WO2016189767A1 - 積鉄心構造体、及びこれを備えた変圧器 - Google Patents

積鉄心構造体、及びこれを備えた変圧器 Download PDF

Info

Publication number
WO2016189767A1
WO2016189767A1 PCT/JP2015/084231 JP2015084231W WO2016189767A1 WO 2016189767 A1 WO2016189767 A1 WO 2016189767A1 JP 2015084231 W JP2015084231 W JP 2015084231W WO 2016189767 A1 WO2016189767 A1 WO 2016189767A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
iron core
iron
product
leg
Prior art date
Application number
PCT/JP2015/084231
Other languages
English (en)
French (fr)
Inventor
篠原 誠
邦彦 安東
天兒 洋一
佐藤 孝平
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to US15/539,775 priority Critical patent/US20170352466A1/en
Priority to JP2017520206A priority patent/JP6359767B2/ja
Priority to CN201580070581.9A priority patent/CN107112113B/zh
Priority to EP15893399.4A priority patent/EP3306626A4/en
Priority to KR1020177015442A priority patent/KR20170083082A/ko
Publication of WO2016189767A1 publication Critical patent/WO2016189767A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers

Definitions

  • the present invention relates to a core structure and a transformer including the same.
  • the core structure of the transformer is roughly divided into a wound core and a stacked core.
  • Winding iron cores are mainly used in distribution transformers, and iron cores are used in small transformers for power electronics and large-capacity transformers that are larger than distribution transformers.
  • Transformer core materials include silicon steel sheets and amorphous alloys. Amorphous transformers that use amorphous alloys for iron core materials are known as transformers with lower energy loss and better energy consumption than silicon steel plate transformers that use silicon steel plates for iron core materials. Yes.
  • an iron core having a larger cross-sectional area is required for a large-capacity transformer, and the iron core width and laminated thickness are much larger than those of a normal transformer iron core.
  • an amorphous alloy is a material having a thickness of about 1/10 that of a silicon steel plate, and the number of laminated layers becomes enormous in order to manufacture an iron core used for a large capacity transformer.
  • the material width of the amorphous alloy that can be manufactured is narrower than the material width required for the iron core of the large-capacity transformer, and the variation of the material width to be supplied is small. Therefore, in order to manufacture a large capacity transformer with an amorphous material, the material width of the iron core may be insufficient.
  • Patent Document 1 JP 2012-138469
  • Patent Document 2 JP 2012-138469
  • An amorphous transformer having an amorphous iron core formed of an amorphous material and having a lap portion arranged on the upper portion and self-standing substantially vertically in a state designated by the iron core supporting member, and a coil inserted into the amorphous iron core.
  • the member includes an iron core support member that supports a side surface of the amorphous iron core and a corner portion support member that supports a corner portion of the iron core, and is integrated, and the iron core support member substantially extends along at least one side surface of the iron core. It is characterized by being arranged vertically ”, but it is described as a method for making a large-capacity transformer. Not disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-186082
  • Patent Document 2 states that “amorphous whose work efficiency is improved by making it possible to easily form a unit polymer composed of a polymer of ribbons of an amorphous magnetic alloy foil.
  • a method of manufacturing a laminated iron core is proposed in which a unit polymer 10 is formed by cutting a strip polymer formed by superposing strips of a plurality of amorphous magnetic alloy foils into a predetermined length.
  • the unit polymer laminated block 11 is formed by stacking the units on the work table by taking the unit polymers 10 constituting the laminated block 11 in order from the top.
  • leg portions and yoke portions of the core product and the structure of the core product made of an amorphous alloy is disclosed.
  • a core which is formed by laminating it is not possible to produce a core of a large-capacity transformer.
  • JP 2012-138469 A Japanese Patent Laid-Open No. 11-186082
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • the stacked core structure of the present invention includes a plurality of stacked core blocks formed by stacking core materials, and the stacking direction is It is characterized by comprising a stacked iron core arranged side by side in different directions, a first frame body along the outer periphery of the stacked core, and a partition plate arranged between a plurality of stacked core blocks.
  • a large-capacity transformer having a core structure can be easily manufactured using an amorphous alloy.
  • Front view of the contents of the transformer of the first embodiment of the present invention Side view of the contents of the transformer of the first embodiment of the present invention
  • the perspective view of the laminated body of the iron core used for the transformer of 1st Example of this invention Front view of the first laminated block of the iron core used in the transformer of the first embodiment of the present invention
  • Front view of the second laminated block of the iron core used in the transformer of the first embodiment of the present invention The front view of the laminated body of the 1st laminated block and the 2nd laminated block of an iron core used for the transformer of the 1st example of the present invention.
  • Sectional view of the legs of the iron core used in the transformer of the first embodiment of the present invention Sectional view of yoke part of iron core used in transformer of first embodiment of the present invention
  • Front view of laminated core of second embodiment Front view of laminated core of third embodiment
  • Front view of laminated core of fourth embodiment Sectional view of the legs of the iron core of the fifth embodiment
  • Sectional view of the iron core of the sixth embodiment Sectional view of the legs of the iron core of the seventh embodiment
  • Sectional view of the yoke part of the iron core of the eighth embodiment Sectional view of the legs of the iron core of the ninth embodiment
  • Example 1 of the present invention will be described with reference to FIGS. 1 and 2 illustrate the internal structure of the transformer of the first embodiment.
  • the content structure of the transformer of the present invention includes an iron core 100, a coil 200, an upper clamp 300, a lower clamp 400, an iron core fixing bracket 500, a clamp tightening stud 600, and a base 700.
  • the iron core fixing bracket 500 is a cylindrical member having a quadrangular cross section surrounding the periphery of the laminated iron cores 100 and is disposed so as to penetrate the coil 200.
  • the upper clamp 300 and the lower clamp 400 are tightened by the clamp tightening stud 600 to fix the iron core 100 arranged in the iron core fixing bracket 500.
  • the iron core fixing bracket 500 is fixed to the upper clamp 300 and the lower clamp 400 with bolts.
  • the lower clamp 400 is fixed to the base 700 arranged at the lowest position with bolts.
  • FIG. 3 (a) is a perspective view of the iron core 100 shown in FIG. 1, in which the coil 200, the upper clamp 300, the lower clamp 400, the iron core fixing bracket 500, and the base 700 are removed.
  • the iron core 100 is configured by arranging an iron core material 107 having a predetermined width and an iron core material 108 in parallel, and a plurality of plate-like iron core materials are laminated in the Y-axis direction.
  • a thin material such as an amorphous alloy material
  • a stack of about 15 to 20 sheets is defined as one stack unit (hereinafter referred to as a stack block).
  • the iron core 100 is configured by stacking.
  • a material boundary partition 900 that is a plate-like member is sandwiched between the core material 107 and the core material 108 and between the core material 110 and the core material 111.
  • a plurality of laminated blocks are laminated to constitute the iron core 100, and a laminated surface partition 800, which is a plate-like member, is sandwiched between parts of the laminated blocks. Details regarding the material boundary partition 900 and the laminated surface partition 800 will be described later with reference to FIG.
  • the iron core 100 is a part of three iron core legs and connects the core portion (the periphery of the cross section A) disposed inside the coil 200 in FIGS. It consists of a yoke part (periphery of the cross section B) fixed by the lower clamp 400.
  • the core part is a part of the iron core members 107, 108, 110, and 111 and is disposed inside the coil 200
  • the yoke part is the iron core members 101, 102, 104, and 105. means. Details of the core portion will be described later with reference to FIG. 4, and details of the yoke portion will be described later with reference to FIG.
  • FIG. 3 (b) is a front view of the first laminated block
  • FIG. 3 (c) is a front view of the second laminated block laminated adjacent to the first laminated block.
  • FIG.3 (d) is a front view which shows the state which accumulated FIG.3 (b) and FIG.3 (c).
  • the material boundary partition 900 is omitted, but the material boundary partition 900 is provided between each of the iron core materials 101 and 102, 104 and 105, 107 and 108, and 110 and 111. Inserted.
  • each laminated block is constituted by laminating, for example, about 15 to 20 pieces of the same core material in the depth direction of the drawing.
  • FIG. 3 (b) and FIG. 3 (c) are in an inverted relationship.
  • the iron core 100 in FIG. 3 (a) is obtained by laminating a plurality of FIG. 3 (d) and inserting a material boundary partition 800 and a laminated surface partition 900. It is configured by alternately laminating 3 (c) laminated blocks.
  • the first and second laminated blocks are laminated so that the boundary between the iron core material 110 and the iron core material 111 is in a straight line, and the iron core material 107 and the iron core material 108 are laminated.
  • the first and second laminated blocks are laminated so that the boundary portion of the first and second laminated blocks is in a straight line, the first and second laminated blocks are shifted by a predetermined width at the position of the joint 115.
  • the amount of deviation is determined in accordance with the shape of the central iron core leg, and is, for example, about a dozen mm, and can be arbitrarily selected according to the design specifications.
  • the joint 115 between the core material 111 of the central core leg and the core material 101 of the yoke part is 45 degrees with respect to the extending direction (Z-axis direction) of the core material 111 of the central core leg.
  • the angle of the joint 115 is not limited to this.
  • the two core materials 101 arranged on the left and right sides of the core material 110 and the core material 111 constituting the center core leg are divided into two members by the presence of the center core leg. ing.
  • the joint portion 115 is formed at an angle of 60 degrees with respect to the direction in which the iron core material 111 extends (Z-axis direction)
  • the iron core material 101 is not divided and can be a single connected member.
  • the assemblability of the upper yoke portion is improved.
  • the angle of the joint portion 115 can be changed in consideration of the workability of the upper yoke portion, and the angles on the inner peripheral side and the outer peripheral side can be different. For example, by making the inner circumference side at an angle that increases the magnetic resistance, the magnetic flux concentrated on the inner circumference can be moved to the outer circumference side, and the magnetic flux of the iron core leg can be made uniform.
  • the amorphous alloy is much thinner than the silicon steel plate, and the thickness tends to be uneven. Therefore, it is possible to increase the flatness of the laminated block by combining the thick and thin portions well. It is also possible to obtain the required flatness by inserting a thin insulating material or silicon steel plate between the laminated blocks.
  • FIG. 4 shows a cross-sectional view of section A in FIG.
  • a stacked surface partition 800 having a plane parallel to the core material is disposed.
  • a plate-shaped material boundary partition 900 is disposed between the laminated block of the iron core material 107 and the laminated block of the iron core material 108.
  • the laminated surface partition 800 and the material boundary partition 900 are made of an insulating material or a metal that is insulated with a varnish or the like.
  • the outer periphery of the iron core material 107 and the iron core material 108 is surrounded by an iron core fixing bracket 500 (not shown in FIG. 3A).
  • the iron core fixing bracket 500 is formed of a high strength material such as iron or epoxy resin.
  • the iron core 100 is formed by laminating the iron core material 107 and the iron core material 108 along the iron core fixing bracket 500 and the material boundary partition 900.
  • the end face of the amorphous alloy tends to be uneven as compared with the end face of the silicon steel sheet that has been slit. Therefore, the laminating workability can be improved by disposing the material boundary partition 900 and the iron core fixing bracket 500 that serve as guide members on both sides of the iron core as in this embodiment.
  • the end surfaces of the joint portion 115 can be neatly arranged, the loss at the joint portion 115 can be suppressed and the iron core characteristics can be improved.
  • the laminated surface partition 800 can serve as a reference surface when laminating iron cores, and can also serve as a core in the laminating direction, so that the strength of the iron core legs can be increased, The iron core is strong against vibration during transportation.
  • the iron core fixing bracket 500 is a conductor such as iron, it is necessary to consider that the circuit in the same direction as the coil is not formed by the laminated surface partition 800, but these considerations are not necessary if it is made of an insulating material. . Further, even if it is constituted by a conductor, it is sufficient that it is divided at at least one location, and the laminated surface partition 800 can be arranged at an arbitrary position in the lamination direction (Y direction) other than the drawing.
  • varnish By applying varnish to the contact area with the core fixing bracket 500, laminated surface partition 800, and material boundary partition 900 at the time of lamination work, it can be fixed to some extent in the drying process after assembly, resulting in a higher strength configuration. it can.
  • FIG. 5 shows a cross-sectional view of the cross section B of FIG.
  • the outer periphery of the iron core material 104 and the iron core material 105 is surrounded by an iron core fixing bracket 500 (not shown in FIG. 3A).
  • the tightening in the stacking direction is performed by a lower clamp 400 not shown in FIG.
  • amorphous alloy iron core it is not possible to expect an increase in strength by tightening as in the case of a silicon steel plate, but excessive tightening causes a significant deterioration in properties. Therefore, it is necessary to have a structure that does not depend on the strength of the iron core so that it can withstand the safety of assembly work and transport.
  • the core fixing bracket 500 and the material boundary partition 900 of the present invention also have a function of preventing over-tightening by the upper clamp 300 or the lower clamp 400, and the dimensions are set so that tightening from both sides in the stacking direction becomes an appropriate dimension. It is determined.
  • the lower clamp 400 has a fixing portion to the base 700 located at the lower part of the contents structure, and is fixed by a bolt.
  • a gap 1000 between the base 700 and the iron core fixing bracket 500 is filled with an insulating material such as a press board to prevent downward movement.
  • FIG. 6 shows only the iron core fixed structure extracted from Figure 1.
  • iron core fixing bracket 500 At the upper and lower ends of the iron core fixing bracket 500, there are provided iron core fixing metal fitting coupling portions 503 for connecting the upper metal fitting 300 and the lower metal fitting 400. As shown in FIG. Fastened with bolts to 400.
  • the coil 200 is disposed at a position between the upper and lower iron core fixing bracket fasteners 503.
  • the procedure for stacking iron cores will be explained. Since the upper yoke portion is formed last, first, the upper fastening hardware 300, the lower fastening hardware 400, and the iron core fixing hardware 500 that are the skeleton are fastened with bolts for the other parts.
  • the fastening of the lower clamp and the iron core fixing bracket 500 will be described as an example.
  • the lower clamp is arranged on both sides of the iron core 100. First, one of the lower clamps is clamped.
  • the metal fitting, for example, the left lower metal fitting 400 and the iron core fixing metal 500 are fastened with bolts.
  • FIG. 5 has already stood up, the lower clamp 400 and the iron core fixing bracket 500 on the left in FIG.
  • the core material is laminated from above (corresponding to the right side in the standing state of FIG. 5) using the core fixing bracket 500 as a guide member. Thereafter, the other lower clamp is attached, and both lower clamps 400 are tightened with the clamp clamp stud 600 (see FIG. 1). Similarly, the core portion is laminated, and then the core portion is reversed 90 degrees with a reversing machine so that the coil 200 can be inserted, and the coil 200 is inserted.
  • FIG. 6 if the members of the iron core fixing bracket 500 in the region disposed in the yoke portion are 501, and the members in the region disposed in the core portion are iron core fixing bracket members 502, the dimension adjustment is performed between 501 and 502. For this reason, an insulating material such as a press board is sandwiched, but this position may be welded to form an integral structure of 501 and 502.
  • a cylindrical stopper for preventing over-tightening may be disposed on the clamp fastening stud 600, and the structural strength may be improved by expanding the cross-sectional area of the cylinder and increasing the contact area.
  • the lamination of the upper yoke part will be described.
  • the respective iron cores need to be accurately arranged with respect to each other.
  • each amorphous alloy is very thin, the laminated block of the amorphous alloy is liable to bend and the laminated body to be broken, and the workability is low as it is. Therefore, an iron plate guide member having a thickness of 1 mm or less is disposed on the outermost periphery in the stacking direction of the yoke portion iron core, and the yoke portion iron core is sandwiched between the iron plate guide members.
  • the iron plate guide member may be a member having a length substantially equal to that of the yoke portion iron core in order to stabilize the entire yoke portion iron core, or may be a short iron plate guide member disposed only around the joint 115. .
  • Assembling work is performed on the inner core first, then the material boundary partition 900 is placed, and finally the outer core is worked.
  • the iron plate guide member is not removed until the insertion of the laminated body of several blocks is completed, but is removed after the amorphous alloy is stabilized to a certain degree of laminated thickness. Repeat this process to insert all blocks.
  • a PET resin film having a thickness of about 0.05 mm can be used as a guide.
  • the blocks of the upper yoke so that they protrude from the yoke iron core by about 1 mm in the longitudinal direction of the yoke iron core, and the joint 115 is protruded from the film.
  • this guide can be sandwiched in advance when the core is laminated.
  • the upper yoke part As another method of stabilizing the upper yoke part during assembly work, there is a method of resin coating around the joint part. A small amount of coating material is applied to each of the laminated blocks on the end surfaces of the yoke cores that have been cut and laminated.
  • the coating material a soft resin with as little characteristic deterioration as possible is preferable, but a hard material may be used although the characteristic deterioration is large depending on the working environment and the size of the iron core.
  • FIG. 7 shows a front view of the iron core 100 in the second embodiment of the present invention. Similar to FIG. 3d of the first embodiment, two core laminates of iron core materials 107 and 108, 101 and 102, 104 and 105 are arranged side by side, and the first laminated block and the second laminated block are laminated. Yes.
  • the difference from the first embodiment is that the material widths of the iron core materials 107 and 108 are different from each other.
  • 101 and 102 and 104 and 105 have different material widths.
  • the laminated block of the core material 110 having a small material width and the laminated block of the iron core material 111 having a large material width are arranged in parallel, and these are the same as in the first embodiment.
  • the stacked blocks are stacked with the left and right being interchanged.
  • the core material 111 having a large material width is overlapped by a predetermined width between stacked blocks adjacent in the stacking direction.
  • a region between the boundary line between the iron core materials 110 and 111 in the first laminated block and the boundary line between the iron core materials 110 and 111 in the second laminated block is an overlap margin 117 of the iron core material 111.
  • the material margin partition 900 cannot be placed on the central core leg due to the overlap margin 117. However, since the overlap margin 117 functions like an axis, the core leg can be omitted even if the material boundary partition 900 is omitted. Strength is ensured.
  • This overlap margin 117 is a difference in material width between the materials 107 and 108, 101 and 102, 104 and 105, and 110 and 111. For the purpose of omitting the material boundary partition 900, it can be arbitrarily selected according to the shape of the iron core.
  • the example in which the core materials 110 and 111 used in the first laminated block are turned over as they are and used in the second laminated block has been described.
  • the shape of the iron core material constituting the second laminated block is different from the iron core materials 110 and 111 constituting the first laminated block.
  • the boundary portion of the iron core material can be aligned between the first laminated block and the second laminated block.
  • the material boundary partition 900 can be inserted into this boundary portion.
  • the core material having a wide material width is used for the core materials 101 and 104 on the inner peripheral side, and the core material having a narrow material width is disposed on the core materials 102 and 105 on the outer peripheral side, thereby implementing the first embodiment.
  • the core materials 101 and 104 that are completely divided can be formed as one member.
  • the amorphous alloy has poorer properties as the material width is larger.
  • the magnetic flux concentrated on the inner circumference side can be dispersed on the outer circumference side, and the effect of improving the characteristics by uniformizing the magnetic flux of the iron core legs can be obtained. It is done.
  • FIG. 8 shows a front view of the iron core 100 in the third embodiment of the present invention. Similar to FIG. 3d of the first embodiment and FIG. 7 of the second embodiment, two core laminates of iron core materials 107 and 108, 101 and 102, and 104 and 105 are arranged side by side, Two laminated blocks are laminated.
  • the core materials 110 and 111 constituting the central core leg have the same width, whereas the core materials 107 and 108 constituting the outer core leg and the core materials 101 and 102 of the yoke part are different from each other. It is wide.
  • the center core leg is composed of a combination of two cores of the two different widths that make up the outer core leg, so the center core leg is better than the outer core leg.
  • the core cross-sectional area is large. Since the central core leg is disposed between the core legs on both sides and the coil 200, heat is easily generated and it is harder to cool than the core legs on both sides. If the core temperature rises without sufficiently cooling the core, the properties of the core will deteriorate.
  • the load applied to the central core leg is reduced by making the cross-sectional area of the central core leg, which is likely to cause characteristic deterioration due to temperature rise, wider than the core legs on both sides, and the characteristic deterioration in the central core leg is reduced. Is suppressed.
  • the core cross-sectional area is made larger than that of the outer core leg, but conversely, two core materials with narrow material width are combined with the outer core leg.
  • the core cross-sectional area can be made smaller than that of the central core leg.
  • FIG. 9 shows a front view of the iron core 100 in the fourth embodiment of the present invention.
  • three iron core materials are arranged side by side, and the first laminated block and the second laminated block are laminated.
  • the iron core leg in the center is made of iron core material 110 ⁇ 112. If the core materials 110 and 112 having the same shape are also used, the type of material can be suppressed and the manufacturing cost can be suppressed.
  • FIG. 9 shows an example in which three iron cores having the same material width are arranged side by side, iron core materials having different widths can be used in part.
  • An iron core 100 configured by arranging four or more iron core materials is also an example of an embodiment of the present invention. It is an example of the present invention that at least some of the material widths are different widths.
  • FIG. 10 shows a sectional view of the core leg of the core 100 in the fifth embodiment of the present invention.
  • the iron core 100 shown in FIG. 4 has a large gap between the coil 200 and the iron core fixing bracket 500, and the ratio of the iron core area (space factor) to the inside of the coil is low. End up. Therefore, in this example, the width of the iron core material located near the center of the lamination direction (Y-axis direction) with the iron core 100 is made wider than the width of the iron core material arranged outside the lamination direction (Y-axis direction). ing. With this configuration, since the cross-sectional shape of the iron core 100 is close to the cylindrical shape of the coil, the gap between the coil 200 and the iron core fixing bracket 500 can be reduced, and the space factor can be increased.
  • FIG. 11 An example in which three or more types of iron core widths are used as shown in FIG. 11 is also a part of this embodiment.
  • the space factor can be further increased by combining the iron cores having a larger width and bringing the cross-sectional shape of the iron core closer to a circle.
  • the structure of the iron core is complicated and the assemblability is deteriorated.
  • the iron core fixing bracket 500 as a guide for the iron core laminating work as in the present invention, the assemblability is improved. The decrease can be suppressed. Moreover, the reinforcement effect is also obtained after lamination.
  • FIG. 11 shows a sectional view of the core leg of the core 100 in the sixth embodiment of the present invention.
  • the outer shape of the iron core is made closer to the cylindrical shape of the coil 200 by varying the iron core width according to the position of the lamination method (Y-axis direction).
  • the outermost periphery in the stacking direction is composed of a single stacked block, and a plurality of stacked blocks are not arranged in the X-axis direction. For this reason, the material boundary partition 900 does not reach the outermost periphery in the stacking direction (Y-axis direction).
  • the iron core fixing bracket 500 has a multistage shape along the outer shape of the iron core.
  • the material width is clearly different between the outermost laminated block in the laminating direction (Y-axis direction) and the innermost laminated block, and the tightening weight applied from the outermost laminated block side is the inner laminated layer. It has a structure that is received only in a partial area of the block. In order to reduce this bias in weight, for example, an iron plate, silicon steel plate, thick press board, etc. wider than the inner laminated block area must be inserted between the outermost laminated block and the inner laminated block. You can also.
  • the size of the circumscribed circle of the iron core fixing bracket 500 is made slightly larger than the inner circumference of the coil 200, and it is possible to maintain a good contact state after insertion by inserting it while deforming contact when inserting the coil.
  • This dimension adjustment is also adjusted by the dimensions of the coil inner peripheral bobbin after drying and lubrication, but can be within a range of, for example, 1 mm.
  • the bobbin is preferably a metal such as iron from the viewpoint of strength.
  • the bobbin placed on the inner circumference of the coil is inserted into the coil by inserting a groove with the same shape as the corner at the position corresponding to the corner of the core fixing bracket 500 after inserting the core. It can function as an insertion guide. Further, after the core is inserted, a function of fixing the core can be provided.
  • the bobbin in this case is preferably a press board having a thickness of about 3 mm, for example.
  • FIG. 12 is a cross-sectional view of the iron core leg of the iron core 100 according to the seventh embodiment of the present invention.
  • a cylindrical peripheral fixing material 1100 is arranged around the iron core fixing bracket 500 of FIG.
  • the peripheral fixing material 1100 is formed in a substantially circular shape by connecting two semicircular members on an extension line of the material boundary partition 900.
  • a press board or an iron plate is desirable for an oil-filled transformer, and plastic, resin, or insulating paper is desirable for a molded transformer.
  • plastic, resin, or insulating paper is desirable for a molded transformer.
  • One member may be used. Even a hard and thick material such as an iron plate or press board that cannot be opened and closed by human power can be made into a single member with a substantially cylindrical shape as long as it has an opening enough to contain the core material. is there.
  • This peripheral fixing material 1100 is fixed by being sandwiched and fixed between the outermost periphery of the iron core 100 in the stacking direction (Y-axis direction) and the upper fastener 300 or the lower fastener 400 in the yoke portion, and no fastener such as the core portion is disposed. Is fixed with an insulating tape or the like in the circumferential direction. If this embodiment is adopted in a molded transformer in which the appearance is particularly important, the joint surface and the internal structure can be hidden. Further, dust and dust can be prevented from accumulating on the surface of the iron core 100 and the outer peripheral surface of the iron core fixing bracket 500. There is also a soundproofing effect.
  • the outer periphery of the peripheral fixing material 1100 has a shape along the inner periphery of the coil 200, the iron core 100 and the coil 200 can be firmly connected even if the outer periphery of the iron core 100 is not completely circular. And can be fixed. Moreover, in an oil-filled transformer, the deviation
  • FIG. 13 shows a cross-sectional view of the iron core at the yoke portion of the iron core 100 according to the eighth embodiment of the present invention.
  • an iron core fixing material 1200 made of an insulating material is disposed, and an outer periphery fixing material 1100 having an arc shape welded to the upper clamp 300 and the lower clamp 400 on the outer side. , Thereby fixing the iron core 100.
  • the surrounding fixing material 1100 is made of iron because it is welded.
  • the laminated surface partition 800 in this embodiment is made of an insulating material, and is sandwiched and fixed by the boundary portion 1300 of the surrounding fixing material 1100. Therefore, the surrounding fixing material 1100 does not form a circuit.
  • the laminated surface partition 800 is made of a material that is not an insulating material, do not configure the circuit by a varnish treatment near the contact portion between the surrounding fixing material 1100 and the laminated surface partition 800, or by newly inserting an insulating material. It can also be.
  • the surrounding fixing material 1100 may be partially arranged according to the size of the iron core 100.
  • the flat portion in contact with the upper clamp 300 and the lower clamp 400 becomes narrower.
  • the surrounding fixing material 1100, the upper clamp 300, and the lower clamp 400 are welded and fixed, the iron core can be firmly clamped and fixed even when the plane portion is narrow.
  • FIG. 14 shows a cross-sectional view of the iron core 100 in the ninth embodiment of the present invention.
  • the laminated surface partitions 800 are arranged at a plurality of locations in the lamination method, and the laminated surface partitions 800 are inserted into positions corresponding to the laminated surface partitions 800 of the peripheral fixing material 1100 formed into a circular shape. Are provided with holes or grooves.
  • the laminated surface partition 800 and the surrounding fixing material 1100 are fitted and fixed, whereby the core material can be fixed.
  • the perimeter fixing bracket 1400 disposed on the outer periphery of the perimeter fixing material 1100 has a hole formed only at a position corresponding to the laminated surface partition 800 disposed near the center in the stacking direction (Y-axis direction).
  • a laminated surface partition 800 is inserted. Whether or not the surrounding fixing bracket 1400 is fixed with the inserted laminated surface partition 800 interposed therebetween depends on the strength of the laminated surface partition 800 and can be arbitrarily selected.
  • an iron core of an amorphous alloy As an example.
  • the present invention is not necessarily limited to this, and can also be applied to a iron core of a silicon steel plate.
  • a combination of an amorphous alloy and a silicon steel plate is also applicable.
  • the reinforcing effect of the iron core and the productivity improvement effect are greater than in the case of the iron core of a silicon steel plate.
  • a silicon steel plate can also be used for the laminated surface partition 800, and thereby strength can be improved.
  • silicon steel plates of the same material width are arranged on the front and back of the laminated surface of the laminated block of amorphous alloy, and the amorphous leg is sandwiched between the upper yokes to further increase the strength of the iron core legs. It may be possible to improve the part insertion workability. When the materials are combined in this way, the characteristics can be improved by reducing the proportion of the silicon steel sheet. For example, if 20 sheets of amorphous alloy are arranged with silicon steel sheets on both sides, about half of the entire iron core will be silicon steel sheets, so there will be more iron loss than 100% amorphous alloy. Become.
  • the ratio of the silicon steel sheet is suppressed within 10% of the total thickness, the iron loss can be suppressed to about + 30% with respect to the characteristics of the 100% amorphous alloy.
  • the ratio of the silicon steel sheet depends on the required iron core strength, for example, the silicon steel sheet is blended every 10 blocks of the laminated block of amorphous alloy. Further, in consideration of workability, it may be limited to only the upper yoke portion, or a silicon steel plate may be adopted for the other leg portions.
  • the iron core 100 As a method of fixing the iron core 100, it is also possible to fix the upper clamp 300, the lower clamp 400, the iron core clamp 500 and the core and yoke by making a round hole and inserting an insulated round bar. It is. According to this, for example, it is possible to fix more firmly while omitting the gap filling of the gap 1000 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

非晶質合金の材料を用いた積鉄心構造の大容量変圧器を容易に製造することは困難であった。 鉄心材料を積層して構成した積鉄心ブロックの複数を、積層方向とは異なる方向に並べて構成された積鉄心と、積鉄心の外周に沿う第一の枠体と、複数の積鉄心ブロックの間に配置される仕切り板と、を備えることを特徴とする。

Description

積鉄心構造体、及びこれを備えた変圧器
  本発明は、積鉄心構造体及びこれを備えた変圧器に関する。
 変圧器の鉄心構造には大きく分けて、巻鉄心と積鉄心とがある。配電用変圧器では主に巻鉄心が採用されており、パワーエレクトロニクス用の小さな変圧器や配電変圧器よりも大きな大容量変圧器では積鉄心が採用されている。変圧器の鉄心材料には、けい素鋼板と非晶質合金とがある。非晶質合金を鉄心材料に採用したアモルファス変圧器は、けい素鋼板を鉄心材料に採用したけい素鋼板変圧器よりも無負荷時の損失が小さく、エネルギー消費効率の良い変圧器として知られている。
 近年、エネルギー消費効率の良い非晶質合金を用いた大容量の変圧器が望まれているが、積鉄心構造を用いたものについては、次の理由により従来は製造が困難であった。まず、大容量の変圧器にはより大きな断面積を有する鉄心が必要であり、鉄心幅も積層厚さも通常の変圧器用鉄心と比べて非常に大きくなる。しかしながら、非晶質合金はけい素鋼板の約1/10の厚さの材料であり、大容量変圧器に用いる鉄心を製造するためには積層枚数が膨大になってしまう。また現在の技術では、製造可能な非晶質合金の材料幅は、大容量変圧器の鉄心として必要な材料幅に比べて狭く、更に供給される材料幅のバリエーションも少ない。したがって、大容量変圧器を非晶質材料で製造するには、鉄心の材料幅が足りないということがある。
 本技術分野の背景技術として、特開2012-138469(特許文献1)がある。この公報には、「アモルファス鉄心を良好に自立させ、自立させた際の鉄心のコーナ部の自重による垂れ下がりを従来よりも改善し、鉄心とコイルの組立をスムーズに行い、作業効率を向上させる。アモルファス材により形成され、ラップ部を上部に配置し、鉄心支持部材により指示された状態でほぼ垂直に自立したアモルファス鉄心と、該アモルファス鉄心に挿入するコイルとを有するアモルファス変圧器において、前記鉄心支持部材は、前記アモルファス鉄心の側面を支持する鉄心支持部材と該鉄心のコーナ部を支持するコーナ部支持部材から成り、一体化し、前記鉄心支持部材は、鉄心の少なくとも1つの側面に沿うようにほぼ垂直に配置されていることを特徴とする。」と記載されているが、大容量変圧器とするための方法については開示されていない。
 また、特開平11-186082号公報(特許文献2)には、「アモルファス磁性合金箔のリボンの重合体からなる単位重合体を容易に形成することができるようにして作業能率を向上させたアモルファス積鉄心の製造方法を提案する。複数のアモルファス磁性合金箔のストリップを重ね合わせたものからなるストリップ重合体を所定の長さに切断することにより単位重合体10を形成する。順次形成される単位重合体を長さ方向に位置をずらして段積みすることにより単位重合体の積層ブロック11を形成する。積層ブロック11を構成している単位重合体10を上から順に取って作業台上に積層することにより積鉄心の脚部及び継鉄部を形成する。」と記載されており、非晶質合金による積鉄心の構成が開示されているが、こちらも単一幅の鉄心材料を積層して構成された鉄心であり、大容量変圧器の鉄心を製造することはできない。
特開2012-138469号公報 特開平11-186082号公報
  非晶質合金を用いて積鉄心構造の大容量変圧器を容易に製造することは困難であった。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を上げるならば、本発明の積鉄心構造体は、鉄心材料を積層して構成した積鉄心ブロックの複数を、積層方向とは異なる方向に並べて構成された積鉄心と、積鉄心の外周に沿う第一の枠体と、複数の積鉄心ブロックの間に配置される仕切り板と、を備えることを特徴とする。
 非晶質合金を用いて、積鉄心構造の大容量変圧器を容易に製造することができる。
本発明の第1実施例の変圧器中身の正面図 本発明の第1実施例の変圧器中身の側面図 本発明の第1実施例の変圧器に用いる鉄心の積層体の斜視図 本発明の第1実施例の変圧器に用いる鉄心の第一積層ブロックの正面図 本発明の第1実施例の変圧器に用いる鉄心の第二積層ブロックの正面図 本発明の第1実施例の変圧器に用いる鉄心の第一積層ブロックと第二積層ブロックの積層体の正面図 本発明の第1実施例の変圧器に用いる鉄心の脚部断面図 本発明の第1実施例の変圧器に用いる鉄心のヨーク部断面図 本発明の第1実施例の鉄心固定金具の斜視図 第2実施例の鉄心の積層体の正面図 第3実施例の鉄心の積層体の正面図 第4実施例の鉄心の積層体の正面図 第5実施例の鉄心の脚部断面図 第6実施例の鉄心の脚部断面図 第7実施例の鉄心の脚部断面図 第8実施例の鉄心のヨーク部断面図 第9実施例の鉄心の脚部断面図
 以下、本発明を実施例ごとに図面を用いて説明する。
 図1~6を用いて、本発明の実施例1について説明する。図1、図2では実施例1の変圧器の中身構造を説明する。図1は正面図であり、図2は側面図である。本発明の変圧器の中身構造は、鉄心100、コイル200、上締金具300、下締金具400、鉄心固定金具500、締金具締付スタッド600、ベース700からなる。鉄心固定金具500は、積層された鉄心100の周囲を囲む断面四角形状の筒状の部材であり、コイル200を貫通するように配置される。また、締金具締付スタッド600により上締金具300、下締金具400を締付することで、鉄心固定金具500内に配置されている鉄心100を固定する。更に鉄心固定金具500は、上締金具300、下締金具400にボルトで固定される。下締金具400は、最も下部に配置されるベース700にボルトで固定される。
 図3(a)は、図1に記載された鉄心100の斜視図であり、図1からコイル200、上締金具300、下締金具400、鉄心固定金具500、ベース700を取り除いたものである。鉄心100は、所定幅の鉄心材料107と鉄心材料108を並列に並べて構成されており、複数の板状鉄心材料がY軸方向に積層されている。鉄心材料として非晶質合金材料のような薄い材料を用いる場合、例えば15~20枚程度を積層したものを1つの積層単位(以後、積層ブロックと表現する)とし、この積層ブロックの複数個を更に積層して鉄心100を構成する。鉄心材料107と鉄心材料108の間、及び鉄心材料110と鉄心材料111の間には、板状の部材である材料境界仕切り900が挟まれている。また、複数の積層ブロックが積層されて鉄心100が構成されているが、その積層ブロック間の一部には板状の部材である積層面仕切り800が挟まれている。材料境界仕切り900と積層面仕切り800に関する詳細は、図4を用いて後述する。
 この鉄心100の構成を説明するにあたり、まず各部の名称について説明する。この鉄心100は、3つの鉄心脚の一部であって図1、2におけるコイル200の内側に配置されるコア部(断面Aの周辺)と、3つの鉄心脚を繋ぎ、上締金具300や下締金具400で固定されるヨーク部(断面Bの周辺)とから成る。本実施例では、コア部とは鉄心部材107、108、110、111の一部であってコイル200の内側に配置される領域を意味し、ヨーク部は鉄心部材101、102、104、105を意味する。コア部の詳細は図4、ヨーク部の詳細は図5を用いて後述する。
 図3(b)は、第一の積層ブロックの正面図であり、図3(c)は第一の積層ブロックに隣接して積層される、第二の積層ブロックの正面図である。図3(d)は、図3(b)と図3(c)を重ねた状態を示す正面図である。それぞれの図において説明を簡略化するために材料境界仕切り900を省略しているが、鉄心材料101と102、104と105、107と108、110と111のそれぞれの間には材料境界仕切り900が挿入される。
 図3(b)~(c)は正面図のために表示されていないが、各積層ブロックは、紙面奥行き方向に同じ鉄心材料が例えば15~20枚程度積層されて構成されている。図3(b)と図3(c)は、互いに裏返しの関係である。図3(a)の鉄心100は、図3(d)を複数積層し、材料境界仕切り800と積層面仕切り900とを挿入したものであり、これは即ち図3(b)の積層ブロックと図3(c)の積層ブロックを交互に積層して構成されたものである。
 図3(d)に表されているように、鉄心材料110と鉄心材料111の境界部分が一直線になるように第一、第二の各積層ブロックを積層し、かつ鉄心材料107と鉄心材料108の境界部分が一直線になるように第一、第二の積層ブロックを積層すると、接合部115の位置で第一と第二の積層ブロックが所定幅ずれることになる。このずれ量は、中央鉄心脚の形状に応じて決定されるが、例えば十数mm程度であり、設計仕様により任意に選択できる。本実施例では、中央鉄心脚の鉄心材料111とヨーク部の鉄心材料101との接合部115は、中央鉄心脚の鉄心材料111の延びる方向(Z軸方向)に対して45度となるように形成されているが、この接合部115の角度はこれに限定されるものではない。本実施例の場合、中央鉄心脚を構成する鉄心材料110と鉄心材料111を挟んで左右に配置されている2つの鉄心材料101は、この中央鉄心脚の存在により分断されて2つの部材となっている。しかし例えば鉄心材料111の延びる方向(Z軸方向)に対して60度の角度で接合部115を形成した場合、これらの鉄心材料101は分断されず、繋がった1つの部材とすることができる。1つの部材とすれば上部ヨーク部の組立性が向上する。このように接合部115の角度は上部ヨーク部の作業性を考慮して変更することができる他、内周側と外周側の角度を異なる角度とすることも可能である。例えば内周側を磁気抵抗が大きくなるような角度にすることで、内周に集中する磁束を外周側に移動させ、鉄心脚の磁束均一化を図ることもできる。
 なお、非晶質合金はけい素鋼板に比べて板厚が非常に薄く、厚さが不均一となりやすい。そこで、板厚の大きい部分と小さい部分をうまく組み合わせて積層ブロックの平坦度を高めるという方法も可能である。また、積層ブロックの間に薄い絶縁材やけい素鋼板を挿入することで必要な平坦度を得ることも可能である。
 図4は、図3(a)の断面Aの断面図を示す。鉄心材料107及び鉄心材料108の積層方向(Y軸方向)の中央付近には、鉄心材料を平行な平面を有する積層面仕切り800を配置している。また、鉄心材料107の積層ブロックと鉄心材料108の積層ブロックの間には、板状の材料境界仕切り900を配置している。これら積層面仕切り800及び材料境界仕切り900は、絶縁材又はワニス等で絶縁処理した金属等で製作される。鉄心材料107及び鉄心材料108の外周は、図3(a)では図示を省略した鉄心固定金具500で囲まれている。鉄心固定金具500は鉄、又はエポキシ樹脂等、強度の高い材料で形成される。鉄心100は、鉄心固定金具500と材料境界仕切り900に沿って鉄心材料107及び鉄心材料108が積層されることにより形成される。非晶質合金の端面は、スリット加工されたけい素鋼板の端面に比べて不揃いとなりやすい。したがって、本実施例のように鉄心両側にガイド部材の役割を果たす材料境界仕切り900や鉄心固定金具500を配置することで、積層作業性を向上させることができる。また、これにより接合部115の端面をきれいに揃えることもできるので、接合部115での損失を抑制でき、鉄心特性の改善が可能となる。更には、積層面仕切り800は鉄心を積層する際の基準面としての役割を果たすことができ、また積層方向の芯としての役割を果たすこともできるので、鉄心脚の強度も高めることができ、輸送時の振動にも強い鉄心となる。
 鉄心固定金具500が鉄などの導体の場合には、積層面仕切り800によりコイルと同方向の回路が形成しないように配慮する必要があるが、絶縁材で構成すればこれらの配慮は不要である。また、導体で構成されている場合であっても少なくとも1箇所で区切れていればよく、図示以外の積層方向(Y方向)の任意の位置に積層面仕切り800を配置することができる。
 鉄心固定金具500、積層面仕切り800、材料境界仕切り900との接触部位に、積層作業時にワニス塗布しておくことにより、組立後の乾燥工程である程度固着され、より強度の高い構成とすることができる。
 図5に、図3(a)の断面Bの断面図を示す。鉄心材料104及び鉄心材料105の外周は、図3(a)では図示を省略した鉄心固定金具500で囲まれている。積層方向の締め付けは、図3(a)では図示を省略した下締金具400により行う。非晶質合金の鉄心では、けい素鋼板のように締め付けによって強度向上することは期待できないばかりか、過度の締付けは著しい特性劣化を招く。そのため、組立作業の安全性や、輸送に耐え得るように鉄心に強度を依存しない構造が必要である。本発明の鉄心固定金具500、材料境界仕切り900は、上締金具300または下締金具400による締付過ぎを防止する機能も備え、積層方向両側からの締め付けが適正な寸法となるように寸法は決定される。下締金具400は中身構造の下部に位置するベース700への固定部を備え、ボルトにより固定される。ベース700と、鉄心固定金具500との隙間1000はプレスボード等の絶縁材を満たし下部への動きを防止する。
 図6に、図1から鉄心の固定構造のみを抽出した図を示す。鉄心固定金具500の上下端には、上締金具300と下締金具400とに連結するための鉄心固定金具締金具連結部503が設けられ、図1のように上締金具300、下締金具400にボルトで締結される。コイル200は、上下の鉄心固定金具締金具連結部503の間の位置に配置される。
 次に、鉄心の積層手順を説明する。上部ヨーク部は最後に形成するため、まずそれ以外の部分について、骨格となる上締金具300、下締金具400、鉄心固定金具500をボルトで締結する。特に下締金具と鉄心固定金具500との締結を例に上げて説明すると、図5に示すように下締金具は鉄心100を挟んで両側に配置されるが、まずはこのうちの一方の下締金具、例えば左側の下締金具400と鉄心固定金具500をボルトで締結する。図5は既に起立状態となっているが、図5の左側の下締金具400と鉄心固定金具500を90度回転させて横倒しの状態にする。次に鉄心固定金具500をガイド部材として、上から(図5の起立状態では右側からに相当)鉄心材料を積層する。その後、他方の下締金具を取り付け、締金具締付スタッド600(図1参照)にて双方の下締金具400を締め付ける。コア部についても同様に積層した後、これを反転機で90度反転してコイル200を挿入できる状態にし、コイル200が挿入される。
 図6において、鉄心固定金具500のうちヨーク部に配置される領域の部材を501、コア部に配置される領域の部材を鉄心固定金具部材502とすると、501と502の間には寸法調整のためにプレスボード等の絶縁材料が挟まれるが、この位置を溶接して501と502を一体の構成としても良い。締金具締付スタッド600には締付けすぎを防止するための筒状ストッパーを配置し、また、筒の断面積を広げ接触面積を増やして構造的な強度を向上しても良い。
 次に、上部ヨーク部の積層について説明する。ヨーク部鉄心とコア部鉄心とが組み合わされる接合部115(図3d参照)では、それぞれの鉄心が互いに正確に配置される必要がある。しかしながら、非晶質合金は一枚一枚が非常に薄いため、非晶質合金の積層ブロックもたわみや積層体のバラけ等を発生しやすく、そのままでは作業性が低い。そこで、ヨーク部鉄心の積層方向最外周に1mm以下の厚さの鉄板ガイド部材を配置し、この鉄板ガイド部材でヨーク部鉄心を挟む構造とする。これにより、ヨーク部鉄心を安定させて作業性を向上することができる。なお、この鉄板ガイド部材はヨーク部鉄心全体を安定させるためにヨーク部鉄心と略同等の長さの部材としても良いし、より短い鉄板ガイド部材にして接合部115周辺だけに配置しても良い。
 組立作業は内周側鉄心を先に行い、その後材料境界仕切り900を配置し、最後に外周側鉄心の作業を行う。鉄板ガイド部材は数ブロックの積層体の挿入が完了するまで取り去らず、ある程度の積層厚となって非晶質合金が安定した後に、まとめて取り去る。この作業を繰り返し全てのブロックを挿入する。
 上記鉄製ガイド部材の代わりに、0.05mm程度の厚さのPET樹脂フィルムをガイドとして用いることもできる。この場合、ヨーク部鉄心の長手方向にヨーク部鉄心より1mm程度はみ出るように配置し、接合部115そのフィルムのはみ出たところを目安に上部ヨークの各ブロックを積層する事もできる。薄いフィルムの場合はこのガイドをコア部積層時にあらかじめ挟んでおくことも出来る。
 組立作業の際に上部ヨーク部を安定させる他の方法として、接合部周辺を樹脂コーティングする方法もある。切断が終了し積層されたヨーク部鉄心の端面に、積層ブロック毎に少量のコーティング材を塗布する。コーティング材としては、特性劣化が極力少ない柔らかい樹脂が好ましいが、作業環境や、鉄心の大きさにより特性劣化が大きいが硬い材料であっても良い。
 図7に、本発明の第2実施例における鉄心100の正面図を示す。第1実施例の図3dと同様に、鉄心材料107と108、101と102、104と105という2つの鉄心積層体を並べて配置し、第一の積層ブロックと第二の積層ブロックを積層している。第1実施例と異なる点は、鉄心材料107と108の材料幅が互いに異なっている点である。同様に101と102、104と105も材料幅が異なる。3脚の鉄心脚のうち中央の鉄心脚コア部では、材料幅が小さな鉄心材料110の積層ブロックと材料幅が大きな鉄心材料111の積層ブロックとが並列に配置され、それらが第1実施例と同様に積層ブロック毎に左右入れ替えられて積層されている。この第2実施例の場合、材料幅が大きい鉄心材料111は積層方向に隣り合う積層ブロック間で所定幅が重なることになる。第一の積層ブロックにおける鉄心材料110と111の境界線と、第二の積層ブロックにおける鉄心材料110と111の境界線との間の領域が鉄心材料111の重なり代117である。この重なり代117があるために中央鉄心脚には材料境界仕切り900を配置することができないが、この重なり代117は軸のように機能するため、材料境界仕切り900を省略しても鉄心脚の強度は確保される。この重なり代117は、材料107と108、101と102、104と105、110と111の材料幅の差となる。材料境界仕切り900を省略する目的で鉄心の形状に合せて任意に選択することができる。
 本実施例の上記説明では、第一の積層ブロックに使用した鉄心材料110と111をそのまま裏返して第二の積層ブロックに使用する例を説明した。しかし、異なる鉄心幅の材料を組み合わせて積層ブロックを構成する本実施例においても、第二の積層ブロックを構成する鉄心材料の形状を第一の積層ブロックを構成する鉄心材料110及び111とは異なる形状とすることにより、鉄心材料の境界部を第一の積層ブロックと第二の積層ブロックとで揃えることができる。この場合には、この境界部に材料境界仕切り900を挿入することができる。
 また、ヨーク部においては、内周側の鉄心材料101及び104に材料幅の広い鉄心材料を用い、外周側の鉄心材料102及び105に材料幅の狭い鉄心材料を配置することで、第1実施例では完全に分割されていた鉄心材料101、104をそれぞれ1つの部材とすることが出来る。
 なお、本実施例は、非晶質合金は材料幅が大きいほど特性が悪いことを考慮したものである。即ち、内周側に材料幅が大きく特性が悪い鉄心を配置することで、内周側に集中する磁束を外周側に分散させることができ、鉄心脚の磁束均一化による特性改善の効果が得られる。
 接合される両側の材料切断部に、かぎ形状の切欠きを設けた切断刃によりかぎ形状を設け、積層時のガイドやずれ防止を行なうことも可能である。
 図8に、本発明の第3実施例における鉄心100の正面図を示す。第1実施例の図3d及び第2実施例の図7と同様に、鉄心材料107と108、101と102、104と105という2つの鉄心積層体を並べて配置し、第一の積層ブロックと第二の積層ブロックを積層している。本実施例では、中央鉄心脚を構成する鉄心材料110と111は同じ幅であるのに対し、外側の鉄心脚を構成する鉄心材料107と108、ヨーク部の鉄心材料101、102では互いに異なる鉄心幅となっている。中央の鉄心脚には、外側の鉄心脚を構成する2種類の幅の鉄心のうちの広い方の鉄心を2つ組み合わせて構成しているため、外側の鉄心脚よりも中央の鉄心脚の方が鉄心断面積は大きくなっている。中央の鉄心脚は、両側の鉄心脚とコイル200とに挟まれる配置となっているため、熱が籠りやすく、両側の鉄心脚に比べて冷却され難い。鉄心を十分に冷却できずに鉄心温度が上昇すると鉄心の特性は悪化する。 本実施例では、温度上昇による特性悪化を引き起こしやすい中央の鉄心脚の断面積を両側の鉄心脚よりも広くすることにより、中央の鉄心脚にかかる負荷を低減し、中央の鉄心脚における特性悪化を抑制している。中央鉄心脚に広い材料幅の鉄心材料2つを組み合わせて用いることにより外側の鉄心脚よりも鉄心断面積を大きくしたが、逆に外側の鉄心脚に狭い材料幅の鉄心材料2つを組み合わせることにより中央鉄心脚より鉄心断面積を小さくすることもできる。なお、同一の材料幅の鉄心材料を並べて中央の鉄心脚を構成する場合には、実施例1と同様に材料境界仕切り900を配置することが望ましい。
 図9に、本発明の第4実施例における鉄心100の正面図を示す。第1~第3実施例とは異なり、本実施例では3つの鉄心材料を並べて配置し、第一の積層ブロックと第二の積層ブロックを積層している。中央の鉄心脚は鉄心材料110 ~112で構成されている。鉄心材料110と112に同一形状のものを兼用すれば、材料の種類を抑制して製造費用を抑制することができる。図9では同一の材料幅の鉄心を3つ並べて構成した例を示したが、一部に異なる幅の鉄心材料を用いることもできる。なお、4つ以上の鉄心材料を並べて構成した鉄心100も本発明の実施形態の一例である。そのうちの少なくとも一部の材料幅を異なる幅とすることも本発明の一例である。
 図10に、本発明の第5実施例における鉄心100の鉄心脚断面図を示す。
 コイル200が円筒形状の場合、図4に示す鉄心100の形状ではコイル200と鉄心固定金具500との間に大きな隙間ができ、コイル内側に占める鉄心の面積の割合(占積率)が低くなってしまう。そこで本実施例では、鉄心100との積層方向(Y軸方向)の中央付近に位置する鉄心材料の幅を、積層方向(Y軸方向)の外側に配置される鉄心材料の幅よりも広くしている。この構成により、鉄心100の断面形状がコイルの円筒形状に近い形状となるため、コイル200と鉄心固定金具500との隙間を小さくし、占積率を高くすることができる。なお、図11のように3種類以上の鉄心幅とした例も本実施例の一部である。より多くの幅の鉄心を組み合わせて鉄心の断面形状を円形により近づけることにより、より一層占積率を高めることができる。このように多くの幅の鉄心を組み合わせる実施例では鉄心の構造が複雑化して組立性が低下するが、本発明のように鉄心固定金具500を鉄心積層作業のガイドとして用いることで、組立性の低下を抑制することができる。また、積層後には補強効果も得られる。
 図11に、本発明の第6実施例における鉄心100の鉄心脚断面図を示す。図10と同様に、積層方法(Y軸方向)の位置に応じて鉄心幅を異ならせることにより、鉄心外形をコイル200の円筒形状に近づけたものである。本実施例のもう一つの特徴は、積層方向の最外周が単一の積層ブロックで構成されており、X軸方向に複数の積層ブロックが並べられていない点である。このため、材料境界仕切り900が積層方向(Y軸方向)の最外周までは至っていない。図10の説明で言及したように、鉄心固定金具500は鉄心外形に沿った多段形状をしている。
 本実施例では、積層方向(Y軸方向)最外周の積層ブロックとそのすぐ内側の積層ブロックとでは材料幅が明確に異なっており、最外周の積層ブロック側からかかる締付加重は内側の積層ブロックの一部領域のみで受ける構造となっている。この加重の偏りを軽減するため、例えば最外周の積層ブロックとそのすぐ内側の積層ブロックとの間に、内側の積層ブロックの面積よりも広い鉄板、けい素鋼板、厚いプレスボードなどを挿入することもできる。
 鉄心固定金具500の外接円の寸法をコイル200内周よりも若干大きくし、コイル挿入時には接触変形させながら挿入することで、挿入後に良好な接触状態を維持する事ができる。この寸法調整はコイル内周ボビンの乾燥と注油後の寸法によっても調整されるが、例えば1mm以内の範囲とすることができる。この場合のボビンは、強度の面から鉄などの金属が望ましい。コイル内周に配置されるボビンは、鉄心挿入後に鉄心固定金具500の角部に対応する位置にこの角部と同様の形状の溝加工を施すことにより、鉄心固定金具500をコイルに挿入する際の挿入ガイドとして機能させることができる。また鉄心挿入後には鉄心の固定機能を備えることもできる。この場合のボビンは、例えば厚さ3mm程度のプレスボードが望ましい。
 図12に、本発明の第7実施例における鉄心100の鉄心脚断面図を示す。本実施例では、図11の鉄心固定金具500の周囲に円筒形の周囲固定材1100を配置している。この周囲固定材1100は、半円形状の部材2つを材料境界仕切り900の延長線上で連結して略円形状としている。材料としては、油入変圧器においてはプレスボードや鉄板が望ましく、モールド変圧器においてはプラスチック、樹脂や絶縁紙が望ましい。薄い絶縁材料などを利用する場合は、人力で開閉することが比較的容易なので、上述のように半円形状の2つ部材を組み合わせて用いるのではなく、開閉可能な開口部を有する略円筒形の1つの部材を用いてもよい。人力で開閉することができない鉄板またはプレスボードのような固くて厚い材料でも、鉄心材料を入れることができる程度の開口部さえ備えていれば、略円筒形の1つの部材とすることは可能である。
この周囲固定材1100は、ヨーク部においては鉄心100の積層方向(Y軸方向)最外周と上締金具300又は下締金具400とで挟まれて固定され、コア部など締金具が配置されない位置においては、周方向に渡って絶縁性のテープ等で固定する。特に外観が重要となるモールド変圧器において本実施例を採用すれば、接合面や内部構造を隠すことができる。またちりやほこりが鉄心100の表面や鉄心固定金具500外周面に堆積することを抑制できる。さらに防音効果もある。
 第5実施例や第6実施例のように、鉄心100の外形を円形状に近づける方法を採用した場合であっても、完全に円形にするには非常に多くの種類の鉄心幅を必要とし、実現するのは極めて困難である。本実施例によれば、周囲固定材1100の外周はコイル200の内周に沿った形状をしているので、鉄心100の外周を完全に円形にしなくても、鉄心100とコイル200とをしっかりと固定することができる。また油入変圧器においては、コイル200の内周にワニスを塗布しておき乾燥工程で接着させることで、部材のずれを抑制することができる。
 大容量の変圧器の場合は、鉄心100とコイル200の絶縁距離を大きく確保する必要があるが、鉄心100とコイル200の間の隙間に冷却ダクトを配置することで、絶縁距離を確保しつつ冷却性能を向上することができる。
 図13に、本発明の第8実施例における鉄心100のヨーク部における鉄心断面図を示す。第1~第7実施例の鉄心固定金具500の代わりに絶縁物から成る鉄心固定材1200を配置し、その外側に上締金具300、下締金具400に溶接された円弧形状の周囲固定材1100を配置し、これにより鉄心100を固定する。周囲固定材1100は溶接されるため鉄製とする。本実施例における積層面仕切り800は絶縁材で構成されており、周囲固定材1100の境界部1300で挟まれて固定されるため周囲固定材1100は回路を形成しない構成となる。積層面仕切り800を絶縁材でない材料とする場合は、周囲固定材1100と積層面仕切り800との接触部付近にワニス処理をするか、又は新たに絶縁材を挟み込むという方法で回路を構成しないようにすることもできる。周囲固定材1100は鉄心100の大きさに応じて部分的に配置しても良い。
 鉄心断面形状が円形に近づくにつれて上締金具300、下締金具400に接触する平面部が狭くなる。本実施例では、周囲固定材1100と上締金具300、下締金具400が溶接されて固定されているため、平面部が狭い場合であっても鉄心をしっかり締め付け固定することが可能である。
 図14に、本発明の第9実施例における鉄心100の鉄心断面図を示す。本実施例では積層面仕切り800が積層方法の複数個所に配置されており、円形状に成形した周囲固定材1100の積層面仕切り800に対応する位置には、この積層面仕切り800が嵌め込まれるように穴又は溝を設けている。この積層面仕切り800と周囲固定材1100とが嵌め合わされて固定されることにより、鉄心材料を固定することができる。周囲固定材1100の外周に配置される周囲固定金具1400は、積層方向(Y軸方向)中央付近に配置されている積層面仕切り800に対応する位置にのみ穴が形成されており、この穴に積層面仕切り800が挿入されている。
周囲固定金具1400で、挿入された積層面仕切り800を挟んで固定するか否かは積層面仕切り800の強度次第であり、任意に選択できる。
 本発明の各実施例では非晶質合金の積鉄心を例に上げて説明したが、必ずしもこれに限らず、けい素鋼板の積鉄心にも適用可能である。また非晶質合金とけい素鋼板の組み合わせでも適用可能である。非晶質合金による鉄心の場合には、けい素鋼板の積鉄心の場合よりも鉄心の補強効果や生産性改善効果が大きい。
 なお、積層面仕切り800にけい素鋼板を使用することもでき、これにより強度向上を図ることができる。また、非晶質合金の積層ブロックの積層面の表と裏に同じ材料幅のけい素鋼板を配置し、非晶質合金を挟む構成とすることにより、鉄心脚の強度を更に高めて上部ヨーク部挿入作業性の改善を図っても良い。このように材料を複合させる場合、けい素鋼板の割合を少なくした方が特性を良くすることができる。例えば非晶質合金20枚に対し、その両側にけい素鋼板を配置する構成とすると、鉄心全体としては半分程度がけい素鋼板になるため、非晶質合金100%時よりも鉄損が多くなる。一方、例えばけい素鋼板の割合を全積厚の10%以内に抑制すれば、100%非晶質合金の特性に対して鉄損は+30%程度にまで抑制することができる。けい素鋼板の割合は求められる鉄心強度によっても左右されるが、例えば非晶質合金の積層ブロックの10ブロック毎にけい素鋼板を配合するようにする。また、作業性を考慮して上部ヨーク部のみに限定しても良いし、他の脚部にけい素鋼板を採用しても良い。
 鉄心100の固定方法として、上締金具300、下締金具400、鉄心固定金具500および、各コア部、ヨーク部に丸穴を開け、絶縁された丸棒を挿入することで固定する方法も可能である。これによれば、例えば図5における隙間1000の隙間埋めを省略しながらより強固に固定することができる。
100 鉄心
115 接合部
117 重なり代
200 コイル 
300 上締金具
400 下締金具
500 鉄心固定金具
501 鉄心固定金具 ヨーク部
502 鉄心固定金具 コア部
503 鉄心固定金具 締金具連結部
600 締金具締付スタッド
700 ベース
800 積層面仕切り
900 材料境界仕切り
1000 隙間
1100 周囲固定材
1200 鉄心固定材
1300 境界部
1400 周囲固定金具

Claims (16)

  1.  複数の鉄心を積層して構成した積鉄心ブロックの複数を、積層方向とは異なる方向に並べて配置したことを特徴とする積鉄心構造体。
  2.  鉄心材料を積層して構成した積鉄心ブロックの複数を、積層方向とは異なる方向に並べて構成された積鉄心と、
     前記積鉄心の外周に沿う第一の枠体と、
     前記複数の積鉄心ブロックの間に配置される仕切り板と、を備えることを特徴とする積鉄心構造体。
  3.  非晶質合金の積鉄心構造体であって、
     非晶質合金の鉄心材料を積層して構成した積鉄心ブロックの複数を、積層方向とは異なる方向に並べて構成された積鉄心と、
     前記積鉄心の外周に沿う第一の枠体と、
     前記複数の積鉄心ブロックの間に配置される仕切り板と、を備えることを特徴とする非晶質合金の積鉄心構造体。
  4.  請求項2又は3記載の積鉄心構造体であって、
     前記積鉄心は、前記積鉄心を構成する積鉄心ブロックの積層方向の間に、該積鉄心ブロックとは異なる材質からなる板状部材が配置されていることを特徴とする変圧器。
  5.  請求項2乃至4のいずれかに記載の積鉄心構造体であって、
     前記積鉄心を構成する複数の積鉄心ブロックは、少なくとも2種類の材料幅を有することを特徴とする積鉄心構造体。
  6.  請求項2乃至5のいずれか記載の積鉄心構造体であって、
     前記積鉄心は、少なくとも3つ以上の脚部鉄心を備え、該脚部鉄心のうち外側の脚部鉄心の鉄心断面積が内側の脚部鉄心の断面積よりも小さいことを特徴とする積鉄心構造体。
  7.  請求項5又は6記載の積鉄心構造体であって、
    外側鉄心脚を構成する複数の積鉄心ブロックのうちの内側の積鉄心ブロックは、外側の積鉄心ブロックよりも材料幅が広いことを特徴とする積鉄心構造体。
  8.  請求項5乃至7のいずれか記載の積鉄心構造体であって、
    ヨーク部鉄心を構成する複数の積鉄心ブロックのうちの内側の積鉄心ブロックは、外側の積鉄心ブロックよりも材料幅が広いことを特徴とする積鉄心構造体。
  9.  請求項5乃至8のいずれか記載の積鉄心構造体であって、
    前記積鉄心は、少なくとも3つ以上の脚部鉄心を備え、内側の鉄心脚が重なり代を備えていることを特徴とする積鉄心構造体。
  10.  請求項5乃至9のいずれか記載の積鉄心構造体であって、
    前記積鉄心は、少なくとも3つ以上の脚部鉄心を備え、
    該脚部鉄心とヨーク部鉄心との接合境界部が延びる方向は、該脚部鉄心が延びる方向との成す角が45度となるよう構成されていることを特徴とする積鉄心構造体。
  11.  請求項2乃至10のいずれか記載の積鉄心構造体であって、
     前記積鉄心は、積層方向の中央付近に材料幅の広い積層ブロックを配置し、積層方向の外周側になるにつれて材料幅がより狭い積層ブロックを配置したことを特徴とする積鉄心構造体。
  12.  請求項2乃至10記載の積鉄心構造体であって、
     前記積鉄心は、積層方向の中央付近ではより多くの数の積層ブロックを並べて配置し、積層方向の外周側ではより少ない数の積層ブロックを並べて配置したことを特徴とする積鉄心構造体。
  13. 請求項2乃至10記載の積鉄心構造体であって、
    更に、コイルの内周形状に倣った形状の第二の枠体を備えることを特徴とする積鉄心構造体。
  14. 請求項12記載の積鉄心構造体であって、
    前記第二の枠体は、締金具と溶接されていることを特徴とする積鉄心構造体。
  15. 請求項4記載の積鉄心構造体であって、
    更に、コイルの内周形状に倣った形状の第二の枠体を備え、該第二の枠体の一部に溝が形成されており、該溝に前記板状部材が挿入されて固定されていることを特徴とする積鉄心構造体。
  16. 請求項1乃至15のいずれか記載の積鉄心構造体と、該構造体の鉄心脚部周辺に配置したコイルと、該構造体を固定する固定金具とを備えたことを特徴とする変圧器。
PCT/JP2015/084231 2015-05-27 2015-12-07 積鉄心構造体、及びこれを備えた変圧器 WO2016189767A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/539,775 US20170352466A1 (en) 2015-05-27 2015-12-07 Laminated Iron Core Structure and Transformer Including the Same
JP2017520206A JP6359767B2 (ja) 2015-05-27 2015-12-07 積鉄心構造体、及びこれを備えた変圧器
CN201580070581.9A CN107112113B (zh) 2015-05-27 2015-12-07 叠铁芯构造体、以及具备该叠铁芯构造体的变压器
EP15893399.4A EP3306626A4 (en) 2015-05-27 2015-12-07 STACKED CORE STRUCTURE AND TRANSFORMER EQUIPPED WITH SAME
KR1020177015442A KR20170083082A (ko) 2015-05-27 2015-12-07 적철심 구조체, 및 이를 구비한 변압기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015106951 2015-05-27
JP2015-106951 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016189767A1 true WO2016189767A1 (ja) 2016-12-01

Family

ID=57392972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084231 WO2016189767A1 (ja) 2015-05-27 2015-12-07 積鉄心構造体、及びこれを備えた変圧器

Country Status (6)

Country Link
US (1) US20170352466A1 (ja)
EP (1) EP3306626A4 (ja)
JP (2) JP6359767B2 (ja)
KR (1) KR20170083082A (ja)
CN (2) CN110189898A (ja)
WO (1) WO2016189767A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647719B (zh) * 2017-02-13 2019-01-11 日商日立製作所股份有限公司 Core for static induction appliances
JP2019009379A (ja) * 2017-06-28 2019-01-17 株式会社日立製作所 変圧器
KR20190092703A (ko) * 2018-01-31 2019-08-08 엘지이노텍 주식회사 트랜스포머 및 그의 제조 방법
JP2020115523A (ja) * 2019-01-18 2020-07-30 株式会社日立製作所 静止誘導電器用鉄心
JP2020123683A (ja) * 2019-01-31 2020-08-13 株式会社日立製作所 静止誘導電器
JP2021027115A (ja) * 2019-08-02 2021-02-22 株式会社日立産機システム 積鉄心静止誘導機器およびその製造方法
US10991502B2 (en) 2017-11-10 2021-04-27 Tci, Llc Bobbin wound electrical reactor assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071512A1 (ja) * 2018-10-03 2020-04-09 日本製鉄株式会社 巻鉄心及び変圧器
BR112022008199A2 (pt) * 2019-11-15 2022-07-12 Nippon Steel Corp Núcleo laminado, e, dispositivo elétrico
CN112735782B (zh) * 2020-12-24 2023-05-16 宁波宁变电力科技股份有限公司 一种可降噪的干式变压器
CN113130197B (zh) * 2021-03-24 2022-11-08 无锡普天铁心股份有限公司 一种三相三柱不叠上轭铁心的叠积方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178716A (ja) * 1983-03-29 1984-10-11 Toshiba Corp 積層鉄心の製造方法
JPS59178710A (ja) * 1983-03-29 1984-10-11 Toshiba Corp 積層鉄心

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1394121A (en) * 1919-06-12 1921-10-18 Gen Electric Electrical apparatus
US2467824A (en) * 1947-01-09 1949-04-19 Gen Electric Magnetic core
US3210709A (en) * 1963-01-16 1965-10-05 Westinghouse Electric Corp Magnetic core structure for electrical inductive apparatus and method of constructing same
US3691492A (en) * 1970-12-10 1972-09-12 Transformatoren Union Ag Choke
JPS5450918A (en) * 1977-09-30 1979-04-21 Matsushita Electric Ind Co Ltd Iron core manufacture
US4345232A (en) * 1979-03-20 1982-08-17 Westinghouse Electric Corp. Non-metallic core band
JPS5875813A (ja) * 1981-10-30 1983-05-07 Mitsubishi Electric Corp 静止誘導器用鉄心
JPS59130409A (ja) * 1983-01-17 1984-07-27 Toshiba Corp 積層鉄心
JPS60115208A (ja) * 1983-11-28 1985-06-21 Toshiba Corp 積層鉄心構造体
JPS6115714U (ja) * 1984-07-02 1986-01-29 三菱電機株式会社 積み鉄心
WO1994019811A1 (en) * 1993-02-19 1994-09-01 Matsushita Electric Industrial Co., Ltd. Coil component and method of punching core used for the coil component
US5959523A (en) * 1996-10-15 1999-09-28 Abb Power T&D Company Inc. Magnetic core structure
JP3469016B2 (ja) * 1996-12-09 2003-11-25 株式会社日立産機システム 乾式変圧器
US7199696B2 (en) * 2005-03-30 2007-04-03 Abb Technology Ag Transformer having a stacked core with a split leg and a method of making the same
JP2008235525A (ja) * 2007-03-20 2008-10-02 Hitachi Metals Ltd リアクトル磁心およびリアクトル
JP5310460B2 (ja) * 2009-10-09 2013-10-09 Jfeスチール株式会社 積層コアの製造方法
CN201845641U (zh) * 2010-08-31 2011-05-25 西安非晶中西变压器有限公司 一种三相三柱式非晶变压器铁芯结构
CN101937758A (zh) * 2010-09-14 2011-01-05 上海置信电气非晶有限公司 一种圆截面非晶合金铁心结构
KR101197234B1 (ko) * 2011-04-08 2012-11-02 주식회사 아모그린텍 비정질 금속 코어와, 이를 이용한 유도장치 및 그 제조방법
CN202167327U (zh) * 2011-07-12 2012-03-14 临沂神州电子科技有限公司 新型圆截面非晶合金铁芯
CN202150317U (zh) * 2011-07-12 2012-02-22 临沂神州电子科技有限公司 一种圆截面非晶合金铁芯
JP2013046032A (ja) * 2011-08-26 2013-03-04 Nec Tokin Corp 積層磁心
JP5676414B2 (ja) * 2011-11-01 2015-02-25 株式会社日立産機システム アモルファス鉄心変圧器
CN203366928U (zh) * 2013-08-09 2013-12-25 卧龙电气集团股份有限公司 树脂绝缘非晶合金干式牵引整流变压器
CN204088012U (zh) * 2014-09-25 2015-01-07 机械工业北京电工技术经济研究所 一种卷绕式无接缝结构非晶合金变压器铁心及变压器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178716A (ja) * 1983-03-29 1984-10-11 Toshiba Corp 積層鉄心の製造方法
JPS59178710A (ja) * 1983-03-29 1984-10-11 Toshiba Corp 積層鉄心

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306626A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647719B (zh) * 2017-02-13 2019-01-11 日商日立製作所股份有限公司 Core for static induction appliances
JP2019009379A (ja) * 2017-06-28 2019-01-17 株式会社日立製作所 変圧器
US10991502B2 (en) 2017-11-10 2021-04-27 Tci, Llc Bobbin wound electrical reactor assembly
KR20190092703A (ko) * 2018-01-31 2019-08-08 엘지이노텍 주식회사 트랜스포머 및 그의 제조 방법
KR102536831B1 (ko) 2018-01-31 2023-05-25 엘지이노텍 주식회사 트랜스포머 및 그의 제조 방법
JP2020115523A (ja) * 2019-01-18 2020-07-30 株式会社日立製作所 静止誘導電器用鉄心
JP7300270B2 (ja) 2019-01-18 2023-06-29 株式会社日立製作所 静止誘導電器用鉄心
JP2020123683A (ja) * 2019-01-31 2020-08-13 株式会社日立製作所 静止誘導電器
JP7224941B2 (ja) 2019-01-31 2023-02-20 株式会社日立製作所 静止誘導電器
JP2021027115A (ja) * 2019-08-02 2021-02-22 株式会社日立産機システム 積鉄心静止誘導機器およびその製造方法
JP7337589B2 (ja) 2019-08-02 2023-09-04 株式会社日立産機システム 積鉄心静止誘導機器およびその製造方法

Also Published As

Publication number Publication date
JP6359767B2 (ja) 2018-07-18
EP3306626A4 (en) 2019-01-23
US20170352466A1 (en) 2017-12-07
CN107112113A (zh) 2017-08-29
KR20170083082A (ko) 2017-07-17
JP6483312B2 (ja) 2019-03-13
JP2018174341A (ja) 2018-11-08
CN110189898A (zh) 2019-08-30
EP3306626A1 (en) 2018-04-11
JPWO2016189767A1 (ja) 2017-09-07
CN107112113B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
JP6483312B2 (ja) 積鉄心構造体、及びこれを備えた変圧器
US8614617B2 (en) Reactor
US9876398B2 (en) Stator core for rotating electric machine
JP6350107B2 (ja) ステータのインシュレータ及びこれを用いた回転電機用ステータ、並びに、回転電機用ステータの製造方法
JP2007159332A (ja) 回転電機
WO2020071512A1 (ja) 巻鉄心及び変圧器
JP2015142095A (ja) 静止誘導機器およびその製造方法
KR20150016995A (ko) 비선형 변압기를 위한 3-스텝 코어
BRPI1103036A2 (pt) método para fabricação de núcleos triangulares de transformador feitos de metal amorfo
JP2019050327A (ja) 内鉄型変圧器の鉄心
KR20190000286U (ko) 변압기 철심
JP2008041876A (ja) リアクトル
JP5969755B2 (ja) アモルファス鉄心変圧器
EP2814045A1 (en) Compact low-loss triangular transformer and method for producing the same
JPH05199732A (ja) 非同期機の2次部材及びその製造方法
JP2010245456A (ja) リアクトル集合体
KR100802622B1 (ko) 왕복동식 모터의 고정자 구조
JP5257847B2 (ja) リアクトル集合体、リアクトル集合体の漏れインダクタンスの調整方法、及びコンバータ
JP4381351B2 (ja) 三相巻鉄心
JP6928531B2 (ja) リアクトル
JP5900741B2 (ja) 複合磁心、リアクトルおよび電源装置
JP6977369B2 (ja) 変圧器の鉄心支持構造
JP6491835B2 (ja) 静止誘導電器
JP6877266B2 (ja) 変圧器
JPS5996852A (ja) 積層コアの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520206

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177015442

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015893399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15539775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE