WO2016201862A1 - 移位寄存器单元及其驱动方法、移位寄存器和显示装置 - Google Patents
移位寄存器单元及其驱动方法、移位寄存器和显示装置 Download PDFInfo
- Publication number
- WO2016201862A1 WO2016201862A1 PCT/CN2015/093561 CN2015093561W WO2016201862A1 WO 2016201862 A1 WO2016201862 A1 WO 2016201862A1 CN 2015093561 W CN2015093561 W CN 2015093561W WO 2016201862 A1 WO2016201862 A1 WO 2016201862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- control node
- output
- clock signal
- module
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2092—Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/18—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
- G11C19/182—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
- G11C19/184—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/28—Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
Definitions
- the present disclosure relates to the field of display technologies, and in particular, to a shift register unit and a driving method thereof, a shift register, and a display device.
- the main object of the present disclosure is to provide a shift register unit and a driving method thereof, a shift register and a display device to reduce the number of transistors, which is advantageous for realizing a narrow bezel.
- the present disclosure provides a shift register unit including a first shift register module and a second shift register module; the first shift register module includes:
- a first input module coupled to the start signal input end, for inputting a start signal to the first control node under control of the first clock signal
- a second input module configured to input the first level to the second control node under the control of the first clock signal
- a first output control module configured to input a second level to the first control node under control of the second clock signal and the second control node;
- a second output control module configured to: when the first control node controls the first time Inputting a clock signal to the second control node;
- a first output module configured to input the first clock signal to the first output end under control of the first control node
- a second output module configured to input the first level to the first output end under the control of the second control node
- the second shift register module includes:
- a third input module connected to the first control node, configured to control, by the second clock signal, to input a signal of the first control node to a third control node;
- a fourth input module configured to input the first level to the fourth control node under the control of the second clock signal
- a third output control module configured to input the second level to the third control node under control of the first clock signal and the fourth control node
- a fourth output control module configured to input the second clock signal to the fourth control node under the control of the third control node
- a third output module configured to input the second clock signal to the second output end under the control of the third control node
- a fourth output module configured to input the first level to the second output terminal under the control of the fourth control node
- the first clock signal and the second clock signal are inverted.
- the first input module is connected to the first clock signal and the start signal, and is connected to the first control node, specifically for controlling under the control of the first clock signal.
- An initial phase and a first maintenance phase control the first control node to access the start signal, and control the potential of the first control node to remain invalid during the first maintenance phase;
- the second input module is connected to the first clock signal and the first level, and is connected to the second control node, specifically for controlling the second control node in the first initial phase and the first maintenance phase Accessing the first level;
- the first output control module respectively accesses the second level and the second clock signal, and is respectively connected to the first control node and the second control node, specifically for the second Controlling, by the clock signal and the second control node, the first control node to access the second level in a first maintenance phase;
- the second output control module accesses the first clock signal and is respectively connected to the first control node and the second control node, and is configured to be first under the control of the first control node.
- Output phase control inputs the first clock signal to the second control node;
- the first output module is connected to the first clock signal and is respectively connected to the first control node and the first output end, specifically for controlling the device under the control of the first control node. Outputting a first clock signal to the first output terminal;
- the second output module is connected to the first level, and is respectively connected to the second control node and the first output end, specifically for controlling the The first output outputs the first level.
- the third input module accesses the second clock signal and is respectively connected to the first control node and the third control node, specifically for using the second in the first output stage.
- the clock signal pulls down the potential of the first control node, and controls to input the signal of the first control node to the third control node in the second initial stage under the control of the second clock signal, in the second maintenance Controlling the potential of the third control node to remain inactive;
- the fourth input module is connected to the second clock signal and the first level, and is connected to the fourth control node, specifically for controlling the fourth control in the second initial phase and the second maintenance phase
- the node accesses the first level
- the third output control module respectively accesses the second level and the first clock signal, and is respectively connected to the third control node and the fourth control node, specifically for the first Controlling, by the clock signal and the fourth control node, the third control node to access the second level in a second maintenance phase;
- the fourth output control module accesses the second clock signal and is respectively connected to the third control node and the fourth control node, and is configured to be in the second under the control of the third control node.
- Output phase control inputs the second clock signal to the fourth control node for access;
- the third output module is connected to the second clock signal and is respectively connected to the third control node and the second output end, specifically for controlling the device under the control of the third control node. Outputting a second clock signal to the second output terminal;
- the fourth output module is connected to the first level, and is respectively connected to the fourth control node and the second output end, specifically configured to control the control under the control of the fourth control node.
- the second output outputs the first level
- the first output stage is the second initial stage
- the second output stage is delayed by one-half clock cycle from the first output stage
- the second sustain phase is delayed by one-half clock cycle from the first sustain phase.
- the first input module includes: a first input transistor, a gate accessing the first clock signal, a first pole accessing the start signal, and a second pole being connected to the first control node; as well as,
- the first end is coupled to the first pole of the input transistor, and the second end is coupled to the first clock signal.
- the second input module includes: a second input transistor, the gate is connected to the first clock signal, the first pole is connected to the first level, and the second pole is connected to the second control node .
- the first output control module includes:
- a first control transistor the gate is connected to the second control node, and the first pole is connected to the second level;
- a second control transistor having a gate coupled to the second clock signal, a first pole coupled to the second pole of the first control transistor, and a second pole coupled to the first control node.
- the second output control module includes: a third control transistor, a gate connected to the first control node, a first pole connected to the second control node, and a second pole connected to the first clock signal.
- the first output module includes: a first output transistor, a gate connected to the first control node, a first pole connected to the first output terminal, and a second pole connected to the first clock signal .
- the second output module includes: a second output transistor, the gate is connected to the second control node, the first pole is connected to the first level, and the second pole is connected to the first output end ;as well as,
- the first end is connected to the first level, and the second end is connected to the second control node.
- the third input module includes: a third input transistor, the gate is connected to the second clock signal, the first pole is connected to the first control node, and the second pole is connected to the third control node Connect; and,
- the first pole is connected to the second clock signal, and the second pole is connected to the first control node.
- the fourth input module includes: a fourth input transistor, the gate is connected to the second clock signal, the first pole is connected to the first level, and the second pole is connected to the fourth control node .
- the third output control module includes:
- a fourth control transistor the gate is connected to the fourth control node, and the first pole is connected to the second level;
- a fifth control transistor the gate is connected to the second clock signal, the first pole is connected to the second pole of the fourth control transistor, and the second pole is connected to the third control node.
- the fourth output control module includes: a sixth control transistor, a gate connected to the third control node, a first pole connected to the fourth control node, and a second pole connected to the second clock signal.
- the third output module includes: a third output transistor, the gate is connected to the third control node, the first pole is connected to the second output terminal, and the second pole is connected to the second clock signal .
- the fourth output module includes: a gate connected to the fourth control node, a first pole connected to the first level, and a second pole connected to the second output; and
- a fourth capacitor the first end is connected to the first level, and the second end is connected to the fourth control node.
- the present disclosure also provides a driving method of a shift register unit, including:
- the first input module inputs the start signal to the first control node under the control of the first clock signal
- the second input module inputs the first level to the second control node under the control of the first clock signal
- the first output control module inputs a second level to the first control node under control of the second clock signal and the second control node;
- the first output control module inputs the first clock signal to the second control node under the control of the first control node
- the first output module inputs the first clock signal to the first output terminal under the control of the first control node
- the second output module inputs the first level to the first output terminal under the control of the second control node
- the third input module controls to input the signal of the first control node to the third control node under the control of the second clock signal
- the fourth input module inputs the first level to the fourth control node under the control of the second clock signal
- the third output control module inputs the second level to the third control node under control of the first clock signal and the fourth control node;
- the fourth output control module inputs the second clock signal to the fourth control node under the control of the third control node
- the third output module inputs the second clock signal to the second output terminal under the control of the third control node
- the fourth output module inputs the first level to the second output under the control of the fourth control node.
- the present disclosure also provides a shift register comprising a plurality of stages of the above shift register unit;
- each stage shift register unit includes a start signal input coupled to a third control node of an adjacent upper shift register unit.
- the present disclosure also provides a display device including the above-described shift register.
- the shift register and the display device of the present disclosure control the third control node of the first stage shift register unit to provide the adjacent next stage shift register
- the start signal of the unit ensures that the signal transmission effect between lines is not affected by the display area, the output effect is better, the product yield is higher, and the number of transistors used in the shift register unit of the present application is small, which is advantageous for achieving a narrow border.
- FIG. 1 is a structural diagram of a shift register unit according to an embodiment of the present disclosure
- FIG. 2 is a timing chart of operation of a shift register according to an embodiment of the present disclosure
- FIG. 3 is a circuit diagram of a shift register unit in accordance with an embodiment of the present disclosure.
- the shift register unit of the embodiment of the present disclosure includes a first shift register module 50 and a second shift register module 60.
- the first shift register module 50 includes:
- the first input module 11 is connected to the start signal input terminal for inputting the start signal STV to the first control node A under the control of the first clock signal CLK;
- the second input module 12 is configured to input the first level V1 to the second control node B under the control of the first clock signal CK;
- the first output control module 21 is configured to input the second level V2 to the first control node A under the control of the second clock signal CKB and the second control node B;
- the second output control module 22 is configured to input the first clock signal CK to the second control node B under the control of the first control node A;
- a first output module 31 configured to input the first clock signal CK to the first output terminal Output_1 under the control of the first control node A;
- a second output module 32 configured to input the first level V1 to the first output terminal Output_1 under the control of the second control node B;
- the second shift register module 60 includes:
- the third input module 13 is connected to the first control node A for controlling the input of the signal of the first control node A to the third control node C under the control of the second clock signal CKB;
- the fourth input module 14 is configured to input the first level V1 to the fourth control node D under the control of the second clock signal;
- the third output control module 23 is configured to input the second level V2 to the third control node C under the control of the first clock signal CK and the fourth control node D;
- the fourth output control module 24 is configured to input the second clock signal CKB to the fourth control node D under the control of the third control node C;
- a third output module 33 configured to input the second clock signal CKB to the second output terminal Output_2 under the control of the third control node C;
- a fourth output module 34 configured to input the first level V1 to the second output terminal Output_2 under the control of the fourth control node D;
- the first clock signal CK and the second clock signal CKB are inverted.
- the first control node provides a start signal for the adjacent next-stage shift register module to ensure that the inter-row signal transmission effect is not affected by the display area, and the output effect is Better, the product yield will be higher.
- the first input module is connected to the first clock signal and the start signal, and is connected to the first control node, specifically, under the control of the first clock signal, in the first An initial stage controls the first control node to access the start signal, and controls the potential of the first control node to remain invalid during the first maintenance phase;
- the second input module is connected to the first clock signal and the first level, and is connected to the second control node, specifically for controlling the second control node in the first initial phase and the first maintenance phase Accessing the first level;
- the first output control module respectively accesses the second level and the second clock signal, and is respectively connected to the first control node and the second control node, specifically for the second Controlling, by the clock signal and the second control node, the first control node to access the second level in a first maintenance phase;
- the second output control module accesses the first clock signal and is respectively connected to the first control node and the second control node, and is configured to be first under the control of the first control node.
- Output phase control inputs the first clock signal to a second control node;
- the first output module is connected to the first clock signal and is respectively connected to the first control node and the first output end, and is specifically configured to control, by the first control node, the The first output terminal outputs the first clock signal;
- the second output module is connected to the first level, and is respectively connected to the second control node and the first output end, specifically for controlling the first The output terminal outputs the first level.
- the third input module accesses the second clock signal, and is respectively connected to the first control node and the third control node, specifically for using the second in the first output stage.
- the clock signal pulls down the potential of the first control node, and controls to input the signal of the first control node to the third control node in the second initial stage under the control of the second clock signal, in the second maintenance Controlling the potential of the third control node to remain inactive;
- the fourth input module is connected to the second clock signal and the first level, and is connected to the fourth control node, specifically for controlling the fourth control in the second initial phase and the second maintenance phase
- the node accesses the first level
- the third output control module respectively accesses the second level and the first clock signal, and is respectively connected to the third control node and the fourth control node, specifically for the first Controlling, by the clock signal and the fourth control node, the third control node to access the second level in a second maintenance phase;
- the fourth output control module accesses the second clock signal and is respectively connected to the third control node and the fourth control node, and is used under the control of the third control node.
- Two output stage control inputs the second clock signal to the fourth control node;
- the third output module is connected to the second clock signal and is respectively connected to the third control node and the second output end, specifically for controlling the device when the potential of the third control node is valid. Outputting a second clock signal to the second output terminal;
- the fourth output module is connected to the first level, and is respectively connected to the fourth control node and the second output end, specifically configured to control the control under the control of the fourth control node.
- the second output outputs the second level
- the first output stage is the second initial stage
- the second output stage is delayed by one-half clock cycle from the first output stage
- the second sustain phase is delayed by one-half clock cycle from the first sustain phase.
- the shift register unit when the shift register unit according to the embodiment of the present disclosure includes a transistor that is a p-type transistor, the first level V1 may be a low level VGL, and the second level V2 may be high. Level VGH.
- the first input module 11 is connected to the first clock signal CK and the start signal STV, and is connected to the first control node A, specifically for controlling under the first clock signal CK. Controlling, by the first initial phase a, the first control node to access the start signal (the start signal is low in the first initial phase a), in a first maintenance phase (the first maintenance phase) The phase of the first control node A is controlled to be maintained at a high level, including the phase c, the phase d, the phase e, the phase f, and the period from the phase f to the beginning of the next frame in FIG. 2;
- the second input module 12 is connected to the first clock signal CK and the low level VGL, and is connected to the second control node B, specifically for controlling the first initial phase a and the first maintenance phase.
- the second control node B is connected to the low level VGL;
- the first output control module 21 is respectively connected to the high level VGH and the second clock signal CKB, and is respectively connected to the first control node A and the second control node B, specifically for Controlling, by the second clock signal CKB and the second control node B, the first control node A to access the high level VGH in a stage d included in the first maintenance phase;
- the second output control module 22 accesses the first clock signal CK and is respectively connected to the first control node A and the second control node B for use in the first control node A. Controlling, in the first output stage b, controlling the input of the first clock signal CK to the second control node B;
- the first output module 31 is connected to the first clock signal CK, and is respectively connected to the first control node A and the first output terminal Output_1, specifically for controlling at the first control node A. Next, the control outputs the first clock signal CK to the first output terminal Output_1;
- the second output module 32 is connected to the low level VGL, and is respectively connected to the second control node B and the first output terminal Output_1, specifically for being controlled by the second control node B. Controlling outputting a low level VGL to the first output terminal Output_1;
- the third input module 13 is connected to the second clock signal CKB and is respectively connected to the first control node A and the third control node C, specifically for the second clock signal CKB. Controlling, at a first output stage b, controlling the input of the second clock signal CKB to the second clock signal CKB of the first control node A, and controlling the third control node A during a second initial phase Signal is input to the third control node C, and the third control section is controlled in a second maintenance phase
- the potential of point C is maintained at a high level;
- the second initial phase is the first output phase b, and it can also be understood that the second initial phase is delayed by half a clock cycle from the first initial phase a;
- the sustain phase is delayed by half a clock cycle from the first sustain phase;
- the fourth input module 14 is connected to the second clock signal CKB and the low level VGL, and is connected to the fourth control node D, specifically for controlling the second initial phase and the second maintenance phase.
- the fourth control node D accesses the low level VGL;
- the third output control module 23 is respectively connected to the high level VGH and the first clock signal CK, and is respectively connected to the third control node C and the fourth control node D, specifically for Under the control of the first clock signal CK and the fourth control node D, the stage e included in the second maintenance phase further controls the third control node C to access the high level VGH;
- the fourth output control module 24 accesses the second clock signal CKB and is respectively connected to the third control node C and the fourth control node D for use in the third control node C. Controlling, in the second output stage, controlling the input of the second clock signal CKB to the fourth control node D; the second output stage is delayed by one-half clock cycle from the first output stage b;
- the third output module 33 is connected to the second clock signal CKB and is respectively connected to the third control node C and the second output terminal Output_2, specifically for controlling at the third control node C. Next, the control outputs the second clock signal CKB to the second output terminal Output_2;
- the fourth output module 34 is connected to the low level VGL, and is respectively connected to the fourth control node D and the second output terminal Output_2, specifically for being controlled by the fourth control node D. And controlling the second output terminal Output_2 to output the low level VGL.
- the first input module includes: a first input transistor, a gate accessing the first clock signal, a first pole accessing the start signal, and a second pole being connected to the first control node; as well as,
- the first end is coupled to the first pole of the input transistor, and the second end is coupled to the first clock signal.
- the first input module when the first input module is included in a first row of shift register units included in a shift register, since the clock signal is not required to be changed by a capacitor at a specific stage, the adjacent upper shift register is changed.
- the potential of the control node of the unit, so the first input module may not include the first capacitor.
- the second input module includes: a second input transistor, the gate is connected to the first clock signal, the first pole is connected to the first level, and the second pole is connected to the second control node .
- the first output control module includes:
- a first control transistor the gate is connected to the second control node, and the first pole is connected to the second level;
- a second control transistor having a gate coupled to the second clock signal, a first pole coupled to the second pole of the first control transistor, and a second pole coupled to the first control node.
- the second output control module includes: a third control transistor, a gate connected to the first control node, a first pole connected to the second control node, and a second pole connected to the first clock signal.
- the first output module includes: a first output transistor, a gate connected to the first control node, a first pole connected to the first output terminal, and a second pole connected to the first clock signal .
- the second output module includes: a second output transistor, the gate is connected to the second control node, the first pole is connected to the first level, and the second pole is connected to the first output end ;as well as,
- the first end is connected to the first level, and the second end is connected to the second control node.
- the third input module includes: a third input transistor, the gate is connected to the second clock signal, a first pole is connected to the first control node, and a second pole is connected to the third control node. ;as well as,
- the first pole is connected to the second clock signal, and the second pole is connected to the first control node.
- the fourth input module includes: a fourth input transistor, the gate is connected to the second clock signal, the first pole is connected to the first level, and the second pole is connected to the fourth control node .
- the third output control module includes:
- a fourth control transistor the gate is connected to the fourth control node, and the first pole is connected to the second level;
- a fifth control transistor the gate is connected to the second clock signal, the first pole is connected to the second pole of the fourth control transistor, and the second pole is connected to the third control node.
- the fourth output control module includes: a sixth control transistor, a gate and the first The third control node is connected, the first pole is connected to the fourth control node, and the second pole is connected to the second clock signal.
- the third output module includes: a third output transistor, the gate is connected to the third control node, the first pole is connected to the second output terminal, and the second pole is connected to the second clock signal .
- the fourth output module includes: a gate connected to the fourth control node, a first pole connected to the first level, and a second pole connected to the second output end;
- a fourth capacitor the first end is connected to the first level, and the second end is connected to the fourth control node.
- the transistors employed in all embodiments of the present disclosure may each be a thin film transistor or a field effect transistor or other device having the same characteristics.
- the first pole may be the source or the drain
- the second pole may be the drain or the source.
- the transistor can be classified into an n-type transistor or a p-type transistor according to the characteristics of the transistor.
- all transistors are described by taking a p-type transistor as an example, and it is conceivable that those skilled in the art can perform without creative work when implemented by using an n-type transistor. It is easily conceivable and therefore also within the scope of the embodiments of the present disclosure.
- the first input module includes: a first input transistor M1, a gate accessing the first clock signal CK, a source connected to the start signal STV, and a drain and a drain The first control node A is connected;
- the second input module includes: a second input transistor M2, a gate connected to the first clock signal CK, a source connected to a low level VGL, and a drain connected to the second control node B;
- the first output control module includes:
- a second control transistor M4 a gate connected to the second clock signal CKB, a source connected to a drain of the first control transistor M3, and a drain connected to the first control node A;
- the second output control module includes: a third control transistor M5, a gate connected to the first control node A, a source connected to the second control node B, and a drain connected to the first clock signal CK ;
- the first output module includes: a first output transistor M6, a gate connected to the first control node A, a source connected to the first output terminal Output_1, and a drain connected to the first Clock signal CK;
- the second output module includes: a second output transistor M7, a gate connected to the second control node B, a source connected to the low level VGL, and a drain connected to the first output terminal Output_1; ,
- a first storage capacitor C1 the first end is connected to the low level VGL, and the second end is connected to the second control node B;
- the third input module includes: a third input transistor M8, a gate connected to the second clock signal CKB, a source connected to the first control node A, and a drain connected to the third control node C; as well as,
- Input capacitor C2 the source is connected to the second clock signal CKB, and the drain is connected to the first control node A;
- the fourth input module includes: a fourth input transistor M9, a gate connected to the second clock signal CKB, a source connected to the low level VGL, and a drain connected to the fourth control node D;
- the third output control module includes:
- a fourth control transistor M10 a gate connected to the fourth control node D, and a source connected to a high level VGH;
- a fifth control transistor M11 a gate connected to the second clock signal CKB, a source connected to a drain of the fourth control transistor M10, and a drain connected to the third control node C;
- the fourth output control module includes: a sixth control transistor M12, a gate connected to the third control node C, a source connected to the fourth control node D, and a drain connected to the second clock signal CKB ;
- the third output module includes: a third output transistor M13, a gate connected to the third control node C, a source connected to the second output terminal Output_2, and a drain connected to the second clock signal CKB;
- the fourth output module includes: a fourth output transistor M14, a gate connected to the fourth control node D, a source connected to the low level VGL, and a drain connected to the second output terminal OUT_2; ,
- a second storage capacitor C3 the first end is connected to the low level VGL, and the second end is connected to the fourth control node D;
- the transistors used are all p-type TFTs.
- phase a STV accesses low-voltage turn-on signal, CK is low-voltage turn-on signal, CKB is high-voltage turn-off signal, when CK is low-voltage turn-on signal, M1, M2 and M5 controlled by CK are turned on, when M1 is turned on, STV is connected
- the low voltage turn-on signal is written to the first control node A and stored on C2; at this time, the M6 controlled by the first control node A is turned on, and the low voltage turn-on signal of CK is input to Output_1; and the M2 controlled by the CK is also turned on.
- the potential of the first control node A is a low voltage signal, and the voltage signal is transmitted to the source of M8, but at this time, M8 is controlled by the high voltage off signal of CKB, and does not affect the state of the second shift register module;
- phase b CKB is a low voltage turn-on signal, CK becomes a high voltage turn-off signal; the first control node A in the first shift register module is subjected to the low voltage turn-on signal of CKB in the second shift register module by the action of C2 The influence of the first control node A also pulls down, enhances the output of M6, and also strengthens the output of M8 controlled by CKB in the second shift register module; the enhanced output of M6 will output the high voltage off signal of CK at this time.
- phase c STV accesses high voltage shutdown signal, CKB is high voltage shutdown signal, CK is low voltage open signal.
- CK controlled transistor will be turned on; M1 is turned on, STV is connected
- the high voltage off signal is written to the first control node A, so that the transistors M6 and M5 are turned off; the M2 is turned on, the VGL is written to the second control node B, the M7 is turned on, and the VGL is written to the first shift register module.
- the second shift register module will complete the phase b operation, that is, the pull-down of the third control node C through the capacitor and CK connected to the start signal input terminal in the second-stage shift register unit, and the source of the M13
- the high-voltage shutdown signal of CKB is transmitted to complete the VGH output action of the second shift register module;
- phase d STV is connected to the high voltage off signal, CK is the high voltage off signal, and CKB is the low voltage on signal.
- the second control node B saves the VGL of phase c, turns M7 and M3 on, and turns on M7, and continues to input VGL to the output terminal Output_1 of the first shift register module; VGH is transmitted to the source of M4.
- M4 controlled by CKB is also turned on, and VGH is transmitted to the first control node A through M4, the potential of the first control node A is stabilized, the closing of M6 is stabilized, and the output of Output_1 is stabilized;
- the M8 of the CKB control in the second shift register module is turned on, the VGH of the first control node A is written to the third control node C, and the phase c of the first shift register module is completed;
- the operation of the first shift register module in phase e is the same as that in phase c, and the timing of the first shift register module at phase f is the same as the timing of phase d.
- the first input module inputs the start signal to the first control node under the control of the first clock signal
- the second input module inputs the first level to the second control node under the control of the first clock signal
- the first output control module inputs a second level to the first control node under control of the second clock signal and the second control node;
- the first output control module inputs the first clock signal to the second control node under the control of the first control node
- the first output module inputs the first clock signal under the control of the first control node To the first output end;
- the second output module inputs the first level to the first output terminal under the control of the second control node
- the third input module controls the first control node to be connected to the third control node under the control of the second clock signal
- the fourth input module inputs the first level to the fourth control node under the control of the second clock signal
- the third output control module inputs the second level to the third control node under control of the first clock signal and the fourth control node;
- the fourth output control module inputs the second clock signal to the fourth control node under the control of the third control node
- the third output module inputs the second clock signal to the second output terminal under the control of the third control node
- the fourth output module inputs the first level to the second output under the control of the fourth control node.
- the shift register of the embodiment of the present disclosure includes a plurality of stages of the above shift register unit
- each stage shift register unit includes a start signal input coupled to a third control node of an adjacent upper shift register unit.
- the display device includes the above-described shift register.
- the display device may include a liquid crystal display device such as a liquid crystal panel, a liquid crystal television, a mobile phone, or a liquid crystal display.
- the display device may also include an organic light emitting display or other type of display device such as an electronic reader or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Shift Register Type Memory (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
Claims (18)
- 一种移位寄存器单元,包括第一移位寄存模块和第二移位寄存模块;所述第一移位寄存模块包括:起始信号输入端和第一输出端;第一输入模块,与所述起始信号输入端连接,用于在第一时钟信号的控制下将起始信号输入到第一控制节点;第二输入模块,用于在所述第一时钟信号的控制下将第一电平输入到第二控制节点;第一输出控制模块,用于在第二时钟信号和所述第二控制节点的控制下,将第二电平输入到所述第一控制节点;第二输出控制模块,用于在所述第一控制节点的控制下,将所述第一时钟信号输入到所述第二控制节点;第一输出模块,用于在所述第一控制节点的控制下,将所述第一时钟信号输入到所述第一输出端;以及,第二输出模块,用于在所述第二控制节点的控制下,将所述第一电平输入到所述第一输出端;所述第二移位寄存模块包括:第二输出端;第三输入模块,与所述第一控制节点连接,用于在所述第二时钟信号的控制下,控制将所述第一控制节点的信号输入到第三控制节点;第四输入模块,用于在所述第二时钟信号的控制下将第一电平输入到第四控制节点;第三输出控制模块,用于在第一时钟信号和所述第四控制节点的控制下,将所述第二电平输入到所述第三控制节点;第四输出控制模块,用于在所述第三控制节点的控制下,将所述第二时钟信号输入到所述第四控制节点;第三输出模块,用于在所述第三控制节点的控制下,将所述第二时钟信号输入到所述第二输出端;以及,第四输出模块,用于在所述第四控制节点的控制下,将所述第一电平输入到所述第二输出端;所述第一时钟信号和所述第二时钟信号反相。
- 如权利要求1所述的移位寄存器单元,其中,所述第一输入模块,接入所述第一时钟信号和所述起始信号,与所述第一控制节点连接,具体用于在所述第一时钟信号的控制下,在第一起始阶段和第一维持阶段控制所述第一控制节点接入所述起始信号,在第一维持阶段控制所述第一控制节点的电位维持无效;所述第二输入模块,接入所述第一时钟信号和所述第一电平,与第二控制节点连接,具体用于在第一起始阶段和第一维持阶段控制所述第二控制节点接入所述第一电平;所述第一输出控制模块,分别接入所述第二电平和所述第二时钟信号,并分别与所述第一控制节点和所述第二控制节点连接,具体用于在所述第二时钟信号和所述第二控制节点的控制下,在第一维持阶段进一步控制所述第一控制节点接入所述第二电平;所述第二输出控制模块,接入所述第一时钟信号,并分别与所述第一控制节点和所述第二控制节点连接,用于在所述第一控制节点的控制下在第一输出阶段控制将所述第一时钟信号输入到所述第二控制节点;所述第一输出模块,接入所述第一时钟信号,分别与所述第一控制节点和所述第一输出端连接,具体用于在所述第一控制节点的控制下,控制将所述第一时钟信号输出至所述第一输出端;所述第二输出模块,接入所述第一电平,分别与所述第二控制节点和所述第一输出端连接,具体用于在所述第二控制节点的控制下,控制所述第一输出端输出所述第一电平。
- 如权利要求2所述的移位寄存器单元,其中,所述第三输入模块,接入所述第二时钟信号,并分别与所述第一控制节点和所述第三控制节点连接,具体用于在第一输出阶段通过所述第二时钟信号下拉所述第一控制节点的电位,并在所述第二时钟信号的控制下在第二起始阶段控制将所述第一控制节点的信号输入到第三控制节点,在第二维持阶 段控制所述第三控制节点的电位维持无效;所述第四输入模块,接入所述第二时钟信号和所述第一电平,与第四控制节点连接,具体用于在第二起始阶段和第二维持阶段控制所述第四控制节点接入所述第一电平;所述第三输出控制模块,分别接入所述第二电平和所述第一时钟信号,并分别与所述第三控制节点和所述第四控制节点连接,具体用于在所述第一时钟信号和所述第四控制节点的控制下,在第二维持阶段进一步控制所述第三控制节点接入所述第二电平;所述第四输出控制模块,接入所述第二时钟信号,并分别与所述第三控制节点和所述第四控制节点连接,用于在所述第三控制节点的控制下在第二输出阶段控制将所述第二时钟信号输入到所述第四控制节点接入;所述第三输出模块,接入所述第二时钟信号,分别与所述第三控制节点和所述第二输出端连接,具体用于在所述第三控制节点的控制下,控制将所述第二时钟信号输出至所述第二输出端;所述第四输出模块,接入所述第一电平,分别与所述第四控制节点和所述第二输出端连接,具体用于在所述第四控制节点的控制下,控制所述第二输出端输出所述第一电平;所述第一输出阶段为所述第二起始阶段;所述第二输出阶段比所述第一输出阶段延迟半个时钟周期;所述第二维持阶段比所述第一维持阶段延迟半个时钟周期。
- 如权利要求3所述的移位寄存器单元,其中,所述第一输入模块包括:第一输入晶体管,栅极接入所述第一时钟信号,第一极接入所述起始信号,第二极与所述第一控制节点连接;以及,第一电容,第一端与所述输入晶体管的第一极连接,第二端接入所述第一时钟信号。
- 如权利要求3所述的移位寄存器单元,其中,所述第二输入模块包括:第二输入晶体管,栅极接入所述第一时钟信号,第一极接入所述第一电平,第二极与所述第二控制节点连接。
- 如权利要求3所述的移位寄存器单元,其中,所述第一输出控制模块 包括:第一控制晶体管,栅极与第二控制节点连接,第一极接入所述第二电平;以及,第二控制晶体管,栅极接入所述第二时钟信号,第一极与所述第一控制晶体管的第二极连接,第二极与所述第一控制节点连接。
- 如权利要求3所述的移位寄存器单元,其中,所述第二输出控制模块包括:第三控制晶体管,栅极与所述第一控制节点连接,第一极与所述第二控制节点连接,第二极接入所述第一时钟信号。
- 如权利要求3所述的移位寄存器单元,其中,所述第一输出模块包括:第一输出晶体管,栅极与所述第一控制节点连接,第一极与所述第一输出端连接,第二极接入所述第一时钟信号。
- 如权利要求3所述的移位寄存器单元,其中,所述第二输出模块包括:第二输出晶体管,栅极与所述第二控制节点连接,第一极接入所述第一电平,第二极与所述第一输出端连接;以及,第二电容,第一端接入所述第一电平,第二端与所述第二控制节点连接。
- 如权利要求3所述的移位寄存器单元,其中,所述第三输入模块包括:第三输入晶体管,栅极接入所述第二时钟信号,第一极与所述第一控制节点连接,第二极与所述第三控制节点连接;以及,第三电容,第一极接入所述第二时钟信号,第二极与所述第一控制节点连接。
- 如权利要求3所述的移位寄存器单元,其中,所述第四输入模块包括:第四输入晶体管,栅极接入所述第二时钟信号,第一极接入所述第一电平,第二极与所述第四控制节点连接。
- 如权利要求3所述的移位寄存器单元,其中,所述第三输出控制模块包括:第四控制晶体管,栅极与所述第四控制节点连接,第一极接入第二电平;以及,第五控制晶体管,栅极接入所述第二时钟信号,第一极与所述第四控制晶体管的第二极连接,第二极与所述第三控制节点连接。
- 如权利要求3所述的移位寄存器单元,其中,所述第四输出控制模块包括:第六控制晶体管,栅极与所述第三控制节点连接,第一极与所述第四控制节点连接,第二极接入所述第二时钟信号。
- 如权利要求3所述的移位寄存器单元,其中,所述第三输出模块包括:第三输出晶体管,栅极与所述第三控制节点连接,第一极与所述第二输出端连接,第二极接入所述第二时钟信号。
- 如权利要求3所述的移位寄存器单元,其中,所述第四输出模块包括:栅极与所述第四控制节点连接,第一极接入所述第一电平,第二极与所述第二输出端连接;以及,第四电容,第一端接入所述第一电平,第二端与所述第四控制节点连接。
- 一种移位寄存器单元的驱动方法,包括:在第一时钟信号的控制下,第一输入模块将起始信号输入到第一控制节点;在所述第一时钟信号的控制下,第二输入模块将第一电平输入到第二控制节点;在第二时钟信号和所述第二控制节点的控制下,第一输出控制模块将第二电平输入到所述第一控制节点;在所述第一控制节点的控制下,第二输出控制模块将所述第一时钟信号输入到所述第二控制节点;在所述第一控制节点的控制下,第一输出模块将所述第一时钟信号输入到所述第一输出端;在所述第二控制节点的控制下,第二输出模块将所述第一电平输入到所述第一输出端;在所述第二时钟信号的控制下,第三输入模块控制将所述第一控制节点的信号输入到第三控制节点;在所述第二时钟信号的控制下,第四输入模块将第一电平输入到第四控制节点;在第一时钟信号和所述第四控制节点的控制下,第三输出控制模块将所述第二电平输入到所述第三控制节点;在所述第三控制节点的控制下,第四输出控制模块将所述第二时钟信号输入到所述第四控制节点;在所述第三控制节点的控制下,第三输出模块所述第二时钟信号输入到所述第二输出端;以及,在所述第四控制节点的控制下,第四输出模块将所述第一电平输入到所述第二输出端。
- 一种移位寄存器,包括多级如权利要求1至15中任一权利要求所述的移位寄存器单元;除了所述移位寄存器单元的第一级移位寄存器单元之外,每一级移位寄存器单元包括的起始信号输入端与相邻上一级移位寄存器单元的第三控制节点连接。
- 一种显示装置,包括权利要求17所述的移位寄存器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/306,598 US9881543B2 (en) | 2015-06-19 | 2015-11-02 | Shift register unit, method for driving the same, shift register, and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510346044.4A CN104900189B (zh) | 2015-06-19 | 2015-06-19 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
CN201510346044.4 | 2015-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016201862A1 true WO2016201862A1 (zh) | 2016-12-22 |
Family
ID=54032823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/093561 WO2016201862A1 (zh) | 2015-06-19 | 2015-11-02 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9881543B2 (zh) |
CN (1) | CN104900189B (zh) |
WO (1) | WO2016201862A1 (zh) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900189B (zh) * | 2015-06-19 | 2017-08-01 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
CN105243995B (zh) * | 2015-11-25 | 2017-09-01 | 上海天马有机发光显示技术有限公司 | 移位寄存器及其驱动方法、栅极驱动电路及其相关器件 |
CN105513531B (zh) * | 2016-03-02 | 2018-04-10 | 京东方科技集团股份有限公司 | 移位寄存器单元、驱动方法、栅极驱动电路及显示装置 |
CN105957556A (zh) * | 2016-05-11 | 2016-09-21 | 京东方科技集团股份有限公司 | 移位寄存器单元、栅极驱动电路及其驱动方法、显示装置 |
CN106057143A (zh) * | 2016-05-30 | 2016-10-26 | 京东方科技集团股份有限公司 | 移位寄存器及其操作方法、栅极驱动电路和显示装置 |
KR102578837B1 (ko) * | 2016-09-30 | 2023-09-15 | 엘지디스플레이 주식회사 | 게이트 구동 회로와 이를 이용한 표시장치 |
CN106409259A (zh) * | 2016-11-10 | 2017-02-15 | 信利(惠州)智能显示有限公司 | 双向移位寄存器、多级串接移位寄存装置和液晶显示面板 |
CN106486065B (zh) * | 2016-12-29 | 2019-03-12 | 上海天马有机发光显示技术有限公司 | 移位寄存单元、寄存器、有机发光显示面板和驱动方法 |
CN106782406B (zh) | 2017-02-08 | 2019-04-09 | 京东方科技集团股份有限公司 | 移位寄存器电路及其驱动方法、栅极驱动电路、显示面板 |
CN108417183B (zh) * | 2017-02-10 | 2020-07-03 | 京东方科技集团股份有限公司 | 移位寄存器及其驱动方法、栅极驱动电路、显示装置 |
CN106910453A (zh) * | 2017-05-09 | 2017-06-30 | 京东方科技集团股份有限公司 | 移位寄存器、其驱动方法、栅极集成驱动电路及显示装置 |
CN107103870A (zh) * | 2017-06-27 | 2017-08-29 | 上海天马有机发光显示技术有限公司 | 移位寄存单元、其驱动方法及显示面板 |
CN107784977B (zh) * | 2017-12-11 | 2023-12-08 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置 |
CN108172192B (zh) * | 2018-03-20 | 2020-11-03 | 京东方科技集团股份有限公司 | 移位寄存器单元、驱动方法、栅极驱动电路和显示设备 |
CN108573734B (zh) * | 2018-04-28 | 2019-10-25 | 上海天马有机发光显示技术有限公司 | 一种移位寄存器及其驱动方法、扫描驱动电路和显示装置 |
CN108735162B (zh) | 2018-05-25 | 2020-04-03 | 京东方科技集团股份有限公司 | 显示装置、栅极驱动电路、移位寄存器及其控制方法 |
CN110858469B (zh) | 2018-08-23 | 2021-02-09 | 合肥京东方卓印科技有限公司 | 移位寄存器单元、栅极驱动电路、显示装置及驱动方法 |
CN109616056A (zh) * | 2018-08-24 | 2019-04-12 | 京东方科技集团股份有限公司 | 移位寄存器及其驱动方法、栅极驱动电路和显示装置 |
US11640795B2 (en) | 2018-08-29 | 2023-05-02 | Boe Technology Group Co., Ltd. | Shift register unit, gate drive circuit and drive method |
CN109935201B (zh) | 2018-08-29 | 2020-10-09 | 合肥鑫晟光电科技有限公司 | 移位寄存器单元、栅极驱动电路、显示装置及驱动方法 |
WO2020140292A1 (zh) | 2019-01-04 | 2020-07-09 | 京东方科技集团股份有限公司 | 移位寄存器单元及驱动方法、栅极驱动电路、显示装置 |
CN112133254B (zh) * | 2019-06-25 | 2021-12-17 | 京东方科技集团股份有限公司 | 移位寄存器单元、栅极驱动电路、显示装置和控制方法 |
CN110808012B (zh) * | 2019-11-28 | 2021-02-26 | 京东方科技集团股份有限公司 | 像素电路、移位寄存器单元、栅极驱动电路和显示装置 |
CN210956110U (zh) * | 2019-12-24 | 2020-07-07 | 北京京东方技术开发有限公司 | 一种显示装置 |
KR20220016350A (ko) * | 2020-07-30 | 2022-02-09 | 삼성디스플레이 주식회사 | 스캔 드라이버 및 표시 장치 |
CN111754944B (zh) * | 2020-07-30 | 2021-11-09 | 京东方科技集团股份有限公司 | 移位寄存单元及其驱动方法、栅极驱动电路和显示装置 |
CN114255701B (zh) * | 2020-09-25 | 2022-12-20 | 京东方科技集团股份有限公司 | 移位寄存器单元及驱动方法、驱动电路和显示装置 |
CN113450861B (zh) * | 2021-06-28 | 2024-03-12 | 上海中航光电子有限公司 | 移位寄存单元、电路及驱动方法、显示面板和显示装置 |
CN113763886B (zh) * | 2021-10-29 | 2023-01-10 | 京东方科技集团股份有限公司 | 移位寄存器、驱动电路、显示面板以及显示设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100201668A1 (en) * | 2009-02-11 | 2010-08-12 | Gwang-Bum Ko | Gate Drive Circuit and Display Apparatus Having the Same |
CN102486909A (zh) * | 2010-12-06 | 2012-06-06 | 奇美电子股份有限公司 | 显示器 |
CN102651239A (zh) * | 2012-03-29 | 2012-08-29 | 京东方科技集团股份有限公司 | 一种移位寄存器、驱动电路及显示装置 |
CN102708926A (zh) * | 2012-05-21 | 2012-10-03 | 京东方科技集团股份有限公司 | 一种移位寄存器单元、移位寄存器、显示装置和驱动方法 |
CN103700357A (zh) * | 2013-07-27 | 2014-04-02 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
CN104900189A (zh) * | 2015-06-19 | 2015-09-09 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100698239B1 (ko) * | 2000-08-30 | 2007-03-21 | 엘지.필립스 엘시디 주식회사 | 쉬프트 레지스터 회로 |
JP2006106320A (ja) | 2004-10-05 | 2006-04-20 | Alps Electric Co Ltd | 液晶表示装置の駆動回路 |
JP4990034B2 (ja) * | 2006-10-03 | 2012-08-01 | 三菱電機株式会社 | シフトレジスタ回路およびそれを備える画像表示装置 |
WO2009104307A1 (ja) | 2008-02-19 | 2009-08-27 | シャープ株式会社 | シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法 |
TWI571842B (zh) * | 2012-11-01 | 2017-02-21 | 友達光電股份有限公司 | 閘極掃描器驅動電路及其移位暫存器 |
JP5752216B2 (ja) * | 2013-11-29 | 2015-07-22 | 株式会社ジャパンディスプレイ | 表示装置 |
CN104318888B (zh) * | 2014-11-06 | 2017-09-15 | 京东方科技集团股份有限公司 | 阵列基板栅极驱动单元、方法、电路和显示装置 |
CN104299595B (zh) * | 2014-11-06 | 2016-08-24 | 京东方科技集团股份有限公司 | 移位寄存器单元、移位寄存器和显示装置 |
CN104318904B (zh) * | 2014-11-20 | 2017-08-01 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、移位寄存器、显示装置 |
-
2015
- 2015-06-19 CN CN201510346044.4A patent/CN104900189B/zh active Active
- 2015-11-02 WO PCT/CN2015/093561 patent/WO2016201862A1/zh active Application Filing
- 2015-11-02 US US15/306,598 patent/US9881543B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100201668A1 (en) * | 2009-02-11 | 2010-08-12 | Gwang-Bum Ko | Gate Drive Circuit and Display Apparatus Having the Same |
CN102486909A (zh) * | 2010-12-06 | 2012-06-06 | 奇美电子股份有限公司 | 显示器 |
CN102651239A (zh) * | 2012-03-29 | 2012-08-29 | 京东方科技集团股份有限公司 | 一种移位寄存器、驱动电路及显示装置 |
CN102708926A (zh) * | 2012-05-21 | 2012-10-03 | 京东方科技集团股份有限公司 | 一种移位寄存器单元、移位寄存器、显示装置和驱动方法 |
CN103700357A (zh) * | 2013-07-27 | 2014-04-02 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
CN104900189A (zh) * | 2015-06-19 | 2015-09-09 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US9881543B2 (en) | 2018-01-30 |
US20170186360A1 (en) | 2017-06-29 |
CN104900189A (zh) | 2015-09-09 |
CN104900189B (zh) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016201862A1 (zh) | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 | |
US10685616B2 (en) | Shift register circuit, method for driving the same, gate drive circuit, and display panel | |
EP3232430B1 (en) | Shift register and drive method therefor, shift scanning circuit and display device | |
WO2016070546A1 (zh) | 阵列基板栅极驱动单元、方法、电路和显示装置 | |
US10497454B2 (en) | Shift register, operation method thereof, gate driving circuit and display device | |
US20180122289A1 (en) | Shift register, driving method, gate driving circuit and display device | |
US20150131771A1 (en) | Shift register unit, driving method, gate driving circuit and display device | |
US9293223B2 (en) | Shift register unit, gate driving circuit and display device | |
WO2017107285A1 (zh) | 用于窄边框液晶显示面板的goa电路 | |
US10121442B2 (en) | Driving methods and driving devices of gate driver on array (GOA) circuit | |
WO2016101618A1 (zh) | 移位寄存器单元及其驱动方法、移位寄存器电路以及显示装置 | |
US20180174521A1 (en) | Shift register unit, its driving method, gate driver circuit and display device | |
WO2016188033A1 (zh) | 移位寄存器单元、驱动方法、栅极驱动电路和显示装置 | |
US10878757B2 (en) | Shift register and time-sharing controlling method thereof, display panel and display apparatus | |
KR101989721B1 (ko) | 액정 디스플레이 장치 및 그 게이트 드라이버 | |
US9589667B2 (en) | Gate drive circuit and drive method for the same | |
WO2013152604A1 (zh) | 移位寄存器单元及其驱动方法、移位寄存器和显示装置 | |
WO2019015630A1 (zh) | 移位寄存器单元、移位寄存器单元的驱动方法、栅极驱动电路、栅极驱动电路的驱动方法和显示装置 | |
US20180218686A1 (en) | Goa circuit | |
US10403210B2 (en) | Shift register and driving method, driving circuit, array substrate and display device | |
JP6630435B2 (ja) | Gip回路及びその駆動方法、並びにフラットパネルディスプレイ装置 | |
WO2016095382A1 (zh) | 扫描驱动电路及显示装置 | |
US10467966B2 (en) | Shift register and a method for driving the same, a gate driving circuit and display apparatus | |
US20170193938A1 (en) | Shift register unit, shift register, gate driving circuit and display apparatus | |
WO2018145472A1 (zh) | 移位寄存器电路及其驱动方法、栅极驱动电路、显示面板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15306598 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895430 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895430 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895430 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2018) |