WO2017006791A1 - フルオレン骨格を有するアルコールの結晶およびその製造方法 - Google Patents

フルオレン骨格を有するアルコールの結晶およびその製造方法 Download PDF

Info

Publication number
WO2017006791A1
WO2017006791A1 PCT/JP2016/068968 JP2016068968W WO2017006791A1 WO 2017006791 A1 WO2017006791 A1 WO 2017006791A1 JP 2016068968 W JP2016068968 W JP 2016068968W WO 2017006791 A1 WO2017006791 A1 WO 2017006791A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
fluorene skeleton
crystal
skeleton represented
above formula
Prior art date
Application number
PCT/JP2016/068968
Other languages
English (en)
French (fr)
Inventor
弘行 加藤
崇史 佐伯
有児 西田
克宏 藤井
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57685479&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017006791(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Priority to KR1020187003379A priority Critical patent/KR102564609B1/ko
Priority to CN201680040089.1A priority patent/CN107848931B/zh
Publication of WO2017006791A1 publication Critical patent/WO2017006791A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation

Definitions

  • the present invention is suitable as a monomer for forming a resin (optical resin) that constitutes an optical member typified by an optical lens or an optical film, and has a novel fluorene skeleton excellent in processability and productivity, and its crystal It relates to a manufacturing method.
  • a resin optical resin
  • optical properties such as refractive index, heat resistance, water resistance, chemical resistance, electrical properties, mechanical properties
  • Patent Document 2 A method of reacting a phenol compound having a fluorene skeleton represented by formula (II) with ethylene oxide is known (Patent Document 2).
  • the alcohol having a fluorene skeleton represented by the above formula (1) obtained by this method has low purity, and a large amount of a compound added with 3, 4 molecules of ethylene oxide is produced as a by-product, whereby the above formula (1) It is difficult to obtain an alcohol having a fluorene skeleton represented by
  • Patent Documents 3 and 4 There has been proposed a method of obtaining an alcohol having a fluorene skeleton represented by the above formula (1) by reacting an alcohol represented by the formula (9) with 9-fluorenone (Patent Documents 3 and 4).
  • Patent Documents 3 and 4 when an alcohol having a fluorene skeleton represented by the above formula (1) is produced by the method described in Patent Document 3, there is a color that is particularly discouraged depending on the application, such as an optical application, and the color is a purification operation.
  • Patent Document 4 states that it cannot be removed even if it is applied.
  • Patent Document 4 discloses the above formula (3) in the presence of 3 parts by weight or more of thiols with respect to 100 parts by weight of an acid catalyst and 9-fluorenones for the purpose of improving the production methods described in Patent Documents 2 and 3.
  • the alcohol having a fluorene skeleton represented by the above formula (1) obtained by this method is less colored than that obtained by the method of Patent Document 3, the color improvement is not sufficient.
  • An object of the present invention is to provide an alcohol crystal having a fluorene skeleton represented by the above formula (1), which does not use thiols, has high purity and little coloration, and is not an inclusion body.
  • the inventors of the present invention manufactured alcohol having a fluorene skeleton represented by the above formula (1) under specific conditions, and specified the obtained alcohols. It has been found that by crystallization under the conditions, crystals of alcohol having a fluorene skeleton represented by the above formula (1), which is highly pure and less colored and is not an inclusion body, can be produced. Specifically, the following invention is included.
  • a crystal of alcohol having a fluorene skeleton represented by the formula: [2] In powder X-ray diffraction pattern by Cu-K ⁇ ray, diffraction angles 2 ⁇ 7.1 ⁇ 0.2 °, 14.3 ⁇ 0.2 °, 15.2 ⁇ 0.2 °, 15.8 ⁇ 0.2
  • the following formula (1) having peaks at °, 17.1 ⁇ 0.2 ° and 22.3 ⁇ 0.2 °:
  • a crystal of alcohol having a fluorene skeleton represented by the formula: [3] In powder X-ray diffraction pattern by Cu-K ⁇ ray, diffraction angle 2 ⁇ 8.1 ⁇ 0.2 °, 15.4 ⁇ 0.2 °, 16.6 ⁇ 0.2 °, 18.0 ⁇ 0.2
  • the following formula (1) having peaks at °, 20.4 ⁇ 0.2 °, 21.1 ⁇ 0.2 ° and 22.7 ⁇ 0.2 °:
  • a crystal of alcohol having a fluorene skeleton represented by the formula: [4] The crystal of alcohol having a fluorene skeleton according to [2] or [3], wherein the maximum endothermic temperature of melting by differential scanning calorimetry is 148 to 151 ° C.
  • [5] A crystal of an alcohol having a fluorene skeleton according to any one of [1] to [4], which is not an inclusion body.
  • the inclusion body when the alcohol crystal having the fluorene skeleton represented by the above formula (1) is an inclusion body, when the inclusion body is reacted with acrylic acid or the like to form another compound, the inclusion body is included.
  • Compound hereinafter sometimes referred to as guest molecule
  • guest molecule inhibits the reaction and cannot be used depending on the reaction, and also when used as a resin raw material by melting as it is, guest molecules generated during melting It may be necessary to remove the vapor originating from the system, and the quality of the resulting resin may not be constant due to the influence of guest molecules.
  • the guest molecule having a low flash point in the case of the above-mentioned reference, aromatic hydrocarbons
  • the alcohol having the fluorene skeleton represented by the above formula (1) is stored or transported. There is also a concern for disaster prevention that fires are likely to occur.
  • the clathrate is obtained as an clathrate including a guest molecule.
  • a method for obtaining an alcohol crystal having a fluorene skeleton represented by the above formula (1) has not been known.
  • it is difficult to remove the guest molecule contained in the clathrate by a generally practiced method such as drying the crystal at a temperature equal to or higher than the boiling point of the guest molecule.
  • FIG. 1 is a diagram showing a powder X-ray diffraction pattern of a crystal (crystal of the present invention) obtained in Example 1.
  • FIG. It is a figure which shows the powder X-ray-diffraction pattern of the crystal
  • FIG. 4 is a TG-DTA chart of the crystal (inclusion body) obtained in Comparative Example 1. It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal
  • DSC differential scanning calorimetry
  • the steps (i) to (iv) will be described in detail below.
  • the alcohol having a fluorene skeleton represented by the above formula (1) of the present invention is produced by reacting a phenol compound having a fluorene skeleton represented by the above formula (2) with ethylene carbonate in the presence of a symmetric glycol diether. Need to be done.
  • a method for producing an alcohol having a fluorene skeleton represented by the above formula (1) the methods described in Patent Documents 2 to 4 are known.
  • this crystal When produced by these production methods, impurities derived from these production methods For this reason, it is impossible to produce an alcohol crystal having the fluorene skeleton represented by the above formula (1) (hereinafter, this crystal may be referred to as the crystal of the present invention) having the characteristics described later. .
  • the phenol compound having a fluorene skeleton represented by the above formula (2) used in the present invention may be a commercially available product, or is produced by reacting fluorenone with 2-phenylphenol in the presence of an acid catalyst. You can also
  • the symmetric glycol diether used in the present invention is represented by the following formula (4): R—O (CH 2 CH 2 O) n —R (4) (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 1 to 4). It has the structure represented by these. Specific examples of such symmetrical glycol diethers include methyl tetraglyme, butyl diglyme, methyl triglyme, ethyl diglyme, methyl glyme, ethyl monoglyme, and methyl monoglyme.
  • the symmetric glycol diether used in the present invention is usually 0.05 to 3 times, preferably 0.08 to 1 times the weight of the phenol compound having the fluorene skeleton represented by the above formula (2). use.
  • 0.05 weight times or more it becomes possible to achieve higher purity, and in particular, it becomes possible to suppress the generation of impurities added with 3 or more molecules of ethylene carbonate, and the amount used should be 3 weight times or less.
  • the amount of expensive symmetric glycol diether used so that an alcohol having a fluorene skeleton represented by the above formula (1) can be produced more economically.
  • the ethylene carbonate used in the present invention is usually used in an amount of 2 to 10 mol, preferably 2 to 4 mol, per 1 mol of the phenol compound having a fluorene skeleton represented by the above formula (2).
  • a sufficient reaction rate can be obtained by using 2 mol or more, and an alcohol having a fluorene skeleton represented by the above formula (2) can be produced more economically by setting the amount used to 10 mol or less. Can do.
  • the reaction is performed in the presence of a basic compound as necessary.
  • basic compounds used in the reaction step include carbonates, bicarbonates, hydroxides, organic bases and the like. More specifically, the carbonates include potassium carbonate, sodium carbonate, lithium carbonate, cesium carbonate, etc., the hydrogen carbonates include potassium bicarbonate, sodium bicarbonate, lithium bicarbonate, cesium bicarbonate, etc., and the hydroxides include water.
  • Examples of the organic bases include sodium oxide, potassium hydroxide, lithium hydroxide and the like, and examples of the organic bases include triethylamine, dimethylaminopyridine, triphenylphosphine, tetramethylammonium bromide, tetramethylammonium chloride and the like.
  • potassium carbonate, sodium carbonate, and triphenylphosphine are preferably used from the viewpoint of good handleability.
  • the amount of these basic compounds used is usually 0.01 to 1.0 mol, preferably 0.03 to 0, per 1 mol of the phenol compound having a fluorene skeleton represented by the above formula (2). .2 moles.
  • an organic solvent can be used in combination with the symmetric glycol diether as necessary.
  • the organic solvent that can be used in combination is only required to be inert to the phenol compound having a fluorene skeleton represented by the above formula (2) and ethylene carbonate, such as ketones, aromatic hydrocarbons, halogenated aromatics. Examples include aromatic hydrocarbons, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, esters, aliphatic nitriles, amides, sulfoxides and the like.
  • acetone, methyl ethyl ketone, butyl methyl ketone, diisobutyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, 2-heptanone, 2-octanone, cyclohexanone, etc. are used as ketones, and toluene, xylene, mesitylene are used as aromatic hydrocarbons.
  • ethers As diethyl ether, di-iso-propyl ether, methyl tertiary butyl ether, cyclopentyl methyl ether, diphenyl ether, etc., and as esters, ethyl acetate, butyl acetate, etc. Acetonitrile as an off-found dimethylformamide as amides, dimethyl acetamide and the like, dimethyl sulfoxide, and the like as sulfoxides.
  • organic solvents that can be used in combination, aromatic hydrocarbons, ketones, or ethers having a boiling point of 110 ° C.
  • organic solvents may be used alone or as a mixture of two or more if necessary.
  • the amount used when these organic solvents are used in combination is usually 0.1 to 5 times, preferably 0.5 to 3 times the weight of the phenol compound having the fluorene skeleton represented by the above formula (2). Is double.
  • the reaction step is carried out at 30 to 150 ° C., preferably 100 to 130 ° C., by adding symmetric glycol diether, if necessary, a basic compound and an organic solvent that can be used in combination to the reaction vessel.
  • the reaction solution containing the alcohol having a fluorene skeleton represented by the above formula (1) thus obtained may be used as it is in the crystallization solution preparation step after being concentrated and dried as it is. Although it may be purified by a conventional method such as treatment or crystallization / column purification, it is used in the crystallization solution preparation step of the present invention after the water washing step and / or concentration step described below is used. It is preferable because the purity of the alcohol having a fluorene skeleton represented by 1) can be further improved.
  • the water washing step and the concentration step will be described in detail.
  • the water washing step 0.1 to 10 times by weight, preferably 0.5 to 5 times, is used for the obtained reaction solution to 1 time by weight of the phenol compound having a fluorene skeleton represented by the above formula (2) used in the reaction. It is carried out by adding water by weight and stirring at 60 to 95 ° C., preferably 75 to 90 ° C., followed by standing and separating the aqueous layer.
  • water 0.1 times or more the effect of the water washing step is further manifested, and by making the amount used 10 times or less, the volumetric efficiency can be improved.
  • the washing temperature to 60 ° C. or higher, the liquid separation speed at the time of standing is faster, and by setting it to 95 ° C. or lower, the alcohol having the fluorene skeleton represented by the above formula (1) at the time of washing. Can be prevented.
  • the water washing process may be performed multiple times as necessary. Further, at the time of carrying out the water washing step, a base and an acid may be added together with water, and by-products and the like may be decomposed and removed into the aqueous layer.
  • the concentration step is a part or all of the symmetric glycol diether used in the reaction step or an organic solvent that can be used in combination with the reaction solution not subjected to the water washing step at normal pressure or reduced pressure after completion of the water washing step. Is removed from the system.
  • a crystallization solution is prepared by adding group hydrocarbons and methanol. When the crystallization solution contains 1% by weight or more of water, the water content needs to be 1% by weight or less. After preparing the crystallization solution, if the crystals are not completely dissolved in the solution, the crystals are completely dissolved and then cooled to precipitate alcohol crystals having the fluorene skeleton represented by the above formula (1). Need to be separated.
  • aromatic hydrocarbons examples include toluene, xylene, mesitylene and the like.
  • methanol when the crystallization process is performed using only aromatic hydrocarbons, it is necessary to use methanol in combination because the clathrate includes the aromatic hydrocarbons.
  • an alcohol other than methanol when used, as in the case where the crystallization step is carried out with an aromatic hydrocarbon alone, an inclusion body containing the aromatic hydrocarbon is included, and the crystal of the present invention is formed. I can't get it.
  • the crystallization solution may contain other solvents in addition to aromatic hydrocarbons and methanol.
  • the solvent include aliphatic hydrocarbons (eg, pentane, hexane, heptane, etc.), chain ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone) in addition to the symmetric glycol diether used in the above-described reaction. Etc.).
  • the amount of the solvent is usually 0.5 times or less, preferably 0.3 times or less, relative to the total amount of aromatic hydrocarbons and methanol in the crystallization solution. By setting the amount to 0.5 times or less, the crystal of the present invention can be obtained economically and more stably.
  • the total amount of the solvent contained in the crystallization solution is usually 0.5 to 20 times by weight, preferably 1 to 10 times the weight of the alcohol having a fluorene skeleton represented by the above formula (1) contained in the crystallization solution. Weight times. By using 0.5 times by weight or more, the purification effect by the crystallization operation is more manifested, and by making it 20 times by weight or less, an alcohol having a fluorene skeleton represented by the above formula (1) is obtained with good yield.
  • a crystalline alcohol having a fluorene skeleton represented by the above formula (1) may not be obtained. Further, even when a crystalline alcohol having a fluorene skeleton represented by the above formula (1) is obtained, the crystal of the present invention having the characteristics described later is not obtained, and the purity and color are not sufficiently improved. .
  • a method for reducing the water content in the crystallization solution to 1% by weight or less for example, before adding methanol, an aromatic hydrocarbon solvent is added first, and water is removed by azeotropic dehydration under normal pressure or reduced pressure. And a method of adding methanol containing no water.
  • the crystallization solution prepared by the above method is usually heated to a temperature of 40 ° C. or higher and lower than the boiling point of the crystallization solution to completely dissolve the crystal, and then cooled to 25 ° C. or higher, preferably 25 to 60 ° C.
  • crystals are precipitated at 40 to 50 ° C.
  • the crystals of the present invention may not be obtained, resulting in inclusion bodies that include aromatic hydrocarbons.
  • the operability may be a problem because it is close to the boiling point of the solvent.
  • Examples of the method for precipitating crystals in the above-described temperature range include a method for maintaining the temperature of the crystallization solution in the above temperature range until crystals are precipitated, and a method for inoculating seed crystals within the above temperature range.
  • the crystals separated in this way contain the solvent (aromatic hydrocarbon, methanol, etc.) used in the crystallization process, but, unlike crystals that include aromatic hydrocarbons, the temperature at which the crystals dissolve (melting point) or higher. Even if it does not, it is possible to remove the solvent used in the crystallization step by adjusting the temperature to 60 ° C. or higher, so that the crystal of the present invention that is not an inclusion body can be produced.
  • the solvent used in the crystallization step including methanol can be removed.
  • the drying step is carried out by bringing the obtained crystal to 60 ° C. or higher and below the melting point of the crystal, preferably 60 ° C. to 110 ° C.
  • the temperature is lower than 60 ° C.
  • methanol cannot be removed from the solvent used in the crystallization step, or even if it can, much time is required, which is not efficient from an industrial viewpoint.
  • it may be under normal pressure or under reduced pressure, but when carried out industrially, it is preferable to use reduced pressure because the solvent used in the crystallization step containing methanol can be more efficiently removed.
  • the crystals of the present invention thus obtained can be subjected to usual purification operations such as adsorption, steam distillation, recrystallization and the like, if necessary, and are sufficiently high purity without performing such operations,
  • guest molecules since guest molecules are not included in the crystal, it can be suitably used as a resin material such as polycarbonate, polyester, polyacrylate, polyurethane, epoxy, etc. It can also be suitably used as a raw material (intermediate) for use.
  • the crystal of alcohol having the fluorene skeleton represented by the above formula (1) has at least one of the melting endotherm maximum temperature by differential scanning calorimetry (DSC) and the diffraction angle 2 ⁇ in the powder X-ray diffraction pattern. Has one feature.
  • the crystal of the present invention has a melting endothermic maximum temperature of 148 to 151 ° C. by differential scanning calorimetry.
  • the maximum melting endothermic temperature by differential scanning calorimetry in the present invention refers to the temperature at which the maximum endothermic peak is observed when differential scanning calorimetry is performed under the conditions described later.
  • the melting endothermic maximum temperature exhibited by the crystal of the present invention may fluctuate up and down due to several factors. Factors involved in such deviation include the heating rate of the sample when performing the analysis, the sample amount, the calibration standard used, the calibration method of the instrument, the relative humidity of the analysis environment, and the chemical purity of the sample.
  • the maximum melting endothermic temperature observed for a given sample may vary from device to device, but generally will be within the range defined in this application if the device is properly calibrated.
  • a crystal having a characteristic peak at 7 ⁇ 0.2 ° is obtained.
  • the purity of the crystal of the present invention is typically 90% or higher, preferably 95% or higher, more preferably 98% or higher, as determined by the method described later. Moreover, since the YI value measured by the method described later is usually 10 or less, preferably 7 or less, the crystal of the present invention can be suitably used particularly in fields where coloring may be a problem, such as optical applications.
  • the crystal of the present invention can be characterized as not being an inclusion body (not including a guest molecule). Therefore, for example, the aromatic hydrocarbon content in the crystal of the alcohol having a fluorene skeleton represented by the above formula (1) that includes the aromatic hydrocarbon as a guest molecule obtained by the method described in the above-mentioned literature
  • the content of aromatic hydrocarbons contained in the crystal of the present invention is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight. It can be as follows. Further, according to the above-described method for drying a crystal of the present invention, the content of the organic solvent having a boiling point of 101.3 kPa at 150 ° C.
  • the alcohol having the fluorene skeleton represented by the above formula (1) is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0. It is also possible to make it 1% by weight or less. Therefore, when storing or transporting the alcohol having the fluorene skeleton represented by the above formula (1), it is possible to reduce a disaster risk such that a fire easily occurs.
  • a resin material such as polyacrylate, polyurethane, epoxy, etc.
  • a raw material (intermediate) for medical and agricultural chemicals for example, in which the guest molecules included are problematic. be able to.
  • Whether or not it is an inclusion body is determined by, for example, TG-DTA (differential thermogravimetric simultaneous measurement) analysis, X-ray analysis, NMR analysis, etc. After the sample is sufficiently dried so that there is no change in weight, the obtained crystals are dissolved in a solvent and analyzed using gas chromatography or high-performance liquid chromatography to determine whether there is a peak corresponding to the guest molecule. Judgment can be made.
  • the method using the TG-DTA analysis can measure the change in weight when the sample is heated at a constant rate and the associated endothermic / exothermic behavior, and simultaneously observe the change in weight and endothermic (or exothermic). At this point, it can also be determined that the guest molecule has been released.
  • Sample preparation method 100 mg of alcohol crystals having a fluorene skeleton represented by the above formula (1), which has been sufficiently dried, are weighed into a 10 ml volumetric flask, and 1,2-dimethoxyethane previously prepared in acetonitrile solution A sample solution was prepared by adding 5 ml of (1,2-dimethoxyethane 400 mg dissolved in 200 ml of acetonitrile) with a whole pipette and making up with acetonitrile to dissolve.
  • the sample solution and the standard solution were analyzed under the above conditions, the peak area of each component obtained was obtained with a data processor, and the content (%) of each component was calculated (internal standard method).
  • DSC Differential scanning calorimetry
  • Powder X-ray diffraction 150 mg of alcohol crystals having a fluorene skeleton represented by the above formula (1) are filled in a sample filling portion of a glass test plate, and a powder X-ray diffractometer (Spectris: X'PertPRO) was measured under the following conditions.
  • YI value 12 g of an alcohol crystal having a fluorene skeleton represented by the above formula (1) was dissolved in 30 ml of N, N-dimethylformamide having a purity of 99% by weight or more.
  • the YI value (yellowness) of the N-dimethylformamide solution was measured.
  • Apparatus Color difference meter (Nippon Denshoku Industries Co., Ltd. SE6000), Cell used: Optical path length 33 mm Quartz cell.
  • Moisture value The moisture value in the crystallization solution was measured by a method (Karl Fischer volumetric titration method) based on JIS-K0068.
  • Example 1 A phenolic compound (9,9′-bis (4-hydroxy-3-phenylphenyl) having a fluorene skeleton represented by the above formula (2) is added to a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer. ) Fluorene) 150 g (0.298 mol), potassium carbonate 3.4 g (0.025 mol), ethylene carbonate 60.1 g (0.682 mol), toluene 225 g, and methyltriglyme 15 g were charged, and the temperature was raised to 115 ° C. After stirring at the same temperature for 8 hours, it was confirmed by HPLC that the raw material had disappeared. The production rate of multimers at the end of the reaction was about 1%.
  • the obtained reaction solution was cooled to 90 ° C., 225 g of water was added, and the mixture was stirred at 80 to 85 ° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the solvent was removed by concentrating the obtained organic solvent layer to obtain a concentrate. To the obtained concentrate, 49 g of toluene and 188 g of methanol were added to obtain a crystallization solution. The water content in the obtained crystallization solution was 0.1%.
  • the obtained crystallization solution was heated to 65 ° C., stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled at 0.1 ° C./min to precipitate crystals at 45 ° C. Thereafter, the mixture was stirred at the same temperature for 2 hours. After stirring, the mixture was further cooled to 22 ° C. and then filtered to obtain crystals.
  • the obtained crystal was dried at an internal temperature of 55 to 59 ° C. for 3 hours under a reduced pressure of 1.3 kPa, and a part of the crystal was analyzed by gas chromatography.
  • methanol was 4 It was confirmed that the content was% by weight. Furthermore, even if drying was continued under the same conditions for 3 hours and analyzed, the content of methanol did not change to 4% by weight, so the internal temperature was raised to 68 ° C to 73 ° C under a reduced internal pressure of 1.3 kPa. Further, after drying for 3 hours, the content of methanol was 0.2% by weight, so drying was terminated.
  • crystallization of the alcohol which has the fluorene skeleton represented by the said Formula (1) obtained is as follows.
  • the DSC analysis chart is shown in FIG. 1, the powder X-ray pattern is shown in FIG. 4, and the main peaks of powder X-rays (those having a relative intensity exceeding 5%) are listed in Table 3.
  • no peak was observed at 7.6 ⁇ 0.2 ° which is a typical peak of the clathrate (hereinafter referred to as “pattern A” having an X-ray peak similar to this pattern) There is.)
  • Example 2 A phenolic compound (9,9′-bis (4-hydroxy-3-phenylphenyl) having a fluorene skeleton represented by the above formula (2) is added to a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer. ) Fluorene) 150 g (0.298 mol), potassium carbonate 3.4 g (0.025 mol), ethylene carbonate 60.1 g (0.682 mol), toluene 225 g, and methyl diglyme 150 g were charged, and the temperature was raised to 115 ° C. After stirring for 13 hours at the same temperature, it was confirmed by HPLC that the raw materials had disappeared. The production rate of multimers at the end of the reaction was about 0.5%.
  • the obtained reaction solution was cooled to 85 ° C., 225 g of water was added, and the mixture was stirred at 80 to 85 ° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the obtained organic solvent layer was partially concentrated to obtain a solution containing an alcohol having a fluorene skeleton represented by the above formula (1), toluene and methyldiglyme.
  • the obtained crystallization solution had a water content of 0.1%, 173 g of toluene, 84 g of methanol and 61 g of methyl diglyme contained in the solution.
  • the obtained crystallization solution was heated to 65 ° C., stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled to 0.1 ° C./min to 50 ° C. When 0.01 g of the obtained crystal was added as a seed crystal, a crystal was precipitated. Then, it stirred at the same temperature for 1 hour. After stirring, the mixture was further cooled to 25 ° C. and then filtered to obtain crystals.
  • the obtained crystal was dried at an internal pressure of 1.1 kPa and an internal temperature of 68 ° C. to 73 ° C. for 3 hours, and the content of methanol was 0.2% by weight.
  • crystallization of the alcohol which has the fluorene skeleton represented by the said Formula (1) obtained is as follows. Weight of the obtained crystals: 123 g (yield: 70%) HPLC purity: 98.0% (multimer content: 0.10%), Toluene content: 0.05% by weight Content of organic solvent having a boiling point at 101.3 kPa of 150 ° C. or lower: 0.26% by weight, YI value: 0.7, DSC melting endotherm maximum temperature: 150 ° C, X-ray diffraction pattern: Pattern A.
  • Example 3-6 Reaction and post-treatment were performed in the same manner as in Example 1 to obtain a concentrate.
  • the obtained concentrate was divided into four equal parts, toluene and methanol were added to give the ratios shown in Table 1 below, and crystallization and drying operations were carried out in the same manner as in the method described in Example 1 to obtain the above formula (1).
  • the amount of toluene / methanol added in Table 1 is the ratio (times by weight) to the alcohol having a fluorene skeleton represented by the above formula (1) contained in each concentrate.
  • the obtained reaction solution was cooled to 85 ° C., 68 g of water was added, stirred at 80 to 85 ° C. for 30 minutes, and allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the obtained organic solvent layer was dehydrated under reflux using a Dean-Stark apparatus to obtain a crystallization solution in which the alcohol having the fluorene skeleton represented by the above formula (1) was dissolved. It was. The water in the crystallization solution was 0.1%.
  • the obtained crystals were dried for 3 hours at an internal temperature of 68 ° C. to 73 ° C. under a reduced pressure of 1.1 kPa. However, since 4% by weight of toluene was contained, the internal temperature was raised to 110 ° C. After further drying for 3 hours at temperature, the toluene content remained at 4% by weight.
  • crystallization of the alcohol which has the fluorene skeleton represented by the said Formula (1) obtained is as follows. Weight of the obtained crystal: 39.3 g, HPLC purity: 97.5% (multimer content: 2.6%), Toluene content: 4.1% by weight, DSC melting endotherm maximum temperature: 151 ° C.
  • the DSC analysis chart is shown in FIG. 2, the powder X-ray pattern is shown in FIG. 5, the main peak of the powder X-ray (having a relative intensity exceeding 5%) is shown in Table 4, and the TG-DTA analysis chart is shown in FIG. Are listed.
  • an X-ray pattern similar to this pattern may be referred to as an “inclusion body pattern”).
  • ⁇ Comparative Example 2> In the crystallization step, ethanol is used instead of methanol, and the same operation as in Example 1 is performed except that the final drying temperature is 90 ° C., and an alcohol crystal having a fluorene skeleton represented by the above formula (1) is obtained. Obtained.
  • Each analysis value of the obtained crystal is as follows. The weight of the obtained crystal: 127 g, HPLC purity: 98.0% (multimer content: 0.8%), Toluene content: 4.1% by weight, DSC melting endotherm maximum temperature: 150 ° C, X-ray diffraction pattern: Inclusion body pattern.
  • the alcohol having a fluorene skeleton represented by the above formula (1) forms an clathrate with aromatic hydrocarbons, and when xylene is used alone, or a solvent other than methanol is mixed. It was found that even when crystallized, the clathrate containing the aromatic hydrocarbons was obtained.
  • the mixture was cooled to 70 ° C. and kept at 70 ° C. for 1 hour to precipitate crystals, followed by stirring at the same temperature for 2 hours. After stirring, the mixture was further cooled to 19 ° C. and then filtered to obtain crystals.
  • the obtained crystals were dried at an internal temperature of 90 ° C. for 3 hours under a reduced pressure of 1.1 kPa, and contained 14% by weight of cyclohexanone.
  • crystallization of the alcohol which has the fluorene skeleton represented by the said Formula (1) obtained is as follows. Weight of the obtained crystal: 33.0 g HPLC purity: 97.8% (multimer content: 0.8%), Cyclohexanone content: 14% by weight, DSC melting endotherm maximum temperature: 114 ° C.
  • reaction solution was divided into two, 10 g of methanol was added to one side, 10 g of isopropyl alcohol was added to the other side, the mixture was heated to 60 ° C., and stirring was continued for 1 hour. In each case, 30 g of pure water was added and cooled to 30 ° C., but in both cases, crystals did not precipitate, and tar-like liquids separated from water were obtained.
  • the DSC analysis chart is shown in FIG. 3, the powder X-ray pattern is shown in FIG. 6, and the main peaks of powder X-rays (those having a relative intensity exceeding 5%) are listed in Table 5.
  • Table 6 shows the main peaks of powder X-rays (those having a relative intensity exceeding 5%).
  • a characteristic diffraction peak was shown at °.
  • Table 7 shows the main peaks of powder X-rays (having a relative intensity exceeding 5%).
  • a characteristic diffraction peak was shown at °.
  • Table 8 shows main peaks of powder X-rays (having a relative intensity exceeding 5%).
  • a characteristic diffraction peak was shown at °.
  • Example 7 A phenolic compound (9,9′-bis (4-hydroxy-3-phenylphenyl) having a fluorene skeleton represented by the above formula (2) is added to a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer. ) Fluorene) 150 g (0.298 mol), potassium carbonate 1.2 g (0.009 mol), ethylene carbonate 65.6 g (0.745 mol), toluene 150 g, and methyltriglyme 90 g were charged, and the temperature was raised to 115 ° C. After stirring at the same temperature for 5 hours, it was confirmed by HPLC that the raw material had disappeared. The production rate of multimers at the end of the reaction was about 0.7%.
  • the obtained reaction solution was cooled to 90 ° C., 225 g of water and 225 g of toluene were added, stirred at 80 to 85 ° C. for 30 minutes, and allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the obtained organic solvent layer was partially concentrated to obtain a solution containing an alcohol having a fluorene skeleton represented by the above formula (1), toluene, and methyltriglyme.
  • the obtained crystallization solution was heated to 65 ° C. and stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled at 0.1 ° C./min to precipitate crystals at 48 ° C. Thereafter, the mixture was stirred at the same temperature for 2 hours. After stirring, the mixture was further cooled to 20 ° C. and then filtered to obtain crystals.
  • the obtained crystals were dried at an internal temperature of 100 to 105 ° C. for 12 hours under a reduced pressure of 1.3 kPa, and the content of methanol was 0.1% by weight.
  • crystallization of the alcohol which has the fluorene skeleton represented by the said Formula (1) obtained is as follows.
  • the DSC analysis chart is shown in FIG. 8, the powder X-ray pattern is shown in FIG. 9, and the main peaks of powder X-rays (those having a relative intensity exceeding 5%) are listed in Table 9.
  • the obtained crystals were dried for 3 hours at an internal temperature of 68 ° C. to 73 ° C. under a reduced pressure of 1.1 kPa. However, since 4% by weight of toluene was contained, the internal temperature was raised to 110 ° C. After further drying for 3 hours at temperature, the toluene content remained at 4% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

示差走査熱量分析による融解吸熱最大温度が148~151℃である式(1)で表されるフルオレン骨格を有するアルコールの結晶、並びに、式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程と、芳香族炭化水素類およびメタノールを含み、水の含有量が1重量%以下である晶析溶液を調製する工程と、晶析溶液から25℃以上で結晶を析出させ、析出した結晶を分離する工程と、結晶を60℃以上としメタノールを除去する工程とをこの順で含む、上記結晶の製造方法が提供される。

Description

フルオレン骨格を有するアルコールの結晶およびその製造方法
 本発明は、光学レンズや光学フィルムに代表される光学部材を構成する樹脂(光学樹脂)を形成するモノマーとして好適で、加工性、生産性に優れた新規なフルオレン骨格を有するアルコールの結晶およびその製造方法に関する。
 フルオレン骨格を有するアルコールを原料モノマーとするポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料は、光学特性、耐熱性等に優れることから、近年、光学レンズや光学シートなどの新たな光学材料として注目されている。この中でも下記式(1):
Figure JPOXMLDOC01-appb-C000005
で表される構造を有する、フェニル基およびフルオレン骨格を有するアルコールおよび該アルコール類から製造される樹脂は、屈折率等の光学特性、耐熱性、耐水性、耐薬品性、電気特性、機械特性、溶解性等の諸特性に優れるとして着目されている(例えば特開平07-149881号公報(特許文献1)、特開2001-122828号公報(特許文献2)、特開2001-206863号公報(特許文献3)、特開2009-256342号公報(特許文献4))。
 上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法としては、塩基触媒存在下、下記式(2):
Figure JPOXMLDOC01-appb-C000006
で表されるフルオレン骨格を有するフェノール化合物とエチレンオキサイドとを反応させる方法が知られている(特許文献2)。しかしながら、本方法で得られる上記式(1)で表されるフルオレン骨格を有するアルコールはその純度が低く、エチレンオキサイドが3、4分子と付加した化合物が多量に副生し、上記式(1)で表されるフルオレン骨格を有するアルコールを高純度で得ることは困難である。
 一方、特許文献2記載の製法を改善する方法として、酸触媒およびチオール類存在下、下記式(3):
Figure JPOXMLDOC01-appb-C000007
で表されるアルコール類と9-フルオレノンとを反応させ上記式(1)で表されるフルオレン骨格を有するアルコールを得る方法が提案されている(特許文献3、4)。しかしながら、特許文献3記載の方法により上記式(1)で表されるフルオレン骨格を有するアルコールを製造すると、光学用途等、用途によっては特に敬遠されるような着色があり、更に該着色は精製操作を施しても除去ができないといった趣旨の記載が特許文献4に為されている。
 また、特許文献4には特許文献2および3に記載された製造方法の改善を目的として、酸触媒および9-フルオレノン類100重量部に対して3重量部以上のチオール類存在下、上記式(3)で表されるアルコール類と9-フルオレノンを反応させ上記式(1)で表されるフルオレン骨格を有するアルコールを得る方法が提案されている。しかしながら、該方法で得られる上記式(1)で表されるフルオレン骨格を有するアルコールは特許文献3の方法で得られるものよりも着色は少ないものの、その着色改善は十分ではない。また、反応時に多量のチオール類を必要とすることから、上記式(1)で表されるフルオレン骨格を有するアルコールからチオール類を完全に除去することが困難であり、該アルコールを樹脂原料として使用する際、チオール類に由来する硫黄分が樹脂の更なる着色を引き起こすといった問題がある。
 更に、本願発明者らが上記特許文献2~4に記載される方法を追試したところ、特許文献3記載の方法では反応が進行しないか、あるいは反応が進行したとしても、上記式(1)で表されるフルオレン骨格を有するアルコールを含むオイル状物が得られるのみで結晶状の上記式(1)で表されるフルオレン骨格を有するアルコールは得られなかった。一方、特許文献2および4の追試では、結晶状の上記式(1)で表されるフルオレン骨格を有するアルコールが得られるものの、反応や反応後の取り出し操作(晶析操作)で使用した溶媒(芳香族炭化水素類)が上記式(1)で表されるフルオレン骨格を有するアルコールに包接され、包接体となることが判明した。
特開平07-149881号公報 特開2001-122828号公報 特開2001-206863号公報 特開2009-256342号公報
 本発明の目的は、チオール類を用いず、高純度かつ着色が少なく、更には包接体ではない、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を提供することにある。
 本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、上記式(1)で表されるフルオレン骨格を有するアルコールを特定の条件で製造し、得られた該アルコール類を特定条件下で晶析することにより、高純度かつ着色の少なく、更には包接体ではない、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶が製造可能であることを見出した。具体的には以下の発明を含む。
 [1]
 示差走査熱量分析による融解吸熱最大温度が148~151℃である、下記式(1):
Figure JPOXMLDOC01-appb-C000008
で表されるフルオレン骨格を有するアルコールの結晶。
 [2]
 Cu-Kα線による粉末X線回折パターンにおいて、回折角2θ=7.1±0.2°、14.3±0.2°、15.2±0.2°、15.8±0.2°、17.1±0.2°および22.3±0.2°にピークを有する、下記式(1):
Figure JPOXMLDOC01-appb-C000009
で表されるフルオレン骨格を有するアルコールの結晶。
 [3]
 Cu-Kα線による粉末X線回折パターンにおいて、回折角2θ=8.1±0.2°、15.4±0.2°、16.6±0.2°、18.0±0.2°、20.4±0.2°、21.1±0.2°および22.7±0.2°にピークを有する、下記式(1):
Figure JPOXMLDOC01-appb-C000010
で表されるフルオレン骨格を有するアルコールの結晶。
 [4]
 示差走査熱量分析による融解吸熱最大温度が148~151℃である、[2]または[3]記載のフルオレン骨格を有するアルコールの結晶。
 [5]
 包接体ではない、[1]~[4]いずれかに記載のフルオレン骨格を有するアルコールの結晶。
 [6]
 上記式(1)で表されるフルオレン骨格を有するアルコール12gを、純度99重量%以上のN,N-ジメチルホルムアミド30mLに溶解させた溶液の黄色度(YI値)が10以下となる、[1]~[5]いずれかに記載のフルオレン骨格を有するアルコールの結晶。
 [7]
 芳香族炭化水素類の含量が1重量%以下である、[1]~[6]いずれかに記載のフルオレン骨格を有するアルコールの結晶。
 [8]
 以下(i)~(iv)の工程をこの順で含む、[1]~[7]いずれかに記載のフルオレン骨格を有するアルコールの結晶の製造方法。
(i)
 対称グリコールジエーテル存在下、下記式(2):
Figure JPOXMLDOC01-appb-C000011
で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
(ii)
 前記反応液に芳香族炭化水素類とメタノールを添加し、芳香族炭化水素類およびメタノールを含む溶液であって、該溶液中の水の含有量が1重量%以下となる晶析溶液を調製する工程。
(iii)
 前記晶析溶液から25℃以上で結晶を析出させ、析出した結晶を分離する工程。
(iv)
 前記結晶を60℃以上とし、メタノールを除去する工程。
 本発明によれば、高純度かつ着色が少なく、更には、包接体ではない、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶が提供可能となる。
 特に上記式(1)で表されるフルオレン骨格を有するアルコールの結晶が包接体である場合、該包接体にアクリル酸等を反応させ他の化合物とする際、包接体が包接している化合物(以下、ゲスト分子と称することもある)が反応を阻害し、反応によっては使用できないといった問題があり、また、そのまま溶融等し樹脂原料として使用する際も、溶融中に発生するゲスト分子に由来する蒸気を系外へと除去する必要があったり、ゲスト分子の影響で、得られる樹脂の品質が一定とならないといった問題を引き起こすことがある。更には、引火点の低いゲスト分子(前記引例の場合、芳香族炭化水素類)を包接し得ることから、上記式(1)で表されるフルオレン骨格を有するアルコールを保管したり輸送したりする際、火災が起こりやすくなるといった防災上の懸念も存在する。
 しかしながら、前述の通り、公知の方法に基づき上記式(1)で表されるフルオレン骨格を有するアルコールを結晶として得ようとした場合、ゲスト分子を包接した包接体として得られ、包接体でない上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を得る方法は知られていなかった。一方で、包接体に含まれるゲスト分子は通常、ゲスト分子の沸点以上の温度で結晶を乾燥させるといった、一般的に実施される方法により除去することは困難であり、一旦結晶を融点以上に加熱し溶融させた後にゲスト分子を除去する等、工業的実施が困難、あるいは非常にコストのかかる方法に依らなければならないので、包接体でない上記式(1)で表されるフルオレン骨格を有するアルコールの結晶およびその製造方法を見出した本発明は、特に工業的規模で上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を製造、使用するに当たり、非常に意義があるものであると言える。
実施例1で得られた結晶(本発明の結晶)の示差走査熱量測定(DSC)曲線を示す図である。 比較例1で得られた結晶(包接体)の示差走査熱量測定(DSC)曲線を示す図である。 比較例9で得られた結晶(包接体)の示差走査熱量測定(DSC)曲線を示す図である。 実施例1で得られた結晶(本発明の結晶)の粉末X線回折パターンを示す図である。 比較例1で得られた結晶(包接体)の粉末X線回折パターンを示す図である。 比較例9で得られた結晶(包接体)の粉末X線回折パターンを示す図である。 比較例1で得られた結晶(包接体)のTG-DTAチャート図である。 実施例7で得られた結晶(本発明の結晶)の示差走査熱量測定(DSC)曲線を示す図である。 実施例7で得られた結晶(本発明の結晶)の粉末X線回折パターンを示す図である。
 <上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の製造方法>
 上記した特徴を有する、本発明の上記式(1)で表されるフルオレン骨格を有するアルコールの結晶は、以下(i)~(iv)の工程により製造される。
(i)
 対称グリコールジエーテル存在下、上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程(以下、反応工程と称することもある)。
(ii)
 反応液に芳香族炭化水素類とメタノールを添加し、芳香族炭化水素類およびメタノールを含む溶液であって、該溶液中の水の含有量が1重量%以下となる晶析溶液を調製する工程(以下、晶析溶液調製工程と称することもある)。
(iii)
 前記晶析溶液から25℃以上で結晶を析出させ、析出した結晶を分離する工程(以下、晶析工程と称することもある)。
(iv)
 前記結晶を60℃以上とし、メタノールを除去する工程(以下、乾燥工程と称することもある)。
 以下、上記(i)~(iv)の工程について詳述する。
 <反応工程>
 本発明の上記式(1)で表されるフルオレン骨格を有するアルコールは、対称グリコールジエーテル存在下、上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させて製造される必要がある。上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法として前述の特許文献2~4の方法が知られているが、これらの製造法で製造した場合、これらの製法に由来する不純物の影響の為か、後述する特徴を有する、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶(以下、該結晶を本発明の結晶と称することもある)を製造することができない。
 本発明で使用する、上記式(2)で表されるフルオレン骨格を有するフェノール化合物は市販品を用いても良く、また、酸触媒存在下、フルオレノンと2-フェニルフェノールとを反応させて製造することもできる。
 本発明で使用する対称グリコールジエーテルとは、下記式(4):
R-O(CHCHO)-R     (4)
(式中、Rは炭素数1~4のアルキル基を表し、nは1~4の整数を表す。)
で表される構造を有する。このような対称グリコールジエーテルとして具体的に例えば、メチルテトラグライム、ブチルジグライム、メチルトリグライム、エチルジグライム、メチルグライム、エチルモノグライム、メチルモノグライム等が例示される。
 本発明で使用する対称グリコールジエーテルは、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1重量倍に対し通常、0.05~3重量倍、好ましくは0.08~1重量倍使用する。0.05重量倍以上使用することにより、より高純度の実現が可能となり、とりわけエチレンカーボネートが3分子以上付加した不純物の生成を抑制することが可能となり、使用量を3重量倍以下とすることにより、高価な対称グリコールジエーテルの使用量を低減することが可能であることから、より経済的に上記式(1)で表されるフルオレン骨格を有するアルコールを製造することができる。
 本発明で使用するエチレンカーボネートは、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1モルに対し通常、2~10モル、好ましくは2~4モル使用する。2モル以上使用することにより十分な反応速度を得ることができ、使用量を10モル以下とすることにより、より経済的に上記式(2)で表されるフルオレン骨格を有するアルコールを製造することができる。
 上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させる際、必要に応じ塩基性化合物存在下にて反応を行う。反応工程で用いられる塩基性化合物として例えば、炭酸塩類、炭酸水素塩類、水酸化物類、有機塩基類等が例示される。より具体的には炭酸塩類として炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等が、炭酸水素塩類として炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、炭酸水素セシウム等が、水酸化物類として水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が、有機塩基類としてトリエチルアミン、ジメチルアミノピリジン、トリフェニルホスフィン、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド等が例示される。これら塩基性化合物の中でも取扱性の良さの点から炭酸カリウム、炭酸ナトリウム、トリフェニルホスフィンが好適に使用される。これら塩基性化合物を使用する際の使用量は、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1モルに対し、通常0.01~1.0モル、好ましくは0.03~0.2倍モルである。
 反応工程実施の際、必要に応じ、対称グリコールジエーテルと併せて有機溶媒を使用することができる。併用可能な有機溶媒としては、上記式(2)で表されるフルオレン骨格を有するフェノール化合物およびエチレンカーボネートに対して不活性なものであれば良く、ケトン類、芳香族炭化水素類、ハロゲン化芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、エーテル類、エステル類、脂肪族ニトリル類、アミド類、スルホキシド類等が例示される。より具体的にはケトン類としてアセトン、メチルエチルケトン、ブチルメチルケトン、ジイソブチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、2-ヘプタノン、2-オクタノン、シクロヘキサノン等が、芳香族炭化水素類としてトルエン、キシレン、メシチレン等が、ハロゲン化芳香族炭化水素としてクロロベンゼン、ジクロロベンゼン等が、脂肪族炭化水素としてペンタン、ヘキサン、ヘプタン等が、ハロゲン化脂肪族炭化水素類としてジクロロメタン、1,2-ジクロロエタン等が、エーテル類としてジエチルエーテル、ジ-イソ-プロピルエーテル、メチル-ターシャリー-ブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル等が、エステル類として酢酸エチル、酢酸ブチル等が、脂肪族ニトリル類としてアセトニトリル等が、アミド類としてジメチルホルムアミド、ジメチルアセトアミド等が、スルホキシド類としてジメチルスルホキシド等が例示される。これら併用可能な有機溶媒の中でも入手性や取扱性の良さから、101.3kPaにおける沸点が110℃以上の芳香族炭化水素類、ケトン類またはエーテル類が好適に用いられる。これら有機溶媒は1種類、あるいは必要に応じ2種類以上混合して使用しても良い。これら有機溶媒を併用する際の使用量は、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1重量倍に対し、通常0.1~5重量倍、好ましくは0.5~3重量倍である。
 反応工程は、対称グリコールジエーテルおよび必要に応じ塩基性化合物、併用可能な有機溶媒を反応容器に添加し、通常30~150℃、好ましくは100~130℃で実施される。
 こうして得られた上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液は、そのまま濃縮・乾固した後、晶析溶液調製工程で用いても良く、水洗・吸着処理等の後処理や、晶析・カラム精製等の定法にて精製しても良いが、下記する水洗工程および/または濃縮工程を実施した後、本発明の晶析溶液調製工程で用いることが、上記式(1)で表されるフルオレン骨格を有するアルコールの純度をより向上させることが可能であることから好ましい。以下、水洗工程および濃縮工程について詳述する。
 水洗工程は得られた反応液に、反応で使用した、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1重量倍に対し0.1~10重量倍、好ましくは0.5~5重量倍の水を添加し、60~95℃、好ましくは75~90℃で撹拌し、その後静置、水層を分離することによって実施される。水を0.1重量倍以上使用することにより水洗工程の効果がより発現し、使用量を10重量倍以下とすることにより、容積効率を改善することが可能となる。また、水洗温度は60℃以上とすることにより、静置時の分液速度がより速くなり、95℃以下とすることにより、水洗時の上記式(1)で表されるフルオレン骨格を有するアルコールの分解を抑制することが可能となる。
 水洗工程は必要に応じて複数回実施しても良い。また、水洗工程実施時、水と併せて塩基や酸を添加し、副生物等を分解・水層へと除去しても良い。
 続いて濃縮工程について詳述する。濃縮工程は、水洗工程終了後、あるいは水洗工程を実施していない反応液を常圧、あるいは減圧下にて、前記反応工程で使用した対称グリコールジエーテルや併用可能な有機溶媒の一部または全部を系外へと除去することにより実施される。
 <晶析溶液調製工程および晶析工程>
 本発明の結晶の製造方法においては、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液、または上記式(1)で表されるフルオレン骨格を有するアルコールの結晶等に、芳香族炭化水素類とメタノールとを添加することで晶析溶液を調製する。なお、該晶析溶液に1重量%以上の水分が含まれている場合は水の含有量を1重量%以下とする必要がある。晶析溶液調整後、溶液中に結晶が完溶していない場合は、結晶を完溶させ、その後冷却して上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を析出させた後、分離する必要がある。
 本発明において使用可能な芳香族炭化水素類としてはトルエン、キシレン、メシチレン等が例示される。また、芳香族炭化水素類のみを用い晶析工程を実施した場合、該芳香族炭化水素類を包接した包接体となる為、メタノールを併用する必要がある。なお、メタノール以外のアルコールを使用した場合は、芳香族炭化水素類単独で晶析工程を実施した場合と同様に、該芳香族炭化水素類を包接した包接体となり、本発明の結晶が得られない。
 晶析溶液中の芳香族炭化水素類とメタノールの比率は、例えば、重量基準で、芳香族炭化水素類:メタノール=1:0.3~1:5、好ましくは1:0.5~1:4である。メタノールの比率を芳香族炭化水素類に対し0.3重量倍以上とすることにより、芳香族炭化水素類を含む包接体となることを抑制することが可能となり、5重量倍以下とすることにより、上記式(1)で表されるフルオレン骨格を有するアルコールを溶解しやすくなることから晶析操作がより容易となり、また、上記式(1)で表されるフルオレン骨格を有するアルコールの純度や色目を改善させやすいことから好ましい。これら比率は、例えば反応液等に含まれる芳香族炭化水素類やメタノールの含量をガスクロマトグラフィーで定量した後、所望の比率となるように芳香族炭化水素類およびメタノールを添加することにより調製することができる。
 晶析溶液は、芳香族炭化水素類、メタノール以外に他の溶媒を含んでいても良い。含んでいても良い溶媒として例えば、上述した反応で使用した対称グリコールジエーテルの他、脂肪族炭化水素類(例えばペンタン、ヘキサン、ヘプタン等)、鎖状ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)等が挙げられる。他の溶媒を含む場合のその溶媒量は、晶析溶液中の芳香族炭化水素類とメタノールとの合計量に対し通常0.5重量倍以下、好ましくは0.3重量倍以下とする。0.5重量倍以下とすることにより、経済的かつより安定的に本発明の結晶を得ることが可能となる。
 晶析溶液に含まれる溶媒の総量は、晶析溶液に含まれる上記式(1)で表されるフルオレン骨格を有するアルコール1重量倍に対し通常0.5~20重量倍、好ましくは1~10重量倍である。0.5重量倍以上使用することにより晶析操作による精製効果がより発現し、20重量倍以下とすることにより収率良く上記式(1)で表されるフルオレン骨格を有するアルコールが得られる。
 晶析溶液中に1重量%より多くの水が含まれている場合、結晶状の上記式(1)で表されるフルオレン骨格を有するアルコールが得られない場合がある。また、結晶状の上記式(1)で表されるフルオレン骨格を有するアルコールが得られる場合であっても、後述する特徴を有する本発明の結晶とはならず、純度や色目が十分に向上しない。晶析溶液中の水分を1重量%以下とする方法として例えば、メタノールを添加する前に、芳香族炭化水素溶媒を先に添加し、常圧あるいは減圧下、共沸脱水により水分を除去した後、水分を含まないメタノールを添加する方法が挙げられる。
 続いて晶析工程について詳述する。上記の方法により調製された晶析溶液は通常、40℃以上、晶析溶液の沸点以下の温度まで加熱し結晶を完溶させた後冷却し、25℃以上、好ましくは25~60℃、更に好ましくは40~50℃で結晶を析出させる。25℃より低い温度で結晶を析出させた場合、本発明の結晶が得られず、芳香族炭化水素類を包接した包接体となる場合がある。また、60℃より高い温度で結晶を析出させる場合、溶媒の沸点に近い為、操作性が問題となる場合がある。前述した温度範囲で結晶を析出させる方法として、結晶が析出するまで上記温度範囲にて晶析溶液の温度を保持する方法、上記温度範囲で種晶を接種する方法等が例示される。なお、結晶析出後、一定時間同温度で保持し結晶を成長させる方が、より確実に本発明の結晶が得られるため好ましい。
 結晶析出後、必要に応じ更に冷却を行い、析出した結晶を分離する。こうして分離した結晶は晶析工程で用いた溶媒(芳香族炭化水素、メタノール等)を含んでいるが、芳香族炭化水素類を包接した結晶とは異なり、結晶が溶解する温度(融点)以上としなくとも、60℃以上とすることによって晶析工程で用いた溶媒を除去することが可能であることから、包接体でない、本発明の結晶が製造可能となる。
 <乾燥工程>
 乾燥工程を実施することによりメタノールを含む晶析工程で用いた溶媒を除去することができる。乾燥工程は、得られた結晶を60℃以上、結晶の融点以下、好ましくは60℃~110℃とすることにより実施される。60℃より低い場合、晶析工程で用いた溶媒の中でもメタノールの除去ができないか、できたとしても多大な時間を要し、工業的観点から効率的ではない。乾燥工程を実施する際は常圧でも減圧下でも良いが、工業的に実施する際は減圧下とする方がより効率的にメタノールを含む晶析工程で用いた溶媒を除去できることから好ましい。
 こうして得られた本発明の結晶は必要に応じ、吸着、水蒸気蒸留、再結晶などの通常の精製操作を繰り返し行うこともできるが、このような操作を実施しなくとも十分に高純度であり、また、結晶中にゲスト分子を包接していない為、ポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料として好適に用いられることは勿論のこと、ゲスト分子が問題となる分野、例えば医農薬用の原料(中間体)としても好適に用いることができる。
 <上記式(1)で表されるフルオレン骨格を有するアルコールの結晶>
 上記式(1)で表されるフルオレン骨格を有するアルコールの結晶(本発明の結晶)は、示差走査熱量分析(DSC)による融解吸熱最大温度、および粉末X線回折パターンにおける回折角2θの少なくとも1つの特徴を有する。
 具体的には、本発明の結晶は、示差走査熱量分析による融解吸熱最大温度が148~151℃である。本発明における示差走査熱量分析による融解吸熱最大温度とは、後述する条件にて示差走査熱量分析を実施した際、最大吸熱ピークが観測される温度のことをいう。なお、本発明の結晶が示す融解吸熱最大温度は、いくつかの要因により、上下に変動することがある。このような偏差に関与する要因としては、分析を実施する際の試料の加熱速度、試料量、使用される校正標準、機器の校正方法、分析環境の相対湿度および試料の化学的純度がある。与えられた試料について観察される融解吸熱最大温度は、装置毎に異なることがあるが、一般に、装置が適正に校正されていれば、本願に定義される範囲内となる。
 本発明の結晶は、前述した乾燥工程における乾燥温度の差異によって、Cu-Kα線による粉末X線回折パターンにおいて、回折角2θ=7.1±0.2°、14.3±0.2°、15.2±0.2°、15.8±0.2°、17.1±0.2°および22.3±0.2°に特徴的なピークを有するか、8.1±0.2°、15.4±0.2°、16.6±0.2°、18.0±0.2°、20.4±0.2°、21.1±0.2°および22.7±0.2°に特徴的なピークを有する結晶となる。一方、公知のゲスト分子として芳香族炭化水素類を包接している、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶(包接体)は、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的なピークを有する。これら包接体の特徴的なピークの内、本発明の結晶が有する他のピークと明確に区別され得る7.6±0.2°のピークを有するか否かを確認することにより、得られた結晶が包接体であるか否かを区別することも可能である。
 本発明の結晶の純度は、後述する方法により決定されるHPLC純度が通常90%以上、好ましくは95%以上、より好ましくは98%以上である。また、本発明の結晶は後述する方法で測定するYI値が通常10以下、好ましくは7以下であるので、特に光学用途等、着色が問題となり得る分野で好適に用いることができる。
 更に本発明の結晶は包接体でない(ゲスト分子を包接していない)という特徴を有することができる。従って、例えば前述の文献に記載される方法で得られる、ゲスト分子として芳香族炭化水素類を包接する上記式(1)で表されるフルオレン骨格を有するアルコールの結晶中の芳香族炭化水素類含量が3~6重量%であるのに対し、本発明の結晶に含まれる芳香族炭化水素類の含量は通常1重量%以下、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下とすることができる。また、上述した本発明の結晶の乾燥方法によれば、101.3kPaにおける沸点が150℃以下の有機溶媒の含有量を通常1重量%以下、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下とすることも可能である。そのため、上記式(1)で表されるフルオレン骨格を有するアルコールを保管したり輸送したりする際、火災が起こりやすくなるといった防災上の懸念を低減させることが可能であることから、ポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料として好適に用いられることは勿論のこと、包接されているゲスト分子が問題となる分野、例えば医農薬用の原料(中間体)としても好適に用いることができる。
 包接体であるか否かは、例えば、TG-DTA(示差熱熱重量同時測定)分析、X線解析、NMR分析といった方法の他、得られた結晶を、ゲスト分子の沸点以上となる条件で重量変化がない程度に十分に乾燥させた後、得られた結晶を溶媒に溶解させ、ガスクロマトグラフィーや高速液体クロマトグラフィーを用いて分析し、ゲスト分子に相当するピークがあるか否かで判断することができる。また、前記TG-DTA分析を用いる方法では、測定サンプルを一定の速度で昇温した際の重量変化と、それに伴う吸熱・発熱挙動を測定でき、重量変化と吸熱(または発熱)とが同時に観測された時点で、ゲスト分子が放出されたことを判断することもできる。
 以下に実施例等を挙げて本発明を具体的に説明するが、本発明は何ら限定されるものではない。なお、例中、各種測定は下記の方法で実施した。また、以下実施例・比較例・参考例に記載した各成分の生成率(残存率)および純度は下記条件で測定したHPLCの面積百分率値(反応液中の溶媒およびゲスト分子のピークは除いた修正面積百分率値)であり、実施例・比較例における「多量体」とは上記式(1)で表されるフルオレン骨格を有するアルコールにエチレンカーボネートが更に1分子以上付加した化合物類のことを示す。
 (1)HPLC純度
 装置 :島津製作所製 LC-2010A、
 カラム:SUMIPAX ODS A-211(5μm、4.6mmφ×250mm)、
 移動相:純水/アセトニトリル(アセトニトリル30%→100%)、
 流量 :1.0ml/min、カラム温度:40℃、検出波長:UV 254nm。
 (2)残存溶媒量、包接溶媒量の分析
 溶媒の残存量、または上記式(1)で表されるフルオレン骨格を有するアルコールに包接されているゲスト分子(芳香族炭化水素類等)の含量については下記条件に基づくガスクロマトグラフィーにより定量を行った。
 装置 :島津製作所製 GC-2014、
 カラム:DB-1(0.25μm、0.25mmID×30m)、
 昇温:40℃(5分保持)→20℃/min→250℃(10分保持)、
 Inj温度:250℃、Det温度:300℃、スプリット比 1:10、
 キャリアー:窒素54.4kPa(一定)、
 サンプル調製方法:十分に乾燥させた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶100mgを10mlメスフラスコに量り取り、そこへあらかじめ調製していた1,2-ジメトキシエタンのアセトニトリル溶液(1,2-ジメトキシエタン400mgをアセトニトリル200mlに溶解したもの)をホールピペットで5ml加え、アセトニトリルでメスアップさせ溶解したものを試料溶液とした。
 一方、残存量(包接量)を測定したい化合物10mgを10mlメスフラスコに量り取り、上述と同量の1,2-ジメトキシエタンのアセトニトリル溶液を加え、アセトニトリルでメスアップさせ溶解したものを標準溶液とした。
 試料溶液および標準溶液を上述の条件にて分析し、得られた各成分のピーク面積をデータ処理装置で求め、各成分の含量(%)を算出した(内部標準法)。
 (3)包接体であることの確認のための分析
 上記式(1)で表されるフルオレン骨格を有するアルコールの結晶5mgをアルミパンに精密に秤取し、(株)リガク社製示差熱天秤 TG-DTA8121を用い、下記操作条件で測定した。
 (操作条件)
 昇温速度:10℃/min、
 測定範囲:30-250℃、
 雰囲気 :開放、窒素250ml/min。
 (4)示差走査熱量測定(DSC)
 上記式(1)で表されるフルオレン骨格を有するアルコールの結晶5mgをアルミパンに精密に秤取し、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社:DSC7020)を用い、酸化アルミニウムを対照として下記操作条件で測定した。
 (操作条件)
 昇温速度:10℃/min、
 測定範囲:30-250℃、
 雰囲気 :開放、窒素40ml/min。
 (5)粉末X線回折
 上記式(1)で表されるフルオレン骨格を有するアルコールの結晶150mgをガラス試験板の試料充填部に充填し、粉末X線回折装置(スペクトリス社製:X’PertPRO)を用いて下記の条件で測定した。
 X線源   :CuKα、
 出力    :1.8kW(45kV-40mA)、
 測定範囲  :2θ=5°~70°、
 スキャン速度:2θ=2°/min、
 スリット  :DS=1°、マスク=15mm、RS=可変(0.1mm~)。
 (6)YI値
 上記式(1)で表されるフルオレン骨格を有するアルコールの結晶12gを、純度99重量%以上のN,N-ジメチルホルムアミド30mlに溶解させ、以下の条件で得られたN,N-ジメチルホルムアミド溶液のYI値(黄色度)を測定した。
 装置  :色差計(日本電色工業社製,SE6000)、
 使用セル:光路長33mm 石英セル。
 なお、測定に使用するN,N-ジメチルホルムアミド自身の着色が測定値に影響を与えないよう、事前にN,N-ジメチルホルムアミドの色相を測定して補正した(ブランク測定)。当該ブランク測定を実施したうえで、サンプルを測定した値を本発明におけるYI値とした。
 (7)水分値
 晶析溶液中の水分値はJIS-K0068に準拠した方法(カールフィッシャー容量滴定法)にて測定した。
 <実施例1>
 攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン)150g(0.298mol)、炭酸カリウム3.4g(0.025mol)、エチレンカーボネート60.1g(0.682mol)、トルエン225g、およびメチルトリグライム15gを仕込み、115℃まで昇温し、同温度で8時間撹拌後、HPLCにて原料が消失していることを確認した。反応終了時点の多量体の生成率は約1%であった。
 得られた反応液を90℃まで冷却した後、水225gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を濃縮することで溶媒を除去し、濃縮物を得た。得られた濃縮物にトルエン49g、メタノール188gを添加し晶析溶液を得た。得られた晶析溶液中の水分は0.1%であった。
 得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却することにより45℃で結晶を析出させ、析出後、同温度で2時間撹拌した。撹拌後、更に22℃まで冷却した後、濾過し結晶を得た。
 得られた結晶を内圧1.3kPaの減圧下、内温55~59℃で3時間乾燥し、結晶の一部をガスクロマトグラフィーで分析した所、晶析工程で用いた溶媒の中でもメタノールが4重量%含有していることを確認した。更に同条件で3時間乾燥を継続し分析しても、メタノールの含有量が4重量%と変化がなかった為、内圧1.3kPaの減圧下、内温を68℃~73℃に昇温し更に3時間乾燥した所、メタノールの含有量が0.2重量%となった為、乾燥終了とした。
 得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:139g(収率:79%)、
HPLC純度:98.5%(多量体含量:1.1%)、
トルエン含量:0.03重量%、
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量:0.25重量%、
YI値:0.7、
DSC融解吸熱最大温度:150℃。
 DSC分析チャートを図1に、粉末X線のパターンを図4に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表3に列挙する。表3に示す通り、本実施例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.1±0.2°、14.3±0.2°、15.2±0.2°、15.8±0.2°、17.1±0.2°および22.3±0.2°に特徴的な回折ピークを示した。また、包接体の典型的なピークである7.6±0.2°にはピークが見られなかった(以下、本パターンと同様のX線ピークを有するものを「パターンA」と称することがある。)。
 <実施例2>
 攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン)150g(0.298mol)、炭酸カリウム3.4g(0.025mol)、エチレンカーボネート60.1g(0.682mol)、トルエン225g、およびメチルジグライム150gを仕込み、115℃まで昇温し、同温度で13時間撹拌後、HPLCにて原料が消失していることを確認した。反応終了時点の多量体の生成率は約0.5%であった。
 得られた反応液を85℃まで冷却した後、水225gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を一部濃縮し、上記式(1)で表されるフルオレン骨格を有するアルコール、トルエンおよびメチルジグライムを含む溶液を得た。
 該溶液にトルエン54g、メタノール84gを添加し晶析溶液を得た。得られた晶析溶液中の水分は0.1%であり、該溶液中に含まれるトルエンは173g、メタノールは84g、メチルジグライムは61gであった。
 得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却し50℃とした時点で、実施例1で得られた結晶0.01gを種晶として添加した所、結晶が析出した。その後、同温度で1時間撹拌した。撹拌後、更に25℃まで冷却した後、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で3時間乾燥した所、メタノールの含有量が0.2重量%となった為、乾燥終了とした。
 得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:123g(収率:70%)、
HPLC純度:98.0%(多量体含量:0.10%)、
トルエン含量:0.05重量%、
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量:0.26重量%、
YI値:0.7、
DSC融解吸熱最大温度:150℃、
X線回折パターン:パターンA。
 <実施例3-6>
 実施例1と同様に反応、後処理を行い濃縮物を得た。得られた濃縮物を4等分し、下記表1に示す比率となるようトルエン、メタノールをそれぞれ添加し、実施例1記載の方法と同様に晶析・乾燥操作を行い、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を得た。各結晶の各分析値を以下表1に示す。なお、表1におけるトルエン・メタノールの添加量はそれぞれの濃縮物に含まれる上記式(1)で表されるフルオレン骨格を有するアルコールに対する比率(重量倍)である。
Figure JPOXMLDOC01-appb-T000012
 <比較例1>
 攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン)40.0g(0.080mol)、エチレンカーボネート16.1g(0.183mol)、炭酸カリウム0.8g(0.006mol)およびトルエン40.0gを仕込み、110℃で11時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。また、反応液中には、多量体が約3%副生していることを確認した。
 得られた反応液を85℃まで冷却した後、水68gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層をディーンスターク装置を用いて還流下で脱水し、上記式(1)で表されるフルオレン骨格を有するアルコールが溶解した晶析溶液を得た。該晶析溶液中の水分は0.1%であった。
 得られた晶析溶液を0.3℃/分で冷却した所、65℃で結晶が析出し、同温度で2時間撹拌した。撹拌後、更に26℃まで冷却した後、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で3時間乾燥したが、トルエンが4重量%含まれていた為、内温を110℃まで昇温し、同温度で更に3時間乾燥したが、トルエンの含量は4重量%のままであった。
 得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:39.3g、
HPLC純度:97.5%(多量体含量:2.6%)、
トルエン含量:4.1重量%、
DSC融解吸熱最大温度:151℃。
 DSC分析チャートを図2に、粉末X線のパターンを図5に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表4に、TG-DTAの分析チャートを図7に列挙する。表4に示す通り、本比較例1で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した(以下、本パターンと同様のX線パターンを有するものを「包接体パターン」と称することがある。)。
 また、高温・減圧下で乾燥を行ってもトルエンの残量が減少しなかったため、TG-DTA分析を行い包接体であるか否かを確認した所、トルエンの沸点以上の温度である約139℃で重量の減少が始まり、続いて約150℃吸熱ピークが観測されたことから、本比較例1で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、包接体であることが支持される。
 <比較例2>
 晶析工程においてメタノールの代わりにエタノールを使用し、最終乾燥温度を90℃とする以外は実施例1と同様の操作を行い、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を得た。得られた結晶の各分析値は以下の通り。
得られた結晶の重さ:127g、
HPLC純度:98.0%(多量体含量:0.8%)、
トルエン含量:4.1重量%、
DSC融解吸熱最大温度:150℃、
X線回折パターン:包接体パターン。
 <比較例3~6>
 実施例1と同様に反応、後処理を行い濃縮物を得た。得られた濃縮物を4等分し、下記表2に示す比率となるよう各溶媒をそれぞれ添加し、最終乾燥温度を90℃とする以外は実施例1記載の方法と同様に晶析・乾燥操作を行い、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を得た。各結晶の各分析値を以下表2に示す。なお、表2における各溶媒の添加量はそれぞれの濃縮物に含まれる上記式(1)で表されるフルオレン骨格を有するアルコールに対する比率(重量倍)である。
Figure JPOXMLDOC01-appb-T000013
 上記表2に示す通り、上記式(1)で表されるフルオレン骨格を有するアルコールは芳香族炭化水素類と包接体を形成し、キシレンを単独で用いた場合や、メタノール以外の溶媒を混合し晶析させても芳香族炭化水素類を包接した包接体となることが判明した。
 <比較例7>
 攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン)30.0g(0.060mol)、エチレンカーボネート12.0g(0.136mol)、炭酸カリウム0.7g(0.005mol)、およびシクロヘキサノン30.0gを仕込み、140℃で7時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。反応終了時点の多量体の生成率は約1.2%であった。
 得られた反応液を90℃まで冷却した後、シクロヘキサノン23g、ノルマルヘプタン27gを加え、有機溶媒層を90℃に保ちながら洗浄水が中性となるまで水洗を行った。水洗後、得られた有機溶媒層をディーンスターク装置を用いて還流下で脱水し、上記式(1)で表されるフルオレン骨格を有するアルコールが溶解した晶析溶液を得た。該晶析溶液中の水分は0.1%であった。
 その後、70℃まで冷却し、70℃で1時間保温することで結晶を析出させた後、同温度で2時間撹拌した。撹拌後、更に19℃まで冷却した後、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を90℃で3時間乾燥したが、シクロヘキサノンが14重量%含まれていた。
 得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:33.0g、
HPLC純度:97.8%(多量体含量:0.8%)、
シクロヘキサノン含量:14重量%、
DSC融解吸熱最大温度:114℃。
 <比較例8>
 スケールを10分の1とする以外は特開2001-206863号の実施例6に記載されている方法で仕込・反応を行い、65℃で1時間撹拌した段階で反応液を高速液体クロマトグラフィーで分析したが、上記式(2)で表されるフルオレン骨格を有するアルコールは殆ど生成しておらず、原料の9-フルオレノンが98%残存していた。そこで更に同温度で7時間撹拌を継続し、反応液を高速液体クロマトグラフィーで分析したが同様に反応は殆ど進行しておらず、原料の9-フルオレノンが97%残存していた。
 そこで特開2001-206863号〔0019〕の記載に基づき、反応温度を65℃から100℃へと変更し同温度で撹拌を継続したところ、原料である9-フルオレノンの消失までに73時間必要であった。
 該文献記載に基づく後処理を実施するため、得られた反応液を2分割し、一方にメタノール10g、もう一方にイソプロピルアルコール10gを加え60℃まで加温し、1時間撹拌を継続した後、それぞれ純水30gを加え、30℃まで冷却したが両方とも結晶は析出せず、それぞれ水と分離したタール状の液体が得られた。
 <比較例9>
 9-フルオレノンの使用量を18gとして特開2009-256342号の実施例1記載の方法を追試した所、上記式(1)で表されるフルオレン骨格を有するアルコール34.2g(純度85.1%)を得た。得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
キシレン含量:4.8重量%、
YI値:51、
DSC融解吸熱最大温度:141℃。
 DSC分析チャートを図3に、粉末X線のパターンを図6に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表5に列挙する。表5に示す通り、本比較例9で得られた、キシレンを包接する上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。
 <比較例10>
 9-フルオレノンの使用量を9gとして特開2009-256342号の実施例2記載の方法を追試した所、上記式(1)で表されるフルオレン骨格を有するアルコール13.5g(純度74.7%)を得た。得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
トルエン含量:3.0重量%、
YI値:83、
DSC融解吸熱最大温度:126℃。
 粉末X線の主なピーク(5%を超える相対強度を有するもの)を表6に示す。表6に示す通り、本比較例10で得られた、トルエンを包接する上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。
 <比較例11>
 9-フルオレノンの使用量を18gとして特開2009-256342号の実施例3記載の方法を追試した所、上記式(1)で表されるフルオレン骨格を有するアルコール23.6g(純度91.2%)を得た。得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
キシレン含量:5.0重量%、
YI値:18、
DSC融解吸熱最大温度:147℃。
 粉末X線の主なピーク(5%を超える相対強度を有するもの)を表7に示す。表7に示す通り、本比較例11で得られた、キシレンを包接する上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。
 <比較例12>
 9-フルオレノンの使用量を18gとして特開2009-256342号の実施例4記載の方法を追試した所、上記式(1)で表されるフルオレン骨格を有するアルコール20.7g(純度88.6%)を得た。得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
キシレン含量:5.2重量%、
YI値:46、
DSC融解吸熱最大温度:146℃。
 粉末X線の主なピーク(5%を超える相対強度を有するもの)を表8に示す。表8に示す通り、本比較例11で得られた、キシレンを包接する上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。
 <実施例7>
 攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン)150g(0.298mol)、炭酸カリウム1.2g(0.009mol)、エチレンカーボネート65.6g(0.745mol)、トルエン150g、およびメチルトリグライム90gを仕込み、115℃まで昇温し、同温度で5時間撹拌後、HPLCにて原料が消失していることを確認した。反応終了時点の多量体の生成率は約0.7%であった。
 得られた反応液を90℃まで冷却した後、水225g、トルエン225gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を一部濃縮し、上記式(1)で表されるフルオレン骨格を有するアルコール、トルエンおよびメチルトリグライムを含む溶液を得た。
 該溶液にトルエン18g、メタノール225gを添加し晶析溶液を得た。得られた晶析溶液中の水分は0.1%であり、該溶液中に含まれるトルエンは150g、メタノールは225g、メチルトリグライムは76gであった。
 得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却することにより48℃で結晶を析出させ、析出後、同温度で2時間撹拌した。撹拌後、更に20℃まで冷却した後、濾過し、結晶を得た。
 得られた結晶を内圧1.3kPaの減圧下、内温100~105℃で12時間乾燥した所、メタノールの含有量が0.1重量%となった為、乾燥終了とした。
 得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:145g(収率:82%)、
HPLC純度:98.2%(多量体含量:0.7%)、
トルエン含量:0.02重量%、
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量:0.1重量%、
YI値:0.8、
DSC融解吸熱最大温度:150℃。
 DSC分析チャートを図8に、粉末X線のパターンを図9に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表9に列挙する。表9に示す通り、本実施例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=8.1±0.2°、15.4±0.2°、16.6±0.2°、18.0±0.2°、20.4±0.2°、21.1±0.2°および22.7±0.2°に特徴的な回折ピークを示した。また、包接体の典型的なピークである7.6±0.2°にはピークが見られなかった。
 <比較例13>
 実施例2と同様に反応、後処理を行なった後、溶媒を除去することで濃縮物171gを得た。得られた濃縮物にトルエン228g、メタノール114gを添加後65℃まで昇温し、同温度で1時間撹拌することにより結晶を完溶させた。その後、1.5℃/分で冷却することにより21℃で結晶を析出させ、析出後、同温度で2時間撹拌した。撹拌後、濾過し、結晶を得た。
 得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で3時間乾燥したが、トルエンが4重量%含まれていた為、内温を110℃まで昇温し、同温度で更に3時間乾燥したが、トルエンの含量は4重量%のままであった。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020

Claims (8)

  1.  示差走査熱量分析による融解吸熱最大温度が148~151℃である、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表されるフルオレン骨格を有するアルコールの結晶。
  2.  Cu-Kα線による粉末X線回折パターンにおいて、回折角2θ=7.1±0.2°、14.3±0.2°、15.2±0.2°、15.8±0.2°、17.1±0.2°および22.3±0.2°にピークを有する、下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    で表されるフルオレン骨格を有するアルコールの結晶。
  3.  Cu-Kα線による粉末X線回折パターンにおいて、回折角2θ=8.1±0.2°、15.4±0.2°、16.6±0.2°、18.0±0.2°、20.4±0.2°、21.1±0.2°および22.7±0.2°にピークを有する、下記式(1):
    Figure JPOXMLDOC01-appb-C000003
    で表されるフルオレン骨格を有するアルコールの結晶。
  4.  示差走査熱量分析による融解吸熱最大温度が148~151℃である、請求項2または3記載のフルオレン骨格を有するアルコールの結晶。
  5.  包接体ではない、請求項1~4いずれか一項記載のフルオレン骨格を有するアルコールの結晶。
  6.  前記式(1)で表されるフルオレン骨格を有するアルコール12gを、純度99重量%以上のN,N-ジメチルホルムアミド30mLに溶解させた溶液の黄色度(YI値)が10以下である、請求項1~5いずれか一項記載のフルオレン骨格を有するアルコールの結晶。
  7.  芳香族炭化水素類の含量が1重量%以下である、請求項1~6いずれか一項記載のフルオレン骨格を有するアルコールの結晶。
  8.  下記(i)~(iv)の工程をこの順で含む、請求項1~7いずれか一項記載のフルオレン骨格を有するアルコールの結晶の製造方法。
    (i)
     対称グリコールジエーテル存在下、下記式(2):
    Figure JPOXMLDOC01-appb-C000004
    で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、前記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
    (ii)
     前記反応液に芳香族炭化水素類とメタノールを添加し、芳香族炭化水素類およびメタノールを含む溶液であって、該溶液中の水の含有量が1重量%以下である晶析溶液を調製する工程。
    (iii)
     前記晶析溶液から25℃以上で結晶を析出させ、析出した結晶を分離する工程。
    (iv)
     前記結晶を60℃以上とし、メタノールを除去する工程。
PCT/JP2016/068968 2015-07-08 2016-06-27 フルオレン骨格を有するアルコールの結晶およびその製造方法 WO2017006791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187003379A KR102564609B1 (ko) 2015-07-08 2016-06-27 플루오렌 골격을 갖는 알코올의 결정 및 그 제조 방법
CN201680040089.1A CN107848931B (zh) 2015-07-08 2016-06-27 具有芴骨架的醇的晶体及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015136743 2015-07-08
JP2015-136743 2015-07-08
JP2016089741 2016-04-27
JP2016-089741 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017006791A1 true WO2017006791A1 (ja) 2017-01-12

Family

ID=57685479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068968 WO2017006791A1 (ja) 2015-07-08 2016-06-27 フルオレン骨格を有するアルコールの結晶およびその製造方法

Country Status (5)

Country Link
JP (1) JP6739136B2 (ja)
KR (1) KR102564609B1 (ja)
CN (1) CN107848931B (ja)
TW (1) TWI636038B (ja)
WO (1) WO2017006791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208973A1 (ja) * 2016-05-30 2017-12-07 田岡化学工業株式会社 フルオレン骨格を有するアルコール類の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274257B2 (ja) * 2016-02-09 2023-05-16 大阪ガスケミカル株式会社 9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの多形体及びその製造方法
JP7379770B2 (ja) * 2018-09-19 2023-11-15 本州化学工業株式会社 ビスフルオレン化合物の結晶体
WO2020059709A1 (ja) * 2018-09-19 2020-03-26 本州化学工業株式会社 ビスフルオレン化合物の結晶混合体
JP2021116250A (ja) * 2020-01-24 2021-08-10 田岡化学工業株式会社 フルオレン骨格を有するビスナフトールの結晶
JP7258065B2 (ja) * 2021-03-22 2023-04-14 大阪ガスケミカル株式会社 9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの多形体及びその製造方法
CN114890877B (zh) * 2022-01-28 2024-03-26 江苏永星化工股份有限公司 9,9-二[3-苯基-4-(2-羟基乙氧基)苯基]芴及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045655A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JPH11158106A (ja) * 1997-12-01 1999-06-15 Osaka Gas Co Ltd 9,9−ビス(4−(2−ヒドロキシプロポキシ)フェニル)フルオレンの製造方法
JP2001081055A (ja) * 1999-09-13 2001-03-27 Nippon Kayaku Co Ltd 多官能脂肪族ビニルエーテル、重合組成物及びその硬化物
JP2004123541A (ja) * 2002-07-30 2004-04-22 Mitsui Chemicals Inc アリールエーテル類の製造方法
JP2005015696A (ja) * 2003-06-27 2005-01-20 Nippon Steel Chem Co Ltd 透明性に優れた耐熱性エポキシ樹脂の製造方法
JP2007197368A (ja) * 2006-01-26 2007-08-09 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JP2008222708A (ja) * 2007-02-15 2008-09-25 Taoka Chem Co Ltd フルオレン誘導体の結晶多形体およびその製造方法
JP2009173647A (ja) * 2007-12-26 2009-08-06 Osaka Gas Co Ltd フルオレン骨格を有する二官能性(メタ)アクリレート
JP2010248095A (ja) * 2009-04-13 2010-11-04 Taoka Chem Co Ltd 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造法
JP2011074222A (ja) * 2009-09-30 2011-04-14 Osaka Gas Co Ltd フルオレン骨格を有するポリエステル樹脂
JP2011168723A (ja) * 2010-02-19 2011-09-01 Osaka Gas Chem Kk フルオレン骨格を有するポリエステル樹脂
JP2011168722A (ja) * 2010-02-19 2011-09-01 Osaka Gas Chem Kk フルオレン骨格を有するポリエステル樹脂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2977714B2 (ja) 1993-10-04 1999-11-15 鐘紡株式会社 ポリエステル成形体
JPH09255609A (ja) * 1996-03-21 1997-09-30 Taoka Chem Co Ltd 9,9−ビス(4−(2−ヒドロキシエトキシ)フ ェニル)フルオレンの製造方法
JP2001122828A (ja) 1999-10-27 2001-05-08 Shinnakamura Kagaku Kogyo Kk 2官能(メタ)アクリル酸エステル組成物とそのための2価アルコール
JP2001206863A (ja) 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物及びその製造方法
JP5186200B2 (ja) * 2007-12-26 2013-04-17 大阪瓦斯株式会社 フルオレン骨格を有するエポキシ化合物
JP5325627B2 (ja) * 2008-03-27 2013-10-23 大阪瓦斯株式会社 フルオレン骨格を有するアルコールの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045655A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JPH11158106A (ja) * 1997-12-01 1999-06-15 Osaka Gas Co Ltd 9,9−ビス(4−(2−ヒドロキシプロポキシ)フェニル)フルオレンの製造方法
JP2001081055A (ja) * 1999-09-13 2001-03-27 Nippon Kayaku Co Ltd 多官能脂肪族ビニルエーテル、重合組成物及びその硬化物
JP2004123541A (ja) * 2002-07-30 2004-04-22 Mitsui Chemicals Inc アリールエーテル類の製造方法
JP2005015696A (ja) * 2003-06-27 2005-01-20 Nippon Steel Chem Co Ltd 透明性に優れた耐熱性エポキシ樹脂の製造方法
JP2007197368A (ja) * 2006-01-26 2007-08-09 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JP2008222708A (ja) * 2007-02-15 2008-09-25 Taoka Chem Co Ltd フルオレン誘導体の結晶多形体およびその製造方法
JP2009173647A (ja) * 2007-12-26 2009-08-06 Osaka Gas Co Ltd フルオレン骨格を有する二官能性(メタ)アクリレート
JP2010248095A (ja) * 2009-04-13 2010-11-04 Taoka Chem Co Ltd 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造法
JP2011074222A (ja) * 2009-09-30 2011-04-14 Osaka Gas Co Ltd フルオレン骨格を有するポリエステル樹脂
JP2011168723A (ja) * 2010-02-19 2011-09-01 Osaka Gas Chem Kk フルオレン骨格を有するポリエステル樹脂
JP2011168722A (ja) * 2010-02-19 2011-09-01 Osaka Gas Chem Kk フルオレン骨格を有するポリエステル樹脂

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208973A1 (ja) * 2016-05-30 2017-12-07 田岡化学工業株式会社 フルオレン骨格を有するアルコール類の製造方法

Also Published As

Publication number Publication date
CN107848931A (zh) 2018-03-27
KR20180026748A (ko) 2018-03-13
TWI636038B (zh) 2018-09-21
JP2017200900A (ja) 2017-11-09
CN107848931B (zh) 2021-03-30
KR102564609B1 (ko) 2023-08-07
JP6739136B2 (ja) 2020-08-12
TW201706238A (zh) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2017006791A1 (ja) フルオレン骨格を有するアルコールの結晶およびその製造方法
WO2017014141A1 (ja) フルオレン骨格を有するアルコールの結晶およびその製造方法
JP6083901B2 (ja) ビナフタレン化合物の製造方法
JP6484465B2 (ja) 2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンの結晶多形体およびその製造方法
TWI596083B (zh) Crystallization polymorphs of 2,2'-bis (2-hydroxyethoxy) -1,1'-bis-naphthalene and methods for producing the same
JP6241977B2 (ja) フルオレン骨格を有するアルコール化合物の製造方法
JP6830304B2 (ja) フルオレン骨格を有するジヒドロキシ化合物の精製方法
JP6931984B2 (ja) フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP6537388B2 (ja) フルオレン骨格を有するアルコール類を用いた包接化合物
JP6994299B2 (ja) フルオレン骨格を有するジヒドロキシ化合物の精製方法
JP7315386B2 (ja) ビナフタレン骨格を有する化合物およびその結晶多形体、ならびにその製造方法
WO2023176687A1 (ja) ビフェナントレン化合物又はそのアルカリ金属塩
JP2019108408A (ja) フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP2024056627A (ja) 9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレンの結晶およびその製造方法
WO2020004207A1 (ja) 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンの結晶体
JP2020158401A (ja) フルオレン骨格を有するジオール化合物の結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187003379

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16821260

Country of ref document: EP

Kind code of ref document: A1