WO2017022765A1 - 積層フィルムおよびその製造方法 - Google Patents

積層フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2017022765A1
WO2017022765A1 PCT/JP2016/072667 JP2016072667W WO2017022765A1 WO 2017022765 A1 WO2017022765 A1 WO 2017022765A1 JP 2016072667 W JP2016072667 W JP 2016072667W WO 2017022765 A1 WO2017022765 A1 WO 2017022765A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
laminated film
layer
weight
Prior art date
Application number
PCT/JP2016/072667
Other languages
English (en)
French (fr)
Inventor
尾形雅美
太田一善
澤本恵子
高田育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016561029A priority Critical patent/JP6790827B2/ja
Priority to CN201680039810.5A priority patent/CN107709012B/zh
Priority to KR1020177032070A priority patent/KR102537733B1/ko
Publication of WO2017022765A1 publication Critical patent/WO2017022765A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • B32B27/205Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers

Definitions

  • the present invention relates to a laminated film having a polyester layer and a resin layer, wherein at least one surface layer is a resin layer.
  • Thermoplastic resin films especially biaxially stretched polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. Widely used in applications. Particularly in recent years, it has been used for various optical films including display member applications such as a touch panel, a liquid crystal display panel (LCD), a plasma display panel (PDP), and organic electroluminescence (organic EL).
  • display member applications such as a touch panel, a liquid crystal display panel (LCD), a plasma display panel (PDP), and organic electroluminescence (organic EL).
  • a layer having a different refractive index (hereinafter referred to as an optical adjustment layer) is laminated on a polyester film, and then a conductive layer is provided to be used as a conductive film.
  • an optical adjustment layer a layer having a different refractive index
  • a functional film is applied to a base film wound in a roll shape, cured, and then wound in a roll shape. Processing is performed in the form.
  • the conductive layer is formed by forming a metal oxide film on the roll film by sputtering in a vacuum environment. Therefore, in such an application, a laminated film in which a scratch-resistant layer is laminated on a polyester film is used in order to prevent scratches during film roll conveyance.
  • this laminated film a hard coat film in which a layer made of a UV curable resin is laminated as a scratch-resistant layer is used.
  • a layer made of a UV curable resin is laminated as a scratch-resistant layer.
  • the surface of the resin layer is smoothed in order to improve transparency. Blocking (sticking) occurs. Therefore, in recent years, a laminated film having blocking resistance has been demanded.
  • laminated films used for optical applications are required not only at room temperature but also for adhesion to a substrate under high temperature and high humidity, transparency, and the like.
  • visibility and designability are requested
  • Patent Document 1 proposes a method of reducing the contact area of the hard coat film and developing anti-blocking properties by laminating a coating film containing particles larger than the coat film thickness.
  • Patent Document 2 proposes a method of obtaining a laminated film having excellent antiglare property and scratch resistance by laminating a coating film containing acrylic particles smaller than the coat film thickness.
  • Patent Document 1 has a problem that the particle diameter of the particles present in the coating layer is large, so that light scattering occurs and transparency is impaired. Also in the method described in Patent Document 2, since the particle diameter of the acrylic particles present in the coating layer having a film thickness of 6 to 8 ⁇ m is as large as about 2 to 5 ⁇ m, it is a region where light scattering occurs. In optical applications that require high transparency, there is a problem with transparency.
  • an object of the present invention is to provide a laminated film that eliminates the above-mentioned drawbacks and is excellent in transparency, scratch resistance, and anti-blocking properties.
  • the laminated film of the present invention has the following constitution.
  • the resin layer in the surface layer contains particles, and the particle abundance ratio in the range from the resin layer surface to the position of 10% of the resin layer thickness when the cross section in the thickness direction of the resin layer is observed ( Any one of [I] to [III] in which P-1) is larger than the particle abundance ratio (P-2) in a range from the position of 40% to 60% of the resin layer thickness from the resin layer surface
  • P-1 is larger than the particle abundance ratio (P-2) in a range from the position of 40% to 60% of the resin layer thickness from the resin layer surface
  • the average particle size (d) of the particles contained in the resin layer in the surface layer is 1 nm or more and 100 nm or less, and the ratio (t) between the thickness (t) of the resin layer and the average particle size (d) of the particles / (D) is 2 or more and 1000 or less,
  • [VIII] The laminated film according to any one of [I] to [VII], wherein the polyester layer and the resin layer are directly laminated.
  • a coating liquid containing a polyfunctional acrylic resin and particles is applied to at least one surface of the polyester film before crystal orientation is completed, and then the polyester film is stretched at least in a uniaxial direction, and the polyester film is heat-treated.
  • the laminated film of the present invention is excellent in transparency, scratch resistance, and blocking resistance, can improve transportability during the film processing step, and can suppress scratches on the film.
  • the present invention is a laminated film having a polyester layer and a resin layer, wherein at least one surface layer is a resin layer, and the resin layer included in the surface layer is determined by an AFM (Atomic Force Microscope).
  • the laminated film has a micro surface roughness (Ra-1) of 1 nm or more and 20 nm or less, and a macro surface roughness (Ra-2) determined by a three-dimensional surface roughness meter of 1 nm or more and 50 nm or less.
  • the micro surface roughness in the present invention represents the roughness of the surface of the resin layer measured in an area of 10 ⁇ m ⁇ 10 ⁇ m using an AFM (Atomic Force Microscope) manufactured by BRUKER. This micro surface roughness is a characteristic that affects the transparency and scratch resistance of the resin layer. Details of the measurement method will be described later.
  • the micro surface roughness of the resin layer on the surface layer of the laminated film is 1 nm or more and 20 nm or less, the resin layer does not have large irregularities that scatter light, so that the transparency of the laminated film can be improved. it can. Moreover, since the resin layer is hardly caught, the scratch resistance can be improved. More preferably, they are 1 nm or more and 15 nm or less.
  • a curable resin made of an acrylic resin having excellent fluidity is applied on a polyester layer having a micro surface roughness of 1 nm or more and 20 nm or less, and cured.
  • a method of forming a resin layer by applying a resin there is a method of forming a resin layer by applying a resin, and a method of forming a resin layer by applying and curing a curable resin made of an acrylic resin containing nanoparticles having an average particle diameter of 100 nm or less.
  • a method of applying and curing a curable resin made of an acrylic resin containing nanoparticles and excellent in fluidity is preferable from the viewpoint of excellent transparency.
  • the macro surface roughness in the present invention represents the surface roughness of the resin layer measured in a 400 ⁇ m ⁇ 900 ⁇ m region using a three-dimensional roughness meter manufactured by Kosaka Laboratory. This macro surface roughness is a characteristic that affects the anti-blocking property and transparency of the resin layer. Details of the measurement method will be described later.
  • the resin layer surface has a gentle concavo-convex structure, so that the anti-blocking property and transparency of the laminated film can be improved. it can.
  • they are 5 nm or more and 50 nm or less, More preferably, they are 5 nm or more and 30 nm or less.
  • a resin layer is formed using a curable resin made of an acrylic resin, and the resin layer contains particles having an average particle diameter larger than the film thickness of the resin layer.
  • a mold having an uneven shape is transferred to a coating film in which the acrylic resin is still uncured, and then the acrylic resin is cured to form a resin layer.
  • a so-called nanoimprinting method and a method of giving fine stretching unevenness by applying a stretching treatment to the resin layer in a state where the acrylic resin is still uncured after applying a curable resin made of an acrylic resin are a so-called nanoimprinting method and a method of giving fine stretching unevenness by applying a stretching treatment to the resin layer in a state where the acrylic resin is still uncured after applying a curable resin made of an acrylic resin.
  • a smooth uneven structure is formed on the surface of the resin layer by fine stretching unevenness by applying a stretching process to the resin layer while the acrylic resin is still uncured.
  • the method is preferable from the viewpoint of excellent antiblocking properties.
  • it is a gentle uneven structure it is preferable from the point which can suppress scattering of light and is excellent in transparency.
  • the ratio (Ra-2 / Ra-1) of the micro surface roughness (Ra-1) to the macro surface roughness (Ra-2) of the resin layer in the surface layer is 3 or more.
  • the antiblocking property is improved, which is preferable.
  • they are 5 or more and 25 or less, More preferably, they are 5 or more and less than 10.
  • the ratio (Ra-2 / Ra-1) of the micro surface roughness (Ra-1) to the macro surface roughness (Ra-2) is achieved by adjusting the average particle size of the particles contained in the resin layer. be able to.
  • both the micro surface roughness (Ra-1) and the macro surface roughness (Ra-2) tend to increase.
  • the macro surface roughness (Ra-2) is a surface roughness in a wide field of view
  • the macro surface roughness (Ra-1) is larger than the micro surface roughness (Ra-1). Numbers tend to be larger.
  • the resin layer in the surface layer contains particles, and the range from the resin layer surface to the position of 10% of the resin layer thickness when the cross section in the thickness direction of the resin layer is observed
  • the particle abundance ratio (P-1) in is preferably larger than the particle abundance ratio (P-2) in the range from the position of 40% to 60% of the resin layer thickness from the resin layer surface.
  • scratch resistance can be improved.
  • the ratio (P-1 / P-2) of (P-1) to (P-2) is 1.1 or more and 5.0 or less, the scratch resistance is particularly improved, which is preferable. More preferably, it is 1.1 or more and 2.0 or less.
  • the laminated film of the present invention has a thickness (t) of the resin layer in the surface layer of 100 nm or more because the influence of the inhibition of curing of the resin layer surface layer can be suppressed and the scratch resistance is excellent.
  • the upper limit of the thickness of a resin layer is not limited, 5000 nm or less is preferable at the point of transparency and productivity. Further, it is more preferably 300 nm or more and 3000 nm, and further preferably 500 nm or more and 1500 nm.
  • the average particle diameter (d) of the particles contained in the resin layer in the surface layer is 1 nm or more and 100 nm or less, and the thickness (t) of the resin layer and the average particle diameter of the nanoparticles (
  • the ratio (t) / (d) to d) is 2 or more and 1000 or less, the diffusion of light by the particles is suppressed, and the transparency of the laminated film is improved, which is preferable. More preferably, it is 2 or more and 100 or less.
  • the above range can be achieved by designing the film thickness of the resin layer and the average particle diameter of the particles contained in the resin layer.
  • the resin layer included in the surface layer preferably contains an acrylic resin.
  • an acrylic resin (A) and / or an acrylic resin (F) and / or an acrylic resin (G) described later are preferably included.
  • the acrylic resin (A) in the present invention is a cured composition composed of a monomer component (a) having an acryloyl group in the molecule.
  • the monomer component (a) is preferably a polyfunctional acrylate having three or more acryloyl groups in the molecule.
  • the polyfunctional acrylate is a monomer or oligomer having 3 (more preferably 4, more preferably 5 or more) or more (meth) acryloyl groups in one molecule.
  • Examples of such a composition include a compound in which the hydroxyl group of a polyhydric alcohol having 3 or more alcoholic hydroxyl groups in one molecule is an esterified product of 3 or more (meth) acrylic acids. it can.
  • pentaerythritol tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer and the like can be used.
  • polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol” (registered trademark) series, etc.) Shinnakamura Co., Ltd .; (trade name “NK Ester” series, etc.), Dainippon Ink Chemical Industries, Ltd.
  • the reason for this is estimated by the inventors as follows. When an acrylic monomer component having an acryloyl group is cured in the presence of oxygen atoms in the atmosphere, the radical polymerization reaction of the acryloyl group may be inhibited by the oxygen atoms in the atmosphere. Curing may not be sufficient, and scratch resistance may be inferior.
  • the acrylic monomer component containing an acryloyl group has an amide bond
  • the oxygen atom in the atmosphere interacts with the amide bond that has a high polarity, so inhibition of curing of the radical polymerization reaction of the acryloyl group by atmospheric oxygen is suppressed.
  • the acrylic monomer component having an amide bond include a compound having a structure represented by the following (formula 1).
  • the acrylic resin (F) in the present invention is a resin having a monomer unit (f 3 ) represented by (Formula 2).
  • the R 3 group represents a hydrogen atom or a methyl group.
  • the R 5 group represents a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium base, a sulfonic acid group, or phosphoric acid.
  • the acrylic resin (F) in the present invention has the monomer unit (f 3 ) represented by the following (formula 2), the (meth) acrylate monomer (f 3 ′) represented by the (formula 3): Must be used as a raw material for polymerization.
  • Examples of the (meth) acrylate monomer (f 3 ′) represented by (Formula 3) include the following compounds.
  • Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene
  • Examples include monoesterified products of polyhydric alcohols such as glycol mono (meth) acrylate and (meth) acrylic acid, or compounds obtained by ring-opening polymerization of ⁇ -caprolapton to the monoesterified product, and particularly 2-hydroxyethyl ( Preferred are (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • Examples of (meth) acrylate monomers having a carboxyl group include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, or hydroxyalkyl (meth) acrylates and acid anhydrides.
  • a half esterified product of Acrylic acid and methacrylic acid are particularly preferable.
  • Tertiary amino group-containing monomers include N, N-, such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like.
  • N, N-dialkylamino such as dialkylaminoalkyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide
  • Examples include alkyl (meth) acrylamide, and N, N-dimethylaminoethyl (meth) acrylate is particularly preferable.
  • quaternary ammonium group-containing monomer a monomer obtained by allowing a quaternizing agent such as epihalohydrin, benzyl halide or alkyl halide to act on the above-mentioned tertiary amino group-containing monomer is preferable.
  • 2- (methacryloyloxy ) (Meth) acryloyloxyalkyltrialkylammonium salts such as ethyl trimethylammonium chloride, 2- (methacryloyloxy) ethyltrimethylammonium bromide, 2- (methacryloyloxy) ethyltrimethylammonium dimethyl phosphate, methacryloylaminopropyltrimethylammonium chloride, methacryloyl (Meth) acryloylaminoalkyltrialkylammonium salts such as aminopropyltrimethylammonium bromide, tetrabutylammonium Tetra (meth) acrylates such as Moniumu (meth) acrylate, and tri-alkyl benzyl ammonium (meth 9 acrylates such as trimethylbenzylammonium (meth) acrylate.
  • sulfonic acid group-containing monomer examples include (meth) acrylamide-alkanesulfonic acid such as butyl acrylamide sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, or sulfoalkyl (meth) such as 2-sulfoethyl (meth) acrylate. Examples thereof include acrylate, and 2-sulfoethyl (meth) acrylate is particularly preferable.
  • the phosphoric acid group-containing acrylic monomer examples include acid phosphooxyethyl (meth) acrylate, and acid phosphooxyethyl (meth) acrylate is particularly preferable.
  • the acrylic resin (F) is a resin having the monomer unit (f 3 ) represented by (Formula 2), and the R 5 group in (Formula 2) is a hydroxyl group or a carboxyl group.
  • an acrylic resin (F) As a method of using an acrylic resin (F) to have a macro surface roughness of 1 nm or more and 50 nm or less, a method of giving a fine stretching unevenness by subjecting the resin layer to a stretching treatment while the acrylic resin is still uncured. In this case, it is important that the thickness of the resin layer is 300 nm or more. By setting it as the said thickness, a fine extending
  • the content of the acrylic resin in the resin layer is preferably 10 to 90% by weight, and by making it within this range, the scratch resistance of the resin layer can be improved.
  • the content of the acrylic resin (A) is more preferably 40% by weight or more and 90% by weight or less with respect to the entire resin layer.
  • the content of the acrylic resin (A) is preferably 40% by weight to 80% by weight, more preferably 45% by weight to 70% by weight.
  • content of the acrylic resin (F) in a resin layer is 20 to 80 weight% with respect to the whole resin layer, More preferably Is 40 wt% or more and 80 wt% or less, more preferably 45 wt% or more and 70 wt% or less.
  • the content in the resin layer represents the content in the solid content ([(mass of resin composition) ⁇ (mass of solvent)]) of the resin composition forming the resin layer.
  • the laminated film of the present invention preferably contains inorganic particles (B) in the resin layer included in the surface layer.
  • the inorganic particles (B) include fine particles such as silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, and zirconium oxide. Among these, fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, and zirconium oxide are preferable. These may be used alone or in combination of two or more.
  • the inorganic particles (B) of the present invention are a composition (B-2) obtained by combining inorganic particles (B-1) and a resin component containing an acryloyl group, or inorganic particles (B-1).
  • the composition (B-3) having an acrylic resin (G) on part or all of the surface thereof is preferable.
  • the bond here may be a covalent bond or a non-covalent bond (physical adsorption).
  • a resin composition (B-2) obtained by bonding inorganic particles (B-1) and a resin component containing an acryloyl group the inorganic particles (B-1) and a resin component containing an acryloyl group are bonded (surface Modified).
  • surface Modified By combining the inorganic particles (B-1) and the resin component containing an acryloyl group, the inorganic particles can be prevented from falling off when a force is applied to the resin layer, and the scratch resistance can be improved.
  • the resin component containing an acryloyl group is a resin component having a silanol group or a resin component that generates a silanol group by hydrolysis. It is preferable.
  • the resin component containing an acryloyl group is a compound having an acryloyl group and a hydrolyzable silyl group.
  • the hydrolyzable silyl group is a group that reacts with water to form a silanol group, such as one or more methoxy groups, ethoxy groups, n-propoxy groups, isopropoxy groups, n-butoxy groups, etc. on silicon.
  • An alkoxy group, an aryloxy group, an acetoxy group, an amino group, or a halogen primitive is bonded.
  • Particles obtained by combining inorganic particles (B-1) and resin components containing acryloyl groups are prepared by mixing resin components (B-2) containing acryloyl groups having hydrolyzable silyl groups with inorganic particles (B-1). It can be obtained by hydrolyzing and bonding the two. Since the particles obtained in this manner react with the acrylic resin (A), the inorganic particles are difficult to drop off when the resin layer is rubbed, so that the scratch resistance is excellent.
  • Resin component containing inorganic particles (B-1) and acryloyl groups contained in resin composition (B-2) containing inorganic particles (B) is a resin containing inorganic particles (B-1) and acryloyl groups.
  • the resin component (B-2) containing an acryloyl group is preferably 0.1 parts by weight or more and 50 parts by weight or less. By setting it as this range, it is possible to achieve both scratch resistance, transparency, and anti-blocking properties without dropping the inorganic particles.
  • the resin component containing an acryloyl group exceeds 50 parts by weight, the density of the inorganic particles contained in the resin layer is lowered, and scratch resistance may be deteriorated.
  • composition (B-3) having an acrylic resin (G) on part or all of the surface of the inorganic particles (B-1) of the present invention means part or all of the surface of the inorganic particles (B-1). Furthermore, it is preferable that the particles have the acrylic resin (G) described above.
  • the acrylic resin (G) here is a resin having a monomer unit (g 1 ) represented by (Formula 4) and a monomer unit (g 2 ) represented by (Formula 5).
  • R 1 group represents a hydrogen atom or a methyl group.
  • N represents an integer of 9 or more and 34 or less.
  • the R 2 group represents a hydrogen atom or a methyl group.
  • the R 4 group represents a group containing two or more saturated carbocycles).
  • the acrylic resin (G) in the present invention is preferably a resin having a monomer unit (g 1 ) represented by (Formula 4). Since the acrylic resin (G) has the monomer unit (g 1 ) represented by (Formula 4), the surface energy of the resin layer is reduced, so that the coefficient of friction applied to the resin layer when the rubbing treatment is performed is small. Thus, the scratch resistance can be improved.
  • the acrylic resin having a monomer unit in which n exceeds 34 in (Formula 4) has extremely low solubility in an aqueous solvent, and therefore aggregation of the acrylic resin is likely to occur in the aqueous solvent. Since such an aggregate is larger than the wavelength of visible light, a laminated film with good transparency may not be obtained.
  • the acrylic resin (G) in the present invention has the monomer unit (g 1 ) represented by (formula 4), the (meth) acrylate monomer (g 1 ′) represented by the following (formula 6): Must be used as a raw material for polymerization.
  • the (meth) acrylate monomer (g 1 ′) is preferably a (meth) acrylate monomer represented by an integer of 9 to 34 in the formula (6), more preferably 11 to 32 (meth).
  • the (meth) acrylate monomer (g 1 ′) is not particularly limited as long as it is a (meth) acrylate monomer in which n in (Formula 6) is 9 or more and 34 or less.
  • decyl (meth) acrylate, dodecyl ( (Meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, 1-methyltridecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, eicosyl (meth) acrylate, docosyl (meth) acrylate, Tetracosyl (meth) acrylate, triacontyl (meth) acrylate, etc. are mentioned, and especially dodecyl (meth) acrylate and tridecyl (meth) acrylate are preferable. These may be used alone or in
  • the acrylic resin (G) in the present invention is preferably a resin having a monomer unit represented by formula (5) (g 2).
  • the acrylic resin (G) has the monomer unit (g 2 ) represented by (Formula 5)
  • the resin layer becomes rigid due to the steric hindrance of the saturated carbocyclic ring, and the scratch resistance can be improved. .
  • the acrylic resin (G) in the present invention has the monomer unit (g 2 ) represented by (Formula 5), the (meth) acrylate monomer (g 2 ′) represented by the following (Formula 7): Must be used as a raw material for polymerization.
  • (meth) acrylate monomer (g 2 ′) represented by (Formula 7) a bridged condensed cyclic formula (having a structure in which two or more rings each share two atoms and are bonded) And various cyclic structures such as spirocyclic (having a structure in which two cyclic structures are shared by sharing one carbon atom), specifically, compounds having bicyclo, tricyclo, tetracyclo groups, etc.
  • (meth) acrylates containing a bicyclo group are particularly preferred from the viewpoint of compatibility with the binder.
  • Examples of the (meth) acrylate containing the bicyclo group include isobornyl (meth) acrylate, bornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, adamantyl (meth) acrylate, and dimethyladamantyl (Meth) acrylate etc. are mentioned, and isobornyl (meth) acrylate is particularly preferred.
  • Dropping of particles during application is suppressed, and scratch resistance is excellent. Furthermore, aggregation of the inorganic particles (B) during the drying process can be suppressed, and the micro surface roughness and macro surface roughness of the resin layer can be set within a predetermined range.
  • the method for producing the inorganic particles (B-1) is not particularly limited, and examples thereof include a method for treating the inorganic particles (B-1) with an acrylic resin (G).
  • the following methods (i) to (iv) are exemplified.
  • the surface treatment means a treatment for adsorbing and adhering the acrylic resin (G) to all or a part of the surface of the inorganic particles (B-1).
  • the desired effect can be obtained by any of these methods.
  • a dispersion apparatus a dissolver, a high speed mixer, a homomixer, a mixer, a ball mill, a roll mill, a sand mill, a paint shaker, an SC mill, an annular mill, a pin mill, and the like can be used.
  • the rotating shaft is rotated at a peripheral speed of 5 to 15 m / s using the above apparatus.
  • the rotation time is 5 to 10 hours.
  • the bead diameter is preferably 0.05 to 0.5 mm, more preferably 0.08 to 0.5 mm, and particularly preferably 0.08 to 0.2 mm.
  • the mixing and stirring can be performed by shaking the container by hand, using a magnetic stirrer or stirring blade, irradiating with ultrasonic waves, vibrating and dispersing.
  • the concentrated and solidified sediment is analyzed by X-ray photoelectron spectroscopy (XPS) to confirm the presence or absence of acrylic resin (F) on the surface of the inorganic particles (B-1).
  • XPS X-ray photoelectron spectroscopy
  • the number average particle diameter of the inorganic particles (B-1) will be described.
  • the number average particle diameter refers to the particle diameter determined by a transmission electron microscope (TEM). The magnification is 500,000 times, and the outer diameter of 10 particles existing on the screen is the number average particle diameter obtained by measuring a total of 100 particles for 10 fields of view.
  • the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle).
  • the maximum diameter of the particle is also defined.
  • the inorganic particles (B) When the number average particle diameter of the inorganic particles (B) is smaller than 1 nm, the van der Waals force between the particles increases, and as a result of aggregation of the particles, light scattering may occur and transparency may be lowered. On the other hand, when the number average particle diameter of the inorganic particles (B) is larger than 100 nm, from the viewpoint of transparency, there is a possibility that the light becomes a starting point for scattering and the transparency is deteriorated. Further, the filling of the inorganic particles in the coating film may not sufficiently proceed, and the scratch resistance may be lowered. Therefore, the inorganic particles (B) preferably have a number average particle diameter of 5 nm or more and 100 nm or less. Preferably they are 10 nm or more and 80 nm or less, More preferably, they are 20 nm or more and 60 nm or less.
  • the inorganic particles (B) contained in the resin layer (X) are preferably in the range of 10 to 50 parts by weight, more preferably in the range of 15 to 50 parts by weight with respect to 100 parts by weight of the acrylic resin (A). Is more preferable. By setting it as the said range, transparency and scratch resistance can be made compatible.
  • the inorganic particles (B) contained in the resin layer (X) are preferably in the range of 50 to 200 parts by weight with respect to 100 parts by weight in total of the acrylic resin (F) and the acrylic resin (G). The range of 100 to 200 parts by weight is more preferable. By setting it as the said range, transparency and scratch resistance can be made compatible.
  • polyester layer used as a base material layer
  • a polyester layer used as a base material layer may be referred to as a polyester film
  • polyester film is a general term for polymers having an ester bond in the main chain, and includes ethylene terephthalate, propylene terephthalate, ethylene-2,6-naphthalate, butylene terephthalate, propylene-2,6-naphthalate, ethylene- ⁇ , ⁇ .
  • Those having at least one component selected from -bis (2-chlorophenoxy) ethane-4,4'-dicarboxylate and the like can be preferably used.
  • the polyester film using the above polyester is preferably biaxially oriented.
  • a biaxially oriented polyester film is generally an unstretched polyester sheet or film that is stretched about 2.5 to 5 times in the longitudinal direction and in the width direction perpendicular to the longitudinal direction, and then subjected to heat treatment to produce crystalline The alignment is completed, and it indicates a biaxial alignment pattern by wide-angle X-ray diffraction.
  • thermal stability, particularly dimensional stability and mechanical strength are sufficient, and flatness is also good.
  • various additives such as antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, antistatic agents.
  • An agent, a nucleating agent, etc. may be added to such an extent that the properties are not deteriorated.
  • the thickness of the polyester film is not particularly limited and is appropriately selected depending on the use and type, but is preferably 10 to 500 ⁇ m, more preferably 15 to 250 ⁇ m, from the viewpoint of mechanical strength, handling properties, and the like. Most preferably, the thickness is 20 to 100 ⁇ m.
  • the polyester film may be a composite film obtained by coextrusion or a film obtained by bonding the obtained film by various methods.
  • the resin layer of the present invention contains an acrylic resin (A) and / or an acrylic resin selected from at least one of the acrylic resins (F) and inorganic particles (B), the transparency, scratch resistance, It is excellent in anti-blocking property and is preferable.
  • polymer resins such as polyester resins, acrylic resins and urethane resins, carbodiimide compounds, oxazoline compounds , Aziridine compounds, titanate coupling agents such as titanium chelates, and methylolated or alkylolated melamine compounds may be included.
  • additives such as organic lubricants, organic or inorganic fine particles, antistatic agents and the like may be added to such an extent that the characteristics are not deteriorated.
  • an oxazoline compound and / or a melamine compound are preferable, and a melamine compound is particularly preferable.
  • melamine compounds examples include melamine, methylolated melamine derivatives obtained by condensing melamine and formaldehyde, compounds partially or completely etherified by reacting methylolated melamine with a lower alcohol, and mixtures thereof. Can be used. Specifically, a compound having a triazine and a methylol group is particularly preferable. Further, the melamine compound may be a monomer or a condensate composed of a dimer or higher polymer, or a mixture thereof. As the lower alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be used.
  • the group has an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule, and an imino group type methylated melamine resin, a methylol group type melamine resin, or a methylol group type methyl group.
  • Melamine resin fully alkyl methylated melamine resin, and the like. Of these, methylolated melamine resins are most preferred.
  • an acidic catalyst such as p-toluenesulfonic acid may be used to promote thermal curing of the melamine compound.
  • an acrylic monomer (a) constituting an acrylic resin (A) and a resin composition (b) containing inorganic particles (B) are applied onto a polyester film, and the resin composition contains a solvent. When it contains, it can obtain by forming a resin layer on a polyester film by drying a solvent.
  • the acrylic monomer (f) constituting the acrylic resin (F) and the resin composition (b) containing the inorganic particles (B) are applied onto the polyester film, and the resin composition contains a solvent, It can be obtained by forming a resin layer on the polyester film by drying the solvent.
  • an aqueous solvent is preferably used as the solvent. This is because the use of the aqueous solvent can suppress the rapid evaporation of the solvent in the drying step and can form a uniform composition layer, and is excellent in terms of environmental load.
  • the aqueous solvent is soluble in water or water and alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol, diethylene glycol and propylene glycol. Is an organic solvent mixed in an arbitrary ratio.
  • the acrylic monomer (a) which comprises an acrylic resin (A), the acrylic monomer (f) which comprises an acrylic resin (F), and an inorganic particle (B) are contained. It is preferable to apply an aqueous coating material containing the resin composition (b). This is applied as a water-based coating. Compared with organic solvent-based coatings, the water-dispersing agent or emulsifier is arranged on the surface of the coating film when the solvent is dry. This is because the inhibition of curing is suppressed and the resin layer is excellent in scratch resistance even when the resin layer is thin.
  • acrylic constituting the acrylic resin (A) is used as a method of forming the acrylic monomer (a) constituting the acrylic resin (A) and the resin composition (b) containing the inorganic particles (B) into an aqueous coating.
  • acrylic constituting the acrylic resin (A) is used as a method of forming the acrylic monomer (a) constituting the acrylic resin (A) and the resin composition (b) containing the inorganic particles (B) into an aqueous coating.
  • examples thereof include a method of incorporating a hydrophilic group such as carboxylic acid and sulfonic acid into the monomer (a) and the resin composition (b) containing the inorganic particles (B), and a method of emulsifying using an emulsifier.
  • the method for applying the resin composition to the polyester film is preferably an in-line coating method.
  • the in-line coating method is a method of applying in the process of manufacturing a polyester film. Specifically, it refers to a method of coating at any stage from melt extrusion of a polyester resin to biaxial stretching followed by heat treatment and winding up, and is generally substantially non-obtainable after melt extrusion and rapid cooling. Crystalline unstretched (unoriented) polyester film (A film), then uniaxially stretched (uniaxially oriented) polyester film (B film) stretched in the longitudinal direction, or biaxially before heat treatment stretched further in the width direction It is applied to any one of stretched (biaxially oriented) polyester film (C film).
  • the resin composition is applied to the polyester film of any one of the A film and the B film before the crystal orientation is completed, and then the polyester film is stretched in a uniaxial direction or a biaxial direction. It is preferable to employ a method in which a heat treatment is performed at a temperature higher than the boiling point to complete the crystal orientation of the polyester film and a resin layer is provided. According to this method, the polyester film can be formed and the resin composition can be applied and dried (that is, the resin layer is formed) at the same time. Moreover, it is easy to make the thickness of the resin layer thinner in order to perform stretching after coating.
  • a method of applying a resin composition to a film (B film) uniaxially stretched in the longitudinal direction, then stretching in the width direction, and performing a heat treatment is excellent.
  • the stretching process is less than once compared to the method of biaxial stretching, so it is difficult to cause defects or cracks in the composition layer due to stretching, and a composition layer excellent in transparency and smoothness This is because it can be formed.
  • the resin layer by the in-line coating method, the resin layer can be stretched before the resin layer is completely cured, and a gentle uneven structure can be easily formed. Furthermore, the concavo-convex structure can form a more prominent concavo-convex structure when the thickness of the resin layer is 300 nm or more. As a result, the anti-blocking property of the film can be expressed without forming a large protrusion on the resin layer.
  • This gentle uneven structure means that the macro surface roughness measured with a three-dimensional roughness meter manufactured by Kosaka Laboratory is 5 to 50 nm.
  • the resin layer is preferably provided by an inline coating method from the various advantages described above.
  • a method for applying the resin composition to the polyester film any known method such as a bar coating method, a reverse coating method, a gravure coating method, a die coating method, or a blade coating method can be used.
  • the best method for forming a resin layer in the present invention is a method in which a resin composition using an aqueous solvent is applied on a polyester film using an in-line coating method, dried and heat-treated. More preferably, the resin composition is in-line coated on the uniaxially stretched B film.
  • drying can be carried out in a temperature range of 80 to 130 ° C. in order to complete the removal of the solvent of the resin composition.
  • the heat treatment can be performed in a temperature range of 160 to 240 ° C. in order to complete the crystal orientation of the polyester film and complete the thermosetting of the resin composition to complete the formation of the resin layer.
  • PET film a polyethylene terephthalate (hereinafter referred to as PET) film is used as the polyester film, but is not limited thereto.
  • PET pellets are sufficiently vacuum-dried, then supplied to an extruder, melt extruded into a sheet at about 280 ° C., and cooled and solidified to produce an unstretched (unoriented) PET film (A film).
  • a film This film is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially oriented PET film (B film).
  • the resin composition of the present invention prepared at a predetermined concentration is applied to one side of the B film.
  • a surface treatment such as a corona discharge treatment may be performed on the coated surface of the PET film before coating.
  • surface treatment such as corona discharge treatment
  • the wettability of the resin composition to the PET film is improved, the resin composition is prevented from being repelled, and a resin layer having a uniform coating thickness can be formed.
  • the edge of the PET film is held with a clip and guided to a heat treatment zone (preheating zone) of 80 to 130 ° C., and the solvent of the resin composition is dried. After drying, the film is stretched 1.1 to 5.0 times in the width direction. Subsequently, it is guided to a heat treatment zone (heat setting zone) at 160 to 240 ° C., and heat treatment is performed for 1 to 30 seconds to complete crystal orientation.
  • heat treatment zone heat setting zone
  • heat treatment step heat setting step
  • a relaxation treatment of 3 to 15% may be performed in the width direction or the longitudinal direction as necessary.
  • the laminated film thus obtained becomes a laminated film excellent in transparency, scratch resistance and antiblocking properties.
  • an intermediate layer may be provided between the resin layer and the polyester layer.
  • the intermediate layer when the film laminated with the intermediate layer is wound, In the process until the resin layer is provided, the film may be damaged. Therefore, in this invention, it is preferable that the resin layer and the polyester layer are laminated
  • the characteristic measurement method and effect evaluation method in the present invention are as follows.
  • Adhesiveness 100 pieces of 1 mm 2 crosscuts are put on the resin layer side of the laminated film, and “Cello Tape” (registered trademark) (manufactured by Nichiban Co., Ltd.) , CT405AP) was applied and pressed with a load of 1.5 kg / cm 2 with a hand roller, and then rapidly peeled in the direction of 90 degrees with respect to the laminated film. Adhesiveness was evaluated in four stages according to the number of remaining lattices. The evaluation was performed using an average value obtained 10 times. C is a practically problematic level, B is a practical level, and A and S are good. S: 90 to 100 remaining A: 80 to 89 remaining B: 50 to 79 remaining C: 0 to less than 50 remaining.
