制备得微波介质材料Zn2V2O7在720℃烧结温度下的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明共提供4个实施例,每个实施例提供的超低温烧结微波介质材料配方及烧结温度为:Zn2V2O7,其中烧结温度为680℃、700℃、720℃、740℃;所述超低温烧结微波陶瓷材料均采用如下方法进行制备:
步骤1.按照Zn2V2O7的摩尔比,以分析纯ZnO、V2O5为原料进行配料;
步骤2.以酒精、锆球为球磨介质,将原料放入尼龙罐中球磨4~6小时,一次球磨结束后将混合料置于70~80℃烘箱中干燥;
步骤3.对干燥料进行过筛,然后在600~650℃下预烧3~4小时,得到初步合成晶相的预烧料;
步骤4.以酒精、锆球为球磨介质,将预烧料放入尼龙罐中球磨4~6小时,二次球磨结束后出料置于70~80℃烘箱中干燥;
步骤5.将干燥料与聚乙烯醇(PVA)溶液混合、造粒,在10~20MPa干压得到生坯;
步骤6.将生坯在680~740℃的温度烧结5~6小时,得到所述微波陶瓷材料。
以上4个实施例的具体工艺参数及微波介电性能如下表所示:
编号 | 烧结温度(℃) | ε<sub>r</sub> | Q×f值(GHz) | τ<sub>f</sub>(ppm/℃) |
实施例1 | 680 | 8.69 | 15462 | -84.0 |
实施例2 | 700 | 8.96 | 16549 | -84.5 |
实施例3 | 720 | 9.67 | 23968 | -54.3 |
实施例4 | 740 | 9.53 | 17159 | -93.4 |
由上表可见,本发明提供超低温烧结微波介质材料Zn2V2O7,其在680~740℃烧结温度下拥有优良的微波介电性能:介电常数为8.6~9.7、Q×f值为15000~24000GHz、谐振频率温度系数为-93~-54ppm/℃,符合微波介质材料的应用需求。另外,实施例3制备得微波介质材料 Zn2V2O7的XRD、SEM如图1、图2所示,由图可见,XRD衍射图谱的特征峰与PDF#29-1 396匹配完好,表明了所制陶瓷为单一晶相的Zn2V2O7,由SEM结果可知陶瓷微观结构致密、相对密度大、气孔率小,从而获得了低的介电损耗。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
Claims (2)
1.一种超低温烧结微波介质材料,其特征在于,所述微波介质材料的化学式为:Zn2V2O7;所述微波介质材料的介电常数为8.6~9.7、Q×f值为15000~24000GHz、谐振频率温度系数为-93~-54ppm/℃;所述微波介质材料由以下步骤制备:
步骤1. 以分析纯ZnO、V2O5为原料,按照化学式Zn2V2O7的摩尔比进行配料;
步骤2. 以酒精、锆球为球磨介质,将原料放入尼龙罐中球磨4~6小时,一次球磨结束后将混合料置于70~80℃烘箱中干燥;
步骤3. 对干燥料进行过筛,然后在 600~650℃下预烧3~4小时,得到预烧料;
步骤4. 以酒精、锆球为球磨介质,将预烧料放入尼龙罐中球磨4~6小时,二次球磨结束后出料置于70~80℃烘箱中干燥;
步骤5. 将干燥料与聚乙烯醇(PVA)溶液混合、造粒,在10~20MPa干压得到生坯;
步骤6. 将生坯在680~740℃的温度烧结5~6小时 ,得到所述微波介质材料。
2.按权利要求1所述超低温烧结微波介质材料,其特征在于,所述微波介质材料为单斜晶体结构的Zn2V2O7晶相。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110776968.3A CN113582690B (zh) | 2021-07-09 | 2021-07-09 | 一种超低温烧结微波介质材料Zn2V2O7及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110776968.3A CN113582690B (zh) | 2021-07-09 | 2021-07-09 | 一种超低温烧结微波介质材料Zn2V2O7及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113582690A CN113582690A (zh) | 2021-11-02 |
CN113582690B true CN113582690B (zh) | 2022-10-14 |
Family
ID=78246698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110776968.3A Active CN113582690B (zh) | 2021-07-09 | 2021-07-09 | 一种超低温烧结微波介质材料Zn2V2O7及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113582690B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114874010B (zh) * | 2022-04-18 | 2023-03-28 | 电子科技大学 | 一种微波陶瓷材料DyVO4及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1298668C (zh) * | 2004-12-31 | 2007-02-07 | 清华大学 | 一种低温烧结的固溶体微波介质陶瓷材料及其制备方法 |
CN102412392B (zh) * | 2011-09-26 | 2013-11-06 | 河北联合大学 | 一种采用高温固相法合成ZnV2O6和Zn2V2O7微纳米材料的方法及应用 |
CN103332932B (zh) * | 2013-06-24 | 2015-07-22 | 桂林理工大学 | 可低温烧结钒酸盐微波介电陶瓷BaZnV2O7及其制备方法 |
CN107552040B (zh) * | 2017-09-14 | 2019-12-03 | 江西理工大学 | 一种三元异质结光催化剂的制备方法及其应用 |
CN108172815B (zh) * | 2017-12-25 | 2021-03-30 | 青岛科技大学 | 一种微球状钒酸锌及其制备方法与应用 |
CN108610047B (zh) * | 2018-05-24 | 2021-04-30 | 电子科技大学 | 一种超低温烧结微波陶瓷材料及其制备方法 |
CN113024249B (zh) * | 2021-03-29 | 2022-04-22 | 三峡大学 | 微波介质陶瓷复合材料及制备方法 |
-
2021
- 2021-07-09 CN CN202110776968.3A patent/CN113582690B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113582690A (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108358633B (zh) | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 | |
CN114874010B (zh) | 一种微波陶瓷材料DyVO4及其制备方法 | |
CN105174949A (zh) | 一种低损耗锌锆铌系微波介质陶瓷 | |
CN113582690B (zh) | 一种超低温烧结微波介质材料Zn2V2O7及其制备方法 | |
CN111635223B (zh) | 一种复合微波介质陶瓷及其制备方法 | |
CN114702303A (zh) | 一种微波介质材料Ca3B2O6及其制备方法 | |
CN108975913B (zh) | 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法 | |
CN113735580B (zh) | 一种复相微波介质陶瓷及其冷烧结制备方法 | |
CN113896530A (zh) | 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法 | |
CN101723664A (zh) | 介电可调介质陶瓷材料的制备方法 | |
CN104987071A (zh) | 一种低温烧结中介电常数微波介质陶瓷材料 | |
CN107382314A (zh) | 一种钡基复合钙钛矿结构的微波介质陶瓷 | |
CN103936419A (zh) | 一种高品质因数温度稳定型微波介质陶瓷材料 | |
CN111606709A (zh) | 一种超低温烧结微波介质材料及其制备方法 | |
CN112898022B (zh) | 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法 | |
CN105060888A (zh) | 一种氧化铝掺杂制备低损耗稳定铌酸钕陶瓷 | |
CN111548158B (zh) | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 | |
CN104710175A (zh) | 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法 | |
CN111646796B (zh) | 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法 | |
CN113072373A (zh) | 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法 | |
CN110386816B (zh) | 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料 | |
CN114380594B (zh) | 一种Ba-Mg-Co-Ta基微波介质陶瓷 | |
CN112898021B (zh) | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 | |
CN101891463B (zh) | 介电可调的过渡金属元素化合物掺杂钛酸锶钡复合钨酸钡陶瓷介质材料及其制备方法 | |
CN107266074B (zh) | 一种微波陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |