WO2017022855A1 - 光学材料用重合性組成物の製造方法および光学材料用重合性組成物 - Google Patents

光学材料用重合性組成物の製造方法および光学材料用重合性組成物 Download PDF

Info

Publication number
WO2017022855A1
WO2017022855A1 PCT/JP2016/073117 JP2016073117W WO2017022855A1 WO 2017022855 A1 WO2017022855 A1 WO 2017022855A1 JP 2016073117 W JP2016073117 W JP 2016073117W WO 2017022855 A1 WO2017022855 A1 WO 2017022855A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
polymerizable composition
optical material
diisocyanate
compound
Prior art date
Application number
PCT/JP2016/073117
Other languages
English (en)
French (fr)
Inventor
幸治 末杉
直樹 篠原
岡崎 光樹
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/072332 external-priority patent/WO2016021680A1/ja
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to BR112018001382-0A priority Critical patent/BR112018001382A2/ja
Priority to US15/743,383 priority patent/US10519060B2/en
Priority to CN201680042112.0A priority patent/CN107849211B/zh
Priority to JP2017533138A priority patent/JP6450460B2/ja
Priority to KR1020187001637A priority patent/KR102082059B1/ko
Priority to EP16833134.6A priority patent/EP3333207B1/en
Publication of WO2017022855A1 publication Critical patent/WO2017022855A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2120/00Compositions for reaction injection moulding processes

Definitions

  • the present invention relates to a method for producing a polymerizable composition for optical materials and a polymerizable composition for optical materials.
  • Plastic lenses which have a higher refractive index and a higher Abbe number than inorganic lenses, are light and difficult to break, and can be dyed, so they are rapidly spreading to optical materials such as eyeglass lenses and camera lenses.
  • spectacle lenses are used for (1) high refractive index, (2) low dispersion (high Abbe number), and (3) excellent heat resistance. 4) Excellent functions such as impact resistance, (5) easy dyeing, (6) excellent workability such as cutting, etc.
  • resin materials for lenses have been developed and used. Among them, a typical example is a polythiourethane resin, which discloses a polymerizable composition comprising a predetermined monomer (Patent Documents 1 to 4).
  • the molded body made of the polythiourethane resin described in these patent documents has room for improvement in impact resistance.
  • the impact resistance is stable. In some cases, such a problem occurs that the yield of the product of the plastic spectacle lens is lowered.
  • the present inventors have determined that a predetermined liquid property value and resin molding of a mixed liquid of a monomer component and a catalyst or a polymerizable composition itself when preparing a polymerizable composition
  • the present inventors have found that there is a relationship between the impact resistance of the body and completed the present invention.
  • a method for producing a polymerizable composition for an optical material comprising a step of mixing a compound and obtaining a polymerizable composition for an optical material having a haze of 0.05 or less;
  • R 4 represents an alkyl group having 1 to 8 carbon atoms
  • X represents a fluorine atom, a chlorine atom, a bromine atom or —O—C ( ⁇ O) —R 5
  • R 5 represents C represents an alkyl group having 1 to 11 carbon atoms
  • c represents an integer of 1 to 3.
  • a step of mixing (B) a tin compound represented by the general formula (1) and (C) one or more isocyanate compounds having two or more isocyanato groups;
  • Including (B) The manufacturing method of the polymeric composition for optical materials whose haze of the said liquid mixture containing a component and (C) component is 0.05 or less;
  • R 4 represents an alkyl group having 1 to 8 carbon atoms
  • X represents a fluorine atom, a chlorine atom, a bromine atom or —O—C ( ⁇ O) —R 5
  • R 5 represents C represents an alkyl group having 1 to 11 carbon atoms
  • c represents an integer of 1 to 3.
  • Isocyanate compound (C) is 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1, 6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, m-xylylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane When Comprising one or more compounds, [1] The method for producing ⁇ an optical material
  • the thiol compound (A) is 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- (2,2-bis (mercaptomethylthio) ethyl) -1,3-dithietane, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane tris (2-mercaptoacetate), 4-mercaptomethyl-1, 8-dimercapto-3,6-dithiaoctane, 2,5-bismercaptomethyl-1,4-dithiane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 5,7-dimercaptomethyl-1,11 -Dimercapto-3,6,9-trithiaundecane, 4, 7-dimercaptomethylthio
  • the mixed liquid is (A) one or more thiol compounds having two or more mercapto groups;
  • (B) General formula (1) (In the general formula (1), R 4 represents an alkyl group having 1 to 8 carbon atoms, X represents a fluorine atom, a chlorine atom, a bromine atom or —O—C ( ⁇ O) —R 5 , and R 5 represents An alkyl group having 1 to 11 carbon atoms, and c represents an integer of 1 to 3) And a tin compound represented by the formula: 1.
  • a polymerizable composition for an optical material comprising: [8] (A) one or more thiol compounds having two or more mercapto groups; And a liquid mixture having a haze of 0.05 or less,
  • the mixed liquid is (B) General formula (1)
  • R 4 represents an alkyl group having 1 to 8 carbon atoms
  • X represents a fluorine atom, a chlorine atom, a bromine atom or —O—C ( ⁇ O) —R 5
  • R 5 represents (C 1 represents an alkyl group having 1 to 11 carbon atoms, and c represents an integer of 1 to 3.
  • a tin compound represented by (C) One or more isocyanate compounds having two or more isocyanato groups, and a polymerizable composition for an optical material.
  • the isocyanate compound (C) is 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1, 6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, m-xylylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane When Comprising one or more compounds, [6] to an optical material for the polymeriz, [
  • Isocyanate compound (C) is 1,6-hexamethylene diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl).
  • the thiol compound (A) is 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- (2,2-bis (mercaptomethylthio) ethyl) -1,3-dithietane, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane tris (2-mercaptoacetate), 4-mercaptomethyl-1, 8-dimercapto-3,6-dithiaoctane, 2,5-bismercaptomethyl-1,4-dithiane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 5,7-dimercaptomethyl-1,11 -Dimercapto-3,6,9-trithiaundecane, 4 , 7-dimercaptomethyl
  • the polymerizable composition for optical materials according to any one of [6] to [10].
  • [12] At least one compound in which the thiol compound (A) is selected from 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and pentaerythritol tetrakis (3-mercaptopropionate)
  • the polymerizable composition for an optical material according to [11] comprising: [13] Injecting the polymerizable composition for an optical material according to any one of [6] to [12] into a lens casting mold, Polymerizing the polymerizable composition for an optical material; And a step of releasing the resin obtained in the step from the lens casting mold to obtain a molded body.
  • [14] A molded product obtained by curing the polymerizable composition for optical materials according to any one of [6] to [12].
  • An optical material comprising the molded article according to [14].
  • [16] A lens made of the optical material according to [15].
  • [17] A spectacle lens comprising the lens according to [16].
  • [18] A spectacle lens comprising the lens according to [16] and a hard coat layer and / or an antireflection coat layer formed on at least one surface of the lens.
  • a method for managing a mixed state of a polymerizable composition for an optical material comprising a step in the production method according to any one of [1] to [5].
  • the method for producing a polymerizable composition for an optical material of the present invention by controlling the haze of a mixed liquid of a monomer component and a tin compound as a catalyst or the polymerizable composition itself, molding having excellent impact resistance is achieved.
  • the polymerizable composition for optical materials which can obtain a body can be provided.
  • the polymerizable composition for optical materials of the present invention has a predetermined haze, it is possible to stably obtain a molded article having excellent impact resistance, and the yield of products such as optical materials is improved. To do.
  • the manufacturing method of the polymeric composition for optical materials of this invention can also be expressed as the mixed state management method of the polymeric composition for optical materials.
  • the method for producing a polymerizable composition for an optical material of the present embodiment is as follows: (A) One or more thiol compounds having two or more mercapto groups (hereinafter referred to as thiol compounds (A)), and (B) a tin compound represented by the general formula (1) (hereinafter referred to as tin compounds (B)) And (C) one or more isocyanate compounds having two or more isocyanato groups (hereinafter referred to as isocyanate compound (C)). And in the said process, the haze of the polymeric composition for optical materials obtained can be 0.05 or less.
  • Specific examples of the production method include production method a including step a1 and step a2, or production method b including step b1 and step b2, as described below.
  • Manufacturing method a Step a1 A thiol compound (A) and a tin compound (B) are mixed.
  • Manufacturing method b Step b1 The isocyanate compound (C) and the tin compound (B) are mixed.
  • Step b2: The thiol compound (A) and the mixed solution obtained in step b1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • the manufacturing method a includes the following steps. Step a1: A thiol compound (A) and a tin compound (B) are mixed. Step a2: The isocyanate compound (C) and the mixed solution obtained in step a1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • Step a1 A thiol compound (A) and a tin compound (B) are mixed.
  • Step a2 The isocyanate compound (C) and the mixed solution obtained in step a1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • Step a1 a mixed solution of a thiol compound (A) and a tin compound (B) is obtained.
  • the thiol compound (A) is a compound having two or more mercapto groups in the molecule, and examples thereof include an aliphatic thiol compound and an aromatic thiol compound.
  • Examples of the aliphatic thiol compound include methanedithiol, 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,5-pentanedithiol, 1,6 -Hexanedithiol, 1,2-cyclohexanedithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, 1,2-dimercaptopropylmethyl ether, 2,3-di Mercaptopropyl methyl ether, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis
  • aromatic thiol compound examples include 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,4-bis ( Mercaptomethyl) benzene, 1,2-bis (mercaptoethyl) benzene, 1,4-bis (mercaptoethyl) benzene, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3 , 5-trimercaptobenzene, 1,2,3-tris (mercaptomethyl) benzene, 1,2,4-tris (mercaptomethyl) benzene, 1,3,5-tris (mercaptomethyl) benzene, 1,2, 3-tris (mercaptoethyl) benzene, 1,3,5-tris (mercaptoethyl) benzene, 1,2,4-tris ( Lucaptoethyl) benzene
  • aliphatic thiol compounds are preferable, and among them, 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- (2,2-bis (mercaptomethylthio) ethyl) -1,3- Dithietane, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane tris (2-mercaptoacetate), 4- Mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 2,5-bismercaptomethyl-1,4-dithiane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 5,7-dimercapto Methyl-1,11-dimercapto- , 6,9-trithi
  • Tin Compound (B) The tin compound (B) can be represented by the following general formula (1).
  • R 4 represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • X represents a fluorine atom, a chlorine atom, a bromine atom or —O—C ( ⁇ O) —R 5 , preferably a chlorine atom.
  • R 5 represents an alkyl group having 1 to 11 carbon atoms, and c represents an integer of 1 to 3.
  • tin compound (B) examples include dialkyltin halides such as dimethyltin dichloride, dibutyltin dichloride and dioctyltin dichloride, dialkyltin such as dimethyltin diacetate, dibutyltin diacetate, dibutyltin dioctanoate, dibutyltin dilaurate, and dioctyltin dilaurate. Tin dicarboxylates.
  • dialkyltin halides such as dimethyltin dichloride, dibutyltin dichloride and dioctyltin dichloride
  • dialkyltin such as dimethyltin diacetate, dibutyltin diacetate, dibutyltin dioctanoate, dibutyltin dilaurate, and dioctyltin dilaurate.
  • Tin dicarboxylates examples include dialkyltin halides such as di
  • those that are solid at room temperature include dimethyltin dichloride, dibutyltin dichloride, dioctyltin dichloride, dimethyltin diacetate, dibutyltin diacetate, and dibutyltin dioctanoate, and those that are liquid at room temperature are dibutyltin.
  • a dilaurate etc. can be mentioned.
  • the impact resistance of the resulting resin molded product tends to be further improved.
  • the dialkyltin halides may include monoalkyltin halides and trialkyltin halides.
  • the dialkyltin dicarboxylates may include monoalkyltin tricarboxylates and trialkyltin carboxylates.
  • dialkyltin halides are preferable, dialkyltin halides having an alkyl group having 1 to 8 carbon atoms are more preferable, and dialkyltin halides having an alkyl group having 1 to 4 carbon atoms are preferable. Particularly preferred. Specifically, they are dibutyltin dichloride and dimethyltin dichloride.
  • the tin compound (B) is 0.018 to 1.080 parts by weight, preferably 0.035 to 0.750 parts by weight, more preferably 0.050 to 0.400 parts by weight with respect to 100 parts by weight of the thiol compound (A). Can be used.
  • the mixing conditions of the tin compound (B) and the thiol compound (A) are not particularly limited, but can be performed at room temperature (25 ° C.) under dry air or an inert gas atmosphere.
  • Step a2 Next, the isocyanate compound (C) and the mixed solution obtained in the step a1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • the isocyanate compound (C) is a compound having two or more isocyanato groups in the molecule, and examples thereof include alicyclic isocyanate, aliphatic isocyanate, aromatic isocyanate, and heterocyclic isocyanate.
  • the isocyanate compound (C) can contain these dimers, trimers, burettes, and prepolymers.
  • alicyclic isocyanates include isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, dicyclohexyldimethylmethane isocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 3,8-bis ( Isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclodecane, 4,8-bis (isocyanatomethyl) tricyclodecane, 4,9-bis (isocyanatomethyl) tricyclodecane, etc.
  • Aliphatic isocyanates include 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, lysine diisocyanatomethyl ester Lysine triisocyanate, m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalene, 1,3,5-tris (isocyanatomethyl) benzene, bis (Isocyanatomethyl) sulfide, bis (isocyanatomethyl) sulfide, bis (isocyanatomethyl) disulfide, bis (isocyanatoethyl) disulfide, bis (isocyanatomethylthio) methane, bis (isocyanato Natoechiruchi
  • aromatic isocyanates include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, etc., and tolylene diisocyanate is 2,4-tolylene diisocyanate.
  • tolylene diisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • heterocyclic isocyanate examples include 2,5-diisocyanatothiophene, 2,5-bis (isocyanatomethyl) thiophene, 2,5-diisocyanatotetrahydrothiophene, 2,5-bis (isocyanatomethyl) tetrahydrothiophene, 3,4-bis (isocyanatomethyl) tetrahydrothiophene, 2,5-diisocyanato-1,4-dithiane, 2,5-bis (isocyanatomethyl) -1,4-dithiane, 4,5-diisocyanato-1, Examples include 3-dithiolane and 4,5-bis (isocyanatomethyl) -1,3-dithiolane.
  • isocyanate compound (C) 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,6- Hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, m-xylylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, 2 , 5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane
  • 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2. 2.1] Isocyanate having one or more cyclic structures selected from 1-heptane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and m-xylylene diisocyanate It is preferable to use a compound in combination with a C 4-11 aliphatic isocyanate compound having no cyclic structure.
  • 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanatomethyl) bicyclo- are used as the isocyanate compound (C). It is more preferable to use in combination an isocyanate compound having one or more cyclic structures selected from [2.2.1] -heptane and a C 4-11 aliphatic isocyanate compound having no cyclic structure.
  • the polymerizable composition for an optical material of the present embodiment includes 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanato) as the isocyanate compound (C).
  • 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanato) as the isocyanate compound (C).
  • One selected from methyl) bicyclo- [2.2.1] -heptane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and m-xylylene diisocyanate A combination of the above compounds with 1,6-hexamethylene diisocyanate, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, and pentaerythritol tetrakis (3
  • the polymerizable composition for an optical material of the present embodiment includes 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis as the isocyanate compound (C).
  • the thiol compound (A) and the isocyanate compound (C) are preferably the following combinations (1) to (4), more preferably the combinations (1) and (2), and the combination (1 Is particularly preferred.
  • ⁇ Combination (1) Thiol compound (A): 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and pentaerythritol tetrakis (3-mercaptopropionate)
  • a thiol compound (D) that is the same as or different from the thiol compound (A) used in step a1 may be added separately.
  • the isocyanate compound (C) can be mixed after mixing the mixed solution obtained in the step a1 and the thiol compound (D), and the mixed solution of the isocyanate compound (C) and the thiol compound (D) is mixed in the step a1.
  • the thiol compound (D) can be added after mixing the mixed liquid obtained in step a1 and the isocyanate compound (C).
  • the thiol compound (D) is a compound having two or more mercapto groups in the molecule as in the thiol compound (A), and examples thereof include an aliphatic thiol compound and an aromatic thiol compound. Specific compounds are as listed in the description of step a1.
  • the thiol compound (D) preferably includes an aliphatic polythiol compound having at least one ester bond in the molecule.
  • the aliphatic polythiol compound having an ester bond in the molecule include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tris (3-mercaptopropionate), pentaerythritol di (3-mercaptopropionate), Dipentaerythritol hexa (3-mercaptopropionate), dipentaerythritol penta (3-mercaptopropionate), dipentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), tri Methylolpropane tris (3-mercaptopropionate), trimethylolpropane tris (2-mercaptoacetate), ethylene glycol bis (3-
  • the molar ratio of the total amount of mercapto groups in the thiol compound (A) and the thiol compound (D) to the total amount of isocyanato groups in the isocyanate compound (C) is in the range of 0.8 to 1.2. Yes, preferably in the range of 0.85 to 1.15, more preferably in the range of 0.9 to 1.1. Within the above range, a molded article suitably used as an optical material, particularly as a plastic lens material for spectacles, can be obtained.
  • the polymerizable composition for an optical material of the present embodiment includes adjustment of various physical properties such as optical properties, impact resistance, specific gravity and the like of the obtained molded product, and adjustment of handling properties of each component of the polymerizable composition.
  • a modifier can be added within a range not impairing the effects of the present invention.
  • the modifier examples include olefin compounds including episulfide compounds, alcohol compounds, amine compounds, epoxy compounds, organic acids and anhydrides thereof, (meth) acrylate compounds, and the like. When it does not contain a hydroxyl group, it is preferable from the viewpoint of generation of unevenness during lens polymerization and dyeability.
  • the polymerizable composition for an optical material includes an internal mold release agent, a chain extender, a crosslinking agent, a light stabilizer, an ultraviolet absorber, and an antioxidant according to the purpose, as in a known molding method.
  • Various additives such as anti-coloring agents, oil-soluble dyes, fillers, and adhesion improvers may be added.
  • An acidic phosphate ester can be used as the internal mold release agent.
  • acidic phosphoric acid esters include phosphoric acid monoesters and phosphoric acid diesters, which can be used alone or in combination of two or more.
  • the polymerizable composition for an optical material of the present embodiment includes a compound (A), a compound (B) and a compound (C), and further contains a compound (D) and other additives as necessary.
  • step a2 the temperature when preparing the polymerizable composition by mixing the mixed solution obtained in step a1, the isocyanate compound (C), the thiol compound (D) as required, and other additives is usually 25. It is carried out at a temperature below °C From the viewpoint of the pot life of the polymerizable composition, it may be preferable that the temperature is further lowered. However, if the solubility of the internal mold release agent and additives in the polymerizable composition is not good, it can be heated in advance and dissolved in the polymerizable composition, the modifier and the like.
  • the haze of the obtained polymerizable composition for an optical material is measured according to JIS K 7136 (ISO 14782), and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less, and still more preferably. Can be made 0.015 or less, particularly preferably 0.01 or less.
  • the haze of a polymeric composition exceeds the said range, it can adjust so that a haze may become the said range by operation, such as adjustment of mixing time and stirring speed.
  • operation such as adjustment of mixing time and stirring speed.
  • the causative substance affecting the haze is not clear, the presence of a trace amount of impurities derived from the thiol compound (A) and / or the tin compound (B) is assumed. This operation can reduce the amount of impurities in the polymerizable composition, and as a result, haze is considered to decrease.
  • the filtering step examples include a step of filtering with a 1 ⁇ m PTFE filter.
  • the haze of the polymerizable composition becomes a predetermined value or less, it can be used as the polymerizable composition for an optical material of the present embodiment.
  • the manufacturing method b includes the following steps.
  • Step b1 The isocyanate compound (C) and the tin compound (B) are mixed.
  • Step b2 The thiol compound (A) and the mixed solution obtained in step b1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • each step will be described.
  • Step b1 As the isocyanate compound (C) and the tin compound (B), the same compounds as in production method a can be used.
  • the tin compound (B) is 0.010 to 0.620 parts by weight, preferably 0.020 to 0.430 parts by weight, more preferably 0.030 to 0.230 parts by weight, based on 100 parts by weight of the isocyanate compound (C). Can be used.
  • the mixing condition of the isocyanate compound (C) and the tin compound (B) is not particularly limited, but can be performed at room temperature (25 ° C.) in a dry air or an inert gas atmosphere.
  • Step b2 the thiol compound (A) and the mixed solution obtained in step b1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • the thiol compound (A) a compound similar to the production method a can be used, and further, the thiol compound (A) including the thiol compound (D) can be used.
  • the other components described in the step a2 can be added to the polymerizable composition for an optical material of the present embodiment.
  • the polymerizable composition for an optical material of the present embodiment includes 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanato) as the isocyanate compound (C).
  • One selected from methyl) bicyclo- [2.2.1] -heptane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and m-xylylene diisocyanate A combination of the above compound and hexamethylene diisocyanate, and thiol compound (A) containing pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimer
  • the mixing conditions of the thiol compound (A) and the mixed solution obtained in step b1 are not particularly limited, but can be performed at room temperature (25 ° C.) in dry air or in an inert gas atmosphere.
  • the haze of the obtained polymerizable composition for an optical material is measured according to JIS K 7136 (ISO 14782), and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less, and still more preferably. Can be made 0.015 or less, particularly preferably 0.01 or less.
  • the haze of a polymeric composition exceeds the said range, it can adjust so that a haze may become the said range by operation, such as adjustment of mixing time and stirring speed.
  • operation such as adjustment of mixing time and stirring speed.
  • the causative substance affecting the haze is not clear, the presence of a trace amount of impurities derived from the thiol compound (A) and / or the tin compound (B) is assumed. This operation can reduce the amount of impurities in the polymerizable composition, and as a result, haze is considered to decrease.
  • the filtering step examples include a step of filtering with a 1 ⁇ m PTFE filter.
  • the haze of the polymerizable composition becomes a predetermined value or less, it can be used as the polymerizable composition for an optical material of the present embodiment.
  • the molar ratio of the total amount of mercapto groups in the thiol compound (A) to the total amount of isocyanato groups in the isocyanate compound (C) is in the range of 0.8 to 1.2, preferably 0.8. It is in the range of 85 to 1.15, more preferably in the range of 0.9 to 1.1. Within the above range, a molded article suitably used as an optical material, particularly as a plastic lens material for spectacles, can be obtained.
  • the manufacturing method of the polymeric composition for optical materials of this embodiment includes the following processes.
  • Step c1 A thiol compound (A) and a tin compound (B) are mixed to obtain a mixed solution having a haze of 0.05 or less.
  • Step c2 The isocyanate compound (C) and the mixed liquid obtained in the step c1 are mixed to obtain a polymerizable composition for an optical material.
  • each step will be described.
  • Step c1 First, a mixed solution of a thiol compound (A) and a tin compound (B) is obtained. Step c1 can be performed in the same manner as step a1 of manufacturing method a in the first embodiment. In addition, the same compound as the manufacturing method a of 1st Embodiment can be used for a thiol compound (A) and a tin compound (B).
  • the tin compound (B) is 0.018 to 1.080 parts by weight, preferably 0.035 to 0.750 parts by weight, more preferably 0.050 to 0.400 parts per 100 parts by weight of the thiol compound (A). It can be used in parts by weight.
  • the mixing conditions of the tin compound (B) and the thiol compound (A) are not particularly limited, but can be performed at room temperature (25 ° C.) under dry air or an inert gas atmosphere.
  • the haze of the obtained mixed solution is measured in accordance with JIS K 7136 (ISO 14782) and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less, and still more preferably 0.015 or less. Particularly preferably, it can be 0.01 or less.
  • a mixed solution having a haze in the range can be used in step c2.
  • the haze of the solution in which the isocyanate compound (C) or the other component is dissolved in the isocyanate compound (C), which is added to the liquid mixture in step c2 is almost 0, and the haze of the polymerizable composition for optical materials is Therefore, it is important to manage the haze of the mixed solution.
  • a molded article excellent in impact resistance can be stably obtained, and the yield of products such as optical materials is improved.
  • the haze of a liquid mixture exceeds the said range, it can adjust so that a haze may become the said range by operation, such as adjustment of mixing time and stirring speed.
  • operation such as adjustment of mixing time and stirring speed.
  • the causative substance affecting the haze is not clear, the presence of a trace amount of impurities derived from the thiol compound (A) and / or the tin compound (B) is assumed.
  • This operation can reduce the amount of impurities in the mixed solution, and as a result, haze is considered to decrease.
  • Step c2 The mixed liquid obtained in step c1 and the isocyanate compound (C) are mixed to prepare a polymerizable composition for an optical material.
  • Step c2 can be performed in the same manner as step a2 of manufacturing method a in the first embodiment.
  • the isocyanate compound (C) can mention the compound similar to the manufacturing method a of 1st Embodiment.
  • a thiol compound (D) can be used and the compound similar to the manufacturing method a of 1st Embodiment can be mentioned.
  • the mixing conditions of the liquid mixture obtained by process c1 and isocyanate compound (C) are not specifically limited, It can carry out in dry air or inert gas atmosphere at room temperature (25 degreeC).
  • the haze of the isocyanate compound (C) or a solution in which the other components are dissolved in the isocyanate compound (C) is almost 0, and the haze of the polymerizable composition for an optical material is not greatly affected.
  • the haze of the polymerizable composition for an optical material exceeds the above range, further mixing and adjusting the haze to be within the above range by operations such as adjusting the mixing time and stirring speed.
  • the haze of the polymerizable composition for an optical material in the present embodiment is measured according to JIS K 7136 (ISO 14782) and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less. More preferably, it can be 0.015 or less, and particularly preferably 0.01 or less.
  • the molar ratio of the total amount of mercapto groups in the thiol compound (A) and the thiol compound (D) to the total amount of isocyanato groups in the isocyanate compound (C) is in the range of 0.8 to 1.2. Yes, preferably in the range of 0.85 to 1.15, more preferably in the range of 0.9 to 1.1. Within the above range, a molded article suitably used as an optical material, particularly as a plastic lens material for spectacles, can be obtained.
  • the polymerizable composition for an optical material of the present embodiment includes 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanato) as the isocyanate compound (C).
  • 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanato) as the isocyanate compound (C).
  • the manufacturing method of the polymeric composition for optical materials of this embodiment includes the following processes.
  • Step d1 The isocyanate compound (C) and the tin compound (B) are mixed to obtain a mixed solution having a haze of 0.05 or less.
  • Step d2 The thiol compound (A) and the mixed liquid obtained in step d1 are mixed to obtain a polymerizable composition for an optical material.
  • each step will be described.
  • Step d1 First, a mixed liquid of an isocyanate compound (C) and a tin compound (B) is obtained. Step d1 can be performed in the same manner as step b1 of manufacturing method b in the first embodiment. Examples of the isocyanate compound (C) and the tin compound (B) include the same compounds as in the production method a of the first embodiment.
  • the tin compound (B) is 0.010 to 0.620 parts by weight, preferably 0.020 to 0.430 parts by weight, more preferably 0.030 to 0.230 parts by weight, based on 100 parts by weight of the isocyanate compound (C). Can be used.
  • the mixing condition of the isocyanate compound (C) and the tin compound (B) is not particularly limited, but can be performed at room temperature (25 ° C.) in a dry air or an inert gas atmosphere.
  • the haze of the obtained mixed solution is measured in accordance with JIS K 7136 (ISO 14782) and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less, and still more preferably 0.015 or less. Particularly preferably, it can be 0.01 or less.
  • a mixed solution having a haze in the above range can be used in step d2.
  • the haze of the thiol compound (A) or a solution in which other components are dissolved in the thiol compound (A) added to the mixed solution in step d2 is almost 0, and the haze of the polymerizable composition for optical materials is Therefore, it is important to manage the haze of the mixed solution.
  • a molded article excellent in impact resistance can be stably obtained, and the yield of products such as optical materials is improved.
  • the haze of a liquid mixture exceeds the said range, it can adjust so that a haze may become the said range by operation, such as adjustment of mixing time and stirring speed.
  • operation such as adjustment of mixing time and stirring speed.
  • This operation can reduce the amount of impurities in the mixed solution, and as a result, haze is considered to decrease.
  • the filtration include filtration using a 1 ⁇ m PTFE filter.
  • Step d2 the thiol compound (A) and the mixed solution obtained in step d1 are mixed to obtain a polymerizable composition for an optical material having a haze of 0.05 or less.
  • the thiol compound (A) the same compound as the production method a in the first embodiment can be used, and the thiol compound (D) can be used as the thiol compound (A).
  • the other component described in the process a2 of the manufacturing method a in 1st Embodiment can be added to the polymeric composition for optical materials of this embodiment.
  • the mixing conditions of the thiol compound (A) and the mixed solution obtained in step d1 are not particularly limited, but can be performed at room temperature (25 ° C.) in dry air or in an inert gas atmosphere.
  • the haze of the thiol compound (A) or a solution obtained by dissolving other components in the thiol compound (A) is almost 0, and does not significantly affect the haze of the polymerizable composition for optical materials.
  • the haze of the polymerizable composition for an optical material exceeds the above range, further mixing and adjusting the haze to be within the above range by operations such as adjusting the mixing time and stirring speed.
  • the haze of the polymerizable composition for an optical material in the present embodiment is measured according to JIS K 7136 (ISO 14782) and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less. More preferably, it can be 0.015 or less, and particularly preferably 0.01 or less.
  • the molar ratio of the total amount of mercapto groups in the thiol compound (A) to the total amount of isocyanato groups in the isocyanate compound (C) is in the range of 0.8 to 1.2, preferably 0.8. It is in the range of 85 to 1.15, more preferably in the range of 0.9 to 1.1. Within the above range, a molded article suitably used as an optical material, particularly as a plastic lens material for spectacles, can be obtained.
  • the polymerizable composition for an optical material of the present embodiment includes 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2,6-bis (isocyanato) as the isocyanate compound (C).
  • One selected from methyl) bicyclo- [2.2.1] -heptane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and m-xylylene diisocyanate A combination of the above compound and hexamethylene diisocyanate, and thiol compound (A) containing pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimer
  • a method for producing a molded body made of a polythiourethane resin is not particularly limited, and cast polymerization is an example of a preferred production method.
  • a polymerizable composition is injected into a casting mold in which two molding molds are held by a gasket or a tape.
  • the polymerization conditions are not limited because the conditions vary greatly depending on the polymerizable composition, the type and amount of the catalyst used, the shape of the mold, etc., but it is approximately 1-50 hours at a temperature of ⁇ 50 to 150 ° C. Done. It is preferable to hold or gradually raise the temperature within a temperature range of 5 to 150 ° C. to cure, but it can be set as appropriate. Then, the resin obtained by polymerization and curing is released from the casting mold to obtain a molded body.
  • the molded body of this embodiment may be subjected to a treatment such as annealing as necessary.
  • the treatment temperature is usually 50 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C.
  • the polymerizable composition for an optical material of the present embodiment can be obtained as molded articles having various shapes by changing the mold at the time of casting polymerization.
  • the molded body of the present embodiment can be used as various optical materials by forming a desired shape and providing a coat layer or other members formed as necessary.
  • the molded body of the present embodiment has a high refractive index and high transparency, and is an optical molded body such as a spectacle lens, a camera lens, a light emitting diode (LED), a prism, an optical fiber, an information recording substrate, a filter, and a light emitting diode. It can be used for these optical materials. In particular, it is suitable as an optical material for lenses such as eyeglass lenses and camera lenses, and light emitting diodes.
  • the molded body of the present embodiment may be used with a coating layer on one side or both sides as necessary.
  • the coating layer include a hard coat layer, an antireflection film layer, an antifogging coat film layer, an antifouling layer, a water repellent layer, a primer layer, and a photochromic layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • the spectacle lens of this embodiment is a hard coat layer and / or an antireflection coat layer formed on at least one surface of a molded body (lens) obtained by curing the polymerizable composition for optical materials of this embodiment. And can be provided. Furthermore, the other layers described above can be provided. Moreover, in the spectacle lens obtained from the specific thiol compound (A) and the isocyanate compound (C), even if it does not have a primer layer between the base material layer and the hard coat layer or the antireflection coat layer, it has impact resistance. May be better. That is, the hard coat layer and / or the antireflection coat layer can be directly formed on one surface of the base material layer. Since it is not necessary to provide a primer layer, the productivity of spectacle lenses is improved.
  • the hard coat layer is provided on at least one surface of a molded body (lens) obtained by curing the polymerizable composition for an optical material of the present embodiment, and the lens surface has scratch resistance, abrasion resistance, and moisture resistance. It is a coating layer intended to give functions such as warm water resistance, heat resistance and light resistance.
  • the hard coat layer is composed of at least one metal oxide selected from the group consisting of silicon, titanium, zirconium, tin, aluminum, tungsten, and antimony, and an alkyl group, an allyl group, an alkoxy group, a methacryloxy group, an acryloxy group, It is obtained from a composition containing a silane compound having at least one functional group selected from an epoxy group, an amino group, an isocyanato group, and a mercapto group, and a hydrolyzate thereof.
  • the hard coat composition may contain a curing agent for the purpose of promoting curing.
  • a curing agent for the purpose of promoting curing.
  • the curing agent include inorganic, organic acid, amine, metal complex, organic acid metal salt, metal chloride and the like.
  • Specific examples of the solvent include water, alcohols, ethers, ketones, esters and the like.
  • the hard coat layer is formed by applying a hard coat composition to the surface of the molded body by a known coating method such as spin coating or dip coating, and then curing.
  • a known coating method such as spin coating or dip coating
  • the curing method include thermal curing, a curing method by irradiation with energy rays such as ultraviolet rays and visible rays, and the like.
  • heat-curing it is preferably carried out at 80 to 120 ° C. for 1 to 4 hours.
  • the refractive index of the hard coat layer is preferably in the range of ⁇ 0.1 in the difference in refractive index from the molded body.
  • the surface of the substrate is preferably ultrasonically cleaned with an alkaline aqueous solution so as to satisfy the following conditions (a) to (d).
  • (B) The treatment temperature of the alkaline aqueous solution is 30 to 60 ° C.
  • (C) Processing time is 3-5 minutes
  • (D) The ultrasonic frequency is 20 to 30 kHz.
  • the surface of the molded article may be dried for 5 minutes to 20 minutes in the range of 50 ° C. to 80 ° C. with alcohols such as distilled water and isopropanol.
  • the molded product obtained from the polymerizable composition of the present embodiment is excellent in alkali resistance, and generation of white turbidity or the like is suppressed even after washing with an aqueous alkali solution.
  • the anti-reflection layer is provided on at least one surface of the molded body (lens), lowers the reflectance resulting from the difference in refractive index between air and the molded body, greatly reduces the reflection of light on the surface of the plastic lens, and transmits the transmittance. It is a coating layer for the purpose of enhancing.
  • the antireflection layer in this embodiment is a low refractive index film layer containing silicon oxide, and one or more selected from titanium oxide, zirconium oxide, aluminum oxide, zinc oxide, cerium oxide, antimony oxide, tin oxide, and tantalum oxide. Each of the layers may be a single layer or a multilayer structure.
  • the antireflection layer has a multilayer structure
  • 5 to 7 layers are preferably laminated.
  • the film thickness is preferably from 100 to 300 nm, more preferably from 150 to 250 nm.
  • Examples of the method for forming the multilayer antireflection layer include vacuum deposition, sputtering, ion plating, ion beam assist, and CVD.
  • an antifogging coating film layer On the antireflection film layer, an antifogging coating film layer, a contamination prevention layer, and a water repellent layer may be formed as necessary.
  • a method for forming the antifogging coat layer, the antifouling layer, and the water repellent layer there is no particular limitation on the treatment method, treatment material, and the like as long as the antireflection function is not adversely affected.
  • a coating treatment method, antifouling treatment method, water repellent treatment method, and material can be used.
  • a method of covering the surface with a surfactant a method of adding a hydrophilic film to the surface to make it water-absorbing, a method of covering the surface with fine irregularities and increasing water absorption, Examples thereof include a method of absorbing water using photocatalytic activity and a method of preventing water droplet adhesion by applying a super water-repellent treatment.
  • a method of forming a water repellent treatment layer by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or a method of forming a water repellent treatment layer by coating after dissolving the fluorine-containing silane compound in a solvent Etc a method of forming a water repellent treatment layer by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or a method of forming a water repellent treatment layer by coating after dissolving the fluorine-containing silane compound in a solvent Etc.
  • Each of these coating layers is an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays, an infrared absorber for the purpose of protecting the eyes from infrared rays, a light stabilizer, an antioxidant, and a lens for the purpose of improving the weather resistance of the lens.
  • an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays
  • an infrared absorber for the purpose of protecting the eyes from infrared rays
  • a light stabilizer for the purpose of protecting the eyes from infrared rays
  • an antioxidant for the purpose of improving the weather resistance of the lens.
  • a lens for the purpose of improving the weather resistance of the lens.
  • dyes and pigments, photochromic dyes and photochromic pigments, antistatic agents, and other known additives for enhancing the performance of the lens may be used in combination.
  • various leveling agents for the purpose of improving coating properties may be used.
  • the plastic lens using the polymerizable composition for an optical material of the present embodiment may be dyed using a dye according to the purpose for the purpose of imparting fashionability or photochromic properties.
  • the lens can be dyed by a known dyeing method, it is usually carried out by the following method.
  • the lens is heated as necessary to obtain the dye.
  • the pigment used in the dyeing process is not particularly limited as long as it is a known pigment, but usually an oil-soluble dye or a disperse dye is used.
  • the solvent used in the dyeing process is not particularly limited as long as the dye used is soluble or can be uniformly dispersed.
  • a surfactant for dispersing the dye in the dyeing solution or a carrier for promoting dyeing may be added as necessary.
  • a dyeing bath is prepared by dispersing a dye and an optionally added surfactant in water or a mixture of water and an organic solvent, an optical lens is immersed in the dyeing bath, and a predetermined temperature is set. And dye for a predetermined time.
  • the dyeing temperature and time vary depending on the desired color density, but it is usually from 120 ° C. or less to several minutes to several tens of hours, and the dye concentration in the dye bath is 0.01 to 10% by weight. Moreover, when dyeing is difficult, you may carry out under pressure.
  • the post-dye annealing process which is performed as necessary, is a process of heat-treating the dyed lens fabric.
  • the heat treatment is performed by removing water remaining on the surface of the lens fabric dyed in the dyeing process with a solvent or air-drying the solvent, and then, for example, in a furnace such as an infrared heating furnace in an atmospheric atmosphere or a resistance heating furnace. Let it stay for a predetermined time.
  • color loss of the dyed lens fabric is prevented (color loss prevention treatment), and moisture that has penetrated into the lens fabric during dyeing is removed.
  • an alcohol compound is not included, there is little unevenness after dyeing.
  • a polarizing lens can be obtained by laminating a molded product obtained by curing the polymerizable composition of this embodiment on at least one surface of a polarizing film.
  • a manufacturing method is not specifically limited, A well-known method is employable.
  • the polarizing film include thermoplastic polyesters such as polyethylene terephthalate and polyvinyl alcohol.
  • the thiol compound (A), the tin compound (B), and the isocyanate compound (C) can be mixed together.
  • the haze of the obtained polymerizable composition for an optical material is measured according to JIS K 7136 (ISO 14782), and is 0.05 or less, preferably 0.03 or less, more preferably 0.025 or less, and still more preferably. Can be made 0.015 or less, particularly preferably 0.01 or less.
  • the haze of a polymeric composition exceeds the said range, it can adjust so that a haze may become the said range by operation, such as adjustment of mixing time and stirring speed.
  • the embodiment in which the entire amount of the tin compound (B) is mixed with either the thiol compound (A) or the isocyanate compound (C) has been described, but some of the tin compounds (B) May be added to the thiol compound (A), and the remaining tin compound (B) may be added to the isocyanate compound (C).
  • a tin compound (B) can be added to at least 1 type of thiol compound.
  • a master batch of a tin compound (B) and a thiol compound (A) or an isocyanate compound (C) is prepared and mixed with another compound, whereby the tin compound (B) is mixed with another compound. It can also be mixed with compounds.
  • Example 1 29.19 parts by weight of a mixture of 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, Hexamethylene diisocyanate 19.48 parts by weight, UV absorber (manufactured by Kyodo Yakuhin Co., Ltd., trade name Biosorb 583) 1.50 parts by weight, internal mold release agent (acidic phosphate ester, Stepan Co., trade name ZEREC UN) 10 parts by weight were mixed and dissolved at 20 ° C.
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd., trade name Biosorb 583
  • internal mold release agent acidic phosphate ester, Stepan Co., trade name ZEREC UN
  • the mixed solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and poured into a mold composed of a glass mold and a tape.
  • This mold was put into a polymerization oven and polymerized by gradually raising the temperature from 25 ° C. to 120 ° C. over 21 hours. After completion of the polymerization, the mold was taken out from the oven. The releasability of the molded product from the mold was good.
  • the obtained molded body was further annealed at 130 ° C. for 2 hours. When the ball drop test was performed on the molded body, the average weight without damage was 61 g. The results are shown in Table 1.
  • Example 2 27.85 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, dimethyltin dichloride 99.8% and dibutyltin dichloride 0.2% by Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 1 except that 0.04 part by weight was mixed at 25 ° C. for 1 hour to obtain a second mixed solution. In addition, it was 0.015 when the haze of the obtained 2nd liquid mixture was measured.
  • the average value of the weight that was not damaged was 81 g. The results are shown in Table 1.
  • Example 3 27.85 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, dimethyltin dichloride 99.8% and dibutyltin dichloride 0.2% by Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 1 except that 0.04 part by weight was mixed at 25 ° C. for 2 hours to obtain a second mixed solution. In addition, it was 0.00 when the haze of the obtained 2nd liquid mixture was measured.
  • the average value of the weight that was not damaged was 83 g. The results are shown in Table 1.
  • Example 4 27.85 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, dimethyltin dichloride 99.8% and dibutyltin dichloride 0.2% by Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 1 except that 0.04 part by weight was mixed at 25 ° C. for 24 hours to obtain a second mixed solution. In addition, it was 0.00 when the haze of the obtained 2nd liquid mixture was measured.
  • the average weight not damaged was 84 g. The results are shown in Table 1.
  • Example 5 29.19 parts by weight of a mixture of 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, Hexamethylene diisocyanate 19.48 parts by weight, UV absorber (manufactured by Kyodo Yakuhin Co., Ltd., trade name Biosorb 583) 1.50 parts by weight, internal mold release agent (acidic phosphate ester, Stepan Co., trade name ZEREC UN) 10 parts by weight were mixed and dissolved at 20 ° C. over 1 hour. It was 0.00 when the haze of the obtained liquid mixture was measured.
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd., trade name Biosorb 583
  • internal mold release agent acidic phosphate ester, Stepan Co., trade name ZEREC UN
  • the 1st liquid mixture and the 2nd liquid mixture were mixed at 15 degreeC, and it was set as the uniform solution. It was 0.035 when the haze of the obtained liquid mixture was measured.
  • the mixed solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and poured into a mold composed of a glass mold and a tape. This mold was put into a polymerization oven and polymerized by gradually raising the temperature from 25 ° C. to 120 ° C. over 21 hours. After completion of the polymerization, the mold was taken out from the oven. The releasability of the molded product from the mold was good. The obtained molded body was further annealed at 130 ° C. for 2 hours. When the ball drop test was performed on the molded body, the average weight without damage was 61 g. The results are shown in Table 1.
  • Example 6 27.85 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, dimethyltin dichloride 99.8% and dibutyltin dichloride 0.2% by Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 5 except that 0.04 part by weight was mixed at 25 ° C. for 1 hour to obtain a second mixed solution.
  • the average value of the weight which was not damaged was 81 g. The results are shown in Table 1.
  • Example 7 27.85 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, dimethyltin dichloride 99.8% and dibutyltin dichloride 0.2% by Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 5 except that 0.04 part by weight was mixed at 25 ° C. for 2 hours to obtain a second mixed solution.
  • 0.04 part by weight was mixed at 25 ° C. for 2 hours to obtain a second mixed solution.
  • the average value of the weight which was not damaged was 83g. The results are shown in Table 1.
  • Example 8 27.85 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, dimethyltin dichloride 99.8% and dibutyltin dichloride 0.2% by Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 5 except that 0.04 part by weight was mixed at 25 ° C. for 24 hours to obtain a second mixed solution.
  • 0.04 part by weight was mixed at 25 ° C. for 24 hours to obtain a second mixed solution.
  • the average value of the weight which was not damaged was 84g. The results are shown in Table 1.
  • Example 9 50.6 parts by weight of a mixture of 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, 1.5 parts by weight of an ultraviolet absorber (trade name Biosorb 583, manufactured by Kyodo Yakuhin Co., Ltd.), 0.1 parts by weight of an internal mold release agent (acidic phosphate ester, manufactured by Stepan, trade name Zelec UN) at 20 ° C. The mixture was dissolved for 2 hours. It was 0.00 when the haze of the obtained liquid mixture was measured.
  • an ultraviolet absorber trade name Biosorb 583, manufactured by Kyodo Yakuhin Co., Ltd.
  • an internal mold release agent acidic phosphate ester, manufactured by Stepan, trade name Zelec UN
  • the 1st liquid mixture and the 2nd liquid mixture were mixed at 15 degreeC, and it was set as the uniform solution. It was 0.035 when the haze of the obtained liquid mixture was measured.
  • the mixed solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and poured into a mold composed of a glass mold and a tape. This mold was put into a polymerization oven and polymerized by gradually raising the temperature from 25 ° C. to 120 ° C. over 21 hours. After completion of the polymerization, the mold was taken out from the oven. The releasability of the molded product from the mold was good. The obtained molded body was further annealed at 130 ° C. for 2 hours. When a ball drop test was performed on the molded product, the average weight without damage was 34 g. The results are shown in Table 1.
  • Example 10 25.5 parts by weight of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, Nestin P (Lot 50607, 99.8% dimethyltin dichloride and 0.2% dibutyltin dichloride from Honjo Chemical Co., Ltd.)
  • the mixture was prepared in the same manner as in Example 9 except that 0.035 parts by weight of the mixture was mixed at 25 ° C. for 2 hours to obtain a second mixed solution.
  • the average value of the weight which was not damaged was 39g. The results are shown in Table 1.
  • the mixed solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and poured into a mold composed of a glass mold and a tape.
  • This mold was put into a polymerization oven and polymerized by gradually raising the temperature from 25 ° C. to 120 ° C. over 21 hours. After completion of the polymerization, the mold was taken out from the oven. The releasability of the molded product from the mold was good.
  • the obtained molded body was further annealed at 130 ° C. for 2 hours. When a ball drop test was performed on the molded body, the average value of the weight that was not damaged was 24 g. The results are shown in Table 1.
  • Example 11 49.3 parts by weight of a polythiol compound which is a mixture of 5,7 (or 4,7 or 4,8) -dimercaptomethyl-1,11-mercapto-3,6,9-trithiaundecane and Honjo Chemical Co., Ltd. )
  • Nestin P (lot 50607, a mixture of 99.8% dimethyltin dichloride and 0.2% dibutyltin dichloride) was mixed at 25 ° C. for 24 hours to obtain a second mixture.
  • the same procedure as in Comparative Example 1 was performed. In addition, it was 0.00 when the haze of the obtained 2nd liquid mixture was measured.
  • the mixed solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and poured into a mold composed of a glass mold and a tape.
  • This mold was put into a polymerization oven and polymerized by gradually raising the temperature from 25 ° C. to 120 ° C. over 21 hours. After completion of the polymerization, the mold was taken out from the oven. The releasability of the molded product from the mold was good.
  • the obtained molded body was further annealed at 130 ° C. for 2 hours. When the falling ball test was performed on the molded body, the average value of the weight that was not damaged was 68 g. The results are shown in Table 1.
  • Example 12 56.37 parts by weight of pentaerythritol tetrakis (2-mercaptopropionate) and Nestin P (Lot 50607, 99.8% dimethyltin dichloride and 0.2% dibutyltin dichloride) from Honjo Chemical Co., Ltd. 04 parts by weight was mixed at 25 ° C. for 24 hours to obtain a second mixed solution, and was performed in the same manner as in Comparative Example 2. In addition, it was 0.00 when the haze of the obtained 2nd liquid mixture was measured. Moreover, it was 0.00 when the haze of the liquid mixture obtained by mixing the 1st liquid mixture and the 2nd liquid mixture was measured. Moreover, when the falling ball test was done with respect to the obtained molded object, the average value of the weight which was not damaged was 74g. The results are shown in Table 1.
  • a1 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane
  • a2 Pentaerythritol tetrakis (3-mercaptopropionate)
  • a3 5,7 (or 4,7 or 4,8) -dimercaptomethyl-1,11-mercapto-3,6,9-trithiaundecane mixture
  • b1 Mixture of 99.8% dimethyltin dichloride and 0.2% dibutyltin dichloride
  • c1 Mixture of 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1]
  • heptane c2 Hexamethylene diisocyanate
  • c3 m-xylylene diisocyanate
  • d1 UV absorber (trade name Biosorb 583, manufactured by Kyodo Yakuhin Co., Ltd.)

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Eyeglasses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本発明の光学材料用重合性組成物の製造方法は、(A)メルカプト基を二つ以上有する一種以上のチオール化合物と、(B)一般式(1)で表されるスズ化合物と、(C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を混合する工程を含み、前記工程で得られた光学材料用重合性組成物のヘイズが0.05以下である、光学材料用重合性組成物の製造方法。 (R-Sn-X4-c (1)

Description

光学材料用重合性組成物の製造方法および光学材料用重合性組成物
 本発明は、光学材料用重合性組成物の製造方法および光学材料用重合性組成物に関する。
 プラスチックレンズは、無機レンズに比べ高屈折率、高アッベ数であり、軽量で割れ難く、染色が可能なため眼鏡レンズ、カメラレンズ等の光学材料に急速に普及してきている。
 とりわけ眼鏡レンズはその用途から、(1)高屈折率であること、(2)低分散(高アッベ数)であることといった光学的性能に加え、(3)耐熱性に優れていること、(4)耐衝撃性に優れていること、(5)染色が容易であること、(6)切削加工などの加工性に優れていること、等多くの機能が求められており、これまでにも様々なレンズ用樹脂素材が開発され使用されている。
 その中でも代表的な例として、ポリチオウレタン系樹脂が挙げられ、所定のモノマーからなる重合性組成物が開示されている(特許文献1~4)。
特開平2-270859号公報 特開平3-124722号公報 特開平7-252207号公報 国際公開第2007/020817号パンフレット
 しかしながら、これらの特許文献に記載のポリチオウレタン系樹脂からなる成形体は、耐衝撃性において改善の余地があった。また、耐衝撃性が改善された重合性組成物を見出したとしても、重合性組成物を工業的に多量に調製して、プラスチック眼鏡レンズを工業的に複数製造した場合、耐衝撃性が安定的に発現されない場合があり、その結果、プラスチック眼鏡レンズの製品の歩留りが低下する等の課題があった。
 本発明者らは、上記の課題を解決するために鋭意検討した結果、重合性組成物を調製する際におけるモノマー成分と触媒との混合液や重合性組成物自体の所定の物性値と樹脂成形体の耐衝撃性との間に関係があることを見出し、本発明を完成するに至った。
 本発明は、以下に示すことができる。
[1] (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、(B)一般式(1)で表されるスズ化合物と、(C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を混合し、ヘイズが0.05以下の光学材料用重合性組成物を得る工程を含む、光学材料用重合性組成物の製造方法;
Figure JPOXMLDOC01-appb-C000007
 
(一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)。
[2] (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、(B)一般式(1)で表されるスズ化合物とを混合する工程と、
 (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、前記工程により得られた混合液と、を混合して光学材料用重合性組成物を得る工程と、
を含み、
 (A)成分および(B)成分を含む前記混合液のヘイズが0.05以下である、光学材料用重合性組成物の製造方法;
Figure JPOXMLDOC01-appb-C000008
 
(一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)。
[3] (B)一般式(1)で表されるスズ化合物と、(C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を混合する工程と、
 前記工程により得られた混合液と、(A)メルカプト基を二つ以上有する一種以上のチオール化合物と、を混合して光学材料用重合性組成物を得る工程と、
を含み、
 (B)成分および(C)成分を含む前記混合液のヘイズが0.05以下である、光学材料用重合性組成物の製造方法;
Figure JPOXMLDOC01-appb-C000009
 
(一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)。
[4] イソシアネート化合物(C)が、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含む、[1]~[3]のいずれかに記載の光学材料用重合性組成物の製造方法。
[5] チオール化合物(A)が、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(2-メルカプトアセテート)から選択される少なくとも1種以上の化合物を含む、[1]~[4]のいずれかに記載の光学材料用重合性組成物の製造方法。
[6] (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、
 (B)一般式(1)
Figure JPOXMLDOC01-appb-C000010
 
(一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)
で表されるスズ化合物と、
 (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を含み、
ヘイズが0.05以下である光学材料用重合性組成物。
[7] (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、
 ヘイズが0.05以下である混合液と、を含み、
 前記混合液は、
 (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、
 (B)一般式(1)
Figure JPOXMLDOC01-appb-C000011
 
(一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)
で表されるスズ化合物と、を含む、光学材料用重合性組成物。
[8] (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、
 ヘイズが0.05以下である混合液と、を含み、
 前記混合液は、
 (B)一般式(1)
Figure JPOXMLDOC01-appb-C000012
 
(一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)
で表されるスズ化合物と、
 (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を含む、光学材料用重合性組成物。
[9] イソシアネート化合物(C)が、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含む、[6]~[8]のいずれかに記載の光学材料用重合性組成物。
[10] イソシアネート化合物(C)が、1,6-ヘキサメチレンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含む、[9]に記載の光学材料用重合性組成物。
[11] チオール化合物(A)が、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、およびジエチレングリコールビス(2-メルカプトアセテート)から選択される少なくとも1種以上の化合物を含む、[6]~[10]のいずれかに記載の光学材料用重合性組成物。
[12] チオール化合物(A)が、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)から選択される少なくとも1種以上の化合物を含む、[11]に記載の光学材料用重合性組成物。
[13] レンズ注型用鋳型内に、[6]~[12]のいずれかに記載の光学材料用重合性組成物を注入する工程と、
 前記光学材料用重合性組成物を重合する工程と、
 前記工程により得られた樹脂を前記レンズ注型用鋳型から離型して成形体を得る工程と、を含む、プラスチックレンズの製造方法。
[14] [6]~[12]のいずれかに記載の光学材料用重合性組成物を硬化させてなる成形体。
[15] [14]に記載の成形体からなる光学材料。
[16] [15]に記載の光学材料からなるレンズ。
[17] [16]に記載のレンズからなる眼鏡レンズ。
[18] [16]に記載のレンズと、前記レンズの少なくとも一方の面上に形成されたハードコート層および/または反射防止コート層とを備える、眼鏡レンズ。
[19] [1]~[5]のいずれかに記載の製造方法における工程を含む、光学材料用重合性組成物の混合状態管理方法。
 本発明の光学材料用重合性組成物の製造方法によれば、モノマー成分と触媒であるスズ化合物との混合液や重合性組成物自体のヘイズを管理することにより、耐衝撃性に優れた成形体を得ることが可能な光学材料用重合性組成物を提供することができる。特に、大規模生産において、耐衝撃性に優れた成形体の原料となる重合性組成物を安定して得ることができ、製造安定性に優れた重合性組成物の製造方法を提供することができる。
 また、本発明の光学材料用重合性組成物は所定のヘイズを有していることから、耐衝撃性に優れた成形体を安定的に得ることができ、光学材料等の製品の歩留まりが向上する。
 以下、本発明の光学材料用重合性組成物の製造方法および光学材料用重合性組成物を、第1~第3実施形態により説明する。なお、本発明の光学材料用重合性組成物の製造方法は、光学材料用重合性組成物の混合状態管理方法と表現することもできる。
<第1実施形態>
 本実施形態の光学材料用重合性組成物の製造方法は、
(A)メルカプト基を二つ以上有する一種以上のチオール化合物(以下、チオール化合物(A))と、(B)一般式(1)で表されるスズ化合物(以下、スズ化合物(B))と、(C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物(以下、イソシアネート化合物(C))と、を混合する工程を含む。そして、当該工程において、得られた光学材料用重合性組成物のヘイズを0.05以下にすることができる。
 当該製造方法としては、具体的には、以下に示すような、工程a1および工程a2を含む製造方法a、または工程b1および工程b2を含む製造方法bを挙げることができる。
 製造方法a
工程a1:チオール化合物(A)とスズ化合物(B)とを混合する。
工程a2:イソシアネート化合物(C)と、工程a1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
 製造方法b
工程b1:イソシアネート化合物(C)とスズ化合物(B)とを混合する。
工程b2:チオール化合物(A)と、工程b1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
 まず、製造方法aについて説明する。
(製造方法a)
 製造方法aは下記の工程を含む。
工程a1:チオール化合物(A)とスズ化合物(B)とを混合する。
工程a2:イソシアネート化合物(C)と、工程a1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
 以下、各工程について説明する。
[工程a1]
 まず、チオール化合物(A)と、スズ化合物(B)との混合液を得る。
(チオール化合物(A))
 チオール化合物(A)は、分子内に2以上のメルカプト基を有する化合物であって、例えば、脂肪族チオール化合物、芳香族チオール化合物等が挙げられる。
 脂肪族チオール化合物としては、例えば、メタンジチオール、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,2-シクロヘキサンジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メチルシクロヘキサン-2,3-ジチオール、1,2-ジメルカプトプロピルメチルエーテル、2,3-ジメルカプトプロピルメチルエーテル、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,3-ビス(メルカプトメチルチオ)プロパン、1,3-ビス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ビスメルカプトメチル-1,4-ジチアン、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、2,3-ジメルカプト-1-プロパノール(3-メルカプトプロピオネート)、3-メルカプト-1,2-プロパンジオールビス(2-メルカプトアセテート)、3-メルカプト-1,2-プロパンジオールジ(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、ジトリメチロールプロパンテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ジトリメチロールプロパンテトラキス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ジペンタエリスリトールヘキサ(2-メルカプトアセテート)、ペンタエリスリトールジ(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサ(3-メルカプトプロピオネート)、グリセリンジ(2-メルカプトアセテート)、グリセリントリス(2-メルカプトアセテート)、グリセリンジ(3-メルカプトプロピオネート)、グリセリントリス(3-メルカプトプロピオネート)、1,4-シクロヘキサンジオールビス(2-メルカプトアセテート)、1,4-シクロヘキサンジオールビス(3-メルカプトプロピオネート)、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィド(2-メルカプトアセテート)、ヒドロキシエチルスルフィド(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィド(2-メルカプトアセテート)、ヒドロキシメチルジスルフィド(3-メルカプトプロピオネート)、チオグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、N,N',N"-トリス(β-メルカプトプロピルカルボニルオキシエチル)イソシアヌレート等が挙げられる。
 芳香族チオール化合物としては、例えば、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(メルカプトエチル)ベンゼン、1,3,5-トリス(メルカプトエチル)ベンゼン、1,2,4-トリス(メルカプトエチル)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメチル)ベンゼン、1,2,4,5-テトラキス(メルカプトメチル)ベンゼン、1,2,3,4-テトラキス(メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(メルカプトエチル)ベンゼン、1,2,4,5-テトラキス(メルカプトエチル)ベンゼン、2,2'-ジメルカプトビフェニル、4,4'-ジメルカプトビフェニル等が挙げられる。
 これら例示化合物のうち、脂肪族チオール化合物が好ましく、その中でも
4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(2-メルカプトアセテート)から選択される少なくとも1種以上の化合物がより好ましく、
ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも1種以上の化合物がさらに好ましく
ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、および4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンから選択される少なくとも1種以上の化合物が特に好ましい。
(スズ化合物(B))
 スズ化合物(B)は、下記一般式(1)で表すことができる。
Figure JPOXMLDOC01-appb-C000013
 
 一般式(1)中、Rは炭素数1~8のアルキル基を示し、好ましくは炭素数1~4のアルキル基である。Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、好ましくは塩素原子である。Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。
 スズ化合物(B)としては、ジメチルスズジクロライド、ジブチルスズジクロライド、ジオクチルスズジクロライド等のジアルキルスズハロゲン化物類、ジメチルスズジアセテート、ジブチルスズジアセテート、ジブチルスズジオクタノエート、ジブチルスズジラウレート、ジオクチルスズジラウレート等のジアルキルスズジカルボキシレート類、が挙げられる。
 これらのうち、室温で固体のものとしては、ジメチルスズジクロライド、ジブチルスズジクロライド、ジオクチルスズジクロライド、ジメチルスズジアセテート、ジブチルスズジアセテート、ジブチルスズジオクタノエートを挙げることができ、室温で液体のものとしてジブチルスズジラウレート等を挙げることができる。本実施形態において、室温で液体のスズ化合物(B)を用いた場合に、得られる樹脂成形体の耐衝撃性がより向上する傾向がある。
 ジアルキルスズハロゲン化物類には、モノアルキルスズハロゲン化物類、トリアルキルスズハロゲン化物類を含んでいてもよい。ジアルキルスズジカルボキシレート類には、モノアルキルスズトリカルボキシレート化物類、トリアルキルスズカルボキシレート化物類を含んでいてもよい。
 これらのうちでも、ジアルキルスズハロゲン化物類が好ましく、C1~C8の炭素数のアルキル基を有するジアルキルスズハロゲン化物類がさらに好ましく、C1~C4の炭素数のアルキル基を有するジアルキルスズハロゲン化物類が特に好ましい。具体的には、ジブチルスズジクロライド、ジメチルスズジクロライドである。
 スズ化合物(B)は、チオール化合物(A)100重量部に対し0.018~1.080重量部、好ましくは0.035~0.750重量部、より好ましくは0.050~0.400重量部で用いることができる。
 スズ化合物(B)とチオール化合物(A)との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
[工程a2]
 次いで、イソシアネート化合物(C)と、工程a1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
(イソシアネート化合物(C))
 イソシアネート化合物(C)は、分子内に2以上のイソシアナト基を有する化合物であって、例えば、脂環族イソシアネート、脂肪族イソシアネート、芳香族イソシアネート、複素環イソシアネート等が挙げられる。イソシアネート化合物(C)は、これらの二量体、三量体、ビュウレット体、およびプレポリマーを含むことができる。
 脂環族イソシアネートとしては、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等が挙げられ、少なくとも1種を用いることができる。
 脂肪族イソシアネートとしては、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、1,3,5-トリス(イソシアナトメチル)ベンゼン、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等が挙げられる。
 芳香族イソシアネートとしては、トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート等を挙げることができ、トリレンジイソシアネートは、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートより選ばれる1種以上のイソシアネートである。トリレンジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合物等が挙げられる。
 複素環イソシアネートとしては、2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等が挙げられる。
 イソシアネート化合物(C)としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含むことが好ましく、
1,6-ヘキサメチレンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含むことがさらに好ましい。
 本実施形態においては、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、およびm-キシリレンジイソシアネートから選択される1種以上の環状構造を有するイソシアネート化合物と、環状構造を有さない炭素数4~11脂肪族イソシアネート化合物と、を併用することが好ましい。
 さらに、本実施形態においては、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される1種以上の環状構造を有するイソシアネート化合物と、環状構造を有さない炭素数4~11脂肪族イソシアネート化合物と、を併用することがより好ましい。
 本実施形態の光学材料用重合性組成物は、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、およびm-キシリレンジイソシアネートから選択される1種以上の化合物と、1,6-ヘキサメチレンジイソシアネートとの組み合わせ、チオール化合物(A)として4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)から選択される1種以上の化合物を含むことが、好ましい。
 さらに、本実施形態の光学材料用重合性組成物は、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される1種以上の化合物と、1,6-ヘキサメチレンジイソシアネートとの組み合わせ、チオール化合物(A)として4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)から選択される1種以上の化合物を含むことがより好ましい。
 本実施形態においては、チオール化合物(A)およびイソシアネート化合物(C)は、以下の組み合わせ(1)~(4)とすることが好ましく、組み合わせ(1)および(2)がより好ましく、組み合わせ(1)が特に好ましい。
・組み合わせ(1)
チオール化合物(A):4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
イソシアネート化合物(C): 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物、およびヘキサメチレンジイソシアネート
・組み合わせ(2)
チオール化合物(A):4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
イソシアネート化合物(C): 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物
・組み合わせ(3)
チオール化合物(A):5,7(または4,7または4,8)-ジメルカプトメチル-1,11-メルカプト-3,6,9-トリチアウンデカンの混合物
イソシアネート化合物(C):2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物
・組み合わせ(4)
チオール化合物(A):ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
イソシアネート化合物(C): 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物、およびヘキサメチレンジイソシアネート
 また、工程a2において、工程a1で使用したチオール化合物(A)と同一または異なるチオール化合物(D)を別途添加してもよい。工程a1により得られた混合液とチオール化合物(D)とを混合した後にイソシアネート化合物(C)を混合することができ、イソシアネート化合物(C)とチオール化合物(D)との混合液を工程a1により得られた混合液に添加することができ、もしくは、工程a1により得られた混合液とイソシアネート化合物(C)とを混合した後にチオール化合物(D)を添加することもできる。
 チオール化合物(D)としては、チオール化合物(A)と同じく分子内に2以上のメルカプト基を有する化合物であって、例えば、脂肪族チオール化合物、芳香族チオール化合物等が挙げられる。具体的な化合物としては、工程a1の説明にて列記した通りである。
 チオール化合物(D)としては、分子内に少なくとも1つ以上のエステル結合を有する脂肪族ポリチオール化合物を含むことが好ましい。分子内にエステル結合を有する脂肪族ポリチオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールジ(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサ(3-メルカプトプロピオネート)、ジペンタエリスリトールペンタ(3-メルカプトプロピオネート)、ジペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(2-メルカプトアセテート)が好ましく、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)およびペンタエリスリトールトリス(3-メルカプトプロピオネート)がより好ましい。
 本実施形態において、イソシアネート化合物(C)におけるイソシアナト基の合計量に対する、チオール化合物(A)およびチオール化合物(D)におけるメルカプト基の合計量のモル比率は0.8~1.2の範囲内であり、好ましくは0.85~1.15の範囲内であり、さらに好ましくは0.9~1.1の範囲内である。上記範囲内で、光学材料、特に眼鏡用プラスチックレンズ材料として好適に使用される成形体を得ることができる。
 また、本実施形態の光学材料用重合性組成物には、得られる成形体の光学物性、耐衝撃性、比重等の諸物性の調節及び、重合性組成物の各成分の取扱い性の調整を目的に、改質剤を本発明の効果を損なわない範囲で加えることができる。
 改質剤としては、例えば、エピスルフィド化合物、アルコール化合物、アミン化合物、エポキシ化合物、有機酸及びその無水物、(メタ)アクリレート化合物等を含むオレフィン化合物等が挙げられる。水酸基を含まない場合は、レンズ重合時のムラの発生、染色性の観点から、好ましい。
 本実施形態において、光学材料用重合性組成物には、目的に応じて公知の成形法と同様に、内部離型剤、鎖延長剤、架橋剤、光安定剤、紫外線吸収剤、酸化防止剤、着色防止剤、油溶染料、充填剤、密着性向上剤などの種々の添加剤を加えてもよい。
 内部離型剤としては、酸性リン酸エステルを用いることができる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独または2種類以上混合して使用することできる。
 本実施形態の光学材料用重合性組成物は、化合物(A)、化合物(B)および化合物(C)、さらに必要に応じて、化合物(D)およびその他添加剤を含む。
 工程a2において、工程a1により得られた混合液、イソシアネート化合物(C)、必要に応じてチオール化合物(D)、さらにその他添加剤を混合して重合性組成物を調製する場合の温度は通常25℃以下で行われる。重合性組成物のポットライフの観点から、さらに低温にすると好ましい場合がある。ただし、内部離型剤、添加剤の重合性組成物等への溶解性が良好でない場合は、あらかじめ加温して、重合性組成物、改質剤等に溶解させることも可能である。
 得られた光学材料用重合性組成物のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。
 光学材料用重合性組成物のヘイズを指標として管理することにより、耐衝撃性に優れた成形体を安定して得ることができ、光学材料等の製品の歩留まりが向上する。特に、大規模生産において、耐衝撃性に優れた成形体の原料となる重合性組成物を安定して得ることができ、製造安定性に優れた重合性組成物の製造方法を提供することができる。さらに、本実施形態の光学材料用重合性組成物を用いることにより、耐衝撃性に優れた成形体を得ることができ、光学材料等の製品の歩留まりを向上させることができる。
 なお、重合性組成物のヘイズが上記範囲を超える場合は、混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。ヘイズに影響を与える原因物質は明らかでないものの、チオール化合物(A)および/またはスズ化合物(B)由来の極微量の不純物の存在が想定される。当該操作により、重合性組成物の不純物の量を減らすことができ、結果としてヘイズが下がると考えられる。
 なお、本実施形態の光学材料用重合性組成物のヘイズは、濾過によって低減させることが困難であり、濾過工程前において上記範囲内に含まれる。濾過工程としては、例えば1μmPTFE製フィルターで濾過する工程等を挙げることができる。
 重合性組成物のヘイズが所定値以下となった場合には、本実施形態の光学材料用重合性組成物として用いることができる。
(製造方法b)
 製造方法bは下記の工程を含む。
工程b1:イソシアネート化合物(C)とスズ化合物(B)とを混合する。
工程b2:チオール化合物(A)と、工程b1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
 以下、各工程について説明する。
[工程b1]
 イソシアネート化合物(C)およびスズ化合物(B)は、製造方法aと同様の化合物を用いることができる。
 スズ化合物(B)は、イソシアネート化合物(C)100重量部に対し0.010~0.620重量部、好ましくは0.020~0.430重量部、より好ましくは0.030~0.230重量部で用いることができる。
 イソシアネート化合物(C)とスズ化合物(B)との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
[工程b2]
 本工程においては、チオール化合物(A)と、工程b1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
 チオール化合物(A)は、製造方法aと同様の化合物を用いることができ、さらにチオール化合物(D)を含めてチオール化合物(A)として用いることができる。さらに、本実施形態の光学材料用重合性組成物には、工程a2に記載されたその他の成分を添加することができる。
 本実施形態の光学材料用重合性組成物は、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、およびm-キシリレンジイソシアネートから選択される1種以上の化合物と、ヘキサメチレンジイソシアネートとの組み合わせ、チオール化合物(A)としてペンタエリスリトールテトラキス(3-メルカプトプロピオネート)および4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むことが、好ましい。
 チオール化合物(A)と、工程b1により得られた混合液との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
 得られた光学材料用重合性組成物のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。
 光学材料用重合性組成物のヘイズを指標として管理することにより、耐衝撃性に優れた成形体を安定して得ることができ、光学材料等の製品の歩留まりが向上する。特に、大規模生産において、耐衝撃性に優れた成形体の原料となる重合性組成物を安定して得ることができ、製造安定性に優れた重合性組成物の製造方法を提供することができる。さらに、本実施形態の光学材料用重合性組成物を用いることにより、耐衝撃性に優れた成形体を得ることができ、光学材料等の製品の歩留まりを向上させることができる。
 なお、重合性組成物のヘイズが上記範囲を超える場合は、混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。ヘイズに影響を与える原因物質は明らかでないものの、チオール化合物(A)および/またはスズ化合物(B)由来の極微量の不純物の存在が想定される。当該操作により、重合性組成物の不純物の量を減らすことができ、結果としてヘイズが下がると考えられる。
 なお、本実施形態の光学材料用重合性組成物のヘイズは、濾過によって低減させることが困難であり、濾過工程前において上記範囲内に含まれる。濾過工程としては、例えば1μmPTFE製フィルターで濾過する工程等を挙げることができる。
 重合性組成物のヘイズが所定値以下となった場合には、本実施形態の光学材料用重合性組成物として用いることができる。
 本実施形態において、イソシアネート化合物(C)におけるイソシアナト基の合計量に対する、チオール化合物(A)におけるメルカプト基の合計量のモル比率は0.8~1.2の範囲内であり、好ましくは0.85~1.15の範囲内であり、さらに好ましくは0.9~1.1の範囲内である。上記範囲内で、光学材料、特に眼鏡用プラスチックレンズ材料として好適に使用される成形体を得ることができる。
<第2実施形態>
 本実施形態の光学材料用重合性組成物の製造方法は以下の工程を含む。
工程c1:チオール化合物(A)とスズ化合物(B)とを混合し、ヘイズが0.05以下である混合液を得る。
工程c2:イソシアネート化合物(C)と、工程c1により得られた混合液と、を混合して光学材料用重合性組成物を得る。
 以下、各工程について説明する。
[工程c1]
 まず、チオール化合物(A)と、スズ化合物(B)との混合液を得る。工程c1は、第1実施形態における製造方法aの工程a1と同様に実施することができる。
 なお、チオール化合物(A)およびスズ化合物(B)は、第1実施形態の製造方法aと同様の化合物を用いることができる。
 スズ化合物(B)は、チオール化合物(A)100重量部に対し、0.018~1.080重量部、好ましくは0.035~0.750重量部、より好ましくは0.050~0.400重量部で用いることができる。
 スズ化合物(B)とチオール化合物(A)との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
 得られた混合液のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。ヘイズが当該範囲にある混合液は、工程c2に用いることができる。なお、工程c2において当該混合液に添加される、イソシアネート化合物(C)またはイソシアネート化合物(C)にその他の成分を溶解させた溶液のヘイズはほぼ0であり、光学材料用重合性組成物のヘイズに大きな影響を及ぼさないことから、当該混合液のヘイズを管理することが重要となる。
 当該混合物のヘイズを指標として管理することにより、耐衝撃性に優れた成形体を安定して得ることができ、光学材料等の製品の歩留まりが向上する。特に、大規模生産において、耐衝撃性に優れた成形体の原料となる重合性組成物を安定して得ることができ、製造安定性に優れた重合性組成物の製造方法を提供することができる。
 なお、混合液のヘイズが上記範囲を超える場合は、混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。ヘイズに影響を与える原因物質は明らかでないものの、チオール化合物(A)および/またはスズ化合物(B)由来の極微量の不純物の存在が想定される。当該操作により、混合液の不純物の量を減らすことができ、結果としてヘイズが下がると考えられる。なお、本実施形態において、混合液のヘイズは、濾過によって上記範囲内に低減することが困難である。濾過としては、例えば1μmPTFE製フィルターを用いた濾過等を挙げることができる。
 混合液のヘイズが所定値以下となった場合には、その混合液を工程c2に用いることができる。
[工程c2]
 工程c1により得られた混合液と、イソシアネート化合物(C)とを混合して光学材料用重合性組成物を調製する。工程c2は第1実施形態における製造方法aの工程a2と同様に実施することができる。イソシアネート化合物(C)は、第1実施形態の製造方法aと同様の化合物を挙げることができる。さらに、チオール化合物(D)を用いることができ、第1実施形態の製造方法aと同様の化合物を挙げることができる。
 工程c1により得られた混合液と、イソシアネート化合物(C)との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
 なお、イソシアネート化合物(C)またはイソシアネート化合物(C)にその他の成分を溶解させた溶液のヘイズはほぼ0であり、光学材料用重合性組成物のヘイズに大きな影響を及ぼさないものの、本工程の結果、得られた光学材料用重合性組成物のヘイズが上記範囲を超えた場合には、さらに混合して混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。
 すなわち、本実施形態における光学材料用重合性組成物のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。
 本実施形態において、イソシアネート化合物(C)におけるイソシアナト基の合計量に対する、チオール化合物(A)およびチオール化合物(D)におけるメルカプト基の合計量のモル比率は0.8~1.2の範囲内であり、好ましくは0.85~1.15の範囲内であり、さらに好ましくは0.9~1.1の範囲内である。上記範囲内で、光学材料、特に眼鏡用プラスチックレンズ材料として好適に使用される成形体を得ることができる。
 本実施形態の光学材料用重合性組成物は、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、およびm-キシリレンジイソシアネートから選択される1種以上の化合物と、ヘキサメチレンジイソシアネートとの組み合わせ、チオール化合物(A)として4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むことが好ましく、さらにチオール化合物(D)を添加する場合は、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を用いることが好ましい。
<第3実施形態>
 本実施形態の光学材料用重合性組成物の製造方法は以下の工程を含む。
工程d1:イソシアネート化合物(C)とスズ化合物(B)とを混合し、ヘイズが0.05以下である混合液を得る。
工程d2:チオール化合物(A)と、工程d1により得られた混合液と、を混合して光学材料用重合性組成物を得る。
 以下、各工程について説明する。
[工程d1]
 まず、イソシアネート化合物(C)と、スズ化合物(B)との混合液を得る。工程d1は、第1実施形態における製造方法bの工程b1と同様に行うことができる。
 イソシアネート化合物(C)およびスズ化合物(B)は、第1実施形態の製造方法aと同様の化合物を挙げることができる。
 スズ化合物(B)は、イソシアネート化合物(C)100重量部に対し0.010~0.620重量部、好ましくは0.020~0.430重量部、より好ましくは0.030~0.230重量部で用いることができる。
 イソシアネート化合物(C)と、スズ化合物(B)との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
 得られた混合液のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。ヘイズが当該範囲にある混合液は、工程d2に用いることができる。なお、工程d2において当該混合液に添加される、チオール化合物(A)またはチオール化合物(A)にその他の成分を溶解させた溶液のヘイズはほぼ0であり、光学材料用重合性組成物のヘイズに大きな影響を及ぼさないことから、当該混合液のヘイズを管理することが重要となる。
 当該混合物のヘイズを指標として管理することにより、耐衝撃性に優れた成形体を安定して得ることができ、光学材料等の製品の歩留まりが向上する。特に、大規模生産において、耐衝撃性に優れた成形体の原料となる重合性組成物を安定して得ることができ、製造安定性に優れた重合性組成物の製造方法を提供することができる。
 なお、混合液のヘイズが上記範囲を超える場合は、混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。ヘイズに影響を与える原因物質は明らかでないものの、極微量の不純物の存在が想定される。当該操作により、混合液の不純物の量を減らすことができ、結果としてヘイズが下がると考えられる。なお、本実施形態において、混合液のヘイズは、濾過によって上記範囲内に低減することが困難である。濾過としては、例えば1μmPTFE製フィルターを用いた濾過等を挙げることができる。
 混合液のヘイズが所定値以下となった場合には、その混合液を工程d2に用いることができる。
[工程d2]
 本工程においては、チオール化合物(A)と、工程d1により得られた混合液と、を混合し、ヘイズが0.05以下である光学材料用重合性組成物を得る。
 チオール化合物(A)は、第1実施形態における製造方法aと同様の化合物を用いることができ、さらにチオール化合物(D)を含めてチオール化合物(A)として用いることができる。さらに、本実施形態の光学材料用重合性組成物には、第1実施形態における製造方法aの工程a2に記載されたその他の成分を添加することができる。
 チオール化合物(A)と、工程d1により得られた混合液との混合条件は、特に限定されないが、室温(25℃)において、乾燥空気下または不活性ガス雰囲気下で行うことができる。
 なお、チオール化合物(A)またはチオール化合物(A)にその他の成分を溶解させた溶液のヘイズはほぼ0であり、光学材料用重合性組成物のヘイズに大きな影響を及ぼさないものの、本工程の結果、得られた光学材料用重合性組成物のヘイズが上記範囲を超えた場合には、さらに混合して混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。
 すなわち、本実施形態における光学材料用重合性組成物のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。
 本実施形態において、イソシアネート化合物(C)におけるイソシアナト基の合計量に対する、チオール化合物(A)におけるメルカプト基の合計量のモル比率は0.8~1.2の範囲内であり、好ましくは0.85~1.15の範囲内であり、さらに好ましくは0.9~1.1の範囲内である。上記範囲内で、光学材料、特に眼鏡用プラスチックレンズ材料として好適に使用される成形体を得ることができる。
 本実施形態の光学材料用重合性組成物は、イソシアネート化合物(C)として、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、およびm-キシリレンジイソシアネートから選択される1種以上の化合物と、ヘキサメチレンジイソシアネートとの組み合わせ、チオール化合物(A)としてペンタエリスリトールテトラキス(3-メルカプトプロピオネート)および4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むことが、好ましい。
<成形体および用途>
 本実施形態において、ポリチオウレタン樹脂からなる成形体の製造方法は、特に限定されないが、好ましい製造方法として注型重合が挙げられる。注型重合の例として、2つの成型モールドがガスケットまたはテープ等で保持された注型用鋳型内に重合性組成物を注入する。この時、得られるプラスチックレンズに要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい場合が多い。
 重合条件については、重合性組成物、触媒の種類と使用量、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ、-50~150℃の温度で1~50時間かけて行われる。5~150℃の温度範囲で保持または徐々に昇温して、硬化させることが好ましいが、適宜設定が可能である。
 そして、重合硬化により得られた樹脂を注型用鋳型から離型して成形体が得られる。
 本実施形態の成形体は、必要に応じて、アニール等の処理を行ってもよい。処理温度は通常50~150℃の間で行われるが、好ましくは90~140℃で行うことであり、より好ましくは100~130℃で行うことである。
 本実施形態の光学材料用重合性組成物は、注型重合時のモールドを変えることにより種々の形状の成形体として得ることができる。本実施形態の成形体は、所望の形状とし、必要に応じて形成されるコート層や他の部材等を備えることにより、様々な光学材料として用いることができる。
 本実施形態の成形体は、高い屈折率及び高い透明性を備え、眼鏡レンズ、カメラレンズ、発光ダイオード(LED)、プリズム、光ファイバー、情報記録基板、フィルター、発光ダイオード等の光学用成形体として、これら光学材料に使用することが可能である。特に、眼鏡レンズ、カメラレンズ等のレンズ、発光ダイオード等の光学材料として好適である。
 本実施形態の成形体は、必要に応じて、片面又は両面にコーティング層を施して用いてもよい。コーティング層としては、ハードコート層、反射防止膜層、防曇コート膜層、防汚染層、撥水層、プライマー層、フォトクロミック層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 本実施形態の眼鏡レンズは、本実施形態の光学材料用重合性組成物を硬化させて得られる成形体(レンズ)の少なくとも一方の面上に形成されたハードコート層および/または反射防止コート層と、を備えることができる。さらに、上記の他の層を備えることもできる。また、特定のチオール化合物(A)およびイソシアネート化合物(C)から得られる眼鏡レンズでは、基材層とハードコート層または反射防止コート層との間にプライマー層を有さなくても、耐衝撃性に優れる場合がある。つまり、基材層の一方の面上に、ハードコート層および/または反射防止コート層を直接形成することができる。プライマー層を設ける必要がないため、眼鏡レンズの生産性が向上する。
 ハードコート層は、本実施形態の光学材料用重合性組成物を硬化させて得られる成形体(レンズ)の少なくとも一方の面上に設けられ、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐光性等の機能を与えることを目的としたコーティング層である。ハードコート層は、ケイ素、チタン、ジルコニウム、スズ、アルミニウム、タングステン、アンチモンの元素群より選ばれる1種以上の金属酸化物と、アルキル基、アリル基、アルコキシ基、メタクリルオキシ基、アクリルオキシ基、エポキシ基、アミノ基、イソシアナト基、メルカプト基より選ばれる少なくとも1種以上の官能基を有するシラン化合物及びその加水分解物と、を含有する組成物から得られる。
 ハードコート組成物には硬化を促進する目的で硬化剤が含まれてもよい。硬化剤の具体例としては、無機、有機酸、アミン、金属錯体、有機酸金属塩、金属塩化物等が挙げられる。ハードコート組成物の調製には溶媒を用いてもよい。溶媒の具体例としては、水、アルコール類、エーテル類、ケトン類、エステル類等が挙げられる。
 ハードコート層は、成形体表面に、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、熱硬化、紫外線や可視光線などのエネルギー線照射による硬化方法等が挙げられる。加熱硬化する場合は、80~120℃で1~4時間で実施するのが好ましい。干渉縞の発生を抑制するため、ハードコート層の屈折率は、成形体との屈折率の差が±0.1の範囲にあるのが好ましい。
 ハードコート層を付与する前に、基材の表面は下記条件(a)~(d)を満たすようにアルカリ水溶液で超音波洗浄されていることが好ましい。
(a)アルカリ水溶液が5~40%の水酸化ナトリウムまたは水酸化カリウム水溶液、
(b)アルカリ水溶液の処理温度が30~60℃、
(c)処理時間が3~5分間、
(d)超音波の周波数が20~30kHz。
 アルカリ水溶液での洗浄後は、蒸留水やイソプロパノールなどのアルコール類などで洗浄し、50℃~80℃の範囲で5分~20分、成形体の表面を乾燥してもよい。
 本実施形態の重合性組成物から得られる成形体はアルカリ耐性に優れており、アルカリ水溶液での洗浄後においても白濁等の発生が抑制される。
 反射防止層とは、成形体(レンズ)の少なくとも一方の面上に設けられ、空気と成形体の屈折率差から生じる反射率を下げ、プラスチックレンズ表面の光の反射を大幅に減らして透過率を高めることを目的としたコーティング層である。本実施形態における反射防止層は、酸化ケイ素を含有する低屈折率膜層と、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化亜鉛、酸化セリウム、酸化アンチモン、酸化錫、酸化タンタルより選ばれる1種以上の金属酸化物を含有する高屈折率膜層からなり、各々の層は単層または多層構造であってもよい。
 反射防止層が多層構造である場合、5~7層が積層されていることが好ましい。膜厚としては、100~300nmが好ましく、150~250nmがさらに好ましい。多層反射防止層を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、CVD法等が挙げられる。
 反射防止膜層の上には、必要に応じて防曇コート膜層、防汚染層、撥水層を形成させてもよい。防曇コート層、防汚染層、撥水層を形成する方法としては、反射防止機能に悪影響をもたらすものでなければ、その処理方法、処理材料等については特に限定されずに、公知の防曇コート処理方法、防汚染処理方法、撥水処理方法、材料を使用することができる。例えば、防曇コート、防汚染処理方法では、表面を界面活性剤で覆う方法、表面に親水性の膜を付加して吸水性にする方法、表面を微細な凹凸で覆い吸水性を高める方法、光触媒活性を利用して吸水性にする方法、超撥水性処理を施して水滴の付着を防ぐ方法などが挙げられる。また、撥水処理方法では、フッ素含有シラン化合物等を蒸着やスパッタによって撥水処理層を形成する方法や、フッ素含有シラン化合物を溶媒に溶解したあと、コーティングして撥水処理層を形成する方法等が挙げられる。
 これらのコーティング層はそれぞれ、紫外線からレンズや目を守る目的で紫外線吸収剤、赤外線から目を守る目的で赤外線吸収剤、レンズの耐候性を向上する目的で光安定剤や酸化防止剤、レンズのファッション性を高める目的で染料や顔料、さらにフォトクロミック染料やフォトクロミック顔料、帯電防止剤、その他、レンズの性能を高めるための公知の添加剤を併用してもよい。塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
 本実施形態の光学材料用重合性組成物を用いたプラスチックレンズはファッション性やフォトクロミック性の付与などを目的として、目的に応じた色素を用い、染色して使用してもよい。レンズの染色は公知の染色方法で実施可能であるが、通常、以下に示す方法で実施される。
 一般的には、使用する色素を溶解または均一に分散させた染色液中に所定の光学面に仕上げられたレンズ生地を浸漬(染色工程)した後、必要に応じてレンズを加熱して色素を固定化(染色後アニール工程)する方法である。染色工程に用いられる色素は公知の色素であれば特に限定されないが、通常は油溶染料もしくは分散染料が使用される。染色工程で使用される溶剤は用いる色素が溶解可能もしくは均一に分散可能なものであれば特に限定されない。この染色工程では、必要に応じて染色液に色素を分散させるための界面活性剤や、染色を促進するキャリアを添加してもよい。
 染色工程は、色素および必要に応じて添加される界面活性剤を水又は水と有機溶媒との混合物中に分散させて染色浴を調製し、この染色浴中に光学レンズを浸漬し、所定温度で所定時間染色を行う。染色温度および時間は、所望の着色濃度により変動するが、通常、120℃以下で数分から数十時間程度でよく、染色浴の染料濃度は0.01~10重量%で実施される。また、染色が困難な場合は加圧下で行ってもよい。
 必要に応じて実施される染色後アニール工程は、染色されたレンズ生地に加熱処理を行う工程である。加熱処理は、染色工程で染色されたレンズ生地の表面に残る水を溶剤等で除去したり、溶媒を風乾したりした後に、例えば大気雰囲気の赤外線加熱炉、あるいは抵抗加熱炉等の炉中に所定時間滞留させる。染色後アニール工程は、染色されたレンズ生地の色抜けを防止する(色抜け防止処理)と共に、染色時にレンズ生地の内部に浸透した水分の除去が行われる。本実施形態では、アルコール化合物を含まない場合は、染色後のムラが少ない。
 本実施形態においては、偏光フィルムの少なくとも一方の面に、本実施形態の重合性組成物を硬化させて得られる成形体を積層することにより、偏光レンズを得ることもできる。製造方法は特に限定されず、公知の方法を採用することができる。偏光フィルムとしては、ポリエチレンテレフタレート等の熱可塑性ポリエステル、ポリビニルアルコールなどを挙げることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
 例えば、第1実施形態において、チオール化合物(A)とスズ化合物(B)とイソシアネート化合物(C)とを一括で混合することもできる。
 得られた光学材料用重合性組成物のヘイズは、JIS K 7136(ISO 14782)に準拠して測定され、0.05以下、好ましくは0.03以下、より好ましくは0.025以下、さらに好ましくは0.015以下、特に好ましくは0.01以下とすることができる。
 なお、重合性組成物のヘイズが上記範囲を超える場合は、混合時間や攪拌速度の調整等の操作によりヘイズが上記範囲となるように調整することができる。
 第1~第3実施形態においては、チオール化合物(A)またはイソシアネート化合物(C)のいずれかに、全量のスズ化合物(B)を混合する態様を説明したが、一部のスズ化合物(B)をチオール化合物(A)に添加し、残りのスズ化合物(B)をイソシアネート化合物(C)に添加してもよい。
 また、チオール化合物(A)として2種以上のチオール化合物を用いる場合には、少なくとも1種のチオール化合物にスズ化合物(B)を添加することができる。
 また、本実施形態においては、スズ化合物(B)とチオール化合物(A)またはイソシアネート化合物(C)とのマスターバッチを調製し、他の化合物と混合することにより、スズ化合物(B)を他の化合物と混合することもできる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、ヘイズ、耐衝撃性は、以下の方法により測定した。
 ヘイズ(Haze):日本電色工業社製Haze Meter NDH2000を使用しJIS K 7136(ISO 14782)規格にてヘイズを測定した。まず、10mm角セルに4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを装入し0点校正を実施した。次いで、ヘイズを測定する対象物を10mm角セルに装入してヘイズを測定した。
 耐衝撃性(落球試験):中心厚0.3mm、直径75mm、S=-4.75D形状のレンズに対し、高さ127cm(50インチ)の位置からレンズ中心部に8g、16g、28g、33g、45g、67g、95g、112g、174g、226g、534gの11種類の重量の異なる鉄球を順に落下させ、レンズが破損するか試験した。10枚のレンズについて試験を行い、各レンズについて破損しなかった鉄球の重量の最大値を確認し、10枚のレンズの最大値の平均値を「破損しなかった重量の平均値」として求めた。この平均値により耐衝撃性を評価した。
[実施例1]
 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物29.19重量部、ヘキサメチレンジイソシアネート19.48重量部、紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)1.50重量部、内部離型剤(酸性リン酸エステル、Stepan社製、商品名ゼレックUN)0.10重量部を、20℃にて混合溶解させた。さらに、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)23.48重量部を加え、15℃にて混合溶解させ、第1混合液を得た。
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、触媒として本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で30分間混合し、第2混合液を得た。得られた第2混合液のヘイズを測定したところ0.035であった。
 そして、第1混合液と第2混合液を、15℃で混合し、均一溶液とした。この混合溶液を400Paにて1時間脱泡を行った後、1μmPTFE製フィルターでろ過を行い、ガラスモールドとテープからなるモールド型へ注入した。このモールド型を重合オーブンへ投入、25℃~120℃まで21時間かけて徐々に昇温して重合した。重合終了後、オーブンからモールド型を取り出した。モールド型からの成形体の離型性は良好であった。得られた成形体をさらに130℃で2時間アニール処理を行った。
 成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は61gであった。結果を表1に示す。
[実施例2]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で1時間混合し、第2混合液を得た以外は、実施例1と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.015であった。得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は81gであった。結果を表1に示す。
[実施例3]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で2時間混合し、第2混合液を得た以外は、実施例1と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は83gであった。結果を表1に示す。
[実施例4]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で24時間混合し、第2混合液を得た以外は、実施例1と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は84gであった。結果を表1に示す。
[実施例5]
 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物29.19重量部、ヘキサメチレンジイソシアネート19.48重量部、紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)1.50重量部、内部離型剤(酸性リン酸エステル、Stepan社製、商品名ゼレックUN)0.10重量部を、20℃にて1時間かけて混合溶解させた。得られた混合液のヘイズを測定したところ0.00であった。さらに、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)23.48重量部を加え、15℃にて混合溶解させ、第1混合液を得た。得られた第1混合液のヘイズを測定したところ0.00であった。
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、触媒として本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で30分間混合し、第2混合液を得た。得られた第2混合液のヘイズを測定したところ0.035であった。
 そして、第1混合液と第2混合液を、15℃で混合し、均一溶液とした。得られた混合液のヘイズを測定したところ0.035であった。この混合溶液を400Paにて1時間脱泡を行った後、1μmPTFE製フィルターでろ過を行い、ガラスモールドとテープからなるモールド型へ注入した。このモールド型を重合オーブンへ投入、25℃~120℃まで21時間かけて徐々に昇温して重合した。重合終了後、オーブンからモールド型を取り出した。モールド型からの成形体の離型性は良好であった。得られた成形体をさらに130℃で2時間アニール処理を行った。
 成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は61gであった。結果を表1に示す。
[実施例6]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で1時間混合し、第2混合液を得た以外は、実施例5と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.015であった。また、第1混合液と第2混合液を混合して得られた混合液のヘイズを測定したところ0.015であった。また、得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は81gであった。結果を表1に示す。
[実施例7]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で2時間混合し、第2混合液を得た以外は、実施例5と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。また、第1混合液と第2混合液を混合して得られた混合液のヘイズを測定したところ0.00であった。また、得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は83gであった。結果を表1に示す。
[実施例8]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.85重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で24時間混合し、第2混合液を得た以外は、実施例5と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。また、第1混合液と第2混合液を混合して得られた混合液のヘイズを測定したところ0.00であった。また、得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は84gであった。結果を表1に示す。
[実施例9]
 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物50.6重量部、紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)1.5重量部、内部離型剤(酸性リン酸エステル、Stepan社製、商品名ゼレックUN)0.1重量部を、20℃にて2時間かけて混合溶解させた。得られた混合液のヘイズを測定したところ0.00であった。さらに、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)23.9重量部を加え、15℃にて混合溶解させ、第1混合液を得た。得られた第1混合液のヘイズを測定したところ0.00であった。
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン25.5重量部と、触媒として本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.035重量部とを25℃で30分間混合し、第2混合液を得た。得られた第2混合液のヘイズを測定したところ0.035であった。
 そして、第1混合液と第2混合液を、15℃で混合し、均一溶液とした。得られた混合液のヘイズを測定したところ0.035であった。この混合溶液を400Paにて1時間脱泡を行った後、1μmPTFE製フィルターでろ過を行い、ガラスモールドとテープからなるモールド型へ注入した。このモールド型を重合オーブンへ投入、25℃~120℃まで21時間かけて徐々に昇温して重合した。重合終了後、オーブンからモールド型を取り出した。モールド型からの成形体の離型性は良好であった。得られた成形体をさらに130℃で2時間アニール処理を行った。
 成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は34gであった。結果を表1に示す。
[実施例10]
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン25.5重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.035重量部とを25℃で2時間混合し、第2混合液を得た以外は、実施例9と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。また、第1混合液と第2混合液を混合して得られた混合液のヘイズを測定したところ0.00であった。また、得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は39gであった。結果を表1に示す。
[比較例1]
 m-キシリレンジイソシアネート50.7重量部、紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)1.5重量部、内部離型剤(酸性リン酸エステル、Stepan社製、商品名ゼレックUN)0.1重量部を、20℃にて2時間かけて混合溶解させ、第1混合液を得た。得られた混合液のヘイズを測定したところ0.01であった。
 5,7(または4,7または4,8)-ジメルカプトメチル-1,11-メルカプト-3,6,9-トリチアウンデカンの混合物であるポリチオール化合物49.3重量部と、触媒として本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.008重量部とを25℃で30分間混合し、第2混合液を得た。得られた第2混合液のヘイズを測定したところ0.060であった。
 そして、第1混合液と第2混合液を、15℃で混合し、均一溶液とした。得られた混合液のヘイズを測定したところ0.070であった。この混合溶液を400Paにて1時間脱泡を行った後、1μmPTFE製フィルターでろ過を行い、ガラスモールドとテープからなるモールド型へ注入した。このモールド型を重合オーブンへ投入、25℃~120℃まで21時間かけて徐々に昇温して重合した。重合終了後、オーブンからモールド型を取り出した。モールド型からの成形体の離型性は良好であった。得られた成形体をさらに130℃で2時間アニール処理を行った。
 成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は24gであった。結果を表1に示す。
[実施例11]
 5,7(または4,7または4,8)-ジメルカプトメチル-1,11-メルカプト-3,6,9-トリチアウンデカンの混合物であるポリチオール化合物49.3重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.008重量部とを25℃で24時間混合し、第2混合液を得た以外は、比較例1と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。また、第1混合液と第2混合液を混合して得られた混合液のヘイズを測定したところ0.01であった。また、得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は27gであった。結果を表1に示す。
[比較例2]
 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物26.17重量部、ヘキサメチレンジイソシアネート17.46重量部、紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)1.50重量部、内部離型剤(酸性リン酸エステル、Stepan社製、商品名ゼレックUN)0.10重量部を、20℃にて1時間かけて混合溶解させ、第1混合液を得た。得られた第1混合液のヘイズを測定したところ0.00であった。
 ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)56.37重量部と、触媒として本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で3時間混合し、第2混合液を得た。得られた第2混合液のヘイズを測定したところ0.060であった。
 そして、第1混合液と第2混合液を、15℃で混合し、均一溶液とした。得られた混合液のヘイズを測定したところ0.060であった。この混合溶液を400Paにて1時間脱泡を行った後、1μmPTFE製フィルターでろ過を行い、ガラスモールドとテープからなるモールド型へ注入した。このモールド型を重合オーブンへ投入、25℃~120℃まで21時間かけて徐々に昇温して重合した。重合終了後、オーブンからモールド型を取り出した。モールド型からの成形体の離型性は良好であった。得られた成形体をさらに130℃で2時間アニール処理を行った。
 成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は68gであった。結果を表1に示す。
[実施例12]
 ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)56.37重量部と、本荘ケミカル(株)のネスチンP(ロット50607,ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物)0.04重量部とを25℃で24時間混合し、第2混合液を得た以外は、比較例2と同様に行った。なお、得られた第2混合液のヘイズを測定したところ0.00であった。また、第1混合液と第2混合液を混合して得られた混合液のヘイズを測定したところ0.00であった。また、得られた成形体に対し落球試験を行ったところ、破損しなかった重量の平均値は74gであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 
a1: 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
a2: ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
a3: 5,7(または4,7または4,8)-ジメルカプトメチル-1,11-メルカプト-3,6,9-トリチアウンデカンの混合物
b1: ジメチル錫ジクロリド99.8%とジブチル錫ジクロリド0.2%の混合物
c1: 2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンとの混合物
c2: ヘキサメチレンジイソシアネート
c3: m-キシリレンジイソシアネート
d1: 紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)
e1: 内部離型剤(酸性リン酸エステル、Stepan社製、商品名ゼレックUN)
 この出願は、2015年8月6日に出願された日本出願特願2015-155710号、及び2015年8月6日に出願された国際出願PCT/JP2015/072332を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (19)

  1.  (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、(B)一般式(1)で表されるスズ化合物と、(C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を混合し、ヘイズが0.05以下の光学材料用重合性組成物を得る工程を含む、光学材料用重合性組成物の製造方法;
    Figure JPOXMLDOC01-appb-C000001
     
    (一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)。
  2.  (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、(B)一般式(1)で表されるスズ化合物とを混合する工程と、
     (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、前記工程により得られた混合液と、を混合して光学材料用重合性組成物を得る工程と、
    を含み、
     (A)成分および(B)成分を含む前記混合液のヘイズが0.05以下である、光学材料用重合性組成物の製造方法;
    Figure JPOXMLDOC01-appb-C000002
     
    (一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)。
  3.  (B)一般式(1)で表されるスズ化合物と、(C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を混合する工程と、
     前記工程により得られた混合液と、(A)メルカプト基を二つ以上有する一種以上のチオール化合物と、を混合して光学材料用重合性組成物を得る工程と、
    を含み、
     (B)成分および(C)成分を含む前記混合液のヘイズが0.05以下である、光学材料用重合性組成物の製造方法;
    Figure JPOXMLDOC01-appb-C000003
     
    (一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)。
  4.  イソシアネート化合物(C)が、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含む、請求項1~3のいずれかに記載の光学材料用重合性組成物の製造方法。
  5.  チオール化合物(A)が、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(2-メルカプトアセテート)から選択される少なくとも1種以上の化合物を含む、請求項1~4のいずれかに記載の光学材料用重合性組成物の製造方法。
  6.  (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、
     (B)一般式(1)
    Figure JPOXMLDOC01-appb-C000004
     
    (一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)
    で表されるスズ化合物と、
     (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を含み、
    ヘイズが0.05以下である光学材料用重合性組成物。
  7.  (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、
     ヘイズが0.05以下である混合液と、を含み、
     前記混合液は、
     (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、
     (B)一般式(1)
    Figure JPOXMLDOC01-appb-C000005
     
    (一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)
    で表されるスズ化合物と、を含む、光学材料用重合性組成物。
  8.  (A)メルカプト基を二つ以上有する一種以上のチオール化合物と、
     ヘイズが0.05以下である混合液と、を含み、
     前記混合液は、
     (B)一般式(1)
    Figure JPOXMLDOC01-appb-C000006
     
    (一般式(1)中、R4は炭素数1~8のアルキル基を示し、Xはフッ素原子、塩素原子、臭素原子または-O-C(=O)-Rを示し、Rは炭素数1~11のアルキル基を示し、cは1~3の整数を示す。)
    で表されるスズ化合物と、
     (C)イソシアナト基を二つ以上有する一種以上のイソシアネート化合物と、を含む、光学材料用重合性組成物。
  9.  イソシアネート化合物(C)が、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含む、請求項6~8のいずれかに記載の光学材料用重合性組成物。
  10.  イソシアネート化合物(C)が、1,6-ヘキサメチレンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも1種以上の化合物を含む、請求項9に記載の光学材料用重合性組成物。
  11.  チオール化合物(A)が、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、およびジエチレングリコールビス(2-メルカプトアセテート)から選択される少なくとも1種以上の化合物を含む、請求項6~10のいずれかに記載の光学材料用重合性組成物。
  12.  チオール化合物(A)が、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)から選択される少なくとも1種以上の化合物を含む、請求項11に記載の光学材料用重合性組成物。
  13.  レンズ注型用鋳型内に、請求項6~12のいずれかに記載の光学材料用重合性組成物を注入する工程と、
     前記光学材料用重合性組成物を重合する工程と、
     前記工程により得られた樹脂を前記レンズ注型用鋳型から離型して成形体を得る工程と、を含む、プラスチックレンズの製造方法。
  14.  請求項6~12のいずれかに記載の光学材料用重合性組成物を硬化させてなる成形体。
  15.  請求項14に記載の成形体からなる光学材料。
  16.  請求項15に記載の光学材料からなるレンズ。
  17.  請求項16に記載のレンズからなる眼鏡レンズ。
  18.  請求項16に記載のレンズと、前記レンズの少なくとも一方の面上に形成されたハードコート層および/または反射防止コート層とを備える、眼鏡レンズ。
  19.  請求項1~5のいずれかに記載の製造方法における工程を含む、光学材料用重合性組成物の混合状態管理方法。
PCT/JP2016/073117 2015-08-06 2016-08-05 光学材料用重合性組成物の製造方法および光学材料用重合性組成物 WO2017022855A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112018001382-0A BR112018001382A2 (ja) 2015-08-06 2016-08-05 The manufacturing method of the polymerization constituent for optical media, and the polymerization constituent for optical media
US15/743,383 US10519060B2 (en) 2015-08-06 2016-08-05 Process for producing polymerizable composition for optical material and polymerizable composition for optical material
CN201680042112.0A CN107849211B (zh) 2015-08-06 2016-08-05 光学材料用聚合性组合物的制造方法及光学材料用聚合性组合物
JP2017533138A JP6450460B2 (ja) 2015-08-06 2016-08-05 光学材料用重合性組成物の製造方法および光学材料用重合性組成物
KR1020187001637A KR102082059B1 (ko) 2015-08-06 2016-08-05 광학 재료용 중합성 조성물의 제조 방법 및 광학 재료용 중합성 조성물
EP16833134.6A EP3333207B1 (en) 2015-08-06 2016-08-05 Method for manufacturing polymerizable composition for optical material, and polymerizable composition for optical material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/072332 WO2016021680A1 (ja) 2014-08-07 2015-08-06 重合性組成物、成形体およびその用途
JPPCT/JP2015/072332 2015-08-06
JP2015155710 2015-08-06
JP2015-155710 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022855A1 true WO2017022855A1 (ja) 2017-02-09

Family

ID=57943075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073117 WO2017022855A1 (ja) 2015-08-06 2016-08-05 光学材料用重合性組成物の製造方法および光学材料用重合性組成物

Country Status (7)

Country Link
US (1) US10519060B2 (ja)
EP (1) EP3333207B1 (ja)
JP (1) JP6450460B2 (ja)
KR (1) KR102082059B1 (ja)
CN (1) CN107849211B (ja)
BR (1) BR112018001382A2 (ja)
WO (1) WO2017022855A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203867A1 (ja) * 2019-03-29 2020-10-08 ホヤ レンズ タイランド リミテッド 光学部材用重合性組成物、光学部材および光学部材の製造方法
US11009349B2 (en) 2016-10-05 2021-05-18 Milwaukee Electric Tool Corporation Level with removable and/or interchangeable sleeve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188573A (zh) * 2018-08-13 2019-01-11 江苏硕延光学眼镜有限公司 一种抗蓝光树脂镜片表面加硬膜的浸涂工艺
CN113348223A (zh) * 2019-01-30 2021-09-03 三井化学株式会社 光学材料用聚合性组合物的制造方法
WO2020203869A1 (ja) * 2019-03-29 2020-10-08 三井化学株式会社 光学材料の製造方法、光学材料用重合性組成物
WO2020213717A1 (ja) * 2019-04-19 2020-10-22 三井化学株式会社 光学材料
WO2021010392A1 (ja) * 2019-07-17 2021-01-21 三井化学株式会社 ポリチオール組成物及びその応用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231305A (ja) * 2010-04-08 2011-11-17 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
JP2012082416A (ja) * 2010-09-17 2012-04-26 Hoya Corp ウレタン系光学部材
JP2012082415A (ja) * 2010-09-17 2012-04-26 Hoya Corp プラスチックレンズの製造方法
WO2013032010A1 (ja) * 2011-09-01 2013-03-07 Hoya株式会社 ポリウレタンレンズの製造方法
JP2013060488A (ja) * 2011-09-12 2013-04-04 Hoya Corp ウレタン系光学部材の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351073B1 (en) * 1988-07-14 1994-09-21 MITSUI TOATSU CHEMICALS, Inc. Lens comprising a resin having a large refractive index and process for preparing the lens
US5087758A (en) 1988-12-22 1992-02-11 Mitsui Toatsu Chemicals, Inc. Mercapto compound, a high refractive index resin and lens and a process for preparing them
US5191055A (en) 1988-12-22 1993-03-02 Mitsui Toatsu Chemicals, Inc. Mercapto compound, a high refractive index resin and lens and a process for preparing them
JP2621991B2 (ja) 1988-12-22 1997-06-18 三井東圧化学株式会社 メルカプト化合物及びその製造方法
JPH0768326B2 (ja) 1989-10-09 1995-07-26 三井東圧化学株式会社 ウレタン系レンズ用樹脂の製造方法
US5608115A (en) 1994-01-26 1997-03-04 Mitsui Toatsu Chemicals, Inc. Polythiol useful for preparing sulfur-containing urethane-based resin and process for producing the same
JPH08208794A (ja) * 1995-02-03 1996-08-13 Mitsui Toatsu Chem Inc 含硫ウレタン系プラスチックレンズの製造方法
JP3992310B2 (ja) * 1996-07-25 2007-10-17 三井化学株式会社 高屈折率プラスチックレンズ
JP4460682B2 (ja) 1999-07-23 2010-05-12 三井化学株式会社 ペンタエリスリトールポリ(チオグリコレート)の精製方法
CN101155848B (zh) 2005-04-11 2011-10-26 三井化学株式会社 聚硫氨酯类聚合性组合物及使用该组合物的光学用树脂的制备方法
KR100994313B1 (ko) 2005-08-18 2010-11-12 미쓰이 가가쿠 가부시키가이샤 폴리우레탄ㆍ티오우레탄계 광학용 수지 및 그 제조방법
EP1925629B1 (en) 2005-08-18 2010-12-29 Mitsui Chemicals, Inc. Polythiourethane-based polymerizable composition and optical resin obtained from the same
WO2007096425A2 (en) 2006-02-24 2007-08-30 Essilor International (Compagnie Generale D'optique) Process for manufacturing a polarized poly(thio)urethane optical lens
JP5358182B2 (ja) 2006-04-19 2013-12-04 三井化学株式会社 光学材料用(ポリ)チオール化合物の製造方法およびそれを含む重合性組成物
WO2009017191A1 (ja) * 2007-07-31 2009-02-05 Hoya Corporation プラスチックレンズ及びその製造方法
EP2497791B1 (en) 2009-11-06 2020-05-13 Mitsui Chemicals, Inc. Method for producing internal mold release agent for optical material, internal mold release agent for optical material, and polymerizable composition including the same
JP2014508207A (ja) * 2011-03-02 2014-04-03 ケーオーシー ソリューション シーオー., エルティーディー. 汎用のポリイソシアネート化合物を用いたチオウレタン系光学材料用樹脂の製造方法と樹脂組成物及び製造された光学材料
JP2013037749A (ja) * 2011-08-09 2013-02-21 Fujitsu Ltd 書込回路、半導体集積回路、及び書込方法
ITMI20112102A1 (it) * 2011-11-18 2013-05-19 Acomon Ag Composizione polimerizzabile, articolo ottico ottenuto dalla stessa e metodo per la produzione di detto articolo ottico
JP2014104738A (ja) 2012-11-30 2014-06-09 Mitsui Chemicals Inc ポリ(チオ)ウレタン系レンズ成形用鋳型およびポリ(チオ)ウレタン系プラスチックレンズの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231305A (ja) * 2010-04-08 2011-11-17 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
JP2012082416A (ja) * 2010-09-17 2012-04-26 Hoya Corp ウレタン系光学部材
JP2012082415A (ja) * 2010-09-17 2012-04-26 Hoya Corp プラスチックレンズの製造方法
WO2013032010A1 (ja) * 2011-09-01 2013-03-07 Hoya株式会社 ポリウレタンレンズの製造方法
JP2013060488A (ja) * 2011-09-12 2013-04-04 Hoya Corp ウレタン系光学部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333207A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009349B2 (en) 2016-10-05 2021-05-18 Milwaukee Electric Tool Corporation Level with removable and/or interchangeable sleeve
US11703327B2 (en) 2016-10-05 2023-07-18 Milwaukee Electric Tool Corporation Level with removable and/or interchangeable sleeve
WO2020203867A1 (ja) * 2019-03-29 2020-10-08 ホヤ レンズ タイランド リミテッド 光学部材用重合性組成物、光学部材および光学部材の製造方法
JP2020166103A (ja) * 2019-03-29 2020-10-08 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学部材用重合性組成物、光学部材および光学部材の製造方法

Also Published As

Publication number Publication date
JPWO2017022855A1 (ja) 2018-02-08
EP3333207B1 (en) 2020-01-15
CN107849211A (zh) 2018-03-27
US20180194672A1 (en) 2018-07-12
US10519060B2 (en) 2019-12-31
EP3333207A4 (en) 2019-01-16
JP6450460B2 (ja) 2019-01-09
KR20180019682A (ko) 2018-02-26
BR112018001382A2 (ja) 2018-09-11
KR102082059B1 (ko) 2020-02-26
EP3333207A1 (en) 2018-06-13
CN107849211B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
KR101571275B1 (ko) 중합성 조성물, 광학 재료 및 그 제조 방법
JP6450460B2 (ja) 光学材料用重合性組成物の製造方法および光学材料用重合性組成物
KR101570920B1 (ko) 중합성 조성물
KR102081524B1 (ko) 광학 재료용 중합성 조성물, 해당 조성물로부터 얻어지는 광학 재료 및 플라스틱 렌즈
EP3178859B1 (en) Polymerizable composition, molded object, and use thereof
CN109906240B (zh) 光学材料用聚合性组合物、光学材料及其制造方法
JP5961262B2 (ja) 重合性組成物、これを用いて得られる光学部材、およびその光学部材の製造方法
KR101855034B1 (ko) 광학 재료용 중합성 조성물 및 그 용도
JP7096424B2 (ja) プラスチックレンズおよびプラスチック偏光レンズ
KR102003056B1 (ko) 플라스틱 착색 렌즈 및 이의 제조방법
US20220204685A1 (en) Polymerizable composition for optical members, optical member, and colored optical member
KR20190087387A (ko) 플라스틱 착색 렌즈 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533138

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001637

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016833134

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018001382

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018001382

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180123