WO2015194407A1 - 車載制御装置または車載制御システム - Google Patents

車載制御装置または車載制御システム Download PDF

Info

Publication number
WO2015194407A1
WO2015194407A1 PCT/JP2015/066433 JP2015066433W WO2015194407A1 WO 2015194407 A1 WO2015194407 A1 WO 2015194407A1 JP 2015066433 W JP2015066433 W JP 2015066433W WO 2015194407 A1 WO2015194407 A1 WO 2015194407A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
vehicle
power
switch
circuit
Prior art date
Application number
PCT/JP2015/066433
Other languages
English (en)
French (fr)
Inventor
智 大久保
憲司 舛田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016529248A priority Critical patent/JP6364486B2/ja
Priority to EP15809855.8A priority patent/EP3159220B1/en
Priority to CN201580029310.9A priority patent/CN106414179B/zh
Priority to US15/319,025 priority patent/US10221944B2/en
Publication of WO2015194407A1 publication Critical patent/WO2015194407A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0003Arrangement or mounting of elements of the control apparatus, e.g. valve assemblies or snapfittings of valves; Arrangements of the control unit on or in the transmission gearbox
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1292Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the power supply, e.g. the electric power supply

Definitions

  • the present invention relates to an on-vehicle electronic control device.
  • Patent Document 1 Due to the acceleration of electronic control of vehicle control devices, a large number of electronic control devices are installed in one vehicle today (see Patent Document 1). These electronic control devices are supplied with driving power from a power source such as a battery. Further, a power supply relay is usually inserted between the power supply and the electronic control device as drive power supply / cutoff means. Further, a power relay or a circuit for supplying / cutting off the power is generally inserted in the target device controlled by the electronic control device.
  • each electronic control unit must control the system in a safe direction.
  • the abnormality is detected by the monitoring microcomputer or its own main microcomputer, and the power relay or power supply of the target device is detected.
  • a technique for shifting to a fail-safe state by shutting off a supply circuit is disclosed.
  • a main microcomputer that performs throttle control / ignition control / fuel injection control performs self-diagnosis in the input system / computation system / output system / memory system, respectively, to determine whether or not it is normal.
  • a monitoring device such as a sub-microcomputer in the same electronic control device, and detecting a failure
  • an electronic throttle valve controlled by the electronic control device The power supply relay is cut off, and the output part of the fuel injection valve is cut off in hardware.
  • Patent Document 1 the method proposed in Patent Document 1 is based on the premise that a monitoring device such as a sub-microcomputer is mounted in the electronic control device. If the device is newly mounted, the cost of the electronic control device is increased.
  • a monitoring device is not installed in the electronic control unit, there is a possibility that a functional failure can be detected by self-diagnosis, but a failure may occur depending on the failure part (for example, an arithmetic unit or an output unit) in the microcomputer. Cannot transition to safe state.
  • the failure part for example, an arithmetic unit or an output unit
  • the monitoring device cannot be installed due to hardware restrictions such as the mounting area of the electronic control device. Even in this case, even if a functional failure can be detected by self-diagnosis, depending on the failure location, the fail-safe state There is no guarantee that you can move to.
  • Patent Document 2 is a method of detecting by communication with an in-vehicle electronic device connected to a power source via another relay, which is different from a relay that is a failure detection target, an electronic device that connects the monitoring device and the target relay. In addition to the control device, an electronic control device connected to another power supply relay for comparison is required, and the total system cost increases. Further, this document focuses on an abnormality detection method and does not describe a behavior (fail-safe process) as a system after the abnormality is detected.
  • the present invention has been made in view of the above problems, and an object of the present invention is to detect a failure in a power shut-off circuit of an electronic control device of an automatic transmission for a vehicle, and to detect an abnormality by a host electronic control device. In the case where it is determined that there is an abnormality, there is provided a technique for safely shifting to the fail-safe state without depending on the electronic control device of the vehicle automatic transmission.
  • the present invention is characterized by having the following means.
  • a monitoring system for an electronic control unit (hereinafter referred to as “ATCU”) for an automatic transmission for a vehicle includes a host electronic control unit (hereinafter referred to as a monitoring device) that is independent as hardware for detecting an abnormality of the ATCU, and an ATCU.
  • a host electronic control unit hereinafter referred to as a monitoring device
  • the driving power is supplied to the monitoring device by the power supply means for supplying the driving power to the monitoring device and the activation switch signal (hereinafter referred to as IGNSW) input to the monitoring device.
  • IGNSW activation switch signal
  • Power supply means a first relay (hereinafter referred to as IGN relay), which is inserted between the power supply means and the monitoring device, for supplying / cutting off the power to the monitoring device, and the monitoring device for driving power to the ATCU.
  • IGN relay a first relay
  • a second relay (hereinafter referred to as ATCU relay) installed downstream of the IGN relay that determines whether supply is possible and controls the supply / cutoff of power, and a communication line for diagnosis in the ATCU and monitoring device
  • the monitoring device is characterized in that the ATCU relay is turned ON / OFF at a specific timing, and the failure of the ATCU relay is confirmed by confirming that communication from the ATCU is interrupted in synchronization with the timing.
  • the monitoring device is characterized in that when IGNSW changes from a low level to an active level, a fault diagnosis of the ATCU relay is performed before normal control is performed.
  • the monitoring apparatus When the IGNSW changes from the low level to the active level, the monitoring apparatus according to another aspect performs self-diagnosis of the microcomputer, and turns on the ATCU relay and supplies power to the ATCU only when the diagnosis result is normal It is characterized by that.
  • the ATCU performs a self-diagnosis of the microcomputer after being activated, and transmits a cutoff circuit diagnosis request to the host controller using the communication line only when the diagnosis result is normal It is characterized by.
  • the monitoring device is characterized in that when an interruption circuit diagnosis request is received from the ATCU using a communication line, the ATCU relay is controlled to be turned off to cut off the power supply to the ATCU.
  • the ATCU according to another aspect is characterized in that it detects that an ATCU that has been cut off from power supply has lost communication with a monitoring device using a communication line.
  • the monitoring device When the monitoring device according to another aspect detects that the communication has been interrupted, it determines that the ATCU power cut-off circuit diagnosis is normal, and conversely, although the ATCU relay is controlled to be OFF, When communication is established, the power cut-off circuit diagnosis is determined to be abnormal.
  • the ATCU When the ATCU according to another aspect receives information of power failure circuit diagnosis abnormality from the monitoring line from the monitoring line, the ATCU shifts to a fail-safe state, for example, a standby state, and controls an automatic transmission for a vehicle, that is, a solenoid. It is characterized by not performing hydraulic control of the valve.
  • a fail-safe state for example, a standby state
  • the electronic control unit (ATCU) of an automatic transmission for a vehicle not only the electronic control unit (ATCU) of an automatic transmission for a vehicle but also other electronic control units are used by using a network communication path such as CAN which is installed in most of the recent electronic control units.
  • a network communication path such as CAN which is installed in most of the recent electronic control units.
  • the monitoring device turns off the ATCU relay at the intended timing, and by checking the communication status from the ATCU by this operation, it is possible to detect an ON / OFF failure of the ATCU relay. .
  • the monitoring device detects an ATCU abnormality, it is possible to stop the ATCU operation by turning off the ATCU power relay on the monitoring side, and the power relay cannot be turned off due to ATCU runaway. It is possible to prevent a serious damage such as a lock.
  • fail-safe processing such as shifting to the standby state by the ATCU itself can be performed by the monitoring device sending failure information to the ATCU.
  • FIG. 1 shows an example of the monitoring system which shows embodiment of this invention. It is a flowchart which shows the monitoring procedure between ELOP-ATCU at the time of first time starting. It is a flowchart which shows the monitoring procedure between ELOP-ATCU at the time of normal operation. It is explanatory drawing of a power-off circuit diagnostic procedure. It is a power-off circuit diagnosis timing chart at the time of normal (first time starting). It is a power-off circuit diagnosis timing chart at the time of return
  • FIG. 1 shows an embodiment of the present invention in which a transmission control device (hereinafter referred to as ATCU) 1 for controlling an automatic transmission of a vehicle is monitored.
  • the monitoring target may be an electronic control device that controls other electrical components mounted on the vehicle such as an engine, a seat belt, and a motor.
  • FIG. 1 is a schematic view of a monitoring system of the ATCU 1 using an electric oil pump control device (hereinafter referred to as ELOP) 2 as a monitoring device.
  • the ATCU1 and ATCU1 to be monitored are independent of the hardware, and the ON / OFF is controlled by the IGN relay 3 and ELOP2 that supply / shut down the driving power to the ELOP2 and ELOP2 on the monitoring side, and the driving power is supplied to the ATCU /
  • the ATCU relay 4 to be cut off, the power source (which may be a battery or a generator (not shown)) 5 for supplying driving power to each electronic control device, the ELOP 2 and each electronic control device that are turned on / off by the operation of the driver IGNSW 6 for controlling whether or not driving power is supplied to the motor, and a solenoid valve 7 for engaging / disengaging the clutch of the automatic transmission according to a command from the ATCU 1.
  • the ATCU relay 4 only needs to have a switch function capable of supplying
  • the ATCU 1 is a control circuit that calculates drive amounts to a plurality of solenoid valves 7 and switches outputs, and a power supply circuit that converts a supply voltage from the power source 5 into a drive voltage of the microcomputer 8 and supplies the converted voltage. 9, a communication I / F circuit 10 for communicating with the ELOP 2, and a driver circuit 11 for converting the drive amount to the solenoid valve 7 calculated by the microcomputer 8 into a voltage.
  • ELOP2 calculates the drive amount to the oil pump that pressurizes the hydraulic oil of the automatic transmission, and converts the supply voltage from the power supply 5 to the microcomputer 12 that is a control circuit that performs the output and supplies the drive voltage of the microcomputer 12 ON / OFF control of the power supply circuit 14 for performing communication, the communication I / F circuit 13 for communicating with the ATCU 1, and the ATCU relay 4, and the ATCU for controlling the power supplied to the ATCU which is an external electronic control device
  • a relay control circuit 15 is provided.
  • the ATCU relay control circuit 15 a transistor is illustrated in FIG. When the voltage necessary for driving the ATCU relay 4 is sufficient by the output voltage of the microcomputer 12, or when the transistor is provided outside the ELOP2, the transistor is not necessarily required in the ELOP2. In that case, the ATCU relay control circuit 15 corresponds to an output signal line for the microcomputer 12 to drive the ATCU relay 4.
  • the power supply of the ATCU relay 4 is directly connected to the communication I / F circuit 10 and the driver circuit 11 mounted on the ATCU 1.
  • the microcomputer 8 is also provided downstream of the ATCU relay 4 via the power supply circuit 9.
  • the power supply circuit 9 is supplied with power from the power source 5 without going through the IGN relay 3 or ATCU relay 4 and power from the power source 5 through the IGN relay 3 or ATCU relay 4. Are connected to each other. From the route via various relays, the IGNSW 6 is turned on by the driver and the IGN relay 3 is turned on, and then the ATCU relay 4 is turned on by the ELOP 2 to supply power. Thereafter, the power supply circuit 9 supplies a predetermined drive voltage to electronic components such as the microcomputer 8. The microcomputer 8 receives the drive voltage from the power supply circuit 9 and starts controlling the solenoid valve 7 after a predetermined reset process.
  • the IGNSW 6 When the IGNSW 6 is turned off by the driver, the IGN relay 3 is turned off, and the power supply to the power supply circuit 9 is cut off from the route via various relays.
  • the power supply circuit 9 shifts to a self-shut-off period after a predetermined self-shut-off delay period, and the microcomputer 8 is instructed by the voltage supplied from the power source 5 without passing through various relays until an instruction from the microcomputer 8 is received.
  • Supply drive voltage to The microcomputer 8 performs processing such as storing various learning values during the self-shutoff period, instructs the power supply circuit 9 to stop driving voltage supply, and ends the self-shutoff period.
  • the system is in a standby state during the self-shut delay period, and nothing is functioning as an ATCU.
  • the power supply circuit 14 is similarly connected to two types of power supply paths.
  • the above-described monitoring system in FIG. 1 detects an abnormality of the ATCU 1 at the time of system start-up and in a steady state, and when abnormal, the monitoring device turns off the ATCU relay 4 as a fail-safe process.
  • Fig. 9 illustrates a schematic diagram of a conventional system. Unlike FIG. 1, the conventional system does not include the ATCU relay 4, the ATCU relay control circuit 15, and its peripheral circuits.
  • FIG. 2 is a diagram showing a processing flow of ATCU1 and ELOP2 at the time of system startup.
  • the IGNSW 6 when the IGNSW 6 is turned on, the IGN relay 3 is turned on, power is supplied to the power supply circuit 14 of the ELOP 2, and the microcomputer 12 is activated.
  • the activated microcomputer 12 performs a self-diagnosis to determine whether there is a failure in the internal function (S21).
  • Specific diagnosis includes ROM / RAM diagnosis and register diagnosis.
  • diagnosis NG it shifts to the fail safe state (S22). If the diagnosis is OK, the voltage state of the IGNSW 6 is acquired by the microcomputer 12 (S23).
  • the ATCU 1 After starting up the ATCU 1, the ATCU 1 performs a self-diagnosis to determine whether there is a failure in the internal function of the microcomputer 8 (S27). Specific diagnosis includes ROM / RAM diagnosis and register diagnosis.
  • diagnosis NG the process shifts to the fail safe state (S28). If the diagnosis is OK, the ATCU monitoring system is determined to be normal, and the routine proceeds to normal control (S29).
  • fail-safe control in this flowchart is control in which the microcomputer 12 itself shifts to a standby state or a reprogramming waiting state and does not operate until the IGNSW 6 is turned off.
  • Fig. 3 is a diagram showing the processing flow of ATCU1 and ELOP2 during normal control after system startup.
  • ELOP2 receives the self-diagnosis result of ATCU1 from ATCU1 using communication means (here, CAN communication using communication I / F circuits 10 and 13 as an example) (S31).
  • the self-diagnosis here is a diagnosis performed by the ATCU 1 itself, including not only functional diagnosis inside the microcomputer, such as ROM / RAM diagnosis and register diagnosis, but also functional failure of the ATCU 1 main body.
  • ELOP2 makes an OK / NG determination based on the self-diagnosis result from ATCU1 (S32). In the case of diagnosis NG, ELOP2 shifts to fail-safe control, operates ATCU relay 4 OFF, and cuts off power to ATCU1 ( S33). In such a case, since ATCU 1 can determine its own abnormal state, it may be wired so that the ATCU relay 4 can be turned off by ATCU 1 itself instead of ELOP2.
  • ELOP2 transmits problem data for detecting a malfunction of the microcomputer function of ATCU1, specifically, a malfunction of the arithmetic unit of the microcomputer, to ATCU1 by CAN communication (S34).
  • ATCU 1 generates answer data using the arithmetic unit of the microcomputer 8 based on the problem data received from ELOP 2 (S35), and returns it to ELOP 2 (S36).
  • ELOP2 makes an OK / NG determination based on the response data received from ATCU1 (S37), and in the case of diagnosis NG, ELOP2 shifts to failsafe control, operates ATCU relay 4 OFF, and cuts off power to ATCU1. (S38).
  • the ATCU 1 determines that it is normal and continues normal control (S39). With the above diagnosis, ELOP2 can diagnose an abnormal state that cannot be determined by ATCU1 itself.
  • ELOP2 monitors ATCU1 by exchanging problem data and answer data.
  • ELOP2 monitors signals periodically transmitted from ATCU1 via CAN communication.
  • a watchdog timer method may be adopted.
  • the fail-safe control in this flowchart means that the microcomputer 12 of the ELOP 2 operates the ATCU relay control circuit 15 and controls the ATCU relay 4 to be turned off.
  • the monitoring device By performing the above diagnosis, even when the monitoring device is not mounted on the ATCU 1, it is possible to detect a failure / functional failure of the microcomputer of the ATCU 1 by using the electronic control device connected via the network as the monitoring device. I can do it. That is, it is possible to provide a monitoring system that can accurately detect a failure of the electronic control device without changing the current configuration of the electronic control device and with minimal system change, and can reliably enter the fail-safe state.
  • the ATCU relay 4 is turned off on the ELOP 2 side as a monitoring device. It is possible to stop the function of ATCU1, that is, the operation of solenoid valve 7 / network communication. As a result, the automatic transmission is driven by a directly connected gear, so the power relay can be turned off by the runaway of ATCU1. It is possible to prevent serious damage such as interlocking.
  • the present invention is not limited to such an ATCU monitoring system, and functions to work in a safe direction as a vehicle by stopping the operation of the electronic control device.
  • the present invention can also be applied to an electronic control device having
  • the second embodiment will be described with reference to FIGS.
  • a diagnosis method for a power shut-off circuit by a monitoring device will be described.
  • the system configuration described with reference to FIG. 1 is operable, and thus the description of the system configuration is omitted.
  • the IGNSW 6 when the IGNSW 6 is turned on, the IGN relay 3 is turned on, power is supplied to the power supply circuit 14 of the ELOP 2, and the microcomputer 12 is activated.
  • the activated microcomputer 12 performs a self-diagnosis to determine whether there is a failure in the internal function (S201).
  • Specific diagnosis includes ROM / RAM diagnosis and register diagnosis.
  • diagnosis NG the process shifts to the fail safe state (S202). If the diagnosis is OK, the voltage state of the IGNSW 6 is acquired by the microcomputer 12 (S203).
  • the fail-safe control means that the microcomputer 12 itself shifts to a standby state or a reprogramming waiting state and controls so that nothing operates until the IGNSW 6 is turned off.
  • the ATCU relay 1 is turned ON to start the ATCU 1 (S206).
  • the ATCU 1 After startup, the ATCU 1 performs a self-diagnosis to determine whether there is a failure in the internal function of the microcomputer 8 (S207). Specific diagnosis includes ROM / RAM diagnosis and register diagnosis. In the case of diagnosis NG, the process shifts to the fail safe state (S208). If the diagnosis is OK, the ATCU system is determined to be normal, and the process proceeds to the cutoff circuit diagnosis of the ATCU relay 1.
  • ATCU1 transmits a cutoff circuit diagnosis start request to ELOP2 (S209).
  • ELOP2 receives the interrupt circuit diagnosis start request from ATCU1 (S210)
  • ELOP2 transmits a problem for diagnosing the microcomputer function of ATCU1 (S211).
  • ELOP2 sets an error counter that counts up when an erroneous answer is received from ATUC4 to a threshold value that is determined to be abnormal when the remaining erroneous answer is received.
  • the ATCU 1 receives the problem from the ELOP 2 (S212) and creates an answer by calculating this problem with the microcomputer 8, but here intentionally creates an erroneous answer (S213). After ATCU1 creates an incorrect answer, it returns this incorrect answer to ELOP2 (S214).
  • ELOP2 that has received the incorrect answer (S215) determines that the abnormality has been confirmed by counting up the error counter, and determines that the ATCU has failed (S216), and shuts off (OFF) the ATCU relay 4 as fail-safe ( S217).
  • FIG. 8 shows an example of a method for creating a problem for diagnosing the microcomputer function of the ATCU 1.
  • Answer data is generated by performing questionable part diagnosis / control part diagnosis for problems received from ELOP.
  • the question data from ELOP is expanded from 8 bits to 32 bits, and self-diagnosis is performed to see if it has been expanded normally.
  • the bit of the extended data is inverted, and the instruction used in the microcomputer's arithmetic unit is executed in the order of basic instruction diagnosis, arithmetic operation, logical operation, processing control, and data transfer as control unit diagnosis based on this data.
  • Create answer data by using the entire set.
  • the answer data is returned from 32 bits to 8 bits so that the inverted value of the question data becomes the answer data.
  • the ATCU relay 4 When the ATCU relay 4 is cut off, the power supply of the communication I / F circuit 10 connected downstream of the relay is cut off, and communication between the ELOPs 2 is interrupted, that is, communication data is changed.
  • the ATCU 1 obtains the voltage supplied from the power source 5 via the IGN relay 3 or ATCU relay 4 and determines that the OFF threshold value of the IGNSW 6 is reached, the ATCU relay 3 or ATCU relay 4 is turned on.
  • the process shifts to a self-shut delay process that operates by the voltage supplied from the power source 5 without going through (S219). If the time that does not decrease to the NOFF threshold of IGNSW 6 continues for a certain period of time despite the transmission of an incorrect answer in S214, it is determined that the ATCU relay 4 is stuck ON (S220), and the process proceeds to fail-safe processing. (S221).
  • the fail-safe control means that the microcomputer 8 itself shifts to a standby state or a reprogramming waiting state, and performs control so that nothing operates until the IGNSW 6 is turned off.
  • the ELOP 2 detects a communication interruption from the ATCU 1, it determines that the cutoff function of the ATCU relay 4 is operating normally and normalizes the cutoff circuit diagnosis (S222).
  • ELOP2 determines that the interruption circuit diagnosis is normal, it turns ON the ATCU relay 4 again (S223), restarts ATCU1, and shifts to normal control (S224).
  • S223 the ATCU relay 4 again
  • S224 normal control
  • the diagnosis of the power cut-off circuit by the ELOP2 is performed during the self-shutoff delay process of the ATCU1, the microcomputer 8 is completely stopped by turning on the ATCU relay 4 again during the self-shutoff delay process. Before, ATCU1 can transition to normal control. Therefore, the diagnosis of the power cutoff circuit by ELOP2 can be performed without completely stopping the microcomputer 8 of the ATCU1.
  • the ELOP 2 determines that the ATCU relay 1 is fixed ON, and makes the interruption circuit diagnosis abnormal (S225).
  • ELOP2 transmits abnormality information to ATCU1 (S226), and ATCU1 shifts to the fail-safe state.
  • the fail-safe control means that the microcomputer 8 itself shifts to a standby state or a reprogramming waiting state, and performs control so that nothing operates until the IGNSW 6 is turned off.
  • FIG. 6 is a timing chart showing the processing for the low voltage of the drive power supply after shifting to normal control (scheduled processing) after diagnosis of the breaking circuit.
  • TCU RLY downstream of IGN RLY is turned off almost simultaneously.
  • ATCU IGNSW voltage (VIGN) drops to 0V, so ATCU shifts to self-shutoff delay processing.
  • the ATCU restarts and returns to scheduled processing without performing self-diagnosis processing (initialization processing). Can do.
  • the period during which the ATCU system is stopped can be designed to be minimal.
  • the monitoring system for an electronic control device of the present invention provides a monitoring device independent as hardware for detecting an abnormality of the electronic control device to be monitored, and driving power to the electronic control device and the monitoring device.
  • a second relay installed downstream of the first relay to be controlled, and a communication line for performing diagnosis by communication between the electronic control device and the monitoring device are provided.
  • the electronic control device to be monitored operates with a power supply circuit that outputs a voltage for operating the microcomputer and a voltage output from the power supply circuit.
  • the monitoring device when the activation switch signal is at an active level, the monitoring device is supplied from a power supply circuit that outputs a voltage for operating the microcomputer of the monitoring device, a microcomputer that operates according to the voltage output from the power supply circuit, and the power supply circuit.
  • a communication circuit that is activated by the generated power may be provided.
  • the monitoring device operates the microcomputer of the monitoring device when the activation switch signal is at the active level, and performs a self-diagnosis of the microcomputer at the start-up and steady state to confirm that the microcomputer is operating normally. Then, the second relay may be turned on.
  • the monitoring device operates the microcomputer of the monitoring circuit when the activation switch signal is at the active level, performs a self-diagnosis of the microcomputer at the start-up and normal times, and if the microcomputer determines that there is an abnormality, The circuit may transmit abnormality information to the monitoring target control device and turn off the second relay.
  • the electronic control device to be monitored operates the microcomputer when the second relay is turned on by a start request from the monitoring device, performs a self-diagnosis of the microcomputer at the start, and determines that it is abnormal by itself.
  • a transition to the standby state may be made so that the automatic transmission for a vehicle or the like (such as hydraulic control of a solenoid valve) is not performed.
  • the electronic control unit to be monitored operates the microcomputer when the second relay is in the on state, and controls the automatic transmission for the vehicle (solenoid valve hydraulic control, etc.) in a steady state. Even if the microcomputer performs self-diagnosis at any time and determines that it is abnormal, it sends the abnormality information to the monitoring device via the communication circuit, then stops the output of the communication circuit, and then the microcomputer shifts to the standby state.
  • the vehicle automatic transmission or the like may not be controlled.
  • the monitoring device may transmit problem data for diagnosing the calculation function in the microcomputer to the electronic control device that is the monitoring target in the steady state via the communication circuit.
  • the electronic control device to be monitored may receive the problem data transmitted from the monitoring device in a steady state, and create response data by executing a program incorporated in advance in the microcomputer.
  • the electronic control device to be monitored may transmit response data to the monitoring device through a communication circuit in a steady state.
  • the monitoring device may receive answer data from the electronic control device to be monitored and diagnose whether the arithmetic function in the microcomputer of the electronic control device to be monitored is normal from the answer data.
  • the monitoring device may control the second relay to be turned off when the diagnosis result is determined to be abnormal.
  • the power supply to the communication circuit and the solenoid valve drive circuit can be immediately cut off before the power supplied to the microcomputer is cut off. It is good as composition.
  • the electronic control unit (ATCU) of an automatic transmission for a vehicle not only the electronic control unit (ATCU) of an automatic transmission for a vehicle but also other electronic control units are used by using a network communication path such as CAN which is installed in most of the recent electronic control units.
  • a network communication path such as CAN which is installed in most of the recent electronic control units.
  • a problem for diagnosing the function of the main microcomputer is transmitted from the monitoring-side electronic control device to the monitoring-target electronic control device, and the monitoring-target electronic control device calculates an answer to the problem, and the monitoring-side electronic control device By returning to the device, it is possible to detect a microcomputer failure on the electronic control device side to be monitored.
  • the monitoring electronic control unit detects an abnormality in the electronic control device to be monitored, the operation of the electronic control device to be monitored is turned off by turning off the power relay of the electronic control device to be monitored on the monitoring side.
  • the operation of the solenoid valve can be stopped.
  • the power relay cannot be turned off due to the electronic control device runaway to be monitored, and it is possible to prevent a serious damage such as an interlock.
  • the monitoring device When the power relay of the electronic control device to be monitored is fixed to ON, the monitoring device transmits a failure information to the electronic control device to be monitored, so that the electronic control device to be monitored itself is in a standby state. Fail-safe processing such as shifting to
  • the upper electronic control device controls the power supply relay if any communication means is provided.
  • the target electronic control function is abnormal, it can be applied to any electronic control device that has a function that works in a safe direction as a vehicle by controlling the power supply relay to shut off (OFF). it can.

Abstract

 現在の電子制御装置内の構成を変えることなく、且つ、最小のシステム変更で車両用自動変速機の電子制御装置の電源リレーの機能故障を正確に検知し、且つ、確実にフェールセーフ状態に移行可能な電源遮断回路診断手法の提供。 車両用自動変速機の電子制御装置(ATCU)に実装されているCANなどのネットワーク通信路を利用することにより、他電子制御装置をATCUの監視装置とし、監視側である他電子制御装置がATCUの遮断回路を制御する。 監視側の他電子制御装置は、ATCUの遮断回路を一定期間遮断し、ATCUからの通信途絶を検知することで診断を行う。

Description

車載制御装置または車載制御システム
 本発明は、車載用の電子制御装置に関する。
 車両制御装置の電子制御化の加速により、昨今の車両には1台当り多数の電子制御装置が搭載されている(特許文献1等参照)。これらの電子制御装置は、バッテリ等の電源から駆動電力が供給されている。また、電源と電子制御装置との間には、通常、駆動電力の供給/遮断手段として電源リレーが挿入されている。また、該電子制御装置が制御する対象装置についても電源リレー、又は電源を供給/遮断する回路が一般的に挿入されている。
 各電子制御装置は、何らかの異常が発生した場合、該当システムを安全方向へ制御する必要があり、一般的には監視マイコンや自身のメインマイコンで異常を検知し、対象装置の電源リレー、又は電源供給回路を遮断することでフェールセーフ状態へ移行する技術が開示されている。
 例えば、エンジンの電子制御装置では、スロットル制御/点火制御/燃料噴射制御を行うメインマイコンは、自分自身が正常か否か、入力系/演算系/出力系/記憶系でそれぞれ自己診断を行っており、なおかつ、サブマイコンのような監視装置を同一電子制御装置内に実装することによりメインマイコンの機能故障を監視し、故障を検知した場合は、該電子制御装置が制御している電子スロットルバルブの電源リレーを遮断し、燃料噴射弁の出力部をハード的に遮断している。
このような構成とすることで、メインマイコン異常により制御対象をフェールセーフ状態へ移行できる保証がなくとも、サブマイコンのような監視装置により確実にフェールセーフへ移行できる技術が知られている。
 また、予め定められた機能を実現するLANで接続された複数の電子制御装置に繋がる電源リレーに対し、一括で制御する電子制御装置を設け、電源リレーの状態によって通信状態の有無を検出し、電源リレーが故障しているか否かを判定する技術が知られている(特許文献2等参照)。
特開2009-196453号公報 特開2008-88885号公報
 しかしながら、特許文献1で提案された方式では、電子制御装置内にサブマイコンのような監視装置を実装していることが前提となり、新たに実装するとなると電子制御装置のコストアップに繋がってしまう。
 また、電子制御装置内に監視装置が実装されていない場合、自己診断により機能故障を検出することが出来る可能性はあるが、マイコン内の故障部位(例えば、演算部や出力部)によってはフェールセーフ状態へ移行することができない。
 また、電子制御装置の実装面積などハードウェアの制約により監視装置を実装できない場合があり、この場合も自己診断により機能故障を検出することが出来ても、故障部位によっては、確実にフェールセーフ状態に移行できる保証はない。
 特許文献2については、故障検出対象であるリレーとは異なる、他のリレーを介して電源に接続されている車載電子機器との通信により検出する手法であるため、監視装置と対象リレーが繋がる電子制御装置の他に、比較する為の別の電源リレーに繋がる電子制御装置が必要となり、トータルのシステムコストは上昇する。
また、該文献には、異常検知の手法に主眼が置かれており、異常検知後のシステムとしての振る舞い(フェールセーフ処理)の記載が無い。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、車両用自動変速機の電子制御装置の電源遮断回路の故障を検出することであり、上位電子制御装置により異常を検知し、異常と判断された場合は、車両用自動変速機の電子制御装置に依存せずに安全にフェールセーフ状態へ移行する技術の提供にある。
 上記目的を達成するため、本発明は以下の手段を有することを特徴とする。
 本発明の一態様に係る車両用自動変速機の電子制御装置(以下、ATCU)の監視システムは、ATCUの異常を検出するハードウェアとして独立した上位電子制御装置(以下、監視装置)と、ATCU及び監視装置に駆動電力を供給する電力供給手段と、監視装置に対し、外部から入力される起動用スイッチ信号(以下、IGNSW)により、IGNSWがアクティブレベルの場合に、監視装置に駆動電力を供給する電力供給手段と、電源供給手段と監視装置との間に入れられた、監視装置への電力を供給/遮断する第1リレー(以下、IGNリレー)と、ATCUに対し監視装置が駆動電力の供給の可否を判断し、電力の供給/遮断を制御するするIGNリレーの下流に設置された第2リレー(以下、ATCUリレー)と、ATCUと監視装置にお
いて、診断を行う為の通信ラインを備えており、監視装置は、特定のタイミングでATCUリレーをON/OFFし、そのタイミングと同期して、ATCUからの通信が途絶することを確認することでATCUリレーの故障を確認することを特徴としている。
 他の態様に係る監視装置は、IGNSWがローレベルからアクティブレベルへ変化した場合に、通常制御が実施される前にATCUリレーの故障診断を実施することを特徴としている。
 他の態様に係る監視装置は、IGNSWがローレベルからアクティブレベルへ変化した場合、該マイコンの自己診断を実施し、診断結果が正常の場合にのみ、ATCUリレーをONとしATCUに電力を供給すること、を特徴としている。
 他の態様に係るATCUは、起動された後、該マイコンの自己診断を実施し、診断結果が正常な場合にのみ、前記通信ラインを用いて前記上位制御装置へ遮断回路診断要求を送信することを特徴としている。
 他の態様に係る監視装置は、ATCUから通信ラインを用いて遮断回路診断要求を受信した場合、ATCUリレーをOFFに制御し、ATCUへの給電を遮断することを特徴としている。
 他の態様に係るATCUは、給電を遮断されたATCUが、通信ラインを用いた監視装置との通信を途絶したことを検出することを特徴としている。
 他の態様に係る監視装置は、通信が途絶したことを検知した場合は、ATCUの電源遮断回路診断を正常と判断し、逆に、ATCUリレーをOFFに制御したにも拘らず、ATCUとの通信が成立している場合は、電源遮断回路診断を異常と判断することを特徴としている。
 他の態様に係るATCUは、監視装置より電源遮断回路診断異常の情報を前記通信ラインより受信した場合、フェールセーフ状態、例えば、スタンバイ状態へ移行し、車両用自動変速機の制御、即ち、ソレノイドバルブの油圧制御を行わないことを特徴としている。
 本発明によれば、車両用自動変速機の電子制御装置(ATCU)に限らず、昨今の殆どの電子制御装置に実装されているCANなどのネットワーク通信路を利用することにより、他電子制御装置をATCUの監視装置と見立てることができ、尚且つ、監視側である他電子制御装置がATCUの電源リレーを制御する。
 上記のシステム構成とすることで、監視装置がATCUリレーを意図したタイミングでOFF操作し、この操作によりATCUからの通信状態を確認することにより、ATCUリレーのON/OFF故障を検知することが出来る。
 また、監視装置がATCUの異常を検知した場合、監視側でATCUの電源リレーをOFFすることでATCUの動作を停止することが可能であり、ATCU暴走により電源リレーをOFFすることができずインターロックなど、甚大な被害をもたらすことを防止することができる。
 また、ATCUリレーがON固着の場合には、監視装置がATCUへ故障情報を送信することで、ATCU自身でスタンバイ状態へ移行する等、フェールセーフ処理を行うことが出来る。
 上記より、車両に実装されている他電子制御装置を監視装置とすることで、ATCU自身へ監視回路を実装する必要がなく、システムコストを低減できる利点がある。
本発明の実施形態を示す監視システムの一例を示す図である。 初回起動時のELOP-ATCU間の監視手順を示すフローチャートである。 通常動作時のELOP-ATCU間の監視手順を示すフローチャートである。 電源遮断回路診断手順の説明図である。 通常(初回起動)時の電源遮断回路診断タイミングチャートである。 SSOFFディレイ中の復帰時の電源遮断回路診断タイミングチャートである。 従来のELOP-ATCUの関係を示すシステム構成図である。 ELOPからの問題データに対する、ATCUでの回答データの算出手順を示すフローチャートである。
 以下、本発明の実施例を、図面を用いて説明する。
 図1から3を用いて本発明の第一の実施例について説明する。
 図1に車両の自動変速機を制御する変速機制御装置(以下、ATCUと称す)1を監視対象とした、本発明の一実施形態を示す。監視対象としては、エンジン、シートベルト、モータ等車両に搭載される他の電装品を制御する電子制御装置であってもよい。
 図1は電動オイルポンプ制御装置(以下、ELOPと称す)2を監視装置としたATCU1の監視システムの概略図である。監視対象となるATCU1、ATCU1とはハードウェアとして独立しており監視側となるELOP2、ELOP2への駆動電力を供給/遮断するIGNリレー3、ELOP2によりON/OFF制御されATCUへ駆動電力を供給/遮断するATCUリレー4、各電子制御装置へ駆動電力を供給する電源(バッテリ、または図示しない発電機であってもよい)5、運転者からの操作によりON/OFF操作されELOP2や各電子制御装置へ駆動電力を供給するか否かを制御するIGNSW6、ATCU1からの指令で自動変速機のクラッチを締結/開放するソレノイドバルブ7を備えている。ATCUリレー4は、電流の供給/遮断が可能なスイッチ機能を有すれば良く、接点移動によりON/OFFする機械式リレーであってもよいし、半導体スイッチング素子による半導体リレーであってもよい。
 ATCU1は、複数のソレノイドバルブ7への駆動量の算出、及び出力の切り替えを行う制御回路であるマイコン8と、電源5からの供給電圧を、マイコン8の駆動電圧へ変換し供給する電源供給回路9と、ELOP2と通信を行うための通信I/F回路10と、マイコン8で算出されたソレノイドバルブ7への駆動量を電圧に変換するドライバ回路11を備えている。
 ELOP2は、自動変速機の作動油を加圧するオイルポンプへの駆動量の算出、及び出力を行う制御回路であるマイコン12と、電源5からの供給電圧を、マイコン12の駆動電圧へ変換し供給する電源供給回路14と、ATCU1と通信を行うための通信I/F回路13と、ATCUリレー4をON/OFF制御し、外部の電子制御装置であるATCUへの供給される電力を制御するATCUリレー制御回路15を備えている。ATCUリレー制御回路15として、図1ではトランジスタを図示している。ATCUリレー4の駆動に必要な電圧がマイコン12の出力電圧で足りる場合や、トランジスタをELOP2外部に備える場合には、ELOP2内にトランジスタは必ずしも必要ではない。その場合、ATCUリレー制御回路15としては、マイコン12がATCUリレー4を駆動するための出力信号線が該当する。
 ATCU1に実装されている通信I/F回路10とドライバ回路11は、ATCUリレー4の電源が直接接続されている。また、マイコン8も電源供給回路9を介して、ATCUリレー4の下流に設けられている。
 電源供給回路9には、IGNリレー3やATCUリレー4を経由せずに電源5からの電力が供給される経路と、IGNリレー3やATCUリレー4を経由して電源5からの電力が供給される経路と、がそれぞれ接続されている。各種リレーを経由した経路からは、運転者によりIGNSW6がONされてIGNリレー3がONした後、ELOP2によりATCUリレー4がONされることで電力が供給される。その後、電源供給回路9はマイコン8等の電子部品に所定の駆動電圧を供給する。マイコン8は、電源供給回路9からの駆動電圧を受けて、所定のリセット処理の後ソレノイドバルブ7の制御を開始する。
 運転者によりIGNSW6がOFFされるとIGNリレー3がOFFされ、各種リレーを経由した経路から電源供給回路9への電力供給が遮断される。ここで電源供給回路9は所定のセルフシャットオフディレイ期間を経てセルフシャットオフ期間に移行し、各種リレーを経由せずに電源5から供給される電圧により、マイコン8からの指示があるまでマイコン8へ駆動電圧を供給する。マイコン8は、セルフシャットオフ期間中に各種学習値の記憶等の処理を行い、電源供給回路9へ駆動電圧供給の停止を指示し、セルフシャットオフ期間を終了する。
 ここで、セルフシャットディレイ期間中はシステム待機状態であり、ATCUとしては何も機能していない状態となる。
 なお、電源供給回路14も同様に二種類の電源供給経路に接続されている。
 上記、図1の監視システムは、システム起動時、及び定常時にATCU1の異常を検知し、異常時には、フェールセーフ処理として、監視装置がATCUリレー4をOFFにする。
 図9に従来のシステム概略図を説明する。図1と異なり、従来システムでは、ATCUリレー4、ATCUリレー制御回路15、およびその周辺回路が存在しない。
 以降、本実施例におけるATCU1の異常検知処理の流れについて説明する。
図2は、システム起動時のATCU1とELOP2の処理の流れを示す図である。
 まず始めにIGNSW6がON状態になると、IGNリレー3がONになり、ELOP2の電源供給回路14に電力が供給され、マイコン12が起動する。
 次に、起動されたマイコン12は内部機能に故障があるか否か自己診断を行う(S21)。ここでの診断は、具体的にはROM/RAM診断、及びレジスタ診断などがある。
 診断NGの場合は、フェールセーフ状態へ移行する(S22)。診断OKの場合は、マイコン12でIGNSW6の電圧状態を取得する(S23)。
 次に、IGNSW6の取得電圧が0V(OFF状態)で、ELOP6が起動している場合は、本来であれば電源が供給されていないはずであるので、IGNリレー3のON故障であると判断し(S24)、フェールセーフ処理へ移行する(S25)。
診断OKの場合は、ATCUリレー4をONに操作し、ATCU1を起動する(S26)。
 ATCU1の起動後、ATCU1は、マイコン8の内部機能に故障があるか否か自己診断を行う(S27)。ここでの診断は、具体的にはROM/RAM診断、及びレジスタ診断などがある。
 診断NGの場合は、フェールセーフ状態へ移行する(S28)。診断OKの場合は、ATCU監視システムが正常と判断し、通常制御へ移行する
(S29)。
 なお、本フローチャートにおけるフェールセーフ制御とは、マイコン12自身でスタンバイ状態やリプログラミング待ち状態へ移行し、IGNSW6がOFFされるまで何も動作しないように制御することである。
 図3は、システム起動後の通常制御時のATCU1とELOP2の処理の流れを示す図である。
 ELOP2は、通信手段(ここでは例として、通信I/F回路10,13を用いたCAN通信とする)を用いて、ATCU1からATCU1の自己診断結果を受信する(S31)。ここでの自己診断とは、ROM/RAM診断、及びレジスタ診断など、マイコン内部の機能診断だけでなく、ATCU1本体の機能故障も含まれ、ATCU1自身で行う診断である。
 ELOP2はATCU1からの自己診断結果からOK/NG判断を行い(S32)、診断NGの場合、ELOP2はフェールセーフ制御へ移行し、ATCUリレー4をOFFに操作し、ATCU1への通電を遮断する(S33)。このような場合、ATCU1は自身の異常状態を判定出来ているので、ELOP2ではなくATCU1自身でATCUリレー4をOFFに操作可能なように結線してもよい。
 S32の診断がOKの場合、ELOP2はATCU1のマイコン機能故障、詳しくはマイコンの演算器の故障を検出するための問題データをCAN通信によりATCU1へ送信する(S34)。
 ATCU1は、ELOP2から受信した問題データを基に、マイコン8の演算器を用いて回答データを生成し(S35)、ELOP2へ返信する(S36)。
 ELOP2は、ATCU1から受信した回答データよりOK/NG判断を行い(S37)、診断NGの場合、ELOP2はフェールセーフ制御へ移行し、ATCUリレー4をOFFに操作し、ATCU1への通電を遮断する(S38)。
 診断OKの場合、ATCU1は正常と判断し、通常制御を継続する(S39)。以上の診断により、ELOP2はATCU1自身で判断出来ない異常状態を診断することができる。
 本フローチャートでは問題データと回答データのやり取りでELOP2がATCU1の監視を行う例を説明したが、他の監視方法として、ATCU1から定期的にCAN通信を介して送信される信号をELOP2が監視するような、ウォッチドッグタイマ方式を採用してもよい。
 なお、本フローチャートにおけるフェールセーフ制御とは、ELOP2のマイコン12がATCUリレー制御回路15を操作し、ATCUリレー4をOFFに制御することである。
 以上の診断を実施することにより、ATCU1に監視装置を実装していない場合でも、ネットワークで繋がっている電子制御装置を監視装置とすることで、ATCU1のマイコン等の故障/機能故障を検知することが出来る。すなわち、現在の電子制御装置内の構成を変えることなく、且つ、最小のシステム変更で電子制御装置の故障を正確に検知し、且つ、確実にフェールセーフ状態に移行可能な監視システムが提供できる。
 また、本発明のシステム構成であれば、ATCU1のマイコンが暴走により、ATCUリレー4をOFFにしてもシステム電源が停止できない場合にも、監視装置であるELOP2側でATCUリレー4をOFFすることでATCU1の機能、つまり、ソレノイドバルブ7の動作/ネットワーク通信を停止することが可能であり、結果、自動変速機は直結ギアでの走行となるため、ATCU1の暴走により電源リレーをOFFすることができずインターロックなど、甚大な被害をもたらすことを防止することができる。
 また、車両に実装されている他電子制御装置を監視装置とすることで、ATCU1自身へ監視装置を実装する必要がなく、システムコストを低減できる利点がある。さらに、ATCU1が自動変速機と一体的に実装されているような場合、ATCUのサイズや実装面積には厳しい制約があり、本発明によればその制約も満たすことができる。
 以上、本発明の一実施例構成について説明したが、本発明はこうしたATCUの監視システムとして限定されるものではなく、電子制御装置の動作を停止することにより、車両として安全方向に働くような機能を持った電子制御装置にも応用することが可能である。
 以降、図4、5を用いて第二の実施例について説明する。本実施例では、監視装置による電源遮断回路の診断手法について説明する。実施例1と同様、図1で説明したシステム構成で動作可能であるため、システム構成の説明は省略する。
 まず始めにIGNSW6がON状態になると、IGNリレー3がONになり、ELOP2の電源供給回路14に電力が供給され、マイコン12が起動する。
 次に、起動されたマイコン12は内部機能に故障があるか否か自己診断を行う(S201)。ここでの診断は、具体的にはROM/RAM診断、及びレジスタ診断などがある。診断NGの場合は、フェールセーフ状態へ移行する(S202)。診断OKの場合は、マイコン12でIGNSW6の電圧状態を取得する(S203)。
 ここで、IGNSW6の取得電圧が0V(OFF状態)で、ELOP6が起動している場合は、本来であれば電源が供給されていないはずであるので、IGNリレー3のON故障であると判断し(S204)、フェールセーフ処理へ移行する(S205)。
 なお、ここでのフェールセーフ制御とは、マイコン12自身でスタンバイ状態やリプログラミング待ち状態へ移行し、IGNSW6がOFFされるまで何も動作しないように制御することである。
 診断OKの場合は、ATCUリレー1をONに操作し、ATCU1を起動する(S206)。
 起動後、ATCU1は、マイコン8の内部機能に故障があるか否か自己診断を行う(S207)。ここでの診断は、具体的にはROM/RAM診断、及びレジスタ診断などがある。診断NGの場合は、フェールセーフ状態へ移行する(S208)。診断OKの場合は、ATCUシステムが正常と判断し、ATCUリレー1の遮断回路診断へ移行する。
 続いて、ATCU1は、ELOP2に対し、遮断回路診断開始要求を送信する(S209)。ELOP2は、ATCU1から遮断回路診断開始要求を受信した場合(S210)、ATCU1のマイコン機能を診断する問題の送信する(S211)。ここでELOP2は、ATUC4から誤回答を受信した際にカウントアップするエラーカウンタを、残り1回誤回答を受信したら異常確定となる閾値に設定する。
 ATCU1は、ELOP2から問題を受信し(S212)、この問題をマイコン8で演算することで回答を作成するが、ここでは故意に誤回答を作成する(S213)。ATCU1は誤回答作成後、この誤回答をELOP2へ返信する(S214)。
 誤回答を受信したELOP2は(S215)、エラーカウンタをカウントアップすることで異常確定となり、ATCUが機能故障していると判断し(S216)、フェールセーフとしてATCUリレー4を遮断(OFF)する(S217)。
 ここで、図8にATCU1のマイコン機能を診断する問題の作成方法の一例を示す。
ELOPから受信した問題に対し、被出題部診断/制御部診断を行うことで回答データを生成している。
 具体的には、まず始めにELOPからの出題データを8bitから32bitに拡張し、正常に拡張されているか自己診断を行う。
 次に、拡張データをビット反転し、このデータを基に制御部診断として、基本インストラクション診断、算術演算、論理演算、処理制御、データ転送の順に実行し、マイコンの演算器で使用されている命令セットを全て使用することで回答データを作成する。
そして最後に、回答データを32bitから8bitに戻すことで、結果として出題データの反転値が回答データとなるようにしている。
 ATCUリレー4が遮断されることで、該リレーの下流に接続されている通信I/F回路10の電源が遮断され、ELOP2間との通信が途絶、すなわち通信データに変化が生じる。
 ELOP2は事前に遮断回路診断要求を受信しているため、現フェーズが遮断回路診断中と判断し、ATCU1からの通信途絶を検出する(S218)。
 ここで、ATCU1は、IGNリレー3やATCUリレー4を経由して電源5から供給される電圧を取得し、IGNSW 6のOFF閾値まで達していると判断した場合、IGNリレー3やATCUリレー4を経由せずに電源5から供給される電圧により動作するセルフシャットディレイ処理へ移行する(S219)。S214で誤回答を送信したにもかかわらずIGNSW6の OFF閾値まで下がらない時間が一定時間継続した場合には、ATCUリレー4がON固着していると判断し(S220)、フェールセーフ処理へ移行する(S221)。
 なお、ここでのフェールセーフ制御とは、マイコン8自身でスタンバイ状態やリプログラミング待ち状態へ移行し、IGNSW6がOFFされるまで何も動作しないように制御することである。
 ELOP2はATCU1からの通信途絶を検出した場合、ATCUリレー4の遮断機能が正常に動作していると判断し、遮断回路診断を正常とする(S222)。
 ELOP2は、遮断回路診断を正常と判断した場合、ATCUリレー4を再びONとし(S223)、ATCU1を再起動し通常制御へ移行する(S224)。このように、ATCU1のセルフシャットオフディレイ処理中にELOP2による電源遮断回路の診断を行えば、セルフシャットオフディレイ処理中に再度ATCUリレー4が再びONされることで、マイコン8が完全に停止する前に、ATCU1は通常制御へ移行することができる。したがって、ELOP2による電源遮断回路の診断を、ATCU1のマイコン8を完全停止させることなく実施することができる。
 続いて、ELOP2は、ATCU1からの通信途絶を検出できない場合、ATCUリレー1がON固着していると判断し、遮断回路診断を異常とする(S225)。
 遮断回路診断異常と判断した場合、ELOP2は異常情報をATCU1へ送信し(S226)、ATCU1はフェールセーフ状態へ移行する。
 なお、ここでのフェールセーフ制御とは、マイコン8自身でスタンバイ状態やリプログラミング待ち状態へ移行し、IGNSW6がOFFされるまで何も動作しないように制御することである。
 図6は、遮断回路診断後、通常制御(定時処理)に移行してからの駆動電源の低電圧に対する処理を表したタイミングチャートである。
 IGNSWのチャタリングや電源電圧の一時的な低下によりIGN RLYがOFFとなると、IGN RLYの下流にあるTCU RLYほぼ同時にOFFとなる。
 すると、ATCUのIGNSW電圧(VIGN)が0Vに落ちてしまうため、ATCUはセルフシャットオフディレイ処理へ移行する。
 このシステムにおいて、ELOPの電源電圧に対する耐性を高く設計すると、ELOPは通常処理(定時処理)が継続して動作しており、処理が停止しているのはATCUだけとなる。
 ここで、セルフシャットオフディレイ期間中にIGNSWのチャタリングや電源電圧の状態が正常に復帰すると、ATCUはリスタート処理となり、自己診断処理(初期化処理)を行わずして定時処理に復帰することができる。
 上記のような構成にすることで、車両走行中にIGNSWのチャタリングや電源電圧の一時的な低下が発生しても、ATCUシステムが停止している期間を最小で設計可能である。
 以上の実施例で説明したように本発明の電子制御装置の監視システムは、監視対象の電子制御装置の異常を検出するハードウェアとして独立した監視装置と、電子制御装置及び監視装置に駆動電力を供給する電力供給手段と、監視装置に対し、外部から入力される起動用スイッチ信号により、起動用スイッチ信号がアクティブレベルの場合に、監視装置に駆動電力を供給する電力供給手段と、電源供給手段と監視装置との間に入れられた、監視装置への電力を供給/遮断する第1リレーと、電子制御装置に対し監視装置が駆動電力の供給の可否を判断し、電力の供給/遮断を制御するする第1リレーの下流に設置された第2リレーと、電子制御装置と監視装置との通信による診断を行う為の通信ラインを備える。
 更に、監視対象となる電子制御装置は、監視装置からの起動要求により第2リレーがオン状態になった場合、マイコンを動作させる電圧を出力する電源回路と、電源回路から出力される電圧によって動作するマイコンと、監視装置からの起動要求信号により起動する通信回路と、監視装置からの起動要求信号により起動するソレノイドバルブの駆動回路を備えてよい。
 更に、監視装置は、起動用スイッチ信号がアクティブレベルの場合に、監視装置のマイコンを動作させる電圧を出力する電源回路と、電源回路から出力される電圧によって動作するマイコンと、電源回路から供給される電力により起動する通信回路を少なくとも備えてよい。
 更に、監視装置は、起動用スイッチ信号がアクティブレベルの場合に、監視装置のマイコンを動作させ、起動時、及び定常時においてマイコンの自己診断を行い、マイコンが正常に動作していることを確認してから第2リレーをオンにしてよい。
 更に、監視装置は、起動用スイッチ信号がアクティブレベルの場合に、監視回路のマイコンを動作させ、始動時、及び定常時においてマイコンの自己診断を行い、前記マイコンが異常と判断した場合は、通信回路により監視対象の制御装置へ異常情報を送信し第2リレーをオフしてよい。
 更に、監視対象となる電子制御装置は、監視装置からの起動要求により第2リレーがONした場合、マイコンを動作させ、始動時においてマイコンの自己診断を行い、自身で異常と判断した場合は、スタンバイ状態へ移行し、車両用自動変速機等の制御(ソレノイドバルブの油圧制御等)を行わないようにしてよい。
 更に、監視対象となる電子制御装置は、第2リレーがオン状態の場合、マイコンを動作させ、定常時においては車両用自動変速機等の制御(ソレノイドバルブの油圧制御等)を行うが、定常時においてもマイコンの自己診断を行い、自身が異常と判断した場合は、監視装置へ通信回路により異常情報を送信し、その後、通信回路の出力を停止し、その後、マイコンはスタンバイ状態へ移行し、車両用自動変速機等の制御を行わないようにしてよい。
 更に、監視装置は、定常時監視対象となる電子制御装置に対し、マイコン内の演算機能を診断するための問題データを、通信回路を介して送信してよい。
 更に、監視対象となる電子制御装置は、定常時、監視装置から送信された問題データを受信し、マイコン内に予め組み込まれたプログラムを実行することにより回答データを作成してよい。
 更に、監視対象となる電子制御装置は、定常時、監視装置に対し回答データを、通信回路により送信してよい。
 更に、監視装置は、監視対象となる電子制御装置からの回答データを受信し、回答データから監視対象となる電子制御装置のマイコン内の演算機能が正常か否か診断してよい。
 更に、監視装置は、その診断結果が異常と判断した場合、第2リレーをオフに制御してよい。
 更に、監視対象となる電子制御装置は第2リレーをオフに制御された場合、マイコンへ供給される電力が遮断される前に、直ちに前記通信回路とソレノイドバルブの駆動回路への給電を遮断できる構成としてよい。
 本発明によれば、車両用自動変速機の電子制御装置(ATCU)に限らず、昨今の殆どの電子制御装置に実装されているCANなどのネットワーク通信路を利用することにより、他電子制御装置をATCUの監視装置と見立てることができる。
 更に、監視側の電子制御装置から監視対象となる電子制御装置へメインマイコンの機能を診断する問題を送信し、監視対象となる電子制御装置はその問題に対する回答を算出し、監視側の電子制御装置へ返信することにより、監視対象となる電子制御装置側のマイコン故障を検知することが出来る。
 また、監視側の電子制御装置が監視対象となる電子制御装置の異常を検知した場合、監視側で監視対象となる電子制御装置の電源リレーをOFFすることで監視対象となる電子制御装置の動作、自動変速機制御の場合はソレノイドバルブの動作を停止することが可能である。結果、自動変速機は直結ギアでの走行となるため、監視対象となる電子制御装置暴走により電源リレーをOFFすることができずインターロックなど、甚大な被害をもたらすことを防止することができる。
 また、監視対象となる電子制御装置の電源リレーがON固着の場合には、監視装置が監視対象となる電子制御装置へ故障情報を送信することで、監視対象となる電子制御装置自身でスタンバイ状態へ移行する等、フェールセーフ処理を行うことが出来る。
 また、車両に実装されている他電子制御装置を監視装置とすることで、監視対象となる電子制御装置自身へ監視装置を実装する必要がなく、システムコストを低減できる利点がある。
 本発明によれば、電子制御装置の実装面積などハードウェアの制約により遮断回路診断装置を実装できない場合でも、何らかの通信手段を持っていれば、上位の電子制御装置に電源リレーの制御を実施させることで、容易に遮断回路診断が実現可能となる。また、対象電子制御の機能異常時には、上位の電子制御装置が電源リレーを遮断(OFF)制御することで、車両として安全方向に働くような機能を持った電子制御装置であれば適用することができる。
1・・・ATCU、2・・・ELOP、4・・・ATCUリレー、10・・・通信I/F回路、13
・・・通信I/F回路、15・・・ATCUリレー制御回路

Claims (12)

  1. 車載電源と、
    複数の車載制御装置と、
    前記車載電源から車載電装品への電力の供給と遮断とを切り替える第一のスイッチと、
    前記複数の車載制御装置同士を接続する通信ネットワークと、を備えた車両に搭載され、前記第一のスイッチを経由して前記車載電源から電力供給を受ける車載制御装置において、
    前記車載制御装置は、前記複数の車載制御装置中の他の制御装置に供給される電力の供給と遮断とを制御するための外部装置用電力制御回路を備え、
    前記外部装置用電力制御回路は、前記車載電源から前記車載制御装置への電力供給経路に含まれず、かつ前記車載電源から前記他の制御装置への電力供給経路に設けられた第二のスイッチを制御し、
    前記車載制御装置は、前記外部装置用電力制御回路により前記他の制御装置への電力を遮断したときの前記通信ネットワークを介した前記他の制御装置からの通信データの変化に基づき、前記外部装置用電力制御回路を用いた前記第二のスイッチの遮断動作の正常性を確認することを特徴とする車載制御装置。
  2. 前記車載制御装置は、外部から入力される起動用スイッチ信号がローレベルからアクティブレベルへ変化し、制御対象機器の制御が実施される前に前記第二のスイッチの正常性を確認することを特徴とする請求項1記載の車載制御装置。
  3. 前記車載制御装置は、外部から入力される起動用スイッチ信号がローレベルからアクティブレベルへ変化した場合に自己診断を実施し、診断結果が正常のときに、前記第二のスイッチを制御して前記他の制御装置に電力を供給することを特徴とする請求項1記載の車載制御装置。
  4. 前記車載制御装置は、前記他の制御装置からの要求に応じて前記第二のスイッチをOFFに制御することを特徴とする請求項1記載の車載制御装置。
  5. 車載電源と、
    複数の車載制御装置と、
    前記車載電源から車載電装品への電力の供給と遮断とを切り替える第一のスイッチと、
    前記複数の制御装置同士を接続する通信ネットワークと、を備えた車両に搭載される車載制御装置において、
    前記車載制御装置は、前記通信ネットワーク用の通信回路と、
    車載機器を制御するための制御回路と、を備え、
    前記通信回路と前記制御回路とは前記第一のスイッチよりも下流の第二のスイッチを経由して電力が供給され、
    前記第二のスイッチは、前記通信回路を用いて前記車載制御装置が通信を行う他の制御装置により制御され、
    前記車載制御装置は、前記第二のスイッチを経由して電力を供給された後自己診断を実施し、診断結果が正常なときに、前記通信回路を用いて前記他の制御装置へ前記第二のスイッチの正常性確認を要求することを特徴とする車載制御装置。
  6. 前記車両は、車輪に動力を伝達する際の変速比を切り替えるための変速機を備え、
    前記車載制御装置は前記変速機を制御するための変速機制御装置であり、
    前記変速機の筐体に一体的に実装されており、
    前記第二のスイッチを経由して供給される電力が遮断されたときに前記変速機の変速比を所定の変速比に固定、または前記変速機の制御を中止することを特徴とする請求項5記載の車載制御装置。
  7. 前記車両は、車輪に動力を伝達する際の変速比を切り替えるための変速機を備え、
    前記車載制御装置は前記変速機を制御するための変速機制御装置であり、
    前記変速機の筐体に一体的に実装されており、
    前記他の制御装置より前記第二のスイッチの異常情報を前記通信ネットワークを介して受信したときに、前記変速機の変速比を所定の変速比に固定、または前記変速機の制御を中止することを特徴とする請求項5記載の車載制御装置。
  8. 前記車載制御装置は、前記変速機のソレノイドバルブを駆動するための駆動回路と、
    前記駆動回路への駆動信号を出力する制御回路と、を備え、
    前記第二のスイッチがオフになったときに、前記制御回路へ供給される電力が遮断される前に、前記通信回路および前記駆動回路への給電を遮断することを特徴とする請求項6記載の車載制御装置。
  9. 車載電源と、
    前記車載電源から車載電装品への電力の供給と遮断とを切り替える第一のスイッチと、
    複数の制御装置を接続する通信ネットワークと、を備えた車両に搭載され、
    前記第一のスイッチを経由して前記車載電源から電力供給を受ける第一の制御装置と、
    前記第一の制御装置と前記通信ネットワークで接続された第二の制御装置と、を備えた車載制御システムにおいて、
    前記第二の制御装置は、前記通信ネットワーク用の通信回路と、
    車載機器を制御するための制御回路と、を備え、
    前記通信回路と前記制御回路とは前記第一のスイッチよりも下流の第二のスイッチを経由して電力が供給され、
    前記第一の制御装置は、前記第二のスイッチを制御するための外部装置用電力制御回路を備え、
    前記外部装置用電力制御回路により前記第二の制御装置への電力を遮断したときの前記通信ネットワークを介した前記第二の制御装置からの通信データの変化に基づき、前記外部装置用電力制御回路を用いた前記第二のスイッチの遮断動作の正常性を確認することを特徴とする車載制御システム。
  10. 前記第一の制御装置は、前記第二の制御装置への電力を遮断した後、前記第二の制御装置のセルフシャットオフディレイ期間が終了する前に前記第二の制御装置からの通信データの変化を確認し、前記第二の制御装置への電力を回復することを特徴とする請求項12記載の車載制御システム。
  11. 前記車載制御装置は、前記他の制御装置への電力を遮断した後、前記他の制御装置のセルフシャットオフディレイ期間が終了する前に前記他の制御装置からの通信データの変化を確認し、前記他の制御装置への電力を回復することを特徴とする請求項1記載の車載制御装置。
  12. 前記車載制御装置は、前記他の制御装置によって前記第二のスイッチがOFFされた後、前記第二のスイッチがONするまでの期間、セルフシャットオフディレイ期間を継続することを特徴とする請求項5記載の車載制御装置。
PCT/JP2015/066433 2014-06-18 2015-06-08 車載制御装置または車載制御システム WO2015194407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016529248A JP6364486B2 (ja) 2014-06-18 2015-06-08 車載制御装置または車載制御システム
EP15809855.8A EP3159220B1 (en) 2014-06-18 2015-06-08 Vehicle-mounted control device or vehicle-mounted control system
CN201580029310.9A CN106414179B (zh) 2014-06-18 2015-06-08 车载控制装置或车载控制系统
US15/319,025 US10221944B2 (en) 2014-06-18 2015-06-08 Vehicle-mounted control device or vehicle-mounted control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124883 2014-06-18
JP2014-124883 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015194407A1 true WO2015194407A1 (ja) 2015-12-23

Family

ID=54935394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066433 WO2015194407A1 (ja) 2014-06-18 2015-06-08 車載制御装置または車載制御システム

Country Status (5)

Country Link
US (1) US10221944B2 (ja)
EP (1) EP3159220B1 (ja)
JP (1) JP6364486B2 (ja)
CN (1) CN106414179B (ja)
WO (1) WO2015194407A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006762A1 (ja) * 2015-07-07 2017-01-12 日立オートモティブシステムズ株式会社 車両用制御装置
JP2018053979A (ja) * 2016-09-28 2018-04-05 日立オートモティブシステムズ株式会社 変速機制御装置
JP2018078682A (ja) * 2016-11-07 2018-05-17 株式会社デンソー 電子制御装置
JP2019093839A (ja) * 2017-11-21 2019-06-20 株式会社デンソー 電子制御装置
JP2020021308A (ja) * 2018-08-01 2020-02-06 株式会社ジェイテクト 電源監視装置及び電源監視方法
WO2021060546A1 (ja) * 2019-09-27 2021-04-01 株式会社デンソー 電子制御装置
JP7415364B2 (ja) 2019-08-02 2024-01-17 株式会社オートネットワーク技術研究所 車載中継装置、コンピュータプログラム及び故障判定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357760A4 (en) * 2015-09-29 2019-06-19 Hitachi Automotive Systems, Ltd. MONITORING SYSTEM AND VEHICLE CONTROL DEVICE
JP6652103B2 (ja) * 2017-04-19 2020-02-19 株式会社デンソー 車両の自動運転制御システム
DE112018001449T5 (de) * 2017-04-25 2019-12-12 Hitachi Automotive Systems, Ltd. Elektronische Steuereinheit
JP7135211B2 (ja) * 2019-06-24 2022-09-12 日立Astemo株式会社 車載制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196453A (ja) * 2008-02-20 2009-09-03 Denso Corp スイッチ手段の故障検出装置
JP2013006454A (ja) * 2011-06-22 2013-01-10 Autonetworks Technologies Ltd 電源制御システム、電源制御装置及び電源制御方法
JP2013024266A (ja) * 2011-07-16 2013-02-04 Denso Corp 車載制御システム
JP2014091340A (ja) * 2012-10-31 2014-05-19 Hitachi Automotive Systems Ltd 自動車用制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351077A (ja) 1993-06-10 1994-12-22 Mazda Motor Corp 多重伝送装置
JP4600158B2 (ja) 2005-06-01 2010-12-15 トヨタ自動車株式会社 車両の電子制御装置
JP4379448B2 (ja) 2006-08-03 2009-12-09 トヨタ自動車株式会社 自動変速機の診断装置
JP4753085B2 (ja) 2006-10-02 2011-08-17 株式会社デンソー 内燃機関の制御装置
JP4352078B2 (ja) 2007-03-28 2009-10-28 三菱電機株式会社 車載電子制御装置の給電制御回路
JP5315155B2 (ja) * 2009-07-23 2013-10-16 日立オートモティブシステムズ株式会社 半導体素子制御装置、車載用電機システム
JP5136918B2 (ja) 2010-11-15 2013-02-06 株式会社デンソー シフトバイワイヤシステム
JP5633579B2 (ja) * 2010-12-06 2014-12-03 トヨタ自動車株式会社 車両用自動変速機の制御装置
US8795134B2 (en) * 2010-12-25 2014-08-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular automatic transmission
JP2012192754A (ja) * 2011-03-15 2012-10-11 Omron Automotive Electronics Co Ltd 車載機器制御装置
US9218236B2 (en) * 2012-10-29 2015-12-22 Infineon Technologies Ag Error signal handling unit, device and method for outputting an error condition signal
US8786424B2 (en) * 2012-02-15 2014-07-22 Infineon Technologies Ag Error signal handling unit, device and method for outputting an error condition signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196453A (ja) * 2008-02-20 2009-09-03 Denso Corp スイッチ手段の故障検出装置
JP2013006454A (ja) * 2011-06-22 2013-01-10 Autonetworks Technologies Ltd 電源制御システム、電源制御装置及び電源制御方法
JP2013024266A (ja) * 2011-07-16 2013-02-04 Denso Corp 車載制御システム
JP2014091340A (ja) * 2012-10-31 2014-05-19 Hitachi Automotive Systems Ltd 自動車用制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159220A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006762A1 (ja) * 2015-07-07 2017-01-12 日立オートモティブシステムズ株式会社 車両用制御装置
JP2018053979A (ja) * 2016-09-28 2018-04-05 日立オートモティブシステムズ株式会社 変速機制御装置
JP2018078682A (ja) * 2016-11-07 2018-05-17 株式会社デンソー 電子制御装置
JP2019093839A (ja) * 2017-11-21 2019-06-20 株式会社デンソー 電子制御装置
JP7024345B2 (ja) 2017-11-21 2022-02-24 株式会社デンソー 電子制御装置
JP2020021308A (ja) * 2018-08-01 2020-02-06 株式会社ジェイテクト 電源監視装置及び電源監視方法
JP7135548B2 (ja) 2018-08-01 2022-09-13 株式会社ジェイテクト 電源監視装置及び電源監視方法
JP7415364B2 (ja) 2019-08-02 2024-01-17 株式会社オートネットワーク技術研究所 車載中継装置、コンピュータプログラム及び故障判定方法
WO2021060546A1 (ja) * 2019-09-27 2021-04-01 株式会社デンソー 電子制御装置
JP2021057938A (ja) * 2019-09-27 2021-04-08 株式会社デンソー 電子制御装置
JP7063312B2 (ja) 2019-09-27 2022-05-09 株式会社デンソー 電子制御装置

Also Published As

Publication number Publication date
EP3159220B1 (en) 2019-03-13
EP3159220A1 (en) 2017-04-26
CN106414179A (zh) 2017-02-15
US20170146118A1 (en) 2017-05-25
JPWO2015194407A1 (ja) 2017-04-20
CN106414179B (zh) 2019-12-06
US10221944B2 (en) 2019-03-05
EP3159220A4 (en) 2018-02-21
JP6364486B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6364486B2 (ja) 車載制御装置または車載制御システム
WO2017056688A1 (ja) 監視システム及び車両用制御装置
US8862344B2 (en) Clutch actuator and method for the control thereof
EP1892825B1 (en) Redundant motor driving circuit
KR100352023B1 (ko) 페일세이프기구
JP5752266B2 (ja) 電源電圧監視機能を有する電子制御装置及びそれを備えた車両ステアリング制御装置
JP2008267297A (ja) エコラン制御装置及びエンジン再始動方法
JP2008524518A (ja) トランスミッションオイルポンプを監視するための方法及びそれを動作させるための装置
JP6334436B2 (ja) 車両用相互監視モジュール
JP4533270B2 (ja) 自動車用制御装置およびそれの異常監視方法
JP6416718B2 (ja) フェールセーフ回路
JP5067359B2 (ja) 電子制御システムの故障診断装置
CN112889212A (zh) 电磁制动器控制装置和控制装置
JP2006300284A (ja) 車両の故障診断方法及び装置
JP6302852B2 (ja) 車両用電子制御装置
CN110043404B (zh) 燃料泵的控制装置
JP5918720B2 (ja) 制御装置および制御方法
EP3315825B1 (en) Control device for vehicle transmission
JP6473072B2 (ja) 車両制御装置
WO2022254780A1 (ja) 車載用制御装置
JP6248232B2 (ja) 低電圧異常判定装置及び低電圧異常判定方法
JP2017228159A (ja) 制御装置、および制御装置の制御方法
JP6651428B2 (ja) 変速機制御装置
CN113966492A (zh) 车载控制装置
JP4036585B2 (ja) フェールセーフ機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529248

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015809855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15319025

Country of ref document: US

Ref document number: 2015809855

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE