CN114031393A - 一种谐振频率温度系数近零的微波介电材料及其制备方法 - Google Patents

一种谐振频率温度系数近零的微波介电材料及其制备方法 Download PDF

Info

Publication number
CN114031393A
CN114031393A CN202111432106.5A CN202111432106A CN114031393A CN 114031393 A CN114031393 A CN 114031393A CN 202111432106 A CN202111432106 A CN 202111432106A CN 114031393 A CN114031393 A CN 114031393A
Authority
CN
China
Prior art keywords
tio
microwave dielectric
dielectric material
zero
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111432106.5A
Other languages
English (en)
Inventor
赖元明
李宝阳
曾一明
韩娇
蒋刚
陈家林
胡昌义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Sino Platinum Metals Co Ltd
Original Assignee
Chengdu Univeristy of Technology
Sino Platinum Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology, Sino Platinum Metals Co Ltd filed Critical Chengdu Univeristy of Technology
Priority to CN202111432106.5A priority Critical patent/CN114031393A/zh
Publication of CN114031393A publication Critical patent/CN114031393A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种谐振频率温度系数近零的微波介电材料,由Mg2TiO4和Li2TiO3按照(1‑x)Li2TiO3‑xMg2TiO4质量比复合,最终形成Mg2TiO4、Li2MgTi3O8和Li2TiO3三相复合体系,其中,所述Mg2TiO4的质量百分数x为:0<x<100%;本发明通过将Mg2TiO4与Li2TiO3进行复合,一方面改善了Mg2TiO4较差的烧结性能,使其能够烧结成型;另一方面通过具有正τf值的Li2TiO3进行τf补偿,使整个体系具有近零的τf值,且Li2TiO3较低的烧结温度也能改善体系的烧结温度。

Description

一种谐振频率温度系数近零的微波介电材料及其制备方法
技术领域
本发明涉及微波电子陶瓷材料技术领域,更具体的说是涉及一种谐振频率温度系数近零的微波介电材料及其制备方法。
背景技术
随着新一代无线通讯网络技术的革新,对微波元器件小型化和高稳定性提出了更高的要求,相比传统材料,中介电常数(10<εr<50)的微波介质陶瓷使用频率高,而且更容易满足微波元器件小型化的需求和低损耗的要求,因而成为微波通信的重要基础材料。
在中介电常数的微波陶瓷中,钛酸盐因其优越的性能而受到广泛关注。Mg2TiO4作为MgO-TiO2体系的一员,具有较好的介电性能:介电常数(εr)=14.51,品质因数(Q×f)=161570GHz,谐振频率温度系数(τf)=-49.3ppm/℃(H.Li,R.Xiang,X.Chen,H.Hua,S.Yu,B.Tang,G.Chen,S.Zhang,Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic,Ceram.Int.46(2020)4235–4239.);而Li2TiO3作为具有正τf值的材料而常被作为τf补偿剂(εr=17.5,Q×f=51000GHz,τf=28.2ppm/℃)(J.Ma,Z.Fu,Y.Li,X.Li,Effects ofpreparation methods on synthesis,microstructures and microwave dielectricproperties ofLi2TiO3 ceramics,Ferroelectrics.504(2016)116–122.);因此,以Mg2TiO4为基体制作的微波介质陶瓷器件能降低微波器件的介电损耗。
然而,Mg2TiO4微波陶瓷较大的负的τf值和较差的烧结性能限制了它在微波通信系统中的广泛应用,因此,如何在保证εr和Q×f符合要求的同时,实现Mg2TiO4基微波陶瓷的近零τf值和提高其烧结性能是亟待解决的问题。Cheng等(L.Cheng,P.Liu,S.X.Qu,L.Cheng,H.Zhang,Microwave dielectric properties ofMg2TiO4 ceramics synthesized viahigh energyball milling method,J.Alloys Compd.623(2015)238–242.)通过高能球磨法获得了Mg2TiO4纳米粉末,且在1175℃下烧结获得了最佳介电性能:εr=13.9,Q×f=98600GHz,τf=-50.9ppm/℃,虽然纳米粉末降低了烧结温度,但τf值没有得到改善。Li等(H.Li,P.Zhang,S.Yu,H.Yang,B.Tang,F.Li,S.Zhang,Structural dependence ofmicrowave dielectric properties of spinel structured Mg2(Ti1-xSnx)O4 solidsolutions:Crystal structure refinement,Raman spectra study and complexchemical bond theory,Ceram.Int.45(2019)11639–11647.)用Sn4+取代Ti4+以期改善系统的介电性能,Mg2(Ti0.8Sn0.2)O4在1510℃下烧结获得了最佳介电性能(εr=12.18,Q×f=170130GHz,τf=-53.1ppm/℃),但τf值同样没有得到改善。此外,Bleous等(A.Belous,O.Ovchar,D.Durilin,M.M.Krzmanc,M.Valant,D.Suvorov,High-Q microwave dielectricmaterials based on the spinel Mg2TiO4,J.Am.Ceram.Soc.89(2006)3441–3445.)通过将Co2TiO4和CaTiO3分别与Mg2TiO4复合,获得了0.95Mg2TiO4-0.05Co2TiO4r=14,Q×f=86000GHz,τf=-54ppm/℃)、0.8Mg2TiO4-0.2Co2TiO4r=13,Q×f=75000GHz,τf=-60ppm/℃)和0.93Mg2TiO4-0.07CaTiO3r=15,Q×f=35000GHz,τf=-2ppm/℃)微波陶瓷,通过对比发现,CaTiO3比Co2TiO4对τf值的改善效果较好,但Q×f都被恶化,且εr没有明显变化。
因此,如何提供一种成本低廉、制备过程简单易操作且具有近零τf值的微波介电材料及其制备方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种谐振频率温度系数近零的微波介电材料。本发明通过将Mg2TiO4与Li2TiO3进行复合,一方面改善了Mg2TiO4较差的烧结性能,使其能够烧结成型;另一方面通过具有正τf值的Li2TiO3进行τf补偿,使整个体系具有近零的τf值,且Li2TiO3较低的烧结温度也能改善体系的烧结温度。
为了实现上述目的,本发明采用如下技术方案:
一种谐振频率温度系数近零的微波介电材料,由Mg2TiO4和Li2TiO3按照(1-x)Li2TiO3和xMg2TiO4质量比复合,最终形成Mg2TiO4、Li2MgTi3O8和Li2TiO3三相复合体系,其中,所述质量百分数x为:0≤x<100%。
本发明通过将Mg2TiO4与Li2TiO3进行复合,一方面改善了Mg2TiO4较差的烧结性能,使其能够烧结成型;另一方面通过具有正τf值的Li2TiO3进行τf补偿,使整个体系具有近零的τf值,且Li2TiO3较低的烧结温度也能改善系统的烧结温度;本发明展示的近零τf的微波介电材料:τf值可达-0.3ppm/℃,εr=15~19,Q×f=21920~30310GHz,近零的τf值能够提高制成的微波元器件的稳定性,可广泛应用于新一代无线移动通信及微波通信中。
优选地,所述质量百分数x为38%。
采用上述百分比所得微波介电材料的介电性能为:τf=-0.3ppm/℃、Q×f=29900GHz、εr=17。
优选地,所述微波介电材料通过固相反应法制备,该制备方法工艺路线简单成熟,易于大规模生产。
上述所述一种谐振频率温度系数近零的微波介电材料的制备方法,具体包括以下步骤:
(1)称取原材料MgO和TiO2进行球磨、烘干后,加热到800~1100℃保温2~6h,反应完成后冷却至室温即得Mg2TiO4预烧料;
(2)称取原材料Li2CO3和TiO2进行球磨、烘干后,加热至600~900℃保温2~6h,反应完成后冷却至室温即得Li2TiO3预烧料;
(3)将所述Mg2TiO4预烧料和所述Li2TiO3预烧料按比例混合后,依次进行球磨、烘干、造粒和压片,然后加热至400~600℃保温2~6h进行排胶处理,冷却至室温,得到生坯样品;
(4)将所述生胚样品加热至1250~1550℃保温2~6h后,冷却至室温即得一种谐振频率温度系数近零的微波介电材料。
优选地,步骤(1)-(3)所述球磨的磨球为化锆球,介质为去离子水。
优选地,所述粉料与去离子水的质量比按1:1.2~1.5。
优选地,步骤(1)-(3)所述球磨的转速为200-400rpm,球磨时间为2-8h。
优选地,步骤(1)和(2)中所述原材料的质量根据Mg2TiO4和Li2TiO3的质量进行称量。
优选地,步骤(1)-(4)中所述加热的升温速率为2~10℃/min。
优选地,步骤(3)中所述造粒的粘结剂为PVA溶液,PVA溶液的浓度为8~10%,添加量为5~20wt%。
优选地,步骤(3)中所述压片的压力为10~20MPa,压片压制成的圆柱样品尺寸为:直径12mm×厚度4~6mm。
经由上述的技术方案可知,与现有技术相比,本发明公开了一种谐振频率温度系数近零的微波介电材料及其制备方法,具有以下技术效果:
本发明通过将Mg2TiO4与Li2TiO3进行复合,一方面改善了Mg2TiO4较差的烧结性能,使其能够烧结成型;另一方面通过具有正τf值的Li2TiO3进行τf补偿,使整个系统具有近零的τf值,且Li2TiO3较低的烧结温度也能改善系统的烧结温度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是实施例1制备微波介电材料在1400℃下烧结的XRD图;
图2是实施例2制备微波介电材料在1400℃下烧结的微波介电性能图;
图3是实施例2制备微波介电材料在1350℃下烧结的微波介电性能图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种谐振频率温度系数近零的微波介电材料的制备方法,具体包括以下步骤:
(1)按照摩尔比MgO:TiO2=1:1进行原料的称取,然后将配好的原料分别放置于装有锆球的球磨罐内,以去离子水作为球磨介质,粉料与去离子水质量比按1:1.2,球磨机转速设置为250rpm,球磨时间设置为4h,球磨结束后将料浆放置于100℃的恒温干燥箱内,烘干至恒重,得到MgO和TiO2均匀混合的烘干粉料;将MgO和TiO2均匀混合的烘干粉料在研钵中捣碎,放入坩埚中压实,先按照5℃/min的升温速率升至100℃,然后以10℃/min的升温速率升至1000℃,最后以5℃/min的升温速率升至1100℃并保温4h,再以5℃/min降至500℃后随炉冷却至室温,即得Mg2TiO4预烧料;
(2)按照摩尔比Li2CO3:TiO2=1:1进行原料的称取,然后将配好的原料分别放置于装有锆球的球磨罐内,以去离子水作为球磨介质,粉料与去离子水质量比按1:1.2,球磨机转速设置为250rpm,球磨时间设置为4h,球磨结束后将料浆放置于100℃的恒温干燥箱内,烘干至恒重,得到Li2CO3和TiO2均匀混合的烘干粉料;将Li2CO3和TiO2均匀混合的烘干粉料在研钵中捣碎,放入坩埚中压实,首先按照先按照5℃/min的升温速率升至100℃,然后以10℃/min的升温速率升至850℃并保温4h,再以5℃/min降至500℃后随炉冷却至室温,得到Li2TiO3预烧料;
(3)将38wt%Mg2TiO4预烧料和62wt%Li2TiO3预烧料均匀混合后,在装有锆球的球磨罐内,以去离子水作为球磨介质,粉料与去离子水质量比按1:1.2,球磨机转速设置为250rpm,球磨时间设置为4h,球磨结束后将料浆放置于100℃恒温干燥箱内,烘干至恒重。然后加入20wt%的PVA溶液作为粘结剂,进行造粒,并在20MPa下单轴干压成12mm(直径)×6mm(厚度)的圆柱,PVA溶液的浓度为8%;然后将圆柱放入高温烧结炉中,按5℃/min的升温速率升至100℃,再以10℃/min的升温速率升至600℃并保温4h,最后以5℃/min降至500℃后随炉冷却至室温,获得排胶后的生坯样品;
(4)将排胶后的生坯样品再次放入高温烧结炉中,按5℃/min的升温速率升至100℃,再以10℃/min的升温速率升至1000℃,然后以5℃/min升至1400℃进行烧结,并保温4h,保温结束后以5℃/min降至500℃再随炉冷却至室温,获得近零τf的复合钛酸盐微波介电材料;
同时,如图1,是本实施例微波介电材料在1400℃下烧结的XRD图,由图可知:实施例1所制备的样品含Mg2TiO4、Li2TiO3和Li2MgTi3O8三相。
实施例2
一种谐振频率温度系数近零的微波介电材料的制备方法,其与实施例1的区别点在于Li2TiO3预烧料的质量百分数为53-66(除62)%;
其中,如图2,为不同质量百分数Li2TiO3预烧料的物相组成及在1400℃下烧结微波介电性能图,从图中可以看出,x=53~66时,τf和εr随着Li2TiO3含量的增加而逐渐变大,τf=-17.4~8.6ppm/℃,Q×f=25270~29900GHz,εr=15.8~17.9,且当x=62时,τf=-0.3ppm/℃、Q×f=29900GHz、εr=17;
其中,如图3,为不同质量百分数Li2TiO3预烧料的物相组成及在1350℃下烧结微波介电性能图,从图中可以看出,x=53~66时,τf和εr随着Li2TiO3含量的增加而逐渐变大,τf=-21.7~17.7ppm/℃,Q×f=21920~26100GHz,εr=15.7~17.5,且当x=62时,τf=7.4ppm/℃、Q×f=25350GHz、εr=16.9。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种谐振频率温度系数近零的微波介电材料,其特征在于,由Mg2TiO4和Li2TiO3按照(1-x)Li2TiO3-xMg2TiO4质量比复合,最终形成Mg2TiO4、Li2MgTi3O8和Li2TiO3三相复合体系,其中,所述质量百分数x为:0<x<100%。
2.根据权利要求1所述的一种谐振频率温度系数近零的微波介电材料,其特征在于,所述质量百分数x为38%。
3.根据权利要求1所述的一种谐振频率温度系数近零的微波介电材料,其特征在于,所述微波介电材料通过固相反应法制备。
4.一种谐振频率温度系数近零的微波介电材料的制备方法,其特征在于,具体包括以下步骤:
(1)称取原材料MgO和TiO2进行球磨、烘干后,加热到800~1100℃保温2~6h,反应完成后冷却至室温即得Mg2TiO4预烧料;
(2)称取原材料Li2CO3和TiO2进行球磨、烘干后,加热至600~900℃保温2~6h,反应完成后冷却至室温即得Li2TiO3预烧料;
(3)将所述Mg2TiO4预烧料和所述Li2TiO3预烧料按比例混合后,依次进行球磨、烘干、造粒和压片,然后在400~600℃保温2~6h,冷却至室温,得到生坯样品;
(4)将所述生胚样品在1250~1550℃保温2~6h后,冷却至室温即得一种谐振频率温度系数近零的微波介电材料。
5.根据权利要求4所述的一种谐振频率温度系数近零的微波介电材料的制备方法,其特征在于,步骤(1)-(3)所述球磨的磨球为化锆球,介质为去离子水。
6.根据权利要求4所述的一种谐振频率温度系数近零的微波介电材料的制备方法,其特征在于,步骤(1)-(3)中所述球磨的转速为200-400rpm,球磨时间为2-8h。
7.根据权利要求4所述的一种谐振频率温度系数近零的微波介电材料的制备方法,其特征在于,步骤(1)和(2)中所述原材料根据Mg2TiO4和Li2TiO3的质量进行称量。
8.根据权利要求4所述的一种谐振频率温度系数近零的微波介电材料,其特征在于,步骤(1)-(4)中所述加热的升温速率为2~10℃/min。
9.根据权利要求4所述的一种谐振频率温度系数近零的微波介电材料的制备方法,其特征在于,步骤(3)中所述造粒的粘结剂为PVA溶液,PVA溶液的浓度为8~10%,添加量为5~20wt%。
10.根据权利要求4所述的一种谐振频率温度系数近零的微波介电材料的制备方法,其特征在于,步骤(3)中所述压片的压力为10~20MPa,压片压制成的圆柱样品尺寸为:直径12mm×厚度4~6mm。
CN202111432106.5A 2021-11-29 2021-11-29 一种谐振频率温度系数近零的微波介电材料及其制备方法 Pending CN114031393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111432106.5A CN114031393A (zh) 2021-11-29 2021-11-29 一种谐振频率温度系数近零的微波介电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111432106.5A CN114031393A (zh) 2021-11-29 2021-11-29 一种谐振频率温度系数近零的微波介电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114031393A true CN114031393A (zh) 2022-02-11

Family

ID=80139110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111432106.5A Pending CN114031393A (zh) 2021-11-29 2021-11-29 一种谐振频率温度系数近零的微波介电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114031393A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063069A (zh) * 2022-10-28 2023-05-05 安徽理工大学 温度稳定型钛酸盐微波介质复合陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867556A (ja) * 1994-08-26 1996-03-12 Matsushita Electric Ind Co Ltd 平面アンテナ用誘電体セラミックス及びそれを用いた平面アンテナ
CN101007736A (zh) * 2007-01-18 2007-08-01 同济大学 Ba1-xSrxTiO3-Mg2TiO4两相复合陶瓷材料及其制备方法
CN106747412A (zh) * 2016-12-14 2017-05-31 电子科技大学 一种Ti基LTCC微波介电陶瓷材料及其制备方法
CN106904960A (zh) * 2017-03-14 2017-06-30 电子科技大学 一种Mg2SiO4‑Li2TiO3复合体系LTCC材料及其制备方法
CN111170734A (zh) * 2020-01-07 2020-05-19 山东国瓷功能材料股份有限公司 一种滤波器用两相复合微波介质陶瓷材料及其制备方法
CN113548888A (zh) * 2021-08-10 2021-10-26 浙江嘉康电子股份有限公司 一种频率温度系数改善的微波介质材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867556A (ja) * 1994-08-26 1996-03-12 Matsushita Electric Ind Co Ltd 平面アンテナ用誘電体セラミックス及びそれを用いた平面アンテナ
CN101007736A (zh) * 2007-01-18 2007-08-01 同济大学 Ba1-xSrxTiO3-Mg2TiO4两相复合陶瓷材料及其制备方法
CN106747412A (zh) * 2016-12-14 2017-05-31 电子科技大学 一种Ti基LTCC微波介电陶瓷材料及其制备方法
CN106904960A (zh) * 2017-03-14 2017-06-30 电子科技大学 一种Mg2SiO4‑Li2TiO3复合体系LTCC材料及其制备方法
CN111170734A (zh) * 2020-01-07 2020-05-19 山东国瓷功能材料股份有限公司 一种滤波器用两相复合微波介质陶瓷材料及其制备方法
CN113548888A (zh) * 2021-08-10 2021-10-26 浙江嘉康电子股份有限公司 一种频率温度系数改善的微波介质材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG-LIANG HUANG ET AL.: "Dielectric characteristics of the (1-x)Mg2TiO4–xSrTiO3 ceramic system at microwave frequencies", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
HUANFU ZHOU ET AL.: "Sintering behavior, phase evolution and microwave dielectric properties of thermally stable Li2O-3MgO-mTiO2 ceramics (1≤m≤6)", 《CERAMICS INTERNATIONAL》 *
YI-DING ZHANG ET AL.: "Pseudo Phase Diagram and Microwave Dielectric Properties of Li2O-MgO-TiO2 Ternary System", 《J. AM. CERAM. SOC.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063069A (zh) * 2022-10-28 2023-05-05 安徽理工大学 温度稳定型钛酸盐微波介质复合陶瓷及其制备方法
CN116063069B (zh) * 2022-10-28 2023-09-22 安徽理工大学 温度稳定型钛酸盐微波介质复合陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN102442823A (zh) 一种微波介质陶瓷材料及其制备方法
CN101811866B (zh) 无铅x8r型电容器陶瓷材料及其制备方法
CN103896579B (zh) 一种锂基低温烧结微波介质陶瓷材料及其制备方法
CN115196945B (zh) 一种基于冷烧结辅助低温致密化制备微波陶瓷块体的方法
CN111470864B (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN103396117A (zh) 一种低温烧结钛酸锶储能介质陶瓷材料及其制备方法
CN114031393A (zh) 一种谐振频率温度系数近零的微波介电材料及其制备方法
CN105271761A (zh) 高储能密度的铌酸盐基玻璃陶瓷储能材料及其制备和应用
CN107352998B (zh) 一种超低损耗的锂镁钛基微波介质陶瓷及其制备方法
CN103922725A (zh) 一种低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN109721359A (zh) 一种锂钛共掺高q值锂镁铌系介质材料及其制备方法
CN101357848A (zh) 激光烧结复合制备电子陶瓷的方法
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN102491744A (zh) 一种低损耗微波介质陶瓷及其制备方法
CN107555986A (zh) 一种低损耗岩盐矿结构微波介质陶瓷及制备方法
CN116854472A (zh) 一种微波介质材料及其制备方法
CN110759733A (zh) 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN103449820A (zh) 一种降低锆酸钙微波介质陶瓷烧结温度的方法
CN108002836B (zh) 中介电常数微波介电陶瓷材料及其制备方法
CN114213124A (zh) 一种中介电常数微波介质陶瓷材料及其制备方法
CN114685050A (zh) 一种高储能效率硅铌酸盐微晶玻璃材料及制备方法
CN112608144A (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220211