  • Number average particle diameter of particles contained in resin layer The number average particle diameter of particles contained in the resin layer was determined by observing the cross-sectional structure of the laminated film with a transmission electron microscope (TEM). The magnification was set to 500,000, and the outer diameter of 10 particles existing in the screen was measured for a total of 100 particles for 10 fields of view, and the average particle size was determined. When 10 particles do not exist in the screen, observe another part under the same conditions, measure the outer diameter of the particles present in the screen, and measure the outer diameter of 100 particles in total. Averaged.
  • the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle). Similarly, in the case of a particle having a cavity inside, the maximum diameter of the particle To express.
  • (6) Film thickness of resin layer The thickness of the resin layer on a polyester film was measured by observing a cross section using a transmission electron microscope (TEM). As for the thickness of the resin layer, the thickness of the resin layer was read from an image taken with a TEM at a magnification of 100,000 times. A total of 20 resin layer thicknesses were measured and taken as an average value.
  • TEM transmission electron microscope
  • Sample preparation RuO 4 stained FIB method SMI3200SE (manufactured by SIINT) FB-2000A II Micro Sampling System (manufactured by Hitachi, Ltd.) Strata400S (manufactured by FEI)
  • Observation device High-resolution transmission electron microscope (H9000 UHR II manufactured by Hitachi) Observation conditions: acceleration voltage 300 kV (7) Micro surface roughness (Ra-1) In Bscander AFM (Atomic Force Microscope) “Dimension Icon Scan Asyst” Scan Asist Air mode, the resin layer side surface of the laminated film has a measuring range of 10 ⁇ m ⁇ 10 ⁇ m, a measuring line number of 512, and a measuring rate of 1.
  • the arithmetic average roughness (Ra) was calculated from the surface information obtained by measurement at 0 Hz by the method defined in JIS-B-0601-1994. Specifically, “NanoScope Analysis” is used as software, “3rd” of “Flatten Order” is selected, and a three-dimensional swell process is performed. Thereafter, “Roughness” is selected, and the numerical value described in “Image Ra” on the screen is set as the arithmetic average roughness. Further, the measurement was made 10 times in total, and the average value of a total of 8 data excluding the maximum value and the minimum value was obtained as the arithmetic average roughness (Ra) of the sample as the micro surface roughness (Ra-1).
  • Macro surface roughness (Ra-2) The surface of the laminated film on the resin layer side is measured by a stylus method using a three-dimensional surface roughness meter (manufactured by Kosaka Laboratory, ET-4000A) under the following conditions, and the resulting centerline surface roughness (SRa) is measured. It was determined as macro surface roughness (Ra-2). In addition, the measurement changed the sampling place, measured 10 samples, and employ
  • the ratio of the black portion in the range from the resin layer surface to the position of 10% of the resin layer thickness is the particle abundance ratio (P-1), and the position of 40% of the resin layer thickness from the resin layer surface is The ratio of the black part in the range from 1 to 60% was defined as the particle abundance ratio (P-2).
  • the emulsion was refined with a high-pressure homogenizer (Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.) under a pressure of 70 MPa to obtain an emulsion (EM-5) containing acrylic monomer (a-1).
  • the solid content concentration of the emulsion (EM-5) is 30% by weight.
  • Reference Example 2 Resin composition (b-2) containing inorganic particles (B) While stirring 221 parts by weight of mercaptopropyltrimethoxysilane, 1 part of dibutyltin dilaurate and methyl ethyl ketone, 222 parts by weight of isophorone diisocyanate and 30 parts by weight of perfluoropolyether diol (FLUOROLINK D10H manufactured by Solvay Solexis) are stirred. After dropwise addition at 50 ° C. over 1 hour, the mixture was stirred with heating at 70 ° C. for 3 hours.
  • FLUOROLINK D10H manufactured by Solvay Solexis
  • acryloyl group-containing particle modifier (b-1) 50 parts by weight of the resulting acryloyl group-containing particle modifier (b-1), 50 parts by weight of colloidal silica aqueous dispersion (Nissan Chemical “Snowtech OL” particle size 40 nm), 0.12 parts by weight of ion-exchanged water , And 0.01 parts by weight of p-hydroxyphenyl monomethyl ether, after stirring at 60 ° C. for 4 hours, 1.36 parts by weight of orthoformate methyl ester was added, and the mixture was further heated and stirred at the same temperature for 1 hour.
  • a resin composition (b-2) containing acryloyl groups containing inorganic particles (B) was obtained.
  • New Coal 707SF as an emulsifier
  • polyoxyethylene lauryl ether manufactured by Kao Corporation
  • Emulgen 104P 2.1 parts by weight
  • ion-exchanged water 128.9 parts by weight
  • ultrasonic irradiation was performed 3 times for 120 seconds using an ultrasonic disperser (UH-600S manufactured by SMT) to obtain an emulsion.
  • emulsion was refined with a high-pressure homogenizer (Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.) under a pressure of 70 MPa, and acrylic monomers (a-1) constituting the acrylic resin (A) component and inorganic particles (
  • An emulsion (EM-1) containing the resin composition (b-2) containing B) was obtained.
  • the solid content concentration of the emulsion (EM-1) is 30% by weight.
  • a resin composition containing 30 parts of dipentahexaacrylate (KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd.), 50 parts by weight of acrylic monomer (a-3), and inorganic particles (B) ( b-2) 20 parts by weight, 79 parts by weight of a 10% aqueous solution of polyoxyethylene polycyclic phenyl ether sulfate (Nippon Emulsifier Co., Ltd.
  • New Coal 707SF as an emulsifier, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) ) 2.1 parts by weight and 128.9 parts by weight of ion-exchanged water were added and stirred and mixed. Thereafter, while cooling in an ice bath, ultrasonic irradiation was performed 3 times for 120 seconds using an ultrasonic disperser (UH-600S manufactured by SMT) to obtain an emulsion.
  • Emulgen 104P manufactured by Kao Corporation Polyoxyethylene lauryl ether
  • 128.9 parts by weight of ion-exchanged water ion-exchanged water
  • Reference Example 6 Emulsion containing amide bond-containing acrylic monomer (a-2) constituting acrylic resin (A) component (EM-4) In a flask equipped with a stirrer, 30 parts by weight of dipentahexaacrylate (Nippon Kayaku Co., Ltd.
  • KAYARAD DPHA 50 parts by weight of the resulting acrylic monomer (a-2), polyoxyethylene polycyclic phenyl ether sulfate as an emulsifier 79 parts by weight of an ester salt (Nippon Emulsifier Co., Ltd., New Coal 707SF) 79 parts by weight, 2.1 parts by weight of polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation), and 128.9 parts by weight of ion-exchanged water are added. And mixed with stirring. Thereafter, while cooling in an ice bath, ultrasonic irradiation was performed 3 times for 120 seconds using an ultrasonic disperser (UH-600S manufactured by SMT) to obtain an emulsion.
  • UH-600S ultrasonic disperser
  • the emulsion was refined with a high-pressure homogenizer (Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.) under a pressure of 70 MPa to obtain an emulsion (EM-4) containing acrylic monomer (a-2).
  • a high-pressure homogenizer Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.
  • Reference Example 7 An emulsion (EM-6) containing an amide bond-containing acrylic monomer (a-2) constituting the acrylic resin (A) component and a resin composition (b-2) containing inorganic particles (B) )
  • resin composition (b-) containing 30 parts of dipentahexaacrylate (KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd.), 50 parts by weight of acrylic monomer (a-2), and inorganic particles (B).
  • resin composition (b-) containing 30 parts of dipentahexaacrylate (KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd.), 50 parts by weight of acrylic monomer (a-2), and inorganic particles (B).
  • PAYARAD DPHA dipentahexaacrylate
  • acrylic monomer (a-2) acrylic monomer
  • inorganic particles (B) inorganic particles
  • 40 parts by weight 79 parts by weight of a 10% by weight aqueous solution of polyoxyethylene polycyclic phenyl ether
  • New Coal 707SF as an emulsifier, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 parts by weight and 128.9 parts by weight of ion-exchanged water were added and mixed with stirring. Thereafter, while cooling in an ice bath, ultrasonic irradiation was performed 3 times for 120 seconds using an ultrasonic disperser (UH-600S manufactured by SMT) to obtain an emulsion.
  • Emulgen 104P manufactured by Kao Corporation
  • the emulsion was refined with a high-pressure homogenizer (Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.) under a pressure of 70 MPa to obtain an emulsion (EM-6) containing acrylic monomer (a-2).
  • the solid content concentration of the emulsion (EM-6) is 30% by weight.
  • Resin composition (b-3) containing inorganic particles (B) 50 parts by weight of an acryloyl group-containing particle modifier (b-1), 50 parts by weight of an aqueous silica particle dispersion (“Sicastar” 43-02-103 manufactured by Micromod, particle size 1000 nm), 0.12 parts by weight of ion-exchanged water, and After stirring a mixture of 0.01 parts of p-hydroxyphenyl monomethyl ether at 60 ° C. for 4 hours, 1.36 parts of orthoformate methyl ester was added, and the mixture was further heated and stirred at the same temperature for 1 hour to obtain inorganic particles ( A resin composition (b-3) containing B) was obtained.
  • Emulsion (EM-7) containing acrylic monomer (a-1) constituting acrylic resin (A) component and resin composition (b-3) containing inorganic particles (B) A resin composition (b-3) containing 80 parts by weight of acrylic monomer (a-2) (dipentahexaacrylate (KAYARAD DPHA) manufactured by Nippon Kayaku Co., Ltd.) and inorganic particles (B) in a flask equipped with a stirrer.
  • acrylic monomer (a-1) constituting acrylic resin (A) component and resin composition (b-3) containing inorganic particles (B)
  • a resin composition (b-3) containing 80 parts by weight of acrylic monomer (a-2) (dipentahexaacrylate (KAYARAD DPHA) manufactured by Nippon Kayaku Co., Ltd.) and inorganic particles (B) in a flask equipped with a stirrer.
  • polyoxyethylene polycyclic phenyl ether sulfate ester as an emulsifier 79 parts by weight of a 10% by weight aqueous solution of New Emulsator Co., Ltd., New Coal 707SF
  • polyoxyethylene lauryl ether Emulgen 104P manufactured by Kao Corporation
  • ultrasonic irradiation was performed 3 times for 120 seconds using an ultrasonic disperser (UH-600S manufactured by SMT) to obtain an emulsion.
  • the emulsion was refined with a high-pressure homogenizer (Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.) under a pressure of 70 MPa to obtain an emulsion (EM-7) containing acrylic monomer (a-2).
  • the solid content concentration of the emulsion (EM-7) is 30% by weight.
  • Resin composition (b-4) containing inorganic particles (B) 50 parts by weight of an acryloyl group-containing particle modifier (b-1), 50 parts by weight of a silica particle aqueous dispersion (“Sicastar” 43-02-503, particle diameter 5000 nm, manufactured by Micromod), 0.12 parts by weight of ion-exchanged water, and A mixture of 0.01 parts by weight of p-hydroxyphenyl monomethyl ether was stirred at 60 ° C. for 4 hours, then 1.36 parts of orthoformate methyl ester was added, and the mixture was further heated and stirred at the same temperature for 1 hour. A resin composition (b-4) containing (B) was obtained.
  • New Coal 707SF as an emulsifier, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 1 part and 128.9 parts by weight of ion-exchanged water were added and stirred and mixed. Thereafter, while cooling in an ice bath, ultrasonic irradiation was performed 3 times for 120 seconds using an ultrasonic disperser (UH-600S manufactured by SMT) to obtain an emulsion.
  • Emulgen 104P manufactured by Kao Corporation
  • the emulsion was refined with a high pressure homogenizer (Microfluidizer M110Y manufactured by Mizuho Kogyo Co., Ltd.) under a pressure of 70 MPa to obtain an emulsion (EM-8) containing acrylic monomer (a-2).
  • the solid content concentration of the emulsion (EM-8) is 30% by weight.
  • Reference Example 12 Composition (B-3) having acrylic resin (G) on the surface of inorganic particles (B) and emulsion containing acrylic resin (F) (EM-10)
  • a normal acrylic resin reaction vessel equipped with a stirrer, a thermometer, and a reflux condenser was charged with 100 parts of isopropyl alcohol as a solvent, heated and stirred, and maintained at 100 ° C.
  • 50 parts of n 19 nonadecyl methacrylate as (meth) acrylate (g′1) and 50 parts of isobornyl methacrylate having two rings as (meth) acrylate (g′2) for 3 hours It was dripped over. Then, after completion of the dropwise addition, the mixture was heated at 100 ° C.
  • the mass ratio was calculated by rounding off the first decimal place.
  • the dispersion treatment was performed by using a homomixer and rotating at a peripheral speed of 10 m / s for 5 hours.
  • the obtained composition (B-3) was centrifuged using a Hitachi tabletop ultracentrifuge (manufactured by Hitachi Koki Co., Ltd .: CS150NX) (rotation speed: 3000 rpm, separation time: 30 minutes), and inorganic particles (B) (And the acrylic resin (F-1) adsorbed on the surface of the inorganic particles (B)) was allowed to settle, the supernatant was removed, and the precipitate was concentrated to dryness.
  • XPS X-ray photoelectron spectroscopy
  • the acrylic resin (F-1) is adsorbed and adhered to the surface of the inorganic particles (B), and the resulting composition (B-3) is adhered to the surface of the inorganic particles (B) with the acrylic resin (F -1) was found to fall under this category.
  • an emulsion (EM-11) containing a mixed composition (B-3) of particles (B) and an acrylic resin (F-1) was obtained.
  • inorganic particles (“NanoTek” TiO 2 slurry (Cai Kasei Co., Ltd., number average particle size: 36 nm)) were used in the same manner as in Reference Example 13 on the surface of the particles (B).
  • An emulsion (EM-12) containing the mixed composition (B-3) of the composition (B-3) having the acrylic resin (G) and the acrylic resin (F-1) was obtained.
  • the resin composition 1 was prepared as follows. ⁇ Resin composition> The above emulsion was mixed with an aqueous solvent at a ratio shown in the table to obtain a resin composition 1.
  • EM-5 containing acrylic monomer (a-1) constituting acrylic resin (A) component: 100 parts by weight-Inorganic particles (B) "Snowtech OL” (Colloidal) manufactured by Nissan Chemical Industries, Ltd. Silica, particle size 40 nm): 20 parts by weight Emulsifier: Polyoxyethylene polycyclic phenyl ether sulfate ester salt (Nippon Emulsifier Co., Ltd.
  • New Coal 707SF 7.9 parts by weight, polyoxyethylene lauryl ether (manufactured by Kao Corporation) Emulgen 104P) 2.1 parts by weight (The emulsifier is accompanied by (EM-5)) ⁇ Laminated film>
  • PET pellets Intrinsic viscosity 0.63 dl / g substantially free of particles were sufficiently dried in vacuum, then supplied to an extruder, melted at 285 ° C., extruded into a sheet form from a T-shaped die, It was wound around a mirror-casting drum having a surface temperature of 25 ° C. using an electric application casting method and cooled and solidified. This unstretched film was heated to 90 ° C.
  • the resin composition 1 was applied to the corona discharge-treated surface of the uniaxially stretched film with a coating thickness of about 6 ⁇ m using a bar coat.
  • the both ends in the width direction of the uniaxially stretched film coated with the resin composition are gripped with clips and guided to a preheating zone, and the ambient temperature is set to 75 ° C. Subsequently, the ambient temperature is set to 110 ° C using a radiation heater, and then the ambient temperature.
  • the resin composition was dried at 90 ° C. to form a resin layer.
  • the thickness of the PET film was 50 ⁇ m, and the thickness of the resin layer was 1000 nm.
  • the characteristics of the obtained laminated film are shown in the table. It was excellent in transparency, scratch resistance, anti-blocking property and adhesiveness.
  • Example 2 A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • EM-5 containing acrylic monomer (a-1) constituting acrylic resin (A) component: 100 parts by weight-Inorganic particles (B): "Spherica 140" (silica particles) manufactured by Catalyst Kasei Co., Ltd.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester salt (New Coal 707SF manufactured by Nippon Emulsifier Co., Ltd.): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen manufactured by Kao Corporation) 104P) 2.1 parts by weight (the emulsifier is accompanied by (EM-5))
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester salt (New Coal 707SF manufactured by Nippon Emulsifier Co., Ltd.): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen manufactured by Kao Corporation) 104P) 2.1 parts by weight (the emulsifier is accompanied by (EM-5))
  • EM-5 containing acrylic monomer (a-1) constituting acrylic resin (A) component: 100 parts by weight-Inorganic particles (B) ("Seahoster KEW-50" manufactured by Nippon Shokubai Co., Ltd.) (Silica particles, particle diameter 500 nm)): 20 parts by weight Emulsifier: Polyoxyethylene polycyclic phenyl ether sulfate ester salt (Nippon Emulsifier Co., Ltd.
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester salt (Nippon Emulsifier Co., Ltd.
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (Nippon Emulsifier Co., Ltd. New Coal 707SF): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 parts by weight (Accompanying (EM-1))
  • EM-1 ⁇ Example 6> A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (Nippon Emulsifier Co., Ltd. New Coal 707SF): 7.9 parts by weight, Polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 parts by weight ( (The above emulsifier is accompanied by (EM-2))
  • EM-2 emulsion
  • New Coal 707SF 7.9 parts by weight, polyoxyethylene lauryl ether ( 2.1 parts by weight of Emulgen 104P manufactured by Kao Corporation (the emulsifier is accompanied by (EM-3))
  • EM-3 Emulgen 104P manufactured by Kao Corporation
  • Example 9 to 15> A laminated film was obtained in the same manner as in Example 6 except that the thickness of the resin layer was changed to the thickness described in the table. The characteristics of the obtained laminated film are shown in the table.
  • Example 16> A laminated film was obtained in the same manner as in Example 6 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (New Coal 707SF manufactured by Nippon Emulsifier Co., Ltd.): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 Parts by weight (the emulsifier is accompanied by (EM-2))
  • EM-2 emulsion
  • Example 18 A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Example 19 A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Example 20> A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Examples 21 and 22> A laminated film was obtained in the same manner as in Example 17 except that the thickness of the resin layer was changed to the thickness described in the table. The characteristics of the obtained laminated film are shown in the table.
  • Example 23 A laminated film was obtained in the same manner as in Example 1 except that the resin composition in the coating liquid was changed as follows. The characteristics of the obtained laminated film are shown in the table.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester salt (Nippon Emulsifier Co., Ltd.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (Nippon Emulsifier Co., Ltd.
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (Nippon Emulsifier Co., Ltd. New Coal 707SF): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 parts by weight (Accompanying EM-7)
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (Nippon Emulsifier Co., Ltd. New Coal 707SF): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 parts by
  • Emulsifier Polyoxyethylene polycyclic phenyl ether sulfate ester (Nippon Emulsifier Co., Ltd. New Coal 707SF): 7.9 parts by weight, polyoxyethylene lauryl ether (Emulgen 104P manufactured by Kao Corporation) 2.1 parts by weight (Accompanying (EM-8))
  • EM-8 ⁇ Comparative Example 5> A laminated film was obtained in the same manner as in Example 17 except that the thickness of the resin layer was changed to the thickness described in the table. The characteristics of the obtained laminated film are shown in the table.
  • the present invention is a laminated film excellent in transparency, scratch resistance, handling properties, and anti-blocking properties, and can be used as a hard coat film used in conventional display applications and a hard coat film used in molding decoration applications. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

ポリエステル層と樹脂層を有する積層フィルムであって、少なくとも片側の表層が樹脂層であり、前記表層に有する樹脂層が、AFM(Atomic Force Microscope)によって求められるミクロ表面粗さ(Ra-1)が1nm以上20nm以下であり、三次元表面粗さ計によって求められるマクロ表面粗さ(Ra-2)が1nm以上50nm以下である積層フィルムにより、透明性、耐スクラッチ性、アンチブロッキング性に優れる積層ポリエステルフィルムを提供する。

Description

積層フィルムおよびその製造方法
 本発明は、ポリエステル層と樹脂層を有する積層フィルムであって、少なくとも片側の表層が樹脂層である積層フィルムに関する。
 熱可塑性樹脂フィルム、中でも二軸延伸ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有するため、磁気記録材料、包装材料などの多くの用途において広く使用されている。特に近年は、タッチパネル、液晶ディスプレイパネル(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス(有機EL)、等の表示部材用途をはじめ、各種光学用フィルムに用いられている。
 これらの光学用フィルムでは、ポリエステルフィルムの上に、屈折率の異なる層(以下、光学調整層)を積層した後、導電層を設け、導電フィルムとして用いられることが多い。ここで、一般的に光学調整層を積層する際には、ロール状に巻き取られた基材フィルムに、機能塗剤を塗布、硬化させた後、ロール状に巻き取る、いわゆるロールtoロールの形で加工が施される。また、導電層はロールフィルムに真空環境下におけるスパッタリングによって金属酸化物膜を形成することによって行われる。
そのため、このような用途においては、フィルムロールの搬送時のキズ付きを防止するために、ポリエステルフィルム上に耐スクラッチ層が積層された積層フィルムが使用されている。
 この積層フィルムとしては、耐スクラッチ層としてUV硬化性樹脂からなる層を積層したハードコートフィルムが用いられている。光学用途に用いる場合、透明性が要求されるため、透明性を向上させるために樹脂層の表面を平滑にすることが行われるが、樹脂層の表面を平滑にすると、フィルムロールにした際にブロッキング(貼り付き)が発生する。そのため、近年では耐ブロッキング性を有する積層フィルムが求められている。
また、光学用途に用いられる積層フィルムには、耐スクラッチ性以外にも、常温下だけでなく、高温高湿下における基材との接着性、透明性なども求められている。また、ディスプレイ等の表面に用いられることが多いため、光学用途に用いられる積層フィルムには視認性や意匠性が要求されている。
 かかる要求に対して、特許文献1では、コート膜厚より大きい粒子を含有する塗膜を積層することで、ハードコートフィルムの接触面積を減らし、アンチブロッキング性を発現させる方法が提案されている。また、特許文献2では、コート膜厚より小さいアクリル粒子を含有する塗膜を積層することで、防眩性と耐擦傷性に優れる積層フィルムを得る方法が提案されている。
特開2014-228833号公報 特開2011-186287号公報
 しかしながら、特許文献1に記載の方法では、コート層に存在する粒子の粒子径が大きいことから、光の散乱が生じ、透明性が損なわれるといった問題がある。また、特許文献2に記載の方法においても、膜厚が6~8μmであるコート層に存在するアクリル粒子の粒子径が2~5μm程度と大きいため、光の散乱が生じる領域であることから、高い透明性が求められる光学用途では透明性に課題がある。
 そこで、本発明では上記の欠点を解消し、透明性、耐スクラッチ性、アンチブロッキング性に優れる積層フィルムを提供することを課題とする。
 上記課題を解決するため本発明の積層フィルムは次の構成を有する。
[I]ポリエステル層と樹脂層を有する積層フィルムであって、少なくとも片側の表層が樹脂層であり、前記表層に有する樹脂層が、AFM(Atomic Force Microscope)によって求められるミクロ表面粗さ(Ra-1)が1nm以上20nm以下であり、三次元表面粗さ計によって求められるマクロ表面粗さ(Ra-2)が1nm以上50nm以下である積層フィルム。
[II]前記表層に有する樹脂層が、三次元表面粗さ計によって求められるマクロ表面粗さ(Ra-2)が5nm以上50nm以下である[I]に記載の積層フィルム。
[III]前記表層に有する樹脂層のミクロ表面粗さ(Ra-1)とマクロ表面粗さ(Ra-2)の比(Ra-2/Ra-1)が、3以上30以下である、[I]または[II]に記載の積層フィルム。
[IV]前記表層に有する樹脂層が粒子を含有しており、該樹脂層の厚さ方向断面を観察したときの樹脂層表面から樹脂層厚みの10%の位置までの範囲における粒子存在比率(P-1)が、該樹脂層表面から樹脂層厚みの40%の位置から60%の位置までの範囲における粒子存在比率(P-2)よりも大きい[I]~[III]のいずれかに記載の積層フィルム。
[V]前記樹脂層表面から樹脂層厚みの10%の位置までの範囲における粒子存在比率(P-1)と、樹脂層表面から樹脂層厚みの40%の位置から60%の位置までの範囲における粒子存在比率(P-2)の比(P-1/P-2)が、1.1以上5.0以下である、[IV]に記載の積層フィルム。
[VI]前記表層に有する樹脂層の厚み(t)が100nm以上5000nm以下である[IV]または[V]に記載の積層フィルム。
[VII]前記表層に有する樹脂層に含有する粒子の平均粒子径(d)が1nm以上100nm以下であり、樹脂層の厚み(t)と粒子の平均粒子径(d)との比(t)/(d)が2以上、1000以下である[VI]に記載の積層フィルム。
[VIII]ポリエステル層と樹脂層が直接積層されてなる[I]~[VII]のいずれかに記載の積層フィルム。
[IX]結晶配向が完了する前のポリエステルフィルムの少なくとも片面に、多官能アクリル樹脂と粒子を含有する塗液を塗布し、次いで、前記ポリエステルフィルムを少なくとも一軸方向に延伸し、前記ポリエステルフィルムに熱処理を施して、該ポリエステルフィルムの結晶配向を完了させる工程を含む[I]~[VIII]のいずれかに記載の積層フィルムの製造方法。
 本発明の積層フィルムは、透明性、耐スクラッチ性、耐ブロッキング性に優れ、フィルム加工工程時の搬送性を高めると共に、フィルムへのキズ付きを抑制することができる。
 以下、本発明の積層フィルムについて詳細に説明する。
本発明は、ポリエステル層と樹脂層を有する積層フィルムであって、少なくとも片側の表層が樹脂層であり、前記表層に有する樹脂層が、AFM(Atomic Force Microscope(原子間力顕微鏡))によって求められるミクロ表面粗さ(Ra-1)が1nm以上20nm以下であり、三次元表面粗さ計によって求められるマクロ表面粗さ(Ra-2)が1nm以上50nm以下である積層フィルムである。
 本発明におけるミクロ表面粗さとは、10μm×10μmの領域を、BRUKER製AFM(Atomic Force Microscope(原子間力顕微鏡))を用いて測定される樹脂層表面の粗さを表す。このミクロ表面粗さは、樹脂層の透明性と耐スクラッチ性に影響を与える特性である。測定方法の詳細は後述する。
 積層フィルムの表層にある樹脂層のミクロ表面粗さが1nm以上20nm以下であると、該樹脂層が光を散乱するような大きな凹凸を有さないため、積層フィルムの透明性を向上させることができる。また、樹脂層のひっかかりが少ないため、耐スクラッチ性を向上させることができる。より好ましくは、1nm以上15nm以下である。樹脂層のミクロ表面粗さを1nm以上20nm以下とする方法としては、ミクロ表面粗さが1nm以上20nm以下のポリエステル層の上に、流動性に優れるアクリル樹脂からなる硬化性樹脂を塗布し、硬化させることにより樹脂層を形成させる方法や、平均粒子径が100nm以下のナノ粒子を含むアクリル樹脂からなる硬化性樹脂を塗布し、硬化させることにより樹脂層を形成させる方法がある。この中でもナノ粒子を含み、かつ流動性に優れるアクリル樹脂からなる硬化性樹脂を塗布し、硬化させる方法が、透明性に優れる点から好ましい。
 本発明におけるマクロ表面粗さとは、400μm×900μmの領域を、小坂研究所製三次元粗さ計を用いて測定される樹脂層表面の粗さを表す。このマクロ表面粗さは、樹脂層のアンチブロッキング性と透明性に影響を与える特性である。測定方法の詳細は後述する。
 積層フィルムの表層にある樹脂層のマクロ表面粗さが1nm以上50nm以下の領域であると、樹脂層表面がなだらかな凹凸構造を有するため、積層フィルムのアンチブロッキング性と透明性を向上させることができる。好ましくは、5nm以上50nm以下、より好ましくは、5nm以上30nm以下である。マクロ表面粗さが1nm以上50nm以下とする方法としては、アクリル樹脂からなる硬化性樹脂を用いて樹脂層を形成させ、当該樹脂層に樹脂層の膜厚より平均粒子径が大きい粒子を含有させる方法や、アクリル樹脂からなる硬化性樹脂を塗布した後、アクリル樹脂がまだ未硬化の状態の塗膜に凹凸形状を有する金型を転写させ、その後アクリル樹脂を硬化させて樹脂層を形成させる、いわゆるナノインプリント方法や、アクリル樹脂からなる硬化性樹脂を塗布した後、アクリル樹脂がまだ未硬化の状態で樹脂層に延伸処理を施すことにより、微細な延伸ムラを与える方法などがある。この中でも、アクリル樹脂からなる硬化性樹脂を塗布した後、アクリル樹脂がまだ未硬化の状態で樹脂層に延伸処理を施すことにより微細な延伸ムラによって、樹脂層表面になだらかな凹凸構造を形成させる方法が、アンチブロッキング性に優れる点から好ましい。また、なだらかな凹凸構造であるため、光の散乱を抑制することができ、透明性に優れる点から好ましい。
 また、本発明の積層フィルムは、前記表層に有する樹脂層のミクロ表面粗さ(Ra-1)とマクロ表面粗さ(Ra-2)の比(Ra-2/Ra-1)が、3以上30以下であると、アンチブロッキング性が向上し好ましい。好ましくは5以上25以下、より好ましくは5以上10未満である。ミクロ表面粗さ(Ra-1)とマクロ表面粗さ(Ra-2)の比(Ra-2/Ra-1)は、樹脂層に含有させる粒子の平均粒子径を調節することにより、達成することができる。具体的には、樹脂層に含有させる粒子の平均粒子径を大きくすると、ミクロ表面粗さ(Ra-1)およびマクロ表面粗さ(Ra-2)共に大きくなる傾向にある。特にマクロ表面粗さ(Ra-2)は、広視野での表面粗さであることから、樹脂層に含有させる粒子の平均粒子径を大きくすると、ミクロ表面粗さ(Ra-1)に比べて数値がより大きくなる傾向にある。
 また、本発明の積層フィルムは、表層に有する樹脂層が粒子を含有しており、該樹脂層の厚さ方向断面を観察したときの樹脂層表面から樹脂層厚みの10%の位置までの範囲における粒子存在比率(P-1)が、該樹脂層表面から樹脂層厚みの40%の位置から60%の位置までの範囲における粒子存在比率(P-2)よりも大きいことが好ましい。(P-1)を(P-2)よりも大きくなるようにすることで、耐スクラッチ性を良好とすることができる。(P-1)と(P-2)の比(P-1/P-2)が、1.1以上5.0以下であると、耐スクラッチ性が特に向上し、好ましい。より好ましくは、1.1以上2.0以下である。(P-1)を(P-2)よりも大きくなるようにする方法としては、樹脂層に含有せしめる粒子として、比重の小さい粒子を用いる方法や、フッ素やシリコーンなどの低表面エネルギー成分を修飾した粒子を用いて粒子を空気側に配列させる方法が挙げられる。
 また、本発明の積層フィルムは、前記表層に有する樹脂層の厚み(t)が、100nm以上であると、樹脂層表層の硬化阻害の影響を抑えることができ、耐スクラッチ性に優れるため好ましい。樹脂層の厚みの上限は限定されないが、透明性および生産性の点で5000nm以下が好ましい。また、より好ましくは300nm以上3000nm、さらに好ましくは500nm以上1500nmである。
また、本発明の積層フィルムは、前記表層に有する樹脂層に含有する粒子の平均粒子径(d)が1nm以上100nm以下であり、樹脂層の厚み(t)と該ナノ粒子の平均粒子径(d)との比(t)/(d)が2以上、1000以下であると、粒子による光の拡散が抑制され、積層フィルムの透明性が向上し、好ましい。より好ましくは、2以上100以下である。上記範囲は樹脂層の膜厚と樹脂層に含有する粒子の平均粒子径を設計することで、達成することができる。
 [アクリル樹脂]
 本発明の積層フィルムにおいて、表層に有する樹脂層はアクリル樹脂を含むことが好ましい。特に後述するアクリル樹脂(A)および/またはアクリル樹脂(F)、および/またはアクリル樹脂(G)を含むことが好ましい。アクリル樹脂(A)および/またはアクリル樹脂(F)、および/またはアクリル樹脂(G)を用いることで、透明性を維持しつつ、樹脂層表面の硬度を向上させることができる。その結果、積層フィルムの耐スクラッチ性を向上させることが可能となる。
 本発明におけるアクリル樹脂(A)とは、分子内にアクリロイル基を有するモノマー成分(a)から構成される硬化組成物である。この中でもモノマー成分(a)は、分子内にアクリルロイル基を3つ以上有する多官能アクリレートであることが好ましい。多官能アクリレートとは、1分子中に3(より好ましくは4、更に好ましくは5以上)個以上の(メタ)アクリロイル基を有する単量体もしくはオリゴマーである。このような組成物としては、1分子中に3個以上のアルコール性水酸基を有する多価アルコールの該水酸基が3個以上の(メタ)アクリル酸のエステル化物となっている化合物などを挙げることができる。
 具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサンメチレンジイソシアンートウレタンポリマーなどを用いることができる。これらの単量体は、1種または2種以上を混合して使用することができる。また、市販されている多官能アクリル系組成物としては三菱レーヨン株式会社;(商品名”ダイヤビーム”(登録商標)シリーズなど)、長瀬産業株式会社;(商品名”デナコール”(登録商標)シリーズなど)、新中村株式会社;(商品名”NKエステル”シリーズなど)、大日本インキ化学工業株式会社;(商品名”UNIDIC”(登録商標)など)、東亜合成化学工業株式会社;(”アロニックス”(登録商標)シリーズなど)、日本油脂株式会社;(”ブレンマー”(登録商標)シリーズなど)、日本化薬株式会社;(商品名”KAYARAD”(登録商標)シリーズなど)、共栄社化学株式会社;(商品名”ライトエステル”シリーズなど)などを挙げることができ、これらの製品を利用することができる。
 本発明では、アクリル樹脂(A)として、アミド結合を有するアクリルモノマー成分を用いて得られたアクリル樹脂(A)を用いると、耐スクラッチ性が特に向上するため好ましい。この理由として本発明者らは、以下のように推定している。大気中の酸素原子が存在する中で、アクリロイル基を有するアクリルモノマー成分を硬化させる場合は、アクリロイル基のラジカル重合反応は、大気中の酸素原子によって反応が阻害される場合があり、その結果、硬化が十分でなくなり、耐スクラッチ性が劣る場合がある。アクリロイル基を含むアクリルモノマー成分にアミド結合がある場合は、大気中の酸素原子は、高極性であるアミド結合と相互作用するため、大気中の酸素によるアクリロイル基のラジカル重合反応の硬化阻害が抑制され、その結果、アクリル樹脂の硬化が進み、耐スクラッチ性が特に向上すものと推定している。アミド結合を有するアクリルモノマー成分としては、例えば、下記(式1)で表される構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 
 本発明におけるアクリル樹脂(F)とは、(式2)で表されるモノマー単位(f)を有する樹脂である。



Figure JPOXMLDOC01-appb-C000002
((式2)において、R基は、水素原子またはメチル基を表す。また、R基は、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム塩基、スルホン酸基、または、リン酸基を表す。)












 
 (式2)におけるR基が、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム基、スルホン酸基、リン酸基、のいずれも有しないモノマー単位を有するアクリル樹脂を用いると、アクリル樹脂の水系溶媒中への相溶性が不十分となり、樹脂組成物中において、アクリル樹脂(F)が不均一に存在した結果、樹脂層の一部に耐スクラッチ性が劣る点が生じ、好ましくない。
 
また、後述する無機粒子(B)が凝集または沈降したり、乾燥工程において無機粒子(B)が凝集したりすることで、擦過した際の樹脂層への圧力が局所的に強くなる結果、樹脂層が破壊され、キズつきにつながることがある。
 更に、かかる凝集体は、可視光の波長より大きいため、透明性の良好な積層フィルムを得ることができなくなる場合がある。本発明におけるアクリル樹脂(F)が、次の(式2)で表されるモノマー単位(f)を有するためには、(式3)で表される(メタ)アクリレートモノマ(f’)を原料として用い、重合することが必要である。
 (式3)で表される(メタ)アクリレートモノマー(f’)として次の化合物が例示される。
Figure JPOXMLDOC01-appb-C000003
 水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2、3-ジヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどの多価アルコールと(メタ)アクリル酸とのモノエステル化物、あるいは、該モノエステル化物にε-カプロラプトンを開環重合した化合物などが挙げられ、特に2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートが好ましい。
 カルボキシル基を有する(メタ)アクリレートモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、フマール酸、マレイン酸などのα、β-不飽和カルボン酸、あるいは、ヒドロキシアルキル(メタ)アクリレートと酸無水物とのハーフエステル化物などが挙げられ、特にアクリル酸、メタクリル酸が好ましい。
 3級アミノ基含有モノマーとしては、N、N-ジメチルアミノエチル(メタ)アクリレート、N、N-ジエチルアミノエチル(メタ)アクリレート、N、N-ジメチルアミノプロピル(メタ)アクリレート、などのN、N-ジアルキルアミノアルキル(メタ)アクリレート、N、N-ジメチルアミノエチル(メタ)アクリルアミド、N、N-ジエチルアミノエチル(メタ)アクリルアミド、N、N-ジメチルアミノプロピル(メタ)アクリルアミドなどのN、N-ジアルキルアミノアルキル(メタ)アクリルアミドなどが挙げられ、特にN、N-ジメチルアミノエチル(メタ)アクリレートが好ましい。
 4級アンモニウム塩基含有モノマーとしては、上記3級アミノ基含有モノマーにエピハロヒドリン、ハロゲン化ベンジル、ハロゲン化アルキルなどの4級化剤を作用させたものが好ましく、具体的には、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムブロマイド、2-(メタクリロイオキシ)エチルトリメチルアンモニウムジメチルホスフェートなどの(メタ)アクリロイルオキシアルキルトリアルキルアンモニウム塩、メタクリロイルアミノプロピルトリメチルアンモニウムクロライド、メタクリロイルアミノプロピルトリメチルアンモニウムブロマイドなどの(メタ)アクリロイルアミノアルキルトリアルキルアンモニウム塩、テトラブチルアンモニウム(メタ)アクリレートなどのテトラアルキル(メタ)アクリレート、トリメチルベンジルアンモニウム(メタ)アクリレートなどのトリアルキルベンジルアンモニウム(メタ9アクリレートなどが挙げられ、特に2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライドが好ましい。
 スルホン酸基含有モノマーとしては、ブチルアクリルアミドスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などの(メタ)アクリルアミド-アルカンスルホン酸、あるいは、2-スルホエチル(メタ)アクリレートなどのスルホアルキル(メタ)アクリレートなどが挙げられ、特に2-スルホエチル(メタ)アクリレートが好ましい。
 リン酸基含有アクリルモノマーとしては、アシッドホスホオキシエチル(メタ)アクリレートなどが挙げられ、特にアシッドホスホオキシエチル(メタ)アクリレートが好ましい。
この中でも、特にアクリル樹脂(F)が、前記(式2)で表されるモノマー単位(f)を有する樹脂であり、(式2)におけるR基が、水酸基、カルボキシル基であることが、後述する無機粒子(B)と吸着力が高くなり、より強固な膜を形成でき、耐スクラッチ性が向上する点で好ましい。アクリル樹脂(F)を用いて、マクロ表面粗さが1nm以上50nm以下とする方法としては、アクリル樹脂がまだ未硬化の状態で樹脂層に延伸処理を施すことにより、微細な延伸ムラを与える方法が挙げられるが、このとき、樹脂層の厚みが300nm以上であることが重要である。上記厚みとすることで、微細な延伸ムラが適切な高さを発現し、アンチブロッキング性を向上させることができる。
 本発明では、樹脂層中のアクリル樹脂の含有量は10~90重量%であることが好ましく、この範囲とすることで樹脂層の耐スクラッチ性を向上させることができる。
特に、アクリル樹脂としてアクリル樹脂(A)を用いる場合、アクリル樹脂(A)の含有量は、樹脂層全体に対して40重量%以上90重量%以下であることがより、好ましいく、樹脂層中のアクリル樹脂(A)の含有量は、40重量%以上80重量%以下が好ましく、より好ましくは45重量%以上70重量%以下である。
また、アクリル樹脂としてアクリル樹脂(F)を用いる場合、樹脂層中のアクリル樹脂(F)の含有量は、樹脂層全体に対して20重量%以上80重量%以下であることが好ましく、より好ましくは40重量%以上80重量%以下、更に好ましくは45重量%以上70重量%以下である。
なお、本発明において、樹脂層中の含有量とは、樹脂層を形成する樹脂組成物の固形分([(樹脂組成物の質量)-(溶媒の質量)])中の含有量を表す。
 [無機粒子]
 本発明の積層フィルムは、前記表層に有する樹脂層に、無機粒子(B)を含有することが好ましい。無機粒子(B)としては、例えば、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウムの微粒子が好ましい。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。
また、本発明の無機粒子(B)は、無機粒子(B-1)とアクリロイル基を含む樹脂成分を結合させてなる組成物(B-2)であること、または無機粒子(B-1)の表面の一部または全部にアクリル樹脂(G)を有する組成物(B-3)であることが好ましい。ここでいう結合とは、共有結合または非共有結合(物理的吸着)であってもよい。
 無機粒子(B-1)とアクリロイル基を含む樹脂成分を結合させてなる樹脂組成物(B-2)の例としては、無機粒子(B-1)とアクリロイル基を含む樹脂成分が結合(表面修飾)されていることが挙げられる。無機粒子(B-1)とアクリロイル基を含む樹脂成分が結合することで、樹脂層に力がかかった際の無機粒子の脱落を抑制することができ、耐スクラッチ性を向上させることができる。
 無機粒子(B-1)とアクリロイル基を含む樹脂成分を結合させる具体的手法としては、アクリロイル基を含む樹脂成分がシラノール基を有する樹脂成分、あるいは加水分解によってシラノール基を生成する樹脂成分であることが好ましい。
 次に、無機粒子(B)を含有する樹脂組成物(B-2)に含まれる、アクリロイル基を含む樹脂成分について説明する。アクリロイル基を含む樹脂成分は、アクリロイル基および加水分解性シリル基を有する化合物である。加水分解性シリル基とは、水と反応してシラノール基を生成するものであり、例えば、ケイ素に1以上のメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基などのアルコキシ基、アリールオキシ基、アセトキシ基、アミノ基、またはハロゲン原始が結合したものをさす。
 無機粒子(B-1)とアクリロイル基を含む樹脂成分を結合させてなる粒子は、加水分解性シリル基を有するアクリロイル基を含む樹脂成分(B-2)を無機粒子(B-1)と混合し、加水分解させ、両者を結合させることによって得ることができる。このようにして得られた粒子はアクリル樹脂(A)と反応しているため、樹脂層が擦られた際に無機粒子が脱落しづらいため、耐スクラッチ性に優れるようになる。
 無機粒子(B)を含有する樹脂組成物(B-2)に含まれる、無機粒子(B-1)とアクリロイル基を含む樹脂成分比率は、無機粒子(B-1)とアクリロイル基を含む樹脂成分を100重量部とした時に、アクリロイル基を含む樹脂成分(B-2)が0.1重量部以上50重量部以下が好ましい。該範囲とすることで、無機粒子が脱落することなく、耐スクラッチ性と透明性、アンチブロッキング性を両立することができる。アクリロイル基を含む樹脂成分が50重量部を超えると、樹脂層に含まれる無機粒子の密度が低下し、耐スクラッチ性が悪化する場合がある。
 また、本発明の無機粒子(B-1)の表面の一部または全部にアクリル樹脂(G)を有する組成物(B-3)とは、無機粒子(B-1)表面の一部または全部に、前述したアクリル樹脂(G)を有する粒子であることが、好ましい。
ここでいうアクリル樹脂(G)とは(式4)で表されるモノマー単位(g)と、(式5)で表されるモノマー単位(g)を有する樹脂である。
Figure JPOXMLDOC01-appb-C000004
((式4)において、R基は、水素原子またはメチル基を表す。またnは、9以上34以下の整数を表す。)。
Figure JPOXMLDOC01-appb-C000005
((式5)において、R基は、水素原子またはメチル基を表す。また、R基は、飽和の炭素環を2つ以上含む基を表す。)。
 ここで、本発明におけるアクリル樹脂(G)は、(式4)で表されるモノマー単位(g)を有する樹脂であることが好ましい。アクリル樹脂(G)が(式4)で表されるモノマー単位(g)を有することで、樹脂層の表面エネルギーが低くなるため、擦過処理を施した際の樹脂層にかかる摩擦係数が小さくなり、耐スクラッチ性を向上させることができる。
 また、(式4)において、nが9未満のモノマー単位を有するアクリル樹脂を用いると、水系溶媒(水系溶媒の詳細については、後述する。)中における無機粒子(B)の分散性が不安定となる。(式4)におけるnが9未満のモノマー単位を有するアクリル樹脂を用いると、樹脂組成物中において無機粒子(B)が凝集または沈降したり、乾燥工程において無機粒子(B)が凝集したりすることがある。その結果、積層フィルムの透明性が損なわれたり、スクラッチ性が劣る場合がある。一方、(式4)におけるnが34を越えるモノマー単位を有するアクリル樹脂は、水系溶媒への溶解性が著しく低いので、水系溶媒中においてアクリル樹脂の凝集が起こりやすくなる。かかる凝集体は、可視光の波長より大きいため、透明性の良好な積層フィルムを得ることができなくなる場合がある。
 本発明におけるアクリル樹脂(G)が、(式4)で表されるモノマー単位(g)を有するためには、次の(式6)で表される(メタ)アクリレートモノマー(g’)を原料として用い、重合することが必要である。
 該(メタ)アクリレートモノマー(g’)としては、(式6)におけるnが9以上34以下の整数で表される(メタ)アクリレートモノマーが好ましく、より好ましくは11以上32以下の(メタ)アクリレートモノマー、更に好ましくは13以上30以下の(メタ)アクリレートモノマーである。
Figure JPOXMLDOC01-appb-C000006
 (メタ)アクリレートモノマー(g’)は、(式6)におけるnが9以上34以下である(メタ)アクリレートモノマーであれば特に制限されないが、具体的にはデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、1-メチルトリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、テトラコシル(メタ)アクリレート、トリアコンチル(メタ)アクリレート等が挙げられ、特にドデシル(メタ)アクリレート、トリデシル(メタ)アクリレートが好ましい。これらは1種で使用してもよく、2種以上の混合物を使用してもよい。
 また、本発明におけるアクリル樹脂(G)は、前記(式5)で表されるモノマー単位(g)を有する樹脂であることが好ましい。アクリル樹脂(G)が(式5)で表されるモノマー単位(g)を有することで、飽和炭素環の立体障害の影響で樹脂層が剛直になり、耐スクラッチ性を向上させることができる。
 また、(式5)において、飽和の炭素環を1つのみ含むモノマー単位を有するアクリル樹脂を用いると、立体障害としての機能が不十分となり、樹脂組成物中において無機粒子(B)が凝集または沈降したり、乾燥工程において無機粒子(B)が凝集したりすることがある。
 かかる凝集体は、可視光の波長より大きいため、透明性の良好な積層フィルムを得ることができなくなる場合ある。本発明におけるアクリル樹脂(G)が、(式5)で表されるモノマー単位(g)を有するためには、次の(式7)で表される(メタ)アクリレートモノマー(g’)を原料として用い、重合することが必要である。
 (式7)で表される(メタ)アクリレートモノマー(g’)としては、架橋縮合環式(2つまたはそれ以上の環がそれぞれ2個の原子を共有して、結合した構造を有する)、スピロ環式(1個の炭素原子を共有して、2つの環状構造が結合した構造を有する)などの各種環状構造、具体的には、ビシクロ、トリシクロ、テトラシクロ基などを有する化合物が例示でき、その中でも特にバインダーとの相溶性の観点から、ビシクロ基を含有する(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記ビシクロ基を含有する(メタ)アクリレートとしては、イソボニル(メタ)アクリレート、ボルニル(メタ)アクリレート、ジシロクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジメチルアダマンチル(メタ)アクリレートなどが挙げられ、特にイソボニル(メタ)アクリレートが好ましい。
無機粒子(B-1)の表面にアクリル樹脂(G)を有することにより、樹脂層中の無機粒子(B-1)とアクリル樹脂(G)の界面接着が強固になることで、擦過処理を施した際の粒子脱落が抑制され、耐スクラッチ性に優れる。更には、乾燥過程における無機粒子(B)の凝集を抑制し、樹脂層のミクロ表面粗さ、およびマクロ表面粗さを所定の範囲とすることが可能となる。
 なお、無機粒子(B-1)の製造方法は特に限定されるものではないが、無機粒子(B-1)をアクリル樹脂(G)で表面処理する方法などを挙げることができ、具体的には、以下の(i)~(iv)の方法が例示される。なお、本発明において、表面処理とは、無機粒子(B-1)の表面の全部または一部にアクリル樹脂(G)を吸着・付着させる処理をいう。
 (i)無機粒子(B-1)とアクリル樹脂(F)をあらかじめ混合した混合物を溶媒中に添加した後、分散する方法。
 (ii)溶媒中に、無機粒子(B-1)とアクリル樹脂(G)を順に添加して分散する方法。
 (iii)溶媒中に、無機粒子(B-1)とアクリル樹脂(G)をあらかじめ分散し、得られた分散体を混合する方法。
 (iv)溶媒中に、無機粒子(B-1)を分散した後、得られた分散体に、アクリル樹脂(G)を添加する方法。
 これらのいずれの方法によっても目的とする効果を得ることができる。
 また、分散を行う装置としては、ディゾルバー、ハイスピードミキサー、ホモミキサー、ミーダー、ボールミル、ロールミル、サンドミル、ペイントシェーカー、SCミル、アニュラー型ミル、ピン型ミル等が使用できる。
 また、分散方法としては、上記装置を用いて、回転軸を周速5~15m/sで回転させる。回転時間は5~10時間である。
 また、分散時に、ガラスビーズ等の分散ビーズを用いることが分散性を高める点でより好ましい。ビーズ径は、好ましくは0.05~0.5mm、より好ましくは0.08~0.5mm、特に好ましくは0.08~0.2mmである。
 混合、攪拌する方法は、容器を手で振って行ったり、マグネチックスターラーや攪拌羽根を用いたり、超音波照射、振動分散などを行うことができる。
 なお、無機粒子(B-1)の表面の全部または一部への、アクリル樹脂(G)の吸着・付着の有無は、次の分析方法により確認可能である。測定対象物(例えば、無機粒子(B-1)を含む組成物(B-3))を、日立卓上超遠心機(日立工機株式会社製:CS150NX)により遠心分離を行い(回転数3,0000rpm、分離時間30分)、無機粒子(B-1)(及び無機粒子(B-1)の表面に吸着したアクリル樹脂(G))を沈降させた後、上澄み液を除去し、沈降物を濃縮乾固する。濃縮乾固した沈降物をX線光電子分光法(XPS)により分析し、無機粒子(B-1)の表面におけるアクリル樹脂(F)の有無を確認する。無機粒子(B-1)の表面に、無機粒子(B-1)の合計100質量%に対して、アクリル樹脂(G)が1質量%以上存在することが確認された場合、無機粒子(B-1)の表面に、アクリル樹脂(G)が吸着・付着しているものとする。
 ここで、無機粒子(B-1)の数平均粒子径について説明する。ここで数平均粒子径とは、透過型電子顕微鏡(TEM)により求めた粒子径をいう。倍率は50万倍とし、その画面に存在する10個の粒子の外径を、10視野について合計100個の粒子を測定した数平均粒子径である。ここで外径とは、粒子の最大の径(つまり粒子の長径であり、粒子中の最も長い径を示す)を表し、内部に空洞を有する粒子の場合も同様に、粒子の最大の径を表す。
 無機粒子(B)の数平均粒子径が1nmよりも小さくなると、粒子同士のファンデルワールス力が増大し、粒子同士が凝集する結果、光の散乱が生じ、透明性が低下することがある。一方、該無機粒子(B)の数平均粒子径が100nmよりも大きくなると、透明性の観点からは、光が散乱する起点となり透明性が悪化するといった可能性がある。また、塗膜内の無機粒子の充填が十分に進まず、耐スクラッチ性が低下したりすることがある。そのため、無機粒子(B)は、数平均粒子径が5nm以上100nm以下であることが好ましい。好ましくは10nm以上80nm以下、より好ましくは20nm以上60nm以下である。
 本発明では、樹脂層(X)に含まれる無機粒子(B)は、アクリル樹脂(A)100重量部に対し、10~50重量部の範囲が好ましく、より好ましくは15~50重量部の範囲がより好ましい。上記範囲とすることで、透明性と耐スクラッチ性を両立することができる。
また、本発明では、樹脂層(X)に含まれる無機粒子(B)は、アクリル樹脂(F)およびアクリル樹脂(G)の合計100重量部に対し、50~200重量部の範囲が好ましく、より好ましくは100~200重量部の範囲がより好ましい。上記範囲とすることで、透明性と耐スクラッチ性を両立することができる。
 [ポリエステル層]
 本発明の積層フィルムにおいて、基材層として用いられるポリエステル層(以下基材層として用いられるポリエステル層をポリエステルフィルムと呼ぶ場合がある)について述べる。まずポリエステルとは、エステル結合を主鎖に有する高分子の総称であって、エチレンテレフタレート、プロピレンテレフタレート、エチレン-2,6-ナフタレート、ブチレンテレフタレート、プロピレン-2,6-ナフタレート、エチレン-α,β-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレートなどから選ばれた少なくとも1種の構成成分とするものを好ましく用いることができる。
 上記ポリエステルを使用したポリエステルフィルムは、二軸配向されたものであるのが好ましい。二軸配向ポリエステルフィルムとは、一般に、未延伸状態のポリエステルシート又はフィルムを長手方向および長手方向に直行する幅方向に各々2.5~5倍程度延伸され、その後、熱処理を施されて、結晶配向が完了されたものであり、広角X線回折で二軸配向のパターンを示すものをいう。ポリエステルフィルムが二軸配向している場合には、熱安定性、特に寸法安定性や機械的強度が十分で、平面性も良好である。
 また、ポリエステルフィルム中には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機又は無機の微粒子、充填剤、帯電防止剤、核剤などがその特性を悪化させない程度に添加されていてもよい。
 ポリエステルフィルムの厚みは特に限定されるものではなく、用途や種類に応じて適宜選択されるが、機械的強度、ハンドリング性などの点から、通常は好ましくは10~500μm、より好ましくは15~250μm、最も好ましくは20~100μmである。また、ポリエステルフィルムは、共押出しによる複合フィルムであってもよいし、得られたフィルムを各種の方法で貼り合わせたフィルムであっても良い。
 [樹脂層の製造方法]
 本発明の積層フィルムの樹脂層の製造方法について以下に例を示すが、以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す例により限定的に解釈されるべきものではない。
 本発明の樹脂層は、アクリル樹脂(A)および、またはアクリル樹脂(F)の少なくとも1種から選ばれるアクリル樹脂と、無機粒子(B)を含むと、樹脂層の透明性、耐スクラッチ性、アンチブロッキング性に優れ、好ましい。
 また、樹脂層中には、必要に応じて、(A)、(F)および(B)以外の他の化合物、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂などのポリマー樹脂、カルボジイミド化合物、オキサゾリン化合物、アジリジン化合物、チタンキレートなどのチタネート系カップリング剤、メチロール化あるいはアルキロール化したメラミン化合物を含んでいてもよい。また、各種添加剤、例えば、有機系易滑剤、有機又は無機の微粒子、帯電防止剤などがその特性を悪化させない程度に添加されていてもよい。
 特に(A)、(F)および(B)以外の他の化合物として、オキサゾリン化合物、およびまたはメラミン化合物が好ましく、特にメラミン化合物を含有することが好ましい。
 メラミン系化合物としては、例えば、メラミン、メラミンとホルムアルデヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミンに低級アルコールを反応させて部分的あるいは完全にエーテル化した化合物、及びこれらの混合物などを用いることができる。具体的には、トリアジンとメチロール基を有する化合物が特に好ましい。またメラミン系化合物としては単量体、2量体以上の多量体からなる縮合物にいずれでもよく、これらの混合物でもよい。エーテル化に用いられる低級アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノールなどを用いることができる。基としては、イミノ基、メチロール基、あるいはメトキシメチル基やブトキシメチル基等のアルコキシメチル基を1分子中に有するもので、イミノ基型メチル化メラミン樹脂、メチロール基型メラミン樹脂、メチロール基型メチル化メラミン樹脂、完全アルキル型メチル化メラミン樹脂などである。その中でもメチロール化メラミン樹脂が最も好ましい。更に、メラミン系化合物の熱硬化を促進するため、例えばp-トルエンスルホン酸などの酸性触媒を用いてもよい。
 このようなメラミン系化合物用いると、メラミン系化合物の自己縮合による塗膜硬度アップによる耐スクラッチ性向上が見られるだけでなく、アクリル樹脂に含まれる水酸基やカルボン基とメラミン系化合物の反応が進行し、より強固な樹脂層を得ることができ、耐スクラッチ性に優れるフィルムを得ることができる。更には樹脂層中の無機粒子(B)の脱落抑制効果によって、アンチブロッキング性発現に必要な凹凸構造の凸部の削れを防止することができる。
 [積層フィルムの製造方法]
 本発明の積層フィルムの製造方法について以下に例を示して説明するが、以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す例により限定的に解釈されるべきものではない。
 本発明の積層フィルムは、アクリル樹脂(A)を構成するアクリルモノマー(a)と、無機粒子(B)を含有する樹脂組成物(b)をポリエステルフィルム上へ塗布し、樹脂組成物が溶媒を含む場合には、溶媒を乾燥させることによって、ポリエステルフィルム上に樹脂層を形成することによって得ることができる。
また、アクリル樹脂(F)を構成するアクリルモノマー(f)と、無機粒子(B)を含有する樹脂組成物(b)をポリエステルフィルム上へ塗布し、樹脂組成物が溶媒を含む場合には、溶媒を乾燥させることによって、ポリエステルフィルム上に樹脂層を形成することによって得ることができる。
 また本発明において、樹脂組成物に溶媒を含有せしめる場合は、溶媒として水系溶媒を用いることが好ましい。水系溶媒を用いることで、乾燥工程での溶媒の急激な蒸発を抑制でき、均一な組成物層を形成できるだけでなく、環境負荷の点で優れているためである。
 ここで、水系溶媒とは、水、または水とメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類、アセトン、メチルエチルケトンなどのケトン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類など水に可溶である有機溶媒が任意の比率で混合させているものを指す。
 また、本発明において、水系溶媒を用いる場合には、アクリル樹脂(A)を構成するアクリルモノマー(a)やアクリル樹脂(F)を構成するアクリルモノマー(f)、無機粒子(B)を含有する樹脂組成物(b)を含有した水系塗剤を塗布することが好ましい。これは水系塗剤として塗布することで、有機溶媒系塗剤と比べ、溶媒が乾燥した状態において、水分散化剤もしくは乳化剤が塗膜表層に配列するため、上述したアクリロイル基のラジカル重合反応の硬化阻害が抑制され、樹脂層の厚みが薄膜でも耐スクラッチ性に優れるためである。
 なお、アクリル樹脂(A)を構成するアクリルモノマー(a)や、無機粒子(B)を含有する樹脂組成物(b)を水系塗剤化する方法としては、アクリル樹脂(A)を構成するアクリルモノマー(a)や、無機粒子(B)を含有する樹脂組成物(b)にカルボン酸やスルホン酸といった親水基を含有せしめる方法や、乳化剤を用いてエマルジョン化する方法があげられる。
 樹脂組成物のポリエステルフィルムへの塗布方法はインラインコート法であることが好ましい。インラインコート法とは、ポリエステルフィルムの製造の工程内で塗布を行う方法である。具体的には、ポリエステル樹脂を溶融押し出ししてから二軸延伸後熱処理して巻き上げるまでの任意の段階で塗布を行う方法を指し、通常は、溶融押出し後・急冷して得られる実質的に非晶状態の未延伸(未配向)ポリエステルフィルム(Aフィルム)、その後に長手方向に延伸された一軸延伸(一軸配向)ポリエステルフィルム(Bフィルム)、またはさらに幅方向に延伸された熱処理前の二軸延伸(二軸配向)ポリエステルフィルム(Cフィルム)の何れかのフィルムに塗布する。
 本発明では、結晶配向が完了する前の上記Aフィルム、Bフィルム、の何れかのポリエステルフィルムに、樹脂組成物を塗布し、その後、ポリエステルフィルムを一軸方向又は二軸方向に延伸し、溶媒の沸点より高い温度で熱処理を施しポリエステルフィルムの結晶配向を完了させるとともに樹脂層を設ける方法を採用することが好ましい。この方法によれば、ポリエステルフィルムの製膜と、樹脂組成物の塗布乾燥(すなわち、樹脂層の形成)を同時に行うことができるために製造コスト上のメリットがある。また、塗布後に延伸を行うために樹脂層の厚みをより薄くすることが容易である。
 中でも、長手方向に一軸延伸されたフィルム(Bフィルム)に、樹脂組成物を塗布し、その後、幅方向に延伸し、熱処理する方法が優れている。未延伸フィルムに塗布した後、二軸延伸する方法に比べ、延伸工程が1回少ないため、延伸による組成物層の欠陥や亀裂が発生しづらく、透明性や平滑性に優れた組成物層を形成できるためである。
 更に、インラインコート法で樹脂層を設けることにより、樹脂層が硬化しきる前に樹脂層を延伸することが可能となり、簡便になだらかな凹凸構造を形成することができる。さらにその凹凸構造は、樹脂層の厚みが300nm以上となることで、より顕著な凹凸構造を形成することができる。その結果、樹脂層に大きな突起を作らずとも、フィルムのアンチブロッキング性を発現することができる。なお、このなだらかな凹凸構造は、小阪研究所製三次元粗さ計を用いて測定されるマクロ表面粗さが5~50nmであることを意味する。
 本発明において該樹脂層は、上述した種々の利点から、インラインコート法により設けられることが好ましい。ここで、ポリエステルフィルムへの樹脂組成物の塗布方式は、公知の塗布方式、例えばバーコート法、リバースコート法、グラビアコート法、ダイコート法、ブレードコート法等の任意の方式を用いることができる。
 したがって、本発明において最良の樹脂層の形成方法は、水系溶媒を用いた樹脂組成物を、ポリエステルフィルム上にインラインコート法を用いて塗布し、乾燥、熱処理することによって形成する方法である。またより好ましくは、一軸延伸後のBフィルムに樹脂組成物をインラインコートする方法である。本発明の積層フィルムの製造方法において、乾燥は樹脂組成物の溶媒の除去を完了させるために、80~130℃の温度範囲で実施することができる。また、熱処理はポリエステルフィルムの結晶配向を完了させるとともに樹脂組成物の熱硬化を完了させ樹脂層の形成を完了させるために、160~240℃の温度範囲で実施することができる。
 次に、本発明の積層フィルムの製造方法について、ポリエステルフィルムとしてポリエチレンテレフタレート(以下、PET)フィルムを用いた場合を例にして説明するが、これに限定されるものではない。まず、PETのペレットを十分に真空乾燥した後、押出機に供給し、約280℃でシート状に溶融押し出し、冷却固化せしめて未延伸(未配向)PETフィルム(Aフィルム)を作製する。このフィルムを80~120℃に加熱したロールで長手方向に2.5~5.0倍延伸して一軸配向PETフィルム(Bフィルム)を得る。このBフィルムの片面に所定の濃度に調製した本発明の樹脂組成物を塗布する。
 この時、塗布前にPETフィルムの塗布面にコロナ放電処理等の表面処理を行ってもよい。コロナ放電処理等の表面処理を行うことで、樹脂組成物のPETフィルムへの濡れ性が向上し、樹脂組成物のはじきを防止し、均一な塗布厚みの樹脂層を形成することができる。塗布後、PETフィルムの端部をクリップで把持して80~130℃の熱処理ゾーン(予熱ゾーン)へ導き、樹脂組成物の溶媒を乾燥させる。乾燥後幅方向に1.1~5.0倍延伸する。引き続き160~240℃の熱処理ゾーン(熱固定ゾーン)へ導き1~30秒間の熱処理を行い、結晶配向を完了させる。
 この熱処理工程(熱固定工程)で、必要に応じて幅方向、あるいは長手方向に3~15%の弛緩処理を施してもよい。かくして得られた積層フィルムは透明性、耐スクラッチ性、アンチブロッキング性に優れた積層フィルムとなる。
 なお、本発明の積層フィルムは、樹脂層とポリエステル層の間に中間層を設けても良いが、中間層を設ける場合は、中間層を積層したフィルムの巻き取り時や、その後の本発明の樹脂層を設けるまでの工程において、フィルムにキズがつく場合がある。そのため、本発明では、樹脂層とポリエステル層が直接積層されていることが好ましい。
 [特性の測定方法および効果の評価方法]
 本発明における特性の測定方法および効果の評価方法は次のとおりである。
 (1)ヘイズ(透明性)
 ヘイズの測定は、常態(23℃、相対湿度50%)において、積層フィルムサンプルを40時間放置した後、日本電色工業(株)製濁度計「NDH5000」を用いて、JIS K 7136「透明材料のヘイズの求め方」(2000年版)に準ずる方式で行った。なお、サンプルの樹脂層が積層された面側から光を照射して測定した。サンプルは一辺50mmの正方形のものを10サンプル準備し、それぞれ1回ずつ、合計10回測定した平均値をサンプルのヘイズ値とした。
また、透明性はヘイズ値により、4段階評価を行った。×は実用上問題のあるレベル、△は実用レベルであり、AとSのものは良好とした。
S:0.6%以下
A:0.6%を超えて1.0%以下
B:1.0%を超えて2.0%以下
C:2.0%を超える。
 (2)耐スクラッチ性
 スチールウール(ボンスター#0000、日本スチールウール(株)製)を荷重200g/cmで10往復擦過し、積層フィルムの表面における傷の発生の有無を目視で確認し、下記評価を実施した。
S:傷なし
A:傷1~5本
B:傷6~10本
C:傷11本以上。
 (3)アンチブロッキング性
積層フィルムの樹脂層同士を貼り合わせ、荷重1kg/cm2で加圧し、常温で24時間保管した。その後積層フィルムを剥がす際のフィルムのブロッキング(貼りつき)の有無を目視で確認し、下記評価を実施した。
A:ブロッキングなし
B:一部ブロッキングあり
C:全面ブロッキングあり
 (4)接着性
 積層フィルムの樹脂層側に1mmのクロスカットを100個入れ、“セロテープ”(登録商標)(ニチバン(株)製、CT405AP)を貼り付け、ハンドローラーで1.5kg/cmの荷重で押しつけた後、積層フィルムに対して90度方向に急速に剥離した。接着性は残存した格子の個数により、4段階評価を行った。評価は10回実施した平均の値で行った。Cは実用上問題のあるレベル、Bは実用レベルであり、AとSのものは良好とした。
S:90~100個残存
A:80~89個残存
B:50~79個残存
C:0~50個未満残存。
 (5)樹脂層に含有する粒子の数平均粒子径
 樹脂層に含有する粒子の数平均粒子径は、透過型電子顕微鏡(TEM)により積層フィルムの断面構造を観察することにより求めた。倍率を50万倍とし、その画面内に存在する10個の粒子の外径を、10視野について合計100個の粒子を測定し、その平均粒子径を求めた。画面内に10個の粒子が存在しない場合は、同じ条件で別の箇所を観察し、その画面内に存在する粒子の外径を測定して、合計で100個の粒子の外径を測定して平均値とした。ここで外径とは、粒子の最大の径(つまり粒子の長径であり、粒子中の最も長い径を示す)を表し、内部に空洞を有する粒子の場合も同様に、粒子の最大の径を表す。
 (6)樹脂層の膜厚
 透過型電子顕微鏡(TEM)を用いて断面を観察することにより、ポリエステルフィルム上の樹脂層の厚みを測定した。樹脂層の厚みは、TEMにより10万倍の倍率で撮影した画像から樹脂層の厚みを読み取った。合計で20点の樹脂層厚みを測定して平均値とした。
 試料調整:RuO染色FIB法
      SMI3200SE(SIINT(株)製)
            FB-2000A II Micro Sampling System(日立(株)製)
      Strata400S(FEI社製)
 観察装置:高分解透過型電子顕微鏡(日立製 H9000UHR II)
 観察条件:加速電圧300kV
 (7)ミクロ表面粗さ(Ra-1)
 BRUKER製AFM(Atomic Force Microscope(原子間力顕微鏡))「Dimension Icon ScanAsyst」のScanAsyst Airモードにて、積層フィルムの樹脂層側表面を測定範囲10μm×10μm、測定ライン数512本、測定レート1.0Hzで測定し、得られた表面情報から、JIS-B-0601-1994に定められた方法にて算術平均粗さ(Ra)を算出した。具体的には、ソフトウェアとして「NanoScope Analysis」を用い、「Flatten Order」の「3rd」を選択し、三次元でのうねり処理を行なう。その後「Roughness」を選択し、該画面の「Image Ra」に記載される数値を算術平均粗さとする。また、合計10回測定し、最大値と最小値を除いた計8個のデータの平均値をサンプルの算術平均粗さ(Ra)をミクロ表面粗さ(Ra-1)として求めた。
 (8)マクロ表面粗さ(Ra-2)
 積層フィルムの樹脂層側表面を3次元表面粗さ計(小坂研究所製、ET-4000A)を用い、次の条件で触針法により測定を行い、得られる中心線面粗さ(SRa)をマクロ表面粗さ(Ra-2)として求めた。
なお、測定はサンプリング場所を変え、10サンプル測定し、その最大値と最小値を除いた8点の平均値を採用した。
針径 0.5(μmR)
針の押し付け圧力 100(μN)
縦倍率      20000(倍)
低域CUT OFF 200(μm)
広域CUT OFF 0(μm)
測定速度 100(μm/s)
測定間隔 X方向1(μm)、Y方向5(μm)
記録本数 81本
ヒステリシス幅 0.000(μm)
基準面積 X方向1mm、Y方向0.4mm。 
(9)粒子存在比率
 (6)に記載の方法で得られた断面TEMの画像(倍率10万倍)について、ソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛星研究所(NIH))にて、ホワイトバランスを最明部と最暗部が8bitのトーンカーブに収まるように調整した。さらに黒色部(無機粒子)が明確に見分けられるようにコントラストを調整した。
 次に得られた画像について、樹脂層表面から樹脂層厚みの10%の位置までの範囲における黒色部の割合を粒子存在比率(P-1)、樹脂層表面から樹脂層厚みの40%の位置から60%の位置までの範囲における黒色部の割合を粒子存在比率(P-2)とした。
 <参考例1>アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5)
攪拌機を取り付けたフラスコに、アクリルモノマー(a-1)(ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA))100重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10重量%水溶液79重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-1)含有エマルジョン(EM-5)を得た。エマルジョン(EM-5)の固形分濃度は30重量%である。
 <参考例2>無機粒子(B)を含有する樹脂組成物(b-2)
メルカプトプロピルトリメトキシシラン221重量部と、ジブチル錫ジラウリレート1部とメチルエチルケトンからなる溶液に対し、イソホロンジイソシアネート222重量部およびパーフルオロポリエーテルジオール(ソルベイソレクシス社製FLUOROLINK D10H)30重量部を攪拌しながら50℃で1時間かけて滴下後、70℃で3時間過熱攪拌した。これに多官能アクリレート(新中村化学(株)製“NKエステル” A-TMM-3LM-N)549重量部を30℃で1時間かけて滴下後、60℃で10時間かけて攪拌することで、アクリロイル基含有粒子変性剤(b-1)が得られる。
 次いで、得られたアクリロイル基含有粒子変性剤(b-1)50重量部、コロイダルシリカ水分散体(日産化学製“スノーテックOL”粒子径40nm)50重量部、イオン交換水0.12重量部、およびp-ヒドロキシフェニルモノメチルエーテル0.01重量部の混合液を、60℃で4時間攪拌後、オルト蟻酸メチルエステル1.36重量部を添加し、さらに1時間同一温度で過熱攪拌することで、無機粒子(B)を含有するアクリロイル基を含む樹脂組成物(b-2)を得た。
 <参考例3>アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-1)
攪拌機を取り付けたフラスコに、アクリルモノマー(a-1)(ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA))80重量部、無機粒子(B)を含有するアクリロイル基を含む樹脂組成物(b-2)20重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10%水溶液79重量部、およびポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部を添加し、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-1)を得た。エマルジョン(EM-1)の固形分濃度は30重量%である。
 <参考例4>アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-2)
 攪拌機を取り付けたフラスコに、2,6-ジ-t-ブチル-p-クレゾール0.024g、エチレンジオール15g、および2.4-トリレンジイソシアナート(三井化学ポリウレタン社製“TOLDY-100”)12gおよびメチルエチルケトンを仕込み、ジラウリル酸ジブチル錫を0.080g添加した後、60℃まで昇温し、1.5時間加熱した。次いで反応混合物を水浴にて冷却し、ここに、テトラメチロールメタントリアクリレート(新中村化学株式会社製“NKエステル”A-TMM-3LM-N)35gをメチルエチルケトンで固形分濃度50質量%に希釈したものを添加した。60℃まで昇温し、4時間加熱し、一般式1で示されるアクリルモノマー(a-2)を得た。
攪拌機を取り付けたフラスコに、ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA)30部、下記式1に示すアクリルモノマー(a-2)50重量部、無機粒子(B)を含有する樹脂組成物(b-2)20重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10%水溶液79重量部、およびポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-3)含有エマルジョン(EM-2)を得た。エマルジョン(EM-2)の固形分濃度は30重量%である。
(式1)アクリルモノマー(a-2) 
Figure JPOXMLDOC01-appb-C000008
 <参考例5>アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-3)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-3)
攪拌機を取り付けたフラスコに、2,6-ジ-t-ブチル-p-クレゾール0.024g、エチレンジオール15g、および3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(住友化学バイエルウレタン株式会社製、デスモジュールI)12gおよびメチルエチルケトンを仕込み、ジラウリル酸ジブチル錫を0.080g添加した後、60℃まで昇温し、1.5時間加熱した。次いで反応混合物を水浴にて冷却し、ここに、テトラメチロールメタントリアクリレート(新中村化学株式会社製“NKエステル”A-TMM-3LM-N)35gをメチルエチルケトンで固形分濃度50質量%に希釈したものを添加した。60℃まで昇温し、4時間加熱し、式8で得られるアクリルモノマー(a-3)を得た。
次いで、攪拌機を取り付けたフラスコに、ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA)30部、アクリルモノマー(a-3)50重量部、無機粒子(B)を含有する樹脂組成物(b-2)20重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10%水溶液79重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-3)含有エマルジョン(EM-3)を得た。エマルジョン(EM-3)の濃度は30%である。
(式8)アクリルモノマー(a-3)
Figure JPOXMLDOC01-appb-C000009
 <参考例6>アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)を含有するエマルジョン(EM-4) 
 攪拌機を取り付けたフラスコに、ジペンタヘキサアクリレート(日本化薬(株)製KAYARAD DPHA)30重量部、得られたアクリルモノマー(a-2)50重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10重量%水溶液79重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-2)含有エマルジョン(EM-4)を得た。
 <参考例7>アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-6) 
攪拌機を取り付けたフラスコに、ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA)30部、アクリルモノマー(a-2)50重量部、無機粒子(B)を含有する樹脂組成物(b-2)40重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10重量%水溶液79重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-2)含有エマルジョン(EM-6)を得た。エマルジョン(EM-6)の固形分濃度は30重量%である。
<参考例8> 無機粒子(B)を含有する樹脂組成物(b-3)
 アクリロイル基含有粒子変性剤(b-1)50重量部、シリカ粒子水分散体(Micromod社製“Sicastar”43-02-103 粒子径1000nm)50重量部、イオン交換水0.12重量部、およびp-ヒドロキシフェニルモノメチルエーテル0.01部の混合液を、60℃で4時間攪拌後、オルト蟻酸メチルエステル1.36部を添加し、さらに1時間同一温度で過熱攪拌することで、無機粒子(B)を含有する樹脂組成物(b-3)を得た。
 <参考例9>アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と、無機粒子(B)を含有する樹脂組成物(b-3)を含有するエマルジョン(EM-7)
攪拌機を取り付けたフラスコに、アクリルモノマー(a-2)(ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA))80重量部、無機粒子(B)を含有する樹脂組成物(b-3)20重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10重量%水溶液79重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-2)含有エマルジョン(EM-7)を得た。エマルジョン(EM-7)の固形分濃度は30重量%である。
<参考例10> 無機粒子(B)を含有する樹脂組成物(b-4)
 アクリロイル基含有粒子変性剤(b-1)50重量部、シリカ粒子水分散体(Micromod社製“Sicastar”43-02-503 粒子径5000nm)50重量部、イオン交換水0.12重量部、およびp-ヒドロキシフェニルモノメチルエーテル0.01重量部の混合液を、60℃で4時間攪拌後、オルト蟻酸メチルエステル1.36部を添加し、さらに1時間同一温度で過熱攪拌することで、無機粒子(B)を含有する樹脂組成物(b-4)を得た。
 <参考例11>アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と、無機粒子(B)を含有する樹脂組成物(b-4)を含有するエマルジョン(EM-8)
攪拌機を取り付けたフラスコに、アクリルモノマー(a-1)(ジペンタヘキサアクリレート(日本化薬(株)製 KAYARAD DPHA))80重量部、無機粒子(B)を含有する樹脂組成物(b-4)20重量部、乳化剤としてポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF)の10%水溶液79重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1部、イオン交換水128.9重量部を投入し、攪拌混合した。その後氷浴で冷却しながら超音波分散機(SMT社製UH-600S)を用いて120秒間の超音波照射を3回行い、エマルジョンを得た。
 次に上記のエマルジョンを70MPaの圧力下で、高圧ホモジナイザー(みずほ工業社製マイクロフルイタイザーM110Y)により微細化処理し、アクリルモノマー(a-2)含有エマルジョン(EM-8)を得た。エマルジョン(EM-8)の固形分濃度は30重量%である。
 <参考例12>無機粒子(B)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)を含有するエマルジョン(EM-10) 
 攪拌機、温度計、還流冷却管の備わった通常のアクリル樹脂反応槽に、溶剤としてイソプロピルアルコール100部を仕込み、加熱攪拌して100℃に保持した。
この中に、(メタ)アクリレート(g’1)として、n=19のノナデシルメタクリレート50部、(メタ)アクリレート(g’2)として、2個の環を有するイソボニルメタクリレート50部を3時間かけて滴下した。そして、滴下終了後、100℃で1時間加熱し、次にt-ブチルパーオキシ2エチルヘキサエート1部からなる追加触媒混合液を仕込んだ。次いで、100℃で3時間加熱した後冷却し、アクリル樹脂(G1)を得た。
また、 攪拌機、温度計、還流冷却管の備わった通常のアクリル樹脂反応槽に、溶剤としてイソプロピルアルコール100部を仕込み、加熱攪拌して100℃に保持した。この中に水酸基を有する(メタ)アクリレート(f’3)として、2-ヒドロキシエチルアクリレート40部、その他(メタ)アクリル酸エチル20部、メタクリル酸メチル20部を3時間かけて滴下した。そして、滴下終了後、100℃で1時間加熱し、次にt-ブチルパーオキシ2エチルヘキサエート1部からなる追加触媒混合液を仕込んだ。次いで、100℃で3時間加熱した後冷却し、アクリル樹脂(F-1)を得た。
 水系溶媒中に、無機粒子(B)(“NanoTek”Alスラリー(シーアイ化成株式会社製 数平均粒子径30nm)と上記アクリル樹脂(G-1)を順に添加し、以下の方法で分散せしめ、その後アクリル樹脂(F1)を添加し、粒子(B)、アクリル樹脂(G)、アクリル樹脂(F)の混合組成物(B-3)含有するエマルジョン(EM-10)を得た。(前記(ii)の方法。)
無機粒子(B)およびアクリル樹脂(F1)、アクリル樹脂(G-1)の添加量比(質量比)は、(B)/(F-1)/(G-1)=50/40/10とした(なお質量比は、小数点第1位を四捨五入して求めた)。分散処理は、ホモミキサーを用いて行い、周速10m/sで5時間回転させることによって行った。また、最終的に得られた組成物(B-3)における、粒子(B)、アクリル樹脂(F-1)、アクリル樹脂(G)の質量比は、(B)/(F-1)/(G)=50/50であった(なお、質量比は小数点第1位を四捨五入して求めた)。
 なお、得られた組成物(B-3)を、日立卓上超遠心機(日立工機株式会社製:CS150NX)により遠心分離を行い(回転数3000rpm、分離時間30分)、無機粒子(B)(及び無機粒子(B)の表面に吸着したアクリル樹脂(F-1))を沈降させた後、上澄み液を除去し、沈降物を濃縮乾固させた。濃縮乾固した沈降物をX線光電子分光法(XPS)により分析した結果、無機粒子(B)の表面にアクリル樹脂(F-1)が存在することが確認された。つまり、無機粒子(B)の表面には、アクリル樹脂(F-1)が吸着・付着しており、得られた組成物(B-3)が無機粒子(B)の表面にアクリル樹脂(F-1)を有する粒子に該当することが判明した。
 <参考例13>無機粒子(B)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)を含有するエマルジョン(EM-11) 
無機粒子(B)、アクリル樹脂(F-1)アクリル樹脂(G-1)の添加量比(質量比)を、(B)/(F-1)/(G-1)=32.5/37.5/30とした参考例12と同様の方法で、粒子(B)とアクリル樹脂(F-1)の混合組成物(B-3)含有するエマルジョン(EM-11)を得た。
 <参考例14>無機粒子(B-1)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)をを含有するエマルジョン(EM-12) 
無機粒子(B)として、無機粒子(“NanoTek”TiOスラリー(シーアイ化成株式会社製 数平均粒子径36nm)を使用した以外は、参考例13と同様の方法で、粒子(B)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F-1)の混合組成物(B-3)含有するエマルジョン(EM-12)を得た。
 なお、以下の実施例や比較例にて得られた積層フィルムの特性等を、表に示した。
 <実施例1>
 はじめに、樹脂組成物1を次の通り調製した。
<樹脂組成物>
 水系溶媒に、上記のエマルジョンを表に記載の比率で混合し、樹脂組成物1を得た。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5):100重量部
   ・無機粒子(B)日産化学工業(株)製“スノーテックOL”(コロイダルシリカ、粒子径40nm):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-5)に同伴している)
 <積層フィルム>
 次いで、実質的に粒子を含有しないPETペレット(極限粘度0.63dl/g)を充分に真空乾燥した後、押し出し機に供給し285℃で溶融し、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度25℃の鏡面キャスティングドラムに巻き付けて冷却固化せしめた。この未延伸フィルムを90℃に加熱して長手方向に3.4倍延伸し、一軸延伸フィルム(Bフィルム)とした。
次に樹脂組成物1を一軸延伸フィルムのコロナ放電処理面にバーコートを用いて塗布厚み約6μmで塗布した。樹脂組成物を塗布した一軸延伸フィルムの幅方向両端部をクリップで把持して予熱ゾーンに導き、雰囲気温度75℃とした後、引き続いてラジエーションヒーターを用いて雰囲気温度を110℃とし、次いで雰囲気温度を90℃として、樹脂組成物を乾燥させ、樹脂層を形成せしめた。引き続き連続的に120℃の加熱ゾーン(延伸ゾーン)で幅方向に3.5倍延伸し、続いて230℃の熱処理ゾーン(熱固定ゾーン)で20秒間熱処理を施し、結晶配向の完了した積層フィルムを得た。得られた積層フィルムにおいてPETフィルムの厚みは50μm、樹脂層の厚みは1000nmであった。
得られた積層フィルムの特性等を表に示す。
透明性、耐スクラッチ性、アンチブロッキング性、接着性に優れるものであった。
 <実施例2>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5):100重量部
   ・無機粒子(B):触媒化成(株)製“スフェリカ140”(シリカ粒子、粒子径140nm):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-5)に同伴している)
<実施例3>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。
得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5):100重量部
   ・無機粒子(B)(日本触媒(株)製“シーホスターKEW-50”(シリカ粒子、粒子径500nm)):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-5)に同伴している)
<実施例4>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。
得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5):100重量部
   ・無機粒子(B)(日産化学工業(株)製“スノーテックスO”(シリカ粒子、粒子径10nm)):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-5)に同伴している)
<実施例5>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-1):100重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-1)に同伴している)
<実施例6>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-2):100重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-2)に同伴している)
<実施例7>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-3):100重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-3)に同伴している)
<実施例8>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
  ・アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)を含有するエマルジョン(EM-4):80重量部
・無機粒子(B)(日産化学工業(株)製“スノーテックOL”(コロイダルシリカ、粒子径40nm)):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
(上記乳化剤は、(EM-3)に同伴している)
<実施例9~15>
樹脂層の膜厚を表に記載の厚みに変更した以外は、実施例6と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
<実施例16>
塗液中の樹脂組成物を下記の通り変更した以外は、実施例6と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
・アクリル樹脂(A)成分を構成するアミド結合含有アクリルモノマー(a-2)と、無機粒子(B)を含有する樹脂組成物(b-2)を含有するエマルジョン(EM-6) 
   :100重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-2)に同伴している)

<実施例17>
塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
  ・無機粒子(B)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)を含有するエマルジョン(EM-10):100重量部
 <実施例18> 
塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
  ・無機粒子(B)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)を含有するエマルジョン(EM-11):100重量部
 <実施例19> 
塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
  ・無機粒子(B-1)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)をを含有するエマルジョン(EM-12):100重量部
 <実施例20> 
塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
  ・無機粒子(B)の表面にアクリル樹脂(G)を有する組成物(B-3)とアクリル樹脂(F)を含有するエマルジョン(EM-11):80重量部
  ・メラミン系化合物“ベッカミン”(登録商標)APM(大日本インキ工業(株)製):20重量部
  
   
  <実施例21、22>
   樹脂層の膜厚を表に記載の厚みに変更した以外は、実施例17と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
 <実施例23>
 塗液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。
得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5):100重量部
   ・無機粒子(B)(日産化学工業(株)製“スノーテックスO”(シリカ粒子、粒子径10nm)):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-5)に同伴している)
<比較例1>
塗液中の樹脂組成物の組成を表の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)を含有するエマルジョン(EM-5):100重量部
   ・無機粒子(B)(日産化学工業(株)製“スノーテックOXS”(コロイダルシリカ、粒子径5nm)):20重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-5)に同伴している)
<比較例2>
 厚み50μmのPETフィルム(東レ(株)製“ルミラー(登録商標)”U34)の片面に、実施例6で用いた樹脂組成物を乾燥後の厚みが1000nmになるように塗布し、熱風オーブンを用い、100℃で2分乾燥させた後、再度230℃で20秒乾燥させ、積層フィルムを得た。得られた積層フィルムの特性等を表に示す。
<比較例3>
液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と、無機粒子(B)を含有する樹脂組成物(b-3)を含有するエマルジョン(EM-7):100重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-7)に同伴している)
<比較例4>
液中の樹脂組成物を下記の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
   ・アクリル樹脂(A)成分を構成するアクリルモノマー(a-1)と、無機粒子(B)を含有する樹脂組成物(b-3)を含有するエマルジョン(EM-8):100重量部
   ・乳化剤:ポリオキシエチレン多環フェニルエーテル硫酸エステル塩(日本乳化剤社製 ニューコール707SF):7.9重量部、ポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン104P)2.1重量部
   (上記乳化剤は、(EM-8)に同伴している)
 <比較例5>
樹脂層の膜厚を表に記載の厚みに変更した以外は、実施例17と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 本発明は、透明性、耐スクラッチ性、ハンドリング性、アンチブロッキング性に優れる積層フィルムであり、従来ディスプレイ用途に用いられるハードコートフィルムや、成形加飾用途に用いられるハードコートフィルムとして利用可能である。
 

Claims (9)

  1. ポリエステル層と樹脂層を有する積層フィルムであって、少なくとも片側の表層が樹脂層であり、前記表層に有する樹脂層が、AFM(Atomic Force Microscope)によって求められるミクロ表面粗さ(Ra-1)が1nm以上20nm以下であり、三次元表面粗さ計によって求められるマクロ表面粗さ(Ra-2)が1nm以上50nm以下である積層フィルム。
  2. 前記表層に有する樹脂層が、三次元表面粗さ計によって求められるマクロ表面粗さ(Ra-2)が5nm以上50nm以下である請求項1に記載の積層フィルム。
  3. 前記表層に有する樹脂層のミクロ表面粗さ(Ra-1)とマクロ表面粗さ(Ra-2)の比(Ra-2/Ra-1)が、3以上30以下である、請求項1に記載の積層フィルム。
  4. 前記表層に有する樹脂層が粒子を含有しており、該樹脂層の厚さ方向断面を観察したときの樹脂層表面から樹脂層厚みの10%の位置までの範囲における粒子存在比率(P-1)が、該樹脂層表面から樹脂層厚みの40%の位置から60%の位置までの範囲における粒子存在比率(P-2)よりも大きい請求項1~3のいずれかに記載の積層フィルム。
  5. 前記樹脂層表面から樹脂層厚みの10%の位置までの範囲における粒子存在比率(P-1)と、樹脂層表面から樹脂層厚みの40%の位置から60%の位置までの範囲における粒子存在比率(P-2)の比(P-1/P-2)が、1.1以上5.0以下である、請求項4に記載の積層フィルム。
  6. 前記表層に有する樹脂層の厚み(t)が100nm以上5000nm以下である請求項4または5に記載の積層フィルム。
  7. 前記表層に有する樹脂層に含有する粒子の平均粒子径(d)が1nm以上100nm以下であり、樹脂層の厚み(t)と粒子の平均粒子径(d)との比(t)/(d)が2以上、1000以下である請求項6に記載の積層フィルム。
  8. ポリエステル層と樹脂層が直接積層されてなる請求項1~7のいずれかに記載の積層フィルム。
  9. 結晶配向が完了する前のポリエステルフィルムの少なくとも片面に、多官能アクリル樹脂と粒子を含有する塗液を塗布し、次いで、前記ポリエステルフィルムを少なくとも一軸方向に延伸し、前記ポリエステルフィルムに熱処理を施して、該ポリエステルフィルムの結晶配向を完了させる工程を含む請求項1~8のいずれかに記載の積層フィルムの製造方法。
     
PCT/JP2016/072667 2015-08-05 2016-08-02 積層フィルムおよびその製造方法 WO2017022765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561029A JP6790827B2 (ja) 2015-08-05 2016-08-02 積層フィルムおよびその製造方法
CN201680039810.5A CN107709012B (zh) 2015-08-05 2016-08-02 叠层膜及其制造方法
KR1020177032070A KR102537733B1 (ko) 2015-08-05 2016-08-02 적층 필름 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015154751 2015-08-05
JP2015-154751 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022765A1 true WO2017022765A1 (ja) 2017-02-09

Family

ID=57943266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072667 WO2017022765A1 (ja) 2015-08-05 2016-08-02 積層フィルムおよびその製造方法

Country Status (5)

Country Link
JP (1) JP6790827B2 (ja)
KR (1) KR102537733B1 (ja)
CN (1) CN107709012B (ja)
TW (1) TWI686303B (ja)
WO (1) WO2017022765A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079575A (ja) * 2016-11-14 2018-05-24 東レ株式会社 積層フィルムおよびその製造方法
JP2019136880A (ja) * 2018-02-07 2019-08-22 日本製紙株式会社 ハードコートフィルム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164587A (ja) * 1995-12-14 1997-06-24 Toray Ind Inc 金属薄膜磁気記録媒体用熱可塑性樹脂フィルムおよびその製造方法
JPH09226063A (ja) * 1996-02-22 1997-09-02 Teijin Ltd 積層フイルム
JP2002019064A (ja) * 2000-07-12 2002-01-22 Teijin Ltd 二軸配向積層ポリエステルフィルム
JP2002079617A (ja) * 2000-07-07 2002-03-19 Teijin Ltd 帯電防止性積層ポリエステルフィルム
JP2003323713A (ja) * 2002-05-07 2003-11-14 Teijin Dupont Films Japan Ltd 磁気記録媒体用ポリエステルフィルムおよび磁気記録テープ
JP2004315563A (ja) * 2003-04-11 2004-11-11 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルム
JP2005216367A (ja) * 2004-01-29 2005-08-11 Teijin Dupont Films Japan Ltd 磁気記録媒体用フィルムロールならびに磁気記録媒体およびその製造方法
JP2005336370A (ja) * 2004-05-28 2005-12-08 Mitsubishi Polyester Film Copp 積層ポリエステルフィルム
JP2009069742A (ja) * 2007-09-18 2009-04-02 Toray Ind Inc 光学用シート
JP2015017272A (ja) * 2012-02-04 2015-01-29 三菱樹脂株式会社 積層ポリエステルフィルム
JP2015071306A (ja) * 2012-12-10 2015-04-16 三菱樹脂株式会社 積層ポリエステルフィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787202B2 (en) * 2000-02-10 2004-09-07 Teijin Limited Polyester film composite, light-diffuser plate and utilization thereof
EP1602683A4 (en) * 2003-03-11 2006-04-19 Mitsubishi Polyester Film Corp BIAXIALLY ORIENTATED POLYESTER FILM AND DEMOLITION FILM
JP2011186287A (ja) 2010-03-10 2011-09-22 Toppan Printing Co Ltd 防眩フィルムおよびその製造方法
CN104144975B (zh) * 2012-02-25 2017-09-22 三菱化学株式会社 涂布膜
JP6199605B2 (ja) 2013-05-27 2017-09-20 日東電工株式会社 ハードコートフィルム及びハードコートフィルム巻回体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164587A (ja) * 1995-12-14 1997-06-24 Toray Ind Inc 金属薄膜磁気記録媒体用熱可塑性樹脂フィルムおよびその製造方法
JPH09226063A (ja) * 1996-02-22 1997-09-02 Teijin Ltd 積層フイルム
JP2002079617A (ja) * 2000-07-07 2002-03-19 Teijin Ltd 帯電防止性積層ポリエステルフィルム
JP2002019064A (ja) * 2000-07-12 2002-01-22 Teijin Ltd 二軸配向積層ポリエステルフィルム
JP2003323713A (ja) * 2002-05-07 2003-11-14 Teijin Dupont Films Japan Ltd 磁気記録媒体用ポリエステルフィルムおよび磁気記録テープ
JP2004315563A (ja) * 2003-04-11 2004-11-11 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルム
JP2005216367A (ja) * 2004-01-29 2005-08-11 Teijin Dupont Films Japan Ltd 磁気記録媒体用フィルムロールならびに磁気記録媒体およびその製造方法
JP2005336370A (ja) * 2004-05-28 2005-12-08 Mitsubishi Polyester Film Copp 積層ポリエステルフィルム
JP2009069742A (ja) * 2007-09-18 2009-04-02 Toray Ind Inc 光学用シート
JP2015017272A (ja) * 2012-02-04 2015-01-29 三菱樹脂株式会社 積層ポリエステルフィルム
JP2015071306A (ja) * 2012-12-10 2015-04-16 三菱樹脂株式会社 積層ポリエステルフィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079575A (ja) * 2016-11-14 2018-05-24 東レ株式会社 積層フィルムおよびその製造方法
JP2019136880A (ja) * 2018-02-07 2019-08-22 日本製紙株式会社 ハードコートフィルム

Also Published As

Publication number Publication date
TWI686303B (zh) 2020-03-01
JP6790827B2 (ja) 2020-11-25
KR20180037918A (ko) 2018-04-13
TW201711860A (zh) 2017-04-01
JPWO2017022765A1 (ja) 2018-05-24
KR102537733B1 (ko) 2023-05-30
CN107709012A (zh) 2018-02-16
CN107709012B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2003093008A1 (fr) Film lamelle a usage optique
US9771491B2 (en) Laminated film and method for producing same
JP5983158B2 (ja) 光学用積層フィルム
JP6384325B2 (ja) 積層フィルムおよびその製造方法
JP2013010323A (ja) ハードコートフィルム
JPWO2013145875A1 (ja) 積層フィルムおよびその製造方法
JP2009086138A (ja) 光学用易接着フィルムおよび光学用積層フィルム
WO2016136518A1 (ja) 積層フィルムおよびその製造方法
JP7226308B2 (ja) 積層ポリエステルフィルムおよびその製造方法
JP6790827B2 (ja) 積層フィルムおよびその製造方法
JP2016078455A (ja) 積層フィルムおよびその製造方法
JP2021138071A (ja) 積層フィルムおよびその製造方法
JP6539954B2 (ja) 積層フィルム
JP6787063B2 (ja) 積層フィルムおよびその製造方法
JP2019038247A (ja) 積層フィルムおよびその製造方法
JP2019048447A (ja) 積層フィルムおよびその製造方法
JP2018122548A (ja) 積層フィルムおよびその製造方法
JP7419817B2 (ja) 樹脂フィルムおよびその製造方法
WO2023042576A1 (ja) 積層ポリエステルフィルム、積層体、および積層ポリエステルフィルムの製造方法
JP2022061121A (ja) 積層フィルムおよびその製造方法
JP2022152150A (ja) ガスバリア性フィルム用ベースフィルム、ガスバリア性フィルム用ベースフィルムの製造方法、ガスバリア性フィルム、およびガスバリア性フィルムの製造方法
JP2020040350A (ja) 積層フィルムロール
JP2021160175A (ja) 積層フィルムおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561029

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177032070

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833044

Country of ref document: EP

Kind code of ref document: A1