WO2017006762A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2017006762A1
WO2017006762A1 PCT/JP2016/068452 JP2016068452W WO2017006762A1 WO 2017006762 A1 WO2017006762 A1 WO 2017006762A1 JP 2016068452 W JP2016068452 W JP 2016068452W WO 2017006762 A1 WO2017006762 A1 WO 2017006762A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
diagnosis
relay
control device
main control
Prior art date
Application number
PCT/JP2016/068452
Other languages
English (en)
French (fr)
Inventor
崇 椎谷
裕介 増田
淳一 渋澤
卓司 野村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201680036571.8A priority Critical patent/CN107709101A/zh
Priority to US15/573,263 priority patent/US20180119804A1/en
Priority to JP2017527165A priority patent/JP6469225B2/ja
Priority to EP16821232.2A priority patent/EP3321135A4/en
Publication of WO2017006762A1 publication Critical patent/WO2017006762A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1268Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms

Definitions

  • the present invention relates to a vehicle control device, and more particularly to diagnosis of a relay that supplies power to the vehicle control device.
  • a transmission control device is supplied with power from a battery, and a power supply relay is generally inserted between the battery and the transmission control device as a power supply / cut-off means.
  • a failure detection device for a power supply relay is provided.
  • Patent Document 1 discloses a technique for detecting a power supply relay close-fixing abnormality when an ignition switch is OFF.
  • Patent Document 2 discloses a technique in which an abnormality is detected by a main control unit or a monitoring unit in the same transmission control device that monitors the main control unit.
  • the output of the relay is intentionally turned OFF at the timing when the ignition switch is turned OFF, and the relay is turned OFF. If the power supply to the transmission control device can be stopped and stopped within a predetermined time, it is normal, the energized state is continued by the relay being fixed, and the transmission control device continues to operate even after the predetermined time has passed. I have a diagnosis.
  • the pulse signal is intentionally stopped at the timing of turning off the ignition switch, and the reset signal is output within a predetermined time. If the power supply to the control device can be stopped and stopped, it is normal. If the reset signal is not output due to a sub-microcomputer failure or circuit failure, or if the transmission control device continues to operate even after a predetermined time, the abnormality is diagnosed. is doing.
  • the normal operation is that the transmission control device stops.
  • the transmission control device stops, so that the diagnosis of the other relay cannot be performed.
  • both the diagnosis of the monitoring function and the diagnosis of the relay are performed at the same time when the ignition switch is turned off, the transmission control device is stopped by either diagnosis, but it is not possible to specify which diagnosis is stopped. Therefore, there is a problem that only one of them can be implemented.
  • the present invention has been made in view of the above problems, and the purpose of the present invention is to carry out both diagnosis of the failure detection of the relay and the diagnosis of the monitoring function unit monitoring the main control unit. It is to be detected.
  • a transmission control apparatus includes a main control unit and a monitoring unit that monitors the main control unit based on a signal from the main control unit. And a relay diagnostic unit for diagnosing a relay for turning on / off the power supply to the transmission control device, and a monitoring unit diagnostic unit for diagnosing the monitoring unit.
  • the transmission control device analyzes the state signal periodically transmitted from the main control unit as the monitoring unit function, and when the monitoring unit detects an abnormality based on the signal,
  • the transmission control device according to claim 3, wherein the relay diagnosis unit functions to turn off the relay by a signal sent from the main control unit.
  • the transmission control apparatus according to claim 4, wherein the monitoring unit diagnosis unit sends a reset signal from the monitoring unit to the main control unit, whereby the monitoring is performed. It is characterized by diagnosing the presence or absence of abnormalities in the part.
  • the transmission control device is either the diagnosis of the relay by the relay diagnosis unit or the diagnosis of the monitoring unit by the monitoring unit diagnosis unit at the timing when the key position is changed to the off position. It is characterized by performing.
  • the transmission control device is configured to perform either the diagnosis of the relay by the relay diagnosis unit or the diagnosis of the monitoring unit by the monitoring unit diagnosis unit at a timing when the key position is changed to the off position. It is characterized by being performed alternately.
  • the transmission control device wherein the relay diagnosis unit performs the relay diagnosis and the monitoring unit diagnosis unit performs the monitoring at each of the timing when the key position transitions to the accessory position and the timing when the key position transitions to the off position. It is characterized by the diagnosis of the department.
  • the transmission control apparatus wherein the monitoring unit receives a signal sent from the main control unit at a constant cycle, thereby monitoring the main control unit for an abnormality and detecting the abnormality of the main control unit.
  • a watchdog timer is provided that transmits a reset signal to the main control unit.
  • the transmission control device is characterized in that when the key position is in the accessory position, power from a battery is supplied to the transmission control device.
  • a transmission control device includes a main control unit, a battery that supplies power to the transmission control device, and a relay that turns ON / OFF the power supply by the battery, and is provided from the main control unit. And a monitoring unit that monitors the main control unit based on the signal, and when the key position is in the accessory position, power is supplied from the battery to the transmission control device.
  • the transmission control device wherein when the key position is in the accessory position, the relay diagnosis unit that diagnoses whether or not the relay is stuck by turning off the relay according to a signal sent from the main control unit. It is characterized by having.
  • both the diagnosis of detecting a failure of the relay and the diagnosis of the monitoring function unit monitoring the main control unit can be performed, and the failure can be detected.
  • FIG. 2 is a diagram illustrating an example of a system configuration in which ACCSW is added to FIG. 1 and power is supplied at an accessory position. It is a timing chart which shows performing diagnosis of a relay part when a key position is in an accessory position, and performing diagnosis of a monitoring part when a key position is in an off position. It is a flowchart which shows the diagnostic procedure of the relay which performs power supply ON / OFF, and the WDT function diagnostic procedure of an example of the diagnosis of a monitoring function.
  • diagnosis of the main control unit and monitoring unit in the transmission control device and diagnosis of the relay that supplies power to the transmission control device are performed, and when the main control unit and monitoring unit of the transmission control device fail
  • the purpose is to control in a safe direction, and to notify the user of an abnormality in the fixation of the relay so that the dealer can repair it before the battery runs out due to power consumption.
  • FIG. 1 is a block diagram of an entire transmission control device that controls an automatic transmission of a vehicle.
  • the transmission control device 10 includes a power supply IC 20, a main control unit 30, and a monitoring unit 40 that monitors the main control unit 30 based on signals from the main control unit 30.
  • a linear SOL driver 50 that outputs a drive DUTY is provided to hydraulically drive the linear SOL 100 from the main control unit 30 to control a shift.
  • the main control unit 30 includes a relay diagnosis unit 31 that diagnoses the power supply relay 2 that performs ON / OFF of power supply to the transmission control device 10 and a monitoring unit diagnosis unit 32 that diagnoses the monitoring unit 40. Includes a monitoring function unit 41, one of which includes a periodic signal monitoring unit.
  • a path through which power from the power supply relay 2 is supplied without going through the IGNSW 3 and a path through which power from the battery 1 is supplied through the IGNSW 3 are connected to the power supply IC 20.
  • IGNSW 3 when the driver changes the key position to the ignition position, power from battery 1 is supplied by turning on IGNSW 3, En terminal 200 becomes Enable, and power IC 20 via Vin terminal 201 is supplied. Is supplied with power, and supply of Vcc 204 is started.
  • the main control unit 30 and the monitoring unit 40 are activated.
  • the relay control 203 When the main control unit 30 is activated, the relay control 203 is instructed to turn on, and the power supply relay 2 between the battery 1 and the transmission control device 10 is turned on.
  • the power relay 2 When the power relay 2 is turned on, power is supplied to the linear SOL driver 50 and driving is started.
  • the transmission control device 10 is stopped when the IGNSW 3 is turned off and power is not supplied from the path via the IGNSW 3, but the power supply does not pass through the IGNSW 3. Since electric power is supplied to the transmission control device 10 from the route supplied with electric power from the relay 2, the processing can be continued.
  • the main control unit 30 issues an OFF instruction to the relay control 203 at the timing when the key position changes to the off position.
  • the power supply relay 2 is turned off and the power supply to the transmission control device 10 can be stopped and stopped within a predetermined time, the power supply relay 2 is assumed to be normal. If the operation continues even after a lapse, it is determined that there is an abnormality. That is, the main control unit 30 diagnoses whether or not the power relay is fixed by transmitting an OFF signal to the power relay 2.
  • the method of diagnosing the monitoring unit 40 by the monitoring unit diagnosis unit 32 is to stop the periodic signal 207 transmitted from the main control unit 30 at the timing when the key position transitions to the off position, so that the periodic signal monitoring unit 42 in the monitoring unit 40 is stopped. Detects an abnormality within a predetermined time, and a reset signal 205 is output from the monitoring unit 40 to the main control unit 30.
  • the main control unit 30 is reset, the output of the relay control 203 is also turned off, which is the initial state, the power supply relay 2 is also turned off, and if the power supply to the transmission control device 10 can be stopped and stopped, it is normal.
  • the reset signal 205 is not output due to the failure, and the operation is continued even after a predetermined time has elapsed, so that an abnormality is determined.
  • FIG. 2 is a timing chart for performing relay diagnosis by the relay diagnosis unit 31 and diagnosis of the monitoring unit 40 by the monitoring unit diagnosis unit 32 at the timing when the key position transitions to the off position.
  • the diagnosis of the power supply relay 2 by the main control unit 30 or the diagnosis of the monitoring unit 40 by the monitoring unit diagnosis unit 32 is performed.
  • a diagnosis with a high failure rate is preferentially performed based on the failure rate of the power relay 2 and the failure rate of the monitoring unit 40
  • the failure occurrence distribution of the past product is analyzed and the deterioration state is determined from the travel distance and the start time.
  • the power relay 2 is diagnosed for the first 1000 times, and the monitoring unit by the monitoring unit diagnosis unit 32 for the subsequent 500 times. It may be configured to perform 40 diagnoses. Thereby, it is possible to set and implement a diagnosis with high priority.
  • a failure warning lamp is turned on immediately after that so that notification can be made as much as possible. If the abnormality is detected as a result of the previous diagnosis when the key position is changed to the ignition position next time, the vehicle is controlled in the safe direction. As a control method, an OFF instruction is given to the linear SOL driver 50, and an OFF output is given to the linear SOL 100.
  • FIG. 3 is a timing chart in which the relay diagnosis by the relay diagnosis unit 31 and the diagnosis of the monitoring unit 40 by the monitoring unit diagnosis unit 32 are alternately diagnosed at the timing when the key position changes to the off position.
  • the relay diagnosis by the relay diagnosis unit 31 and the diagnosis of the monitoring unit 40 by the monitoring unit diagnosis unit 32 are performed to confirm that the power supply is stopped and the transmission control device is stopped.
  • the diagnosis performed at the timing by the relay diagnosis by the relay diagnosis unit 31 and the diagnosis of the monitoring unit 40 by the monitoring unit diagnosis unit 32 alternately, the effect that both diagnoses can be performed is obtained.
  • the diagnosis when a failure is detected, the user can be notified immediately from the failure warning light, and the vehicle can be controlled in a safe direction after the failure occurs.
  • FIG. 4 shows a block diagram of the entire transmission control device to which ACCSW 4 is added.
  • the power supply IC 20 is connected to a path through which power from the power supply relay 2 is supplied without passing through the IGNSW 3 or ACCSW 4 and a path through which power from the battery 1 is supplied through the IGNSW 3 or ACCSW 4. .
  • IGNSW3 and ACCSW4 are OR-inputted, when the driver changes the key position to the ignition position or the accessory position, power is supplied to the power supply IC 20 and the main control unit 30 and the monitoring unit 40 are activated. .
  • the main control unit 30 When the main control unit 30 is activated, the relay control 203 is instructed to turn on, and the power supply relay 2 between the battery 1 and the transmission control device 10 is turned on.
  • the power supply relay 2 is turned on, electric power is supplied to the linear SOL driver 50 via the actuator drive circuit to start driving.
  • the IGNSW 3 In the stop operation of the transmission control device, when the driver changes the key position to the accessory position, the IGNSW 3 is turned off, but the ACCSW 4 is turned on. Therefore, power supply is continued from the route via ACCSW4. Further, when the key position is changed to the off position, the IGNSW 3 is turned OFF, and power is not supplied from the path via the IGNSW 3, but the transmission control device from the path supplied by the power supply relay 2 not via the IGNSW 3 Therefore, the process can be continued.
  • the transmission control device changes the operation mode from the IGN mode to the ACC mode, and after performing a predetermined process, the OFF mode. It is configured to transition to.
  • the relay diagnosis by the relay diagnosis unit 31 is performed when the key position is in the accessory position in FIG. 5, and the monitoring unit 40 is diagnosed by the monitoring unit diagnosis unit 32 when the key position is in the off position.
  • the timing chart which shows is shown.
  • the main control unit 30 diagnoses the power relay 2 or the monitoring unit diagnostic unit 32 monitors the monitoring unit 40 at each of the timing when the key position transitions to the off position and the timing when the key position transitions to the accessory position. Do any of the diagnosis.
  • the power supply relay 2 is turned OFF, the power supply is continued from the path via the ACCSW 4.
  • diagnosis can be performed without causing the transmission control device 1 to be stopped. That is, in this embodiment, a battery 1 that supplies power to the transmission control device 1 that is a vehicle control device and a power supply relay that turns ON / OFF the power supply by the battery 1 are provided, and a signal from the main control unit 30 is provided.
  • the monitoring unit 40 that monitors the main control unit 30 is provided, and when the key position is in the accessory position, power is supplied from the battery 1 to the vehicle control device.
  • the flowchart of FIG. 6 shows the method of performing the diagnosis of the monitoring unit 40 by the relay diagnosis unit 31 and the monitoring unit diagnosis unit 32 and the control when an abnormality is detected.
  • the key position is determined.
  • relay diagnosis is performed.
  • the relay port is instructed to be turned off, and in step S1002, timeout determination is performed.
  • the voltage is measured from the voltage monitor 202.
  • step S1004 a voltage drop is determined. If the voltage drops more than a specified value, the power relay 2 is determined to be in an OFF state, and in step S1005, relay diagnosis is determined to be OK. Until the voltage drops, the process returns to S1002 and repeats the diagnosis.
  • the failure warning lamp is turned on in S1007, and the failure information is stored in S1008. After determining whether the relay diagnosis is OK / NG, in step S1007, the relay port is instructed to complete the diagnosis.
  • diagnosis of the monitoring unit 40 by the monitoring unit diagnosis unit 32 is performed.
  • An example of the periodic signal monitoring function is a watchdog timer. That is, as an example of the monitoring unit 40, the main control unit 30 is monitored when an abnormality is detected in the main control unit 30 by receiving a signal transmitted from the main control unit 30 at a constant period, and when the abnormality of the main control unit 30 is detected. There is a watchdog timer that sends a reset signal.
  • the periodic signal (P-RUN) 207 transmitted from the main control unit 30 is stopped in S2001, and the periodic signal monitoring unit 42 in the monitoring unit 40 is abnormal within a predetermined time in S2002. Determine whether to detect.
  • the reset signal 205 is output from the monitoring unit 40 to the main control unit 30, and the power supply of the transmission control device 10 is stopped and stopped. If the reset signal 205 is not output due to a failure in the monitoring unit 40 and a predetermined time has elapsed, a diagnosis NG of the watchdog timer function is set in S2003.
  • step S2004 the failure warning lamp is turned on.
  • processing for storing failure information is performed, and the process ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Selective Calling Equipment (AREA)

Abstract

変速機制御装置に対する電力供給のON・OFFを行うリレーを診断するリレー診断部と、メイン制御部からの信号に基づいて前記メイン制御部の監視を行う監視部を診断する監視部診断部のどちらも診断する。変速機制御装置にメイン制御部と、前記メイン制御部からの信号に基づいて前記メイン制御部の監視を行う監視部を備え、前記変速機制御装置に対する電力供給のON・OFFを行うリレーを診断するリレー診断部と、前記監視部を診断する監視部診断部とを備えて、キーポジションがオフポジションに遷移したタイミングとアクセサリポジションに遷移したタイミングとのそれぞれにおいて診断を実施することで、リレーの故障を検出する診断とメイン制御部の監視機能の診断との双方の診断を実施することができる。

Description

車両用制御装置
 本発明は車両用制御装置について、特に車両用制御装置への電力供給を行うリレーの診断に関する。
 車両用制御装置の一例としてたとえば、変速機制御装置は、バッテリから電力供給が行われ、バッテリと変速機制御装置の間には、通常、電力の供給/遮断手段として電源リレーが一般的に挿入されている。電源リレーをONするとバッテリから大電流が流れ、電源リレーの接点においても発熱を生じて接点が固着し、動かなくなる恐れがある。これを検知するため、電源リレーの故障検出装置が備えられており、例えば、特許文献1では、イグニッションスイッチOFF時に電源リレーの閉固着異常を検知する技術が開示されている。
 一方で、変速機制御装置において、メイン制御部で求められる指示値に応じてアクチュエータが動作する。この指示値が誤った値となった時に、車両として意図しない挙動をしたり、車両の失陥に至るアクチュエータもある。そのため、マイコンに何らかの異常が発生した場合、制御対象機器を安全方向へ制御する必要がある。異常を検知する技術として、例えば、特許文献2では、メイン制御部やメイン制御部を監視する同一変速機制御装置内の監視部で異常を検知する技術が開示されている。
特開2010-111311号公報 特開平11-336604号公報
 特許文献1の方式では、イグニッションスイッチOFFのタイミングで故意にリレーの出力をOFF指示し、リレーをOFFさせる。所定時間内に変速機制御装置への電源供給がストップし停止できれば正常とし、リレーの固着により通電状態を継続し、変速機制御装置が所定時間を経過しても動作が継続することで異常と診断している。
 一方で、特許文献2で提案されたメイン制御部の監視機能を診断する方式については、イグニッションスイッチOFFのタイミングで故意にパルス信号を停止させ、所定時間内にリセット信号が出力されて、変速機制御装置の電源供給がストップし停止できれば正常とし、サブマイコンの故障や回路の故障によってリセット信号が出力されない場合や変速機制御装置が所定時間を経過しても動作が継続することで異常を診断している。
 しかしながら、特許文献1及び特許文献2に記載された診断をどちらも実施する場合、前記リレーの診断と前記監視機能の診断方法では、共に、正常動作は変速機制御装置が停止することであり、例えば監視機能の診断を実施して正常状態の場合は、変速機制御装置が停止するため、もう一方のリレーの診断が実施できない。もしくは、イグニッションスイッチOFFのタイミングで監視機能の診断とリレーの診断双方を同時に実施すると、どちらかの診断で変速機制御装置が停止するが、どちらの診断で停止したのかを特定することができない。そのため、実施可能なのはどちらか一方のみという問題がある。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、リレーの故障を検出する診断と、メイン制御部を監視する監視機能部の診断との双方の診断を実施でき、故障を検出できることにある。
 上記課題を解決するために本発明の請求項1に係る変速機制御装置は、メイン制御部と、前記メイン制御部からの信号に基づいて前記メイン制御部の監視を行う監視部とを備えており、また、前記変速機制御装置に対する電力供給のON・OFFを行うリレーを診断するリレー診断部と、前記監視部を診断する監視部診断部とを備えていることを特徴としている。
 請求項2に係る変速機制御装置は、前記監視部機能として、前記メイン制御部から周期的に送信される状態信号を解析し、その信号に基づいて前記監視部が異常を検知した場合に、リセット信号を前記メイン制御部に送信することを特徴としている
 請求項3に係る変速機制御装置は、前記リレー診断部の機能は、前記メイン制御部から送られる信号により、前記リレーをOFFすることで前記リレーの固着有無を診断することを特徴としている
 請求項4に係る変速機制御装置は、前記監視部診断部が、前記監視部から前記メイン制御部にリセット信号を送ることにより、前記監視部の異常有無を診断することを特徴としている。
 請求項5に係る変速機制御装置は、キーポジションがオフポジションに遷移したタイミングで、前記リレー診断部による前記リレーの診断と、又は、前記監視部診断部による前記監視部の診断との何れかを行うことを特徴としている。
 請求項6に係る変速機制御装置は、キーポジションがオフポジションに遷移したタイミングで、前記リレー診断部による前記リレーの診断と、又は前記監視部診断部による前記監視部の診断との何れかを交互に行うことを特徴としている。
 請求項7に係る変速機制御装置は、キーポジションがアクセサリポジションに遷移したタイミングとオフポジションに遷移したタイミングとのそれぞれにおいて、前記リレー診断部による前記リレーの診断、前記監視部診断部による前記監視部の診断を行うことを特徴としている。
 請求項8に係る変速機制御装置は、前記監視部が前記メイン制御部から一定周期で送られる信号を受けることで前記メイン制御部の異常有無を監視し、前記メイン制御部の異常を検出した場合に、前記メイン制御部にリセット信号を送信するウォッチドッグタイマであることを特徴としている。
 請求項9に係る変速機制御装置は、前記キーポジションが前記アクセサリポジションにある場合にバッテリからの電力が前記変速機制御装置に供給されることを特徴としている。
 請求項10に係る変速機制御装置は、メイン制御部を備え、該変速機制御装置に対する電力供給を行うバッテリと該バッテリによる電力供給のON・OFFを行うリレーが設けられ、前記メイン制御部からの信号に基づいて前記メイン制御部の監視を行う監視部を備え、キーポジションがアクセサリポジションにある場合に前記変速機制御装置に対し前記バッテリから電力が供給されることを特徴としている。
 請求項11に係る変速機制御装置は、キーポジションがアクセサリポジションにある場合に、前記メイン制御部から送られる信号により前記リレーをOFFすることで前記リレーの固着有無を診断する前記リレー診断部を備えていることを特徴としている。
 本発明によれば、リレーの故障を検出する診断と、メイン制御部を監視する監視機能部の診断との双方の診断を実施でき、故障を検出することができる。
本発明の実施形態を示すシステム構成の一例を示す図である。 キーポジションがオフポジションに遷移したタイミングで何れかの診断を行うことを示すタイミングチャートである。 キーポジションがオフポジションに遷移したタイミングでリレー部の診断と監視部の診断を交互に行うことを示すタイミングチャートである。 図1に対し、ACCSWが追加となり、アクセサリポジションで電力供給するシステム構成の一例を示す図である。 キーポジションがアクセサリポジションにある場合にリレー部の診断を実施し、キーポジションがオフポジションにある場合に監視部の診断を実施することを示すタイミングチャートである。 電力供給ON・OFFを行うリレーの診断手順と監視機能の診断の一例のWDT機能診断手順を示すフローチャートである。
 以下、本発明の実施例を、図面を用いて説明する。
 図1から3を用いて本発明の第一の実施例について説明する。 
 本実施例は変速機制御装置におけるメイン制御部及び監視部の診断と変速機制御装置に電力供給をするリレーの診断を実施して、変速機制御装置のメイン制御部及び監視部の故障発生時に安全方向に制御することと、リレーの固着異常をユーザーに通知し電力消費によるバッテリ上がりが発生する前にディーラーで修理可能となることを目的とする。
 図1に車両の自動変速機を制御する変速機制御装置全体のブロック図を示す。変速機制御装置10は電源IC20、メイン制御部30及びメイン制御部30からの信号に基づいてメイン制御部30の監視を行う監視部40を備える。メイン制御部30からリニアSOL100を油圧駆動させ変速制御するため、駆動DUTYを出力するリニアSOLドライバ50を備える
。メイン制御部30は、変速機制御装置10に対する電力供給のON・OFFを行う電源リレー2を診断するリレー診断部31と監視部40を診断する監視部診断部32を備えており、監視部40は監視機能部41を備え、その一つに周期信号監視部42を備えている。
 続いて、変速機制御装置の起動及び停止動作について説明する。電源IC20には、IGNSW3を経由せずに電源リレー2からの電力が供給される経路と、IGNSW3を経由してバッテリ1からの電力が供給される経路とがそれぞれ接続されている。IGNSW3を経由した経路からは、運転者によりキーポジションをイグニッションポジションに遷移した時、IGNSW3のONによりバッテリ1からの電力が供給され、En端子200がEnableとなり、Vin端子201を経由して電源IC20に電力供給され、Vcc204の供給が開始される。Vcc204から電力が供給されることによってメイン制御部30及び監視部40が起動する。メイン制御部30が起動すると、リレーコントロール203へON指示をし、バッテリ1と変速機制御装置10の間の電源リレー2をONする。電源リレー2がONするとリニアSOLドライバ50に電力供給され駆動を開始する。
一方、変速機制御装置10の停止動作は、運転者によりキーポジションをオフポジションに遷移させた時、IGNSW3はOFFし、IGNSW3を経由した経路からの電力供給はされなくなるが、IGNSW3を経由しない電源リレー2から電力供給される経路から変速機制御装置10に電力供給されるため、処理の継続が可能である。
 次に、診断方法について説明する。 
 メイン制御部30内のリレー診断部31の診断方法は、キーポジションがオフポジションに遷移したタイミングでメイン制御部30からリレーコントロール203へOFF指示をする。電源リレー2はOFF状態となり、所定時間内に変速機制御装置10への電源供給がストップし停止できれば正常とし、電源リレー2の固着により通電状態を継続し、変速機制御装置10が所定時間を経過しても動作が継続した場合には異常と判定する。すなわち、メイン制御部30は、電源リレー2にOFF信号を送信することで電源リレーの固着の有無を診断する。
 監視部診断部32による監視部40の診断方法は、キーポジションがオフポジションに遷移したタイミングでメイン制御部30から送信する周期信号207を停止させることで、監視部40内の周期信号監視部42が所定時間内に異常を検知し、監視部40からリセット信号205がメイン制御部30に出力される。メイン制御部30がリセットされることでリレーコントロール203の出力も初期状態であるOFF出力となり、電源リレー2もOFFとなり変速機制御装置10の電源供給がストップし停止できれば正常とし、監視部40内の故障によってリセット信号205が出力されず、所定時間を経過しても動作が継続することで異常と判定する。
 図2は、キーポジションがオフポジションに遷移したタイミングでリレー診断部31によるリレー診断と監視部診断部32による監視部40の診断とを行うタイミングチャートである。すなわち本実施例ではキーポジションがオフポジションに遷移したタイミングにおいて、メイン制御部30による電源リレー2の診断と、又は監視部診断部32による監視部40の診断との何れかを行う。
 キーポジションがオフポジションに遷移したタイミングでどちらの診断を実施するかを決める選択方法の例として、電源リレー2の故障率と監視部40の故障率から、故障率の高い診断を優先的に実施して、故障率の低い診断は数回に1回の頻度で実施するよう決定する手法がある。または、過去の製品の故障発生分布を解析し走行距離や起動時間から劣化状態を判断し、例えば、最初の1000回は電源リレー2を診断し以降の500回は監視部診断部32による監視部40の診断を実施するように構成してもよい。これにより、優先度の高い診断を設定して実施することが可能である。
 また、異常検知時は、直後に故障警告灯をONして可能な限り通知できるよう構成する。
そして、次回でキーポジションをイグニッションポジションに遷移した時に前回診断した結果として異常を検知していた場合には、車両を安全方向へ制御する。制御の方法として、リニアSOLドライバ50にOFF指示を行い、リニアSOL100にOFF出力を行うこととしている。
 図3は、キーポジションがオフポジションに遷移したタイミングでリレー診断部31によるリレー診断と監視部診断部32による監視部40の診断とを交互に診断を行うタイミングチャートである。リレー診断部31によるリレー診断と監視部診断部32による監視部40の診断は、電源供給がストップして変速機制御装置が停止することを確認する診断のため、キーポジションがオフポジションに遷移したタイミングで実施する診断をリレー診断部31によるリレー診断と監視部診断部32による監視部40の診断を交互に実施することで、どちらの診断も実施可能となる効果が得られる。診断の結果、故障を検出したときには、即時に故障警告灯からユーザーに通知でき、また、故障発生後に車両を安全方向へ制御することができるため、信頼性向上の利点がある。
 図4と図5を用いて本発明の第二の実施例について説明する。本実施例では実施例1の構成に加えてACCSW4を備えている。 
 図4にACCSW4を追加した変速機制御装置全体のブロック図を示す。電源IC20には、IGNSW3やACCSW4を経由せずに電源リレー2からの電力が供給される経路と、IGNSW3やACCSW4を経由してバッテリ1からの電力が供給される経路とがそれぞれ接続されている。
 本実施例では、IGNSW3とACCSW4がOR入力されているため、運転者によりキーポジションをイグニッションポジションもしくはアクセサリポジションに遷移した時、電源IC20に電力供給され、メイン制御部30及び監視部40が起動する。メイン制御部30が起動すると、リレーコントロール203へON指示をし、バッテリ1と変速機制御装置10の間の電源リレー2をONする。電源リレー2がONするとアクチュエータ駆動回路を介し、リニアSOLドライバ50に電力供給され駆動を開始する。
 次にSWの状態と変速機制御装置の動作モードについて説明する。運転者がキーポジションをアクセサリポジションに遷移させた時はACCSW4のみがONとなりACCのモードとして動作する。イグニッションポジションに遷移させた時は、IGNSW3とACCSW4共にONとなりIGNのモードとして動作する。また、IGNSW3のみがONの状態が発生した場合でもIGNのモードとして動作する。
 また変速機制御装置の停止動作は、運転者がキーポジションをアクセサリポジションに遷移させた時、IGNSW3はOFFするが、ACCSW4はONの状態である。そのため、ACCSW4を経由した経路からも電力供給は継続される。さらに、キーポジションをオフポジションに遷移させた時、IGNSW3はOFFし、IGNSW3を経由した経路からの電力供給はされなくなるが、IGNSW3を経由しない電源リレー2から電力供給される経路から変速機制御装置に電力供給されるため、処理の継続が可能である。
 さらに、運転者がキーポジションをイグニッションポジションからオフポジションまで遷移させても、変速機制御装置の動作モードはIGNのモードからACCのモードへ遷移して、所定の処理を実施したのちにOFFのモードへと遷移するよう構成されている。
 ここで、図5にキーポジションがアクセサリポジションにある場合にリレー診断部31によるリレー診断を実施し、キーポジションがオフポジションにある場合に監視部診断部32による監視部40の診断を実施することを示すタイミングチャートを示す。すなわち本実施例では、キーポジションがオフポジションに遷移したタイミングとアクセサリポジションに遷移したタイミングとのそれぞれにおいて、メイン制御部30による電源リレー2の診断と、又は監視部診断部32による監視部40の診断との何れかを行う。
 キーポジションをアクセサリポジションに遷移させた時には、メイン制御部30から送信する信号のリレーコントロール203をOFF指示して電源リレー2をOFF状態としても、ACCSW4を経由した経路から電力供給が継続されるため、変速機制御装置1を停止状態にさせることなく診断が可能となる。すなわち、本実施例では、車両用制御装置である変速機制御装置1に対する電力供給を行うバッテリ1とバッテリ1による電力供給のON・OFFを行う電源リレーが設けられ、メイン制御部30からの信号に基づいてメイン制御部30の監視を行う監視部40を備え、キーポジションがアクセサリポジションにある場合に車両用制御装置に対しバッテリ1から電力が供給される。
 リレー診断部31及び監視部診断部32による監視部40の診断の実施方法と異常検出時の制御について、図6のフローチャートに示す。S1でキーポジションの判定を行う。運転者がキーポジションイグニッションポジションからアクセサリポジションに遷移させた時は、リレー診断を実施する。S1001でリレーポートのOFF指示をし、S1002でタイムアウト判定を行う。S1003で電圧モニタ202から電圧を計測し、S1004で電圧降下を判定し、規定値以上電圧降下すれば電源リレー2がOFF状態と判断しS1005でリレー診断OKと判断する。電圧降下するまではS1002に戻り診断を繰り返す。S1002で規定時間経過しても電圧降下しない場合は、タイムアウトの遷移としてS1006でリレー診断NGと判断し、S1007で故障警告灯をONしS1008で故障情報を記憶する。リレー診断のOK/NGの判断後、S1007でリレーポートのON指示をして診断終了となる。
 一方、S1でキーポジションをアクセサリポジションからオフポジションに遷移させた時は、監視部診断部32による監視部40の診断を実施する。周期信号監視機能一例として、ウォッチドッグタイマがある。すなわち、監視部40の一例として、メイン制御部30から一定周期で送られる信号を受けることでメイン制御部30の異常有無を監視し、メイン制御部30の異常を検出した場合にメイン制御部30にリセット信号を送信するウォッチドッグタイマがある。
 ウォッチドッグタイマ機能の診断処理は、S2001でメイン制御部30から送信する周期信号(P-RUN)207を停止させ、S2002で所定時間内までに監視部40内の周期信号監視部42が異常を検知するかを判定する。正常状態では、監視部40からリセット信号205がメイン制御部30に出力され、変速機制御装置10の電源供給がストップし停止する。監視部40内の故障によってリセット信号205が出力されず、所定時間を経過した場合は、S2003でウォッチドッグタイマ機能の診断NGとする。S2004で故障警告灯をONし、S2005で故障情報を記憶する処理を実施し終了する。
 その他のキーポジションの状態・操作においては、リレー診断部31によるリレー診断と監視部診断部32による監視部40の診断いずれも実施しない。次回キーオン時にS3001で前回の診断結果を判定し、診断NGを記憶していた場合のみS3002で故障警告灯をONし、S3003で異常時の制御としてリニアSOLの出力をOFFする指示を行う。
 以上のことから、キーポジションをOFFするまでの間でリレー診断部31によるリレー診断と監視部診断部32による監視部40の診断のどちらの診断も実施可能となる。さらに診断の結果、故障を検出したときには、次回のキーオンを待たずに、即時に故障警告灯からユーザーに通知でき、また、次回キーオン時に故障を記憶していた場合は、リニアSOLドライバ50にOFF指示を行い、リニアSOL100をOFF出力とすることで車両を安全方向へ制御することができるため、信頼性向上の利点がある。
1…バッテリ、2…電源リレー、3…IGNSW、4…ACCSW、10…変速機制御装置、20…電源IC、30…メイン制御部、31…リレー診断部、32…監視診断部、40…監視部、41…監視機能部、42…周期信号監視部、50…リニアSOLドライバ、100…リニアSOL、200…En端子、201…Vin端子、202…電圧モニタ、203…リレーコントロール、204…Vcc、205…RESET端子、206…IGN電圧モニタ、207…周期信号、208…ACC電圧モニタ

Claims (11)

  1.  リレーを介して電力供給がなされる車両用制御装置において、
     前記リレーを診断するメイン制御部と、
     前記メイン制御部の監視を行う監視部を診断する監視部診断部と、を備えたことを特徴とする車両用制御装置。
  2.  請求項1に記載の車両用制御装置において、
     前記監視部は、前記メイン制御部から周期的に送信される状態信号に基づいて異常を検知した場合にリセット信号を前記メイン制御部に送信することを特徴とする車両用制御装置。
  3.  請求項1に記載の車両用制御装置において、
     前記メイン制御部は、前記リレーにOFF信号を送信することで前記リレーの固着有無を診断することを特徴とする車両用制御装置。
  4.  請求項1に記載の車両用制御装置において、
     前記監視部診断部は、前記監視部から前記メイン制御部にリセット信号を送ることにより、前記監視部の異常有無を診断することを特徴とする車両用制御装置。
  5.  請求項1に記載の車両用制御装置において、
     キーポジションがオフポジションに遷移したタイミングにおいて、前記メイン制御部による前記リレーの診断と、又は前記監視部診断部による前記監視部の診断との何れかを行うことを特徴とする車両用制御装置。
  6.  請求項5に記載の車両用制御装置において、
     キーポジションがオフポジションに遷移したタイミングにおいて、前記メイン制御部による前記リレーの診断と、又は前記監視部診断部による前記監視部の診断との何れかを交互に行うことを特徴とする車両用制御装置。
  7.  請求項1に記載の車両用制御装置において、
     キーポジションがオフポジションに遷移したタイミングとアクセサリポジションに遷移したタイミングとのそれぞれにおいて、前記メイン制御部による前記リレーの診断と、又は前記監視部診断部による前記監視部の診断との何れかを行うことを特徴とする車両用制御装置。
  8.  請求項5又は7に記載の車両用制御装置において、
     前記監視部は、前記メイン制御部から一定周期で送られる信号を受けることで前記メイン制御部の異常有無を監視し、前記メイン制御部の異常を検出した場合に前記メイン制御部にリセット信号を送信するウォッチドッグタイマであることを特徴とする車両用制御装置。
  9.  請求項7に記載の車両用制御装置において、
     前記キーポジションが前記アクセサリポジションにある場合にバッテリからの電力が前記車両用制御装置に供給されることを特徴とする車両用制御装置。
  10.  メイン制御部を備えた車両用制御装置において、
     該車両用制御装置に対する電力供給を行うバッテリと該バッテリによる電力供給のON・OFFを行うリレーが設けられ、
     前記メイン制御部からの信号に基づいて前記メイン制御部の監視を行う監視部を備え、
     キーポジションがアクセサリポジションにある場合に前記車両用制御装置に対し前記バッテリから電力が供給されることを特徴とする車両用制御装置。
  11.  請求項10に記載の変速機制御装置において、
     前記メイン制御部は、前記キーポジションが前記アクセサリポジションにある場合に、前記リレーにOFF信号を送信することで前記リレーの固着有無を診断することを特徴とする車両用制御装置。
     
PCT/JP2016/068452 2015-07-07 2016-06-22 車両用制御装置 WO2017006762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680036571.8A CN107709101A (zh) 2015-07-07 2016-06-22 车辆用控制装置
US15/573,263 US20180119804A1 (en) 2015-07-07 2016-06-22 Vehicle control device
JP2017527165A JP6469225B2 (ja) 2015-07-07 2016-06-22 車両用制御装置
EP16821232.2A EP3321135A4 (en) 2015-07-07 2016-06-22 VEHICLE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015135746 2015-07-07
JP2015-135746 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017006762A1 true WO2017006762A1 (ja) 2017-01-12

Family

ID=57685116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068452 WO2017006762A1 (ja) 2015-07-07 2016-06-22 車両用制御装置

Country Status (5)

Country Link
US (1) US20180119804A1 (ja)
EP (1) EP3321135A4 (ja)
JP (1) JP6469225B2 (ja)
CN (1) CN107709101A (ja)
WO (1) WO2017006762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161927A (ja) * 2017-03-24 2018-10-18 日立オートモティブシステムズ株式会社 自動車用電子制御装置
WO2020217928A1 (ja) * 2019-04-25 2020-10-29 日立オートモティブシステムズ株式会社 電子制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963358B2 (ja) * 2018-03-26 2021-11-10 株式会社エンビジョンAescジャパン 電源装置
CN108839624B (zh) * 2018-06-28 2020-10-30 潍柴动力股份有限公司 汽车点火开关控制系统及方法
DE112020000815T5 (de) * 2019-03-26 2021-10-28 Hitachi Astemo, Ltd. Elektronische steuerungseinrichtung und diagnoseverfahren einer elektronischen steuerungseinrichtung
CN112065984B (zh) * 2020-08-21 2021-08-06 安徽江淮汽车集团股份有限公司 变速箱选换挡系统故障诊断方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065691A (ja) * 1998-08-20 2000-03-03 Nissan Motor Co Ltd セルフシャットオフ機能の診断装置
JP2000136871A (ja) * 1998-11-04 2000-05-16 Nissan Motor Co Ltd 自動変速機用コントロールユニットの暴走監視装置
JP2003004132A (ja) * 2001-06-25 2003-01-08 Aisin Seiki Co Ltd 負荷駆動装置
JP2003294129A (ja) * 2002-03-29 2003-10-15 Denso Corp 車両用電子制御装置
JP2014020483A (ja) * 2012-07-19 2014-02-03 Denso Corp 自動変速機の制御装置
WO2015194407A1 (ja) * 2014-06-18 2015-12-23 日立オートモティブシステムズ株式会社 車載制御装置または車載制御システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097580B2 (ja) * 1996-12-18 2000-10-10 株式会社デンソー 電子制御装置
JP3488086B2 (ja) * 1998-05-26 2004-01-19 株式会社日立製作所 エンジン制御装置および制御方法
JP4692318B2 (ja) * 2005-04-20 2011-06-01 株式会社デンソー 電子制御装置
JP2006316638A (ja) * 2005-05-10 2006-11-24 Denso Corp メインリレー故障診断方法及び電子制御装置
JP4500215B2 (ja) * 2005-06-01 2010-07-14 株式会社東海理化電機製作所 車両の始動判定装置及びそれを備えた遠隔制御装置
JP5060756B2 (ja) * 2006-09-29 2012-10-31 パナソニック株式会社 車両電源制御装置
JP5240260B2 (ja) * 2010-09-13 2013-07-17 株式会社デンソー 車両用電子制御装置
JP5983171B2 (ja) * 2012-08-10 2016-08-31 株式会社Gsユアサ スイッチ故障診断装置、蓄電装置
JP2014035730A (ja) * 2012-08-10 2014-02-24 Hitachi Automotive Systems Ltd 車両用制御装置
JP6244110B2 (ja) * 2013-05-31 2017-12-06 日本電産エレシス株式会社 電子制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065691A (ja) * 1998-08-20 2000-03-03 Nissan Motor Co Ltd セルフシャットオフ機能の診断装置
JP2000136871A (ja) * 1998-11-04 2000-05-16 Nissan Motor Co Ltd 自動変速機用コントロールユニットの暴走監視装置
JP2003004132A (ja) * 2001-06-25 2003-01-08 Aisin Seiki Co Ltd 負荷駆動装置
JP2003294129A (ja) * 2002-03-29 2003-10-15 Denso Corp 車両用電子制御装置
JP2014020483A (ja) * 2012-07-19 2014-02-03 Denso Corp 自動変速機の制御装置
WO2015194407A1 (ja) * 2014-06-18 2015-12-23 日立オートモティブシステムズ株式会社 車載制御装置または車載制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321135A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161927A (ja) * 2017-03-24 2018-10-18 日立オートモティブシステムズ株式会社 自動車用電子制御装置
WO2020217928A1 (ja) * 2019-04-25 2020-10-29 日立オートモティブシステムズ株式会社 電子制御装置
JPWO2020217928A1 (ja) * 2019-04-25 2020-10-29
CN113711209A (zh) * 2019-04-25 2021-11-26 日立安斯泰莫株式会社 电子控制装置

Also Published As

Publication number Publication date
JP6469225B2 (ja) 2019-02-13
US20180119804A1 (en) 2018-05-03
JPWO2017006762A1 (ja) 2018-03-01
EP3321135A1 (en) 2018-05-16
CN107709101A (zh) 2018-02-16
EP3321135A4 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6469225B2 (ja) 車両用制御装置
US20140188359A1 (en) Electric brake assist system for vehicle use
US20070055908A1 (en) Redundant power supply circuit and motor driving circuit
JP2018095022A (ja) リレー診断装置及びリレー診断方法
JP2006322362A (ja) エンジン自動停止始動制御装置
JP2009077542A (ja) 負荷駆動回路
JP7014140B2 (ja) 電磁ブレーキ制御装置及び制御装置
JP2018057218A (ja) 非常停止用スイッチの故障診断装置、方法、プログラム及び電動移動体
US9547569B2 (en) Electronic control unit for vehicle
JP2005231379A (ja) Led信号機制御装置
JP5285058B2 (ja) ブレーキペダル接触器の診断方法
JP2006300284A (ja) 車両の故障診断方法及び装置
JP4668594B2 (ja) オンオフ制御装置
JPH08182337A (ja) 無停電電源装置のインバータ回路異常診断方法及び無停電電源装置
JP6344302B2 (ja) 組電池制御装置
JP5116656B2 (ja) スイッチ素子の故障検知回路
JP5361873B2 (ja) 電気コンポーネントの状態を内燃機関のエンジン制御装置にフィードバックするための方法およびシステム
JP6394183B2 (ja) 非常用スイッチの診断装置および変速制御システム
JP6473072B2 (ja) 車両制御装置
JP5970563B2 (ja) 電池制御装置
JP2014181687A (ja) エンジンの制御装置
CN111122979A (zh) 劣化再生系统和劣化再生方法
JP2021100075A (ja) 車両用電子制御装置
JP4563978B2 (ja) 変速機制御装置
JP3096301B2 (ja) 交流電源で駆動される被制御機器の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573263

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE