WO2020071512A1 - 巻鉄心及び変圧器 - Google Patents

巻鉄心及び変圧器

Info

Publication number
WO2020071512A1
WO2020071512A1 PCT/JP2019/039206 JP2019039206W WO2020071512A1 WO 2020071512 A1 WO2020071512 A1 WO 2020071512A1 JP 2019039206 W JP2019039206 W JP 2019039206W WO 2020071512 A1 WO2020071512 A1 WO 2020071512A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electromagnetic steel
core
core member
laminate
Prior art date
Application number
PCT/JP2019/039206
Other languages
English (en)
French (fr)
Inventor
茂木 尚
崇人 水村
史明 高橋
輝幸 玉木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to AU2019354345A priority Critical patent/AU2019354345A1/en
Priority to EP19869378.0A priority patent/EP3863032A4/en
Priority to BR112021002652-5A priority patent/BR112021002652A2/pt
Priority to KR1020217002251A priority patent/KR102541759B1/ko
Priority to CN201980040771.4A priority patent/CN112313762B/zh
Priority to JP2020551088A priority patent/JP7047931B2/ja
Priority to US17/273,142 priority patent/US20210327631A1/en
Priority to RU2021108844A priority patent/RU2760332C1/ru
Publication of WO2020071512A1 publication Critical patent/WO2020071512A1/ja
Priority to AU2022268384A priority patent/AU2022268384A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets

Definitions

  • the present invention relates to a wound iron core and a transformer.
  • the wound core is used as a magnetic core of a transformer (transformer), a reactor, a noise filter, or the like.
  • transformers Conventionally, in transformers, low iron loss has been one of the important issues from the viewpoint of high efficiency, and low iron loss has been studied from various viewpoints.
  • Patent Document 1 discloses a rectangular annular wound core made of a laminated body of electromagnetic steel sheets and having a joint, a winding wound around at least one of the columnar portions of the wound core, and a columnar portion having a joined portion. And a tension applying member for applying a circumferential tension to at least one columnar portion of the wound iron core.
  • Patent Document 2 discloses a wound core having a winding thickness of 40 mm or more in which a plurality of directional electromagnetic steel sheets annular in a side view are stacked in a plate thickness direction, and an inner core disposed on an inner surface side, and an inner core.
  • the outer core is disposed on the outer surface side of the inner core, the winding thickness of the inner core is a predetermined dimension, the grain-oriented electrical steel sheet forming the inner core of the grain-oriented electrical steel sheet is a metal containing twins
  • Disclosed is a wound iron core having a plurality of bent portions formed in a curved shape in a side view, wherein the outer core has a higher space factor of the grain-oriented electrical steel sheet than the inner core. .
  • Patent Document 3 a thin plate-shaped magnetic material is formed by cutting out an electromagnetic steel sheet into a substantially trapezoidal shape, a substantially trapezoidal quadrilateral shape, a substantially pentagonal shape, and the like. It is disclosed that one layer of a laminated iron core is constituted by arranging on a plane to be formed and abutting surfaces in a thickness direction with each other. Patent Document 3 discloses a configuration in which a gap having a certain width is formed at an abutting portion, and a patch-shaped magnetic material is fixed so as to cover the front surface of the gap.
  • Patent Document 4 in a separation type transformer including a fixed iron core and a movable iron core, in order to prevent a leakage magnetic flux, a configuration in which a holding plate is closely attached around a joint between the fixed iron core and the movable iron core. Is disclosed.
  • an object of the present invention is to provide a wound iron core and a transformer with reduced iron loss.
  • the present inventors have conducted intensive studies and focused on iron loss caused by a bent portion in a wound iron core. That is, in the bent portion, the magnetic permeability decreases and the iron loss increases. Further, in these portions, leakage magnetic flux is generated, and iron loss increases due to eddy current generated by the leakage magnetic flux.
  • the present inventors for the purpose of suppressing iron loss about such a bent portion, by providing a new magnetic path on the side surface of the bent portion or the bent portion in the wound core, to suppress the leakage magnetic flux, and, It has been found that by suppressing eddy currents generated in portions other than the magnetic path, iron loss is reduced. As a result of further investigation, the present invention has been reached.
  • the gist of the present invention completed based on the above findings is as follows.
  • a core member formed by winding a first electromagnetic steel sheet, being annular as viewed from the side, and having one or more bent portions as viewed from the side;
  • the laminate is arranged such that a surface formed by a side surface of the second electromagnetic steel sheet is aligned with at least one of a surface formed by a side surface of the first electromagnetic steel plate in the bent portion of the core member.
  • Winding iron core (2) The wound iron core according to (1), wherein the direction of the laminated surface of the second electromagnetic steel sheet of the laminate is along the direction of the laminated surface of the first electromagnetic steel sheet of the core member.
  • a core member formed by winding the first electromagnetic steel sheet being annular as viewed from the side, and having one or more bent portions as viewed from the side;
  • FIG. 1 is a perspective view illustrating an example of a wound core according to an embodiment of the present invention. It is the top view which looked at the core member with which the winding core shown in FIG. 1 was provided from the side of the electromagnetic steel plate.
  • FIG. 2 is a partially enlarged plan view illustrating a part of a side surface of the core member for describing an example of an arrangement of a core member and a laminate included in the wound core illustrated in FIG. 1.
  • FIG. 2 is an explanatory diagram for explaining an arrangement of a laminate provided in the wound core shown in FIG. 1.
  • FIG. 2 is an exploded perspective view illustrating an example of a method of attaching a laminate included in the wound core illustrated in FIG. 1.
  • FIG. 9 is a schematic diagram illustrating a state where a magnetic flux passes through a core member when a laminate is not provided.
  • FIG. 9 is a schematic diagram showing a state where a laminate is arranged so as to cover a strain region with respect to FIG. 8.
  • FIG. 10 is a schematic diagram showing a cross section taken along a dashed-dotted line II ′ shown in FIG.
  • FIG. 4 is a schematic diagram illustrating an example in which a region on the side of the rectangular laminate illustrated in FIG. 3 is cut at a position outside a corner. It is a schematic diagram which shows the example which made the 2nd electromagnetic steel plate which comprises a laminated body into an arc shape.
  • the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel plates with respect to the thickness T 1 of the first electromagnetic steel plates, is a characteristic diagram showing the relationship between iron loss of the core member.
  • FIG. 1 is a perspective view showing an example of a wound core according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a core member included in the wound iron core shown in FIG. 1 as viewed from a side surface of an electromagnetic steel sheet.
  • FIG. 3 is a partially enlarged plan view showing a part of a side surface of the core member for describing an example of an arrangement of a core member and a laminate provided in the wound core shown in FIG. 1.
  • FIG. 4 is an explanatory diagram for explaining the arrangement of the laminate provided in the wound core shown in FIG. 1.
  • the core member 1 is formed by winding the first electromagnetic steel sheet 20, is annular when viewed from the side, and has one or more bent portions 22 when viewed from the side; At least one of the side surfaces of the first electromagnetic steel sheet 20 in the core member 2, wherein the second electromagnetic steel sheet 30 has a plurality of stacked bodies 3 on which the second electromagnetic steel sheet 30 is stacked.
  • the surface formed by the side surface of the electromagnetic steel plate 30 is arranged along the surface formed by the side surface of the first electromagnetic steel plate 20 in the bent portion 22.
  • the wound core 1 is formed in an octagon as a whole.
  • the wound core 1 includes a core member 2, a laminate 3, and a jig 4.
  • the core member 2 is a wound body formed by winding a belt-shaped first electromagnetic steel sheet 20, and has one or more bent portions 22. Specifically, the core member 2 is bent so that the side surface of the first electromagnetic steel sheet 20 forms four corners 23 at the innermost circumference, and forms a square shape. Is bent at the corner 23 of the innermost first electromagnetic steel sheet 20 and wound so that two corners 24 are formed. As a result, when viewed from the side of the first electromagnetic steel sheet 20, the core member 2 forms an octagon having eight corners 24 on the outer periphery, while the four corners 23 are formed on the inner periphery. Have a square shape. The core member 2 is formed on a straight side 21 along the straight portion of the innermost first electromagnetic steel sheet 20, a corner 23 on the innermost periphery, and an outer peripheral side of the corner 23. And four bent portions 22 each having two corner portions 24.
  • the thickness of the first electromagnetic steel sheet 20 can be, for example, 0.20 mm or more and 0.40 mm or less.
  • a thin electromagnetic steel sheet as the first electromagnetic steel sheet 20
  • eddy currents are less likely to be generated in the thickness plane of the first electromagnetic steel sheet 20
  • eddy current loss among iron losses can be reduced.
  • the thickness of the first magnetic steel sheet 20 is preferably 0.18 mm or more and 0.35 mm or less, and more preferably 0.18 mm or more and 0.27 mm or less.
  • the first magnetic steel sheet 20 for example, an existing grain-oriented magnetic steel sheet or an existing non-oriented magnetic steel sheet can be used.
  • the first magnetic steel sheet 20 is a grain-oriented magnetic steel sheet.
  • the first electromagnetic steel sheets 20 that are wound and form a layer are insulated from each other.
  • the surface of the first electromagnetic steel sheet 20 be subjected to insulation treatment. Since the layers of the first electromagnetic steel sheet 20 are insulated, eddy current is less likely to be generated in the thickness plane of the first electromagnetic steel sheet 20, and eddy current loss can be reduced. As a result, it is possible to further reduce the iron loss of the wound core 1.
  • the surface of the first magnetic steel sheet 20 is preferably subjected to an insulating treatment using an insulating coating solution containing colloidal silica and phosphate.
  • Laminated body 3 is formed by laminating a plurality of plate-shaped second electromagnetic steel sheets 30.
  • the laminate 3 contacts at least one of the side surfaces of the bent portion 22 with the side surface of the second electromagnetic steel plate 30 of the laminate 3 contacting the side surface of the first electromagnetic steel plate 20 of the bent portion 22 while maintaining insulation. It is arranged along.
  • the magnetic flux passing through the core member 2 easily leaks from the bent portion of the first electromagnetic steel sheet 20 at the bent portion, and the larger the first electromagnetic steel sheet 20 is bent, the more easily the magnetic flux leaks.
  • the first electromagnetic steel sheet 20 is largely bent at a straight line portion connecting the corner 23 and the corner 24, the magnetic flux passing through the core member 2 easily leaks at such a portion.
  • the laminate 3 is arranged on at least one of the side surfaces of the bent portion 22 such that the side surface of the second electromagnetic steel plate 30 of the laminate 3 is along the side surface of the first electromagnetic steel plate 20 of the bent portion 22. Therefore, the leakage magnetic flux generated at the bent portion 22 can pass through the laminated body 3 from one side 21 and then pass through the other side 21 connected to the laminated body 3. As a result, it is possible to reduce iron loss occurring in the wound core 1.
  • the laminated body 3 is disposed on both side surfaces of the bent portion 22, so that iron loss can be further reduced.
  • the laminate 3 and the core member 2 are insulated.
  • an insulating sheet between the laminate 3 and the core member 2.
  • various known insulators such as natural rubber, epoxy resin, polyvinyl chloride or polyurethane insulating material can be used.
  • the angle ⁇ of the laminated surface of the second electromagnetic steel sheets 30 in the laminated body 3 is arranged to be 45 degrees or more and 90 degrees or less.
  • the angle ⁇ is equal to or greater than 45 degrees and equal to or less than 90 degrees, the second electromagnetic steel sheet 30 becomes a magnetic path of the leakage magnetic flux generated in the bent portion 22, and thus the eddy current generated in portions other than the magnetic path is further suppressed.
  • the angle of the laminated surface of the electromagnetic steel sheets in the laminated body is not less than 75 degrees and not more than 90 degrees.
  • Laminate 3 is arranged, for example, in FIG. 3 such that the lamination surface of second electromagnetic steel sheet 30 is at 90 degrees with respect to straight line L.
  • the second electromagnetic steel sheet 30 serves as a magnetic path of the leakage magnetic flux generated in the bent portion 22, so that eddy current generated in a portion other than the magnetic path is suppressed. As a result, iron loss is reduced.
  • the thickness T2 of the second magnetic steel sheet 30 is not particularly limited. However, the thickness T2 of the second magnetic steel sheet 30 can preferably be the same as the thickness T1 of the first magnetic steel sheet 20, or can be equal to or less than the thickness T1 of the first magnetic steel sheet 20. By making the thickness T2 of the second magnetic steel sheet 30 smaller than the thickness T1 of the first magnetic steel sheet 20, the leakage magnetic flux generated at the bent portion 22 of the core member 2 passes through the laminate 3 more efficiently. Become.
  • the thickness is smaller than 1 , the eddy current loss is reduced, and the loss in the laminate 3 is suppressed. This makes it possible to further reduce the eddy current loss caused by the leakage magnetic flux. As a result, it is possible to further reduce the iron loss of the wound core 1. Therefore, preferably, the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel plates 30 to the thickness T 1 of the first electromagnetic steel plates 20 is 1.0 or less. On the other hand, in consideration of the range of plate thickness that can be manufactured, the lower limit of T 2 / T 1 is about 0.5.
  • FIG. 13 is a characteristic diagram showing the relationship between the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel sheet 30 to the thickness T 1 of the first electromagnetic steel sheet 20 and the core loss of the core member 2.
  • FIG. 13 shows characteristics when a 25 kVA and 75 kVA transformer is manufactured using the wound iron core 1 according to the present embodiment. As shown in FIG. 13, in any of the transformers of 25 kVA and 75 kVA, the iron loss increases as the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel sheet 30 to the thickness T 1 of the first electromagnetic steel sheet 20 decreases. Was obtained. Therefore, it is preferable to make the value of T 2 / T 1 as small as possible.
  • the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel sheet 30 to the thickness T 1 of the first electromagnetic steel sheet 20 is preferably 1.0 or less.
  • the second magnetic steel sheet 30 may be the same or different from the first magnetic steel sheet 20.
  • the second electromagnetic steel sheet 30 for example, an existing grain-oriented electrical steel sheet or an existing non-oriented electrical steel sheet can be used.
  • the second magnetic steel sheet 30 is a grain-oriented magnetic steel sheet.
  • the second electromagnetic steel sheets 30 are insulated from each other.
  • the surface of the electromagnetic steel sheets is preferably subjected to an insulation treatment. Since the lamination of the second electromagnetic steel sheets 30 is insulated, eddy currents are less likely to occur in the thickness plane of the second electromagnetic steel sheets 30, and eddy current loss can be further reduced. Becomes As a result, it is possible to further reduce the iron loss of the wound core 1.
  • the surface of the second electromagnetic steel sheet 30 is preferably subjected to an insulation treatment using an insulating coating solution containing colloidal silica and phosphate.
  • the laminated body 3 may have a through-hole penetrating the laminated body 3 from the side as needed.
  • the stack 3 is fixed to the core member 2 by inserting a stopper such as a bolt of the jig 4 into the through hole.
  • FIG. 5 is an exploded perspective view showing an example of a method of attaching the laminate provided in the wound iron core shown in FIG.
  • the jig 4 has a support column 41, a fixing plate 42, an outer plate 43, an inner plate 44, a bolt 45, and a nut 46.
  • support pillars 41 that support the laminate 3 are arranged on the outer peripheral side and the inner peripheral side of the bent portion 22. Further, a fixed plate 42 disposed so as to sandwich the bent portion 22 and the laminate 3, an outer plate 43 disposed on the outer peripheral side of the core member 2, and an inner plate disposed on the inner peripheral side of the core member 2 44, the laminate 3 is fixed to the bent portion 22.
  • the laminate 3 has a through-hole into which the bolt 45 is inserted, and the support column 41 and the fixing plate 42 have through-holes at positions corresponding to the through-holes of the laminate 3.
  • Bolts 45 are inserted into the through holes of the laminate 3, the through holes of the support columns 41, and the through holes of the fixing plate 42, and nuts 46 are fastened to the ends of the bolts 45.
  • the outer plate 43 and the inner plate 44 have a plurality of through holes respectively corresponding to the plate thickness direction, the bolt 45 is inserted into these corresponding through holes, and the nut 46 is connected to an end of the bolt 45. Is concluded.
  • the bolt 45 may be one whose surface is insulated at least.
  • the bolt 45 may be made of an insulator such as a ceramic.
  • the laminate 3 is fixed to the side surface of the core member 2 without conduction between the core member 2 and the laminate 3 by the bolt 45.
  • the material of the bolt 45 is preferably a non-magnetic material. By making the material of the bolt 45 a non-magnetic material, it is possible to prevent leakage magnetic flux from entering the bolt 45 and generating an eddy current.
  • FIG. 8 is a schematic diagram showing a state where a magnetic flux passes through the core member 2 when the laminate 3 is not provided.
  • the first electromagnetic steel sheet 20 of the core member 2 is bent at the corner 24, and distortion occurs at the corner 24.
  • a strain region 50 is formed in the core member 2 along the positions of the two corners 24.
  • Arrows A1, A2, and A3 shown in FIG. 8 schematically show how the magnetic flux leaks when the magnetic flux passes through the strain region 50.
  • the thickness of each of the arrows A1, A2, and A3 indicates the magnitude of the magnetic flux.
  • the magnetic flux leaks, so that the magnitude of the magnetic flux decreases, and iron loss occurs.
  • FIG. 9 shows a state where the stacked body 3 is arranged so as to cover the strain region 50 with respect to FIG.
  • FIG. 10 is a diagram showing a cross section taken along a dashed line II ′ shown in FIG. 9, and is a schematic diagram schematically showing a state where a magnetic flux passes through a cross section taken along a dashed line II ′. is there.
  • the flow of the magnetic flux is indicated by arrows.
  • the laminate 3 covers the strain region 50 corresponding to the corner 24
  • the magnetic flux passes through the laminate 3 at the position of the corner 24.
  • the laminated body 3 is formed by laminating a plurality of plate-shaped second electromagnetic steel sheets 30, and the adjacent second electromagnetic steel sheets 30 are preferably insulated from each other. Therefore, eddy current loss when a magnetic flux passes through the multilayer body 3 is suppressed. Thereby, the core loss of the wound core 1 is reduced.
  • FIG. 10 illustrates an example in which the laminate 3 is disposed on both side surfaces of the core member 2, the laminate 3 may be disposed on at least one side surface of the core member 2.
  • the metal plate is disposed on the side surface of the core member 2, so that the first electromagnetic steel sheet 20 is laminated.
  • the surfaces are short-circuited, and the insulation between the first electromagnetic steel sheets 20 cannot be maintained. Therefore, a large eddy current flows through the cross section of the first magnetic steel sheet 20, and the loss (eddy current loss) increases. Even if the metal plate and the core member 2 are insulated, the eddy current loss increases because the magnetic flux passes through a large cross section of the metal plate.
  • the laminated body 3 is formed by laminating the plurality of plate-shaped second electromagnetic steel sheets 30, and the second electromagnetic steel sheets 30 of the laminated body 3 are insulated from each other, so that the magnetic flux is increased. Pass through a smaller cross section, and eddy current loss is reliably reduced. Therefore, the core loss of the wound core 1 is reduced.
  • FIG. 3 shows the rectangular laminate 3, but the laminate 3 covers a region including the triangle having the corner 23 as the apex and the corner 24 as the side of the first electromagnetic steel sheet 20, and the periphery thereof.
  • a substantially V-shaped shape may be used.
  • FIG. 11 is a schematic diagram illustrating an example in which the region on the side 21 side of the rectangular laminate 3 illustrated in FIG. 3 is cut at a position outside the corner 24.
  • the ends of the laminate 3 on the two sides 21 are offset from the corners 24 by a predetermined amount D.
  • the leakage flux is captured in a region of a predetermined amount D closer to the side 21 than the corner 24.
  • the predetermined amount D is increased, the leakage magnetic flux is more reliably captured, but the manufacturing cost of the multilayer body 3 increases because the area of the multilayer body 3 increases.
  • FIG. 12 is a schematic view showing an example in which the second electromagnetic steel sheet 30 constituting the laminate 3 is formed in an arc shape.
  • the ends on the two sides 21 of the laminate 3 are offset from the corners 24 by a predetermined amount D.
  • the second electromagnetic steel sheet 30 By forming the second electromagnetic steel sheet 30 into an arc shape, the second electromagnetic steel sheet 30 extends in a direction along the first electromagnetic steel sheet 20 in a region closer to the side 21 than the corner 24. become.
  • the direction of the second electromagnetic steel sheet 30 is greater in the configuration of FIG. You will get closer. Therefore, the laminated body 3 can more reliably supplement the leakage magnetic flux.
  • the wound core 1 As described above, according to the present embodiment, it is possible to reduce iron loss occurring in the wound core 1. Further, with the wound core 1 according to the present embodiment, it is possible to suppress noise of a transformer manufactured using the wound core 1. That is, the laminate 3 is arranged on at least one of the side surfaces of the bent portion 22 such that the side surface of the second electromagnetic steel plate 30 of the laminate 3 is along the side surface of the first electromagnetic steel plate 20 of the bent portion 22. Therefore, the leakage magnetic flux generated at the bent portion 22 can pass through the laminated body 3 from one side 21 and then pass through the other side 21 connected to the laminated body 3. As a result, it is possible to reduce noise generated in the wound core 1.
  • the wound iron core according to the present embodiment is applicable to a transformer.
  • the transformer according to the present embodiment includes the wound core according to the present embodiment, a primary winding, and a secondary winding.
  • a magnetic flux is generated in the wound core according to the present embodiment, and a change in the generated magnetic flux generates a voltage in the secondary winding.
  • the laminated body of the wound iron core is arranged on at least one of the side surfaces of the bent portion, the side surface of the second electromagnetic steel sheet of the laminated body is arranged along the side surface of the first electromagnetic steel sheet of the bent portion.
  • leakage of the magnetic flux generated in the wound core according to the present embodiment to the outside of the wound core is suppressed. As a result, it is possible to reduce iron loss occurring in the wound core, and to suppress noise of the transformer.
  • the outer periphery of the side surface of the core member is octagonal
  • the outer periphery of the side surface of the core member may be polygonal, rounded square, oval, elliptical, or the like.
  • the bent portion is located between one adjacent side and the other side, and the extending direction of the first electromagnetic steel sheet on one side and the first electromagnetic steel sheet on the other side. Is a portion where the first electromagnetic steel sheet is bent and laminated.
  • FIG. 6 is an enlarged plan view illustrating a part of a side surface of the core member for describing another example of the bent portion in the core member according to the present embodiment.
  • FIG. 7 is an enlarged plan view illustrating a part of a side surface of the core member for describing another example of the bent portion in the core member according to the present embodiment.
  • the first magnetic steel sheet 20 in the bent portion 22A shown in FIG. 6 is in the extending direction of the first magnetic steel sheet 20 in one side 21A and the first magnetic steel sheet 20 in the other side 21A.
  • the first electromagnetic steel sheet 20 is bent so as to have three corners 24A on its outer periphery.
  • the core member 2A forms a dodecagon having twelve corners 24A on its outer periphery when viewed from the side of the first electromagnetic steel sheet 20.
  • the first electromagnetic steel plate 20 is bent at a straight line portion connecting the corner 23A and the corner 24A, the magnetic flux passing through the core member 2 easily leaks at that portion.
  • the side surface of the second electromagnetic steel sheet 30 of the laminated body is aligned with the side surface of the first electromagnetic steel sheet 20 of the bent part 22A on at least one of the side surfaces of the bent portion 22A.
  • the leakage magnetic flux generated at the bent portion 22A can pass through the laminated body according to the present embodiment from one side 21A, and then pass through the other side 21A connected to the laminated body. As a result, it is possible to reduce iron loss generated in the wound core.
  • the core member 2B shown in FIG. 7 is formed such that the first electromagnetic steel sheet 20 is bent and wound, and the bent portion 22B has an arc shape.
  • the bent portion 22B is a region where the arc-shaped first electromagnetic steel sheets 20 are stacked. Magnetic flux passing through the core member 2B easily leaks from the bent portion 22B.
  • the side surface of the second electromagnetic steel plate 30 of the laminated body is along the side surface of the first electromagnetic steel plate 20 of the bent portion 22B.
  • the leakage magnetic flux generated at the bent portion 22B can pass through the laminated body according to the present embodiment from one side 21B and then pass through the other side 21B connected to the laminated body. As a result, it is possible to reduce iron loss generated in the wound core.
  • the case where the side surface inner periphery of the core member is square is described, but the present invention is not limited to this, and the side surface inner periphery of the core member is polygonal, rounded square, oval, Alternatively, the shape can be elliptical or the like.
  • the inner periphery of the side surface of the core member can have a shape corresponding to the shape of the outer periphery of the side surface.For example, when the outer periphery of the side surface of the core member is octagonal, the inner periphery of the side surface can be octagonal.
  • the inner periphery of the side surface of the member When the outer periphery of the side surface of the member is rounded square, the inner periphery of the side surface can be rounded square.
  • the inner periphery of the side surface of the core member may have a shape different from the outer periphery of the side surface of the core member.
  • the bent portion is located between one adjacent side and the other side, and the first electromagnetic steel sheet on one side and the other side on the other side. This is a portion where the first electromagnetic steel sheet is bent and stacked in the extending direction of the first electromagnetic steel sheet.
  • the first electromagnetic steel sheet forming the side of the core member is linear.
  • the first electromagnetic steel sheet forming the side of the core member is not linear. Or it may be curved.
  • a portion having a large curvature in the core member can be a bent portion, and a portion having a small curvature can be a side portion.
  • the shape of the core member whose side is curved is, for example, circular or elliptical.
  • the shape of the laminate is a square plate
  • the shape of the laminate is not particularly limited, and may be a shape corresponding to the shape of the side surface of the bent portion. it can.
  • the laminate is a laminate of the second electromagnetic steel sheets on the flat plate
  • the second magnetic steel plate is not limited to the flat plate, but is a curved one. Is also good.
  • a laminate formed using the curved second electromagnetic steel sheet can be arranged on the side surface of the bent portion.
  • the present invention is not limited to the illustrated embodiment, and for example, a treatment for fixing the laminated body without the through-hole to the core member.
  • a tool may be used, and instead of the jig, an existing various adhesive may be used to bond the laminate to the side surface of the core member.
  • an adhesive it is preferable that the adhesive has an insulating property.
  • a grain-oriented magnetic steel sheet having a thickness of 0.23 mm was wound to produce a core member having bent portions at four corners.
  • the wound core was manufactured by arranging them in parallel, and a transformer was manufactured using the wound core.
  • Table 1 shows the capacity of each manufactured core, the shape of the core member, the total weight of the transformer, the weight of the core member 2 made of the first magnetic steel sheet 20, the core dimensions (length, width, lamination thickness, width), and iron loss.
  • Table 3 shows a beat sound, and a value of the ratio T 2 / T 1 of the thickness T 2 of the second magnetic steel sheet 30 to the thickness T 1 of the first magnetic steel sheet 20.
  • the total weight of the transformer is the total weight including the case, the winding, the core member 2, the laminate 3, and the like.
  • a core member having bent portions at four corners was produced by winding a grain-oriented electrical steel sheet having a thickness of 0.23 mm in the same manner as in the example, and a laminated core was not disposed to obtain a wound core.
  • 6 and Comparative Examples 7 and 8 in which a laminated body was arranged and T 2 / T 1 was set to 1.0 or more to form a wound core. Then, a transformer was manufactured using the wound core.
  • the transformer as an example differs from the transformer as a comparative example in the presence or absence of a laminate.
  • Example 1 and Comparative Example 1 have the same conditions except for the presence or absence of a laminate.
  • Examples 2 to 6 have the same conditions as Comparative Examples 2 to 6 except for the presence or absence of a laminate.
  • Comparative Examples 7 and 8 when the laminated body was provided, the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel sheet 30 to the thickness T 1 of the first electromagnetic steel sheet 20 was different from the embodiment. An example is shown.
  • the Comparative Example 7 and Example 1, the second ratio T 2 / T 1 other than conditions of the thickness T 2 of the electromagnetic steel sheets 30 to the thickness T 1 of the first electromagnetic steel plates 20 are common.
  • Example 6 and Comparative Example 8 have the same conditions except for the ratio T 2 / T 1 of the thickness T 2 of the second electromagnetic steel sheet 30 to the thickness T 1 of the first electromagnetic steel sheet 20.
  • the rounded square shape is a shape having no bent portion at a corner portion and bent with a certain curvature, for example, a shape shown in FIG. Iron loss (no-load loss) and sound pressure were measured based on JEC-2200.
  • Example 1 Comparing Example 1 with Comparative Example 1, the iron loss of Example 1 was 28.1 W, which was smaller than 30.9 W of the iron loss of Comparative Example 1.
  • the value of the sound pressure of Example 1 was 40.0 dB, which was smaller than the value of the sound pressure of Comparative Example 1 of 44.0 dB.
  • the examples 2 to 6 were compared with the comparative examples 2 to 6, respectively, the values of the iron loss and the sound pressure were smaller in the transformer of the example in each case.
  • Example 1 when comparing Example 1 and Comparative Example 7, the iron loss of Example 1 was 28.1 W, which was smaller than the iron loss of Comparative Example 7 of 29.8 W.
  • the value of the sound pressure of Example 1 was 40.0 dB, which was smaller than the value of the sound pressure of Comparative Example 7 of 42.1 dB.
  • Example 6 Comparing Example 6 with Comparative Example 8, the iron loss of Example 6 was 47.2 W, which was smaller than the iron loss of Comparative Example 8 of 50.3 W.
  • the value of the sound pressure of Example 6 was 47.2 dB, which was smaller than the value of the sound pressure of Comparative Example 8 of 50.3 dB.

Abstract

本発明は、鉄損が低減された、巻鉄心及び変圧器を提供する。 本発明に係る巻鉄心は、第1の電磁鋼板が巻かれて形成され、側面から見て環状であって、側面から見て1以上の屈曲部を有するコア部材と、第2の電磁鋼板が積層された1以上の積層体と、を備え、前記積層体は、前記コア部材の前記屈曲面における前記第1の電磁鋼板の側面で形成される面の少なくとも一方に、前記第2の電磁鋼板の側面で形成される面が沿うように配置されている。

Description

巻鉄心及び変圧器
 本発明は、巻鉄心及び変圧器に関する。
 巻鉄心は、変圧器(トランス)、リアクトル、またはノイズフィルタ等の磁心として用いられている。変圧器においては、従来、高効率化の観点から、低鉄損化が重要な課題の一つとなっており、様々な観点から低鉄損化の検討が行われている。
 例えば、特許文献1には、電磁鋼板の積層体からなり、接合部を有する矩形環状の巻鉄心と、巻鉄心の柱状部の少なくとも1つに巻回する巻線と、接合部を有する柱状部を電磁鋼板の積層方向に加圧する加圧部材と、巻鉄心の少なくとも一つの柱状部に周方向の張力を付与する張力付与部材と、を備えるトランスが開示されている。
 また、例えば、特許文献2には、側面視環状の複数の方向性電磁鋼板が板厚方向に積層された巻厚40mm以上の巻鉄心であり、内面側に配置された内側鉄心と、内側鉄心の外面側に配置された外側鉄心とからなり、内側鉄心の巻厚が、所定の寸法であり、方向性電磁鋼板のうち内側鉄心を形成している方向性電磁鋼板は、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有し、外側鉄心は、内側鉄心よりも前記方向性電磁鋼板の占積率が高いことを特徴とする巻鉄心が開示されている。
 また、例えば、特許文献3には、薄板状磁性材料が、略台形状、略不等辺四辺形状、略五角形状等に電磁鋼板を切り出してなり、これらの薄板状磁性材料を上下、左右方向の成す平面上に配列し、厚さ方向の面を相互に衝合することにより、積層鉄心の一層が構成されることが開示されている。そして、特許文献3には、衝合箇所に、ある程度の幅を有するギャップが形成され、ギャップの前面を覆うように、パッチ状磁性材料が固着された構成が開示されている。
 また、例えば、特許文献4には、固定鉄心と可動鉄心とからなる分離式トランスにおいて、漏れ磁束を防止するために、固定鉄心と可動鉄心との接合部の周りに押さえ板を密着させた構成が開示されている。
特開2018-32703号公報 特開2017-157806号公報 特開2017-22189号公報 特開2005-38987号公報
 しかしながら、鉄損は低いほど好ましく、特許文献1、特許文献2に記載されているような従来の巻鉄心には未だ改善の余地がある。一方、特許文献3、特許文献4に記載された技術では、鉄心の接合箇所に板状の部材を張り付けることで、磁束の漏れを防止している。しかし、このような手法では、板状の部材において渦電流損が発生するため、鉄損を抑制することができない問題がある。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、鉄損が低減された、巻鉄心及び変圧器を提供することにある。
 上記課題の解決のため、本発明者らは、鋭意検討し、巻鉄心における屈曲した部分に起因した鉄損に着目した。すなわち、屈曲した部分においては、透磁率が低下して鉄損が増大する。また、これらの部分では、漏れ磁束が発生し、この漏れ磁束によって生じた渦電流により、鉄損が増大する。本発明者らは、このような屈曲した部分についての鉄損の抑制を目的として、巻鉄心における曲げ部分や折れ部分の側面に新たな磁路を設けることで、漏れ磁束を抑制し、かつ、磁路以外の部分に発生する渦電流を抑制することで、鉄損が低減することを見出し、さらに検討した結果、本発明に至った。
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
(1) 第1の電磁鋼板が巻かれて形成され、側面から見て環状であって、側面から見て1以上の屈曲部を有するコア部材と、
 第2の電磁鋼板が積層された1以上の積層体と、
を備え、
 前記積層体は、前記コア部材の前記屈曲部における前記第1の電磁鋼板の側面で形成される面の少なくとも一方に、前記第2の電磁鋼板の側面で形成される面が沿うように配置されている、巻鉄心。
(2) 前記積層体の前記第2の電磁鋼板の積層面の方向は、前記コア部材の前記第1の電磁鋼板の積層面の方向に沿っている、(1)に記載の巻鉄心。
(3) 前記コア部材を前記第1の電磁鋼板の面に沿う方向から見た側面の少なくとも一方において、前記屈曲部における内周部の中点と、前記屈曲部における外周部の中点と、を結ぶ直線に対する、前記第2の電磁鋼板の積層面の角度は、45度以上90度以下である、(1)または(2)に記載の巻鉄心。
(4) 前記コア部材は、前記コア部材を側面から見たときに角部を有する、(1)~(3)のいずれかに記載の巻鉄心。
(5) 前記コア部材を側面から見たときの前記コア部材の形状は、八角形である、(1)~(4)のいずれかに記載の巻鉄心。
(6) 前記第2の電磁鋼板の厚みは、前記第1の電磁鋼板の厚みと同一、または前記第1の電磁鋼板の厚みより小さい、(1)~(5)のいずれかに記載の巻鉄心。
(7) 前記第1の電磁鋼板の厚みをT、前記第2の電磁鋼板の厚みをTとした時、T/Tの比が0.5以上1.0以下である、(6)に記載の巻鉄心。
(8) 前記第2の電磁鋼板は、互いに絶縁されている、(1)~(7)のいずれかに記載の巻鉄心。
(9) 第1の電磁鋼板が巻き回されて形成され、側面から見て環状であって、側面から見て1以上の屈曲部を有するコア部材と、
 第2の電磁鋼板が積層された1以上の積層体と、
を備え、
 前記積層体は、前記コア部材の前記屈曲部における前記第1の電磁鋼板の側面で形成される面の少なくとも一方に、前記第2の電磁鋼板の側面で形成される面が沿うように配置されている、変圧器。
 本発明によれば、鉄損が低減された、巻鉄心及び変圧器を提供することが可能となる。
本発明の一実施形態に係る巻鉄心の一例を示す斜視図である。 図1に示す巻鉄心が備えるコア部材を電磁鋼板の側面側からみた平面図である。 図1に示す巻鉄心が備えるコア部材及び積層体の配置の一例を説明するための、コア部材の側面の一部を示す部分拡大平面図である。 図1に示す巻鉄心が備える積層体の配置を説明するための説明図である。 図1に示す巻鉄心が備える積層体の取付け方法の一例を示す分解斜視図である。 同実施形態に係るコア部材における屈曲部の別の一例を説明するための、コア部材の側面の一部を示す拡大平面図である。 同実施形態に係るコア部材における屈曲部の別の一例を説明するための、コア部材の側面の一部を示す拡大平面図である。 積層体を設けていない場合に、コア部材を磁束が通る様子を示す模式図である。 図8に対して、歪領域を覆うように積層体を配置した状態を示す模式図である。 図9に示す一点鎖線I-I’に沿った断面を示す図であって、一点鎖線I-I’に沿った断面を磁束が通る様子を示す模式図である。 図3に示した矩形状の積層体の辺部側の領域を、角部よりも外側の位置でカットした例を示す模式図である。 積層体を構成する第2の電磁鋼板を円弧状にした例を示す模式図である。 第1の電磁鋼板の厚みTに対する第2の電磁鋼板の厚みTの比T/Tと、コア部材の鉄損との関係を示す特性図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、図中の各構成要素の比率、寸法は、実際の各構成要素の比率、寸法を表すものではない。
<1.巻鉄心及び変圧器>
 まず、図1~図4を参照して、本発明の一実施形態に係る巻鉄心及び変圧器について説明する。図1は、本発明の一実施形態に係る巻鉄心の一例を示す斜視図である。図2は、図1に示す巻鉄心が備えるコア部材を電磁鋼板の側面側からみた平面図である。図3は、図1に示す巻鉄心が備えるコア部材及び積層体の配置の一例を説明するための、コア部材の側面の一部を示す部分拡大平面図である。図4は、図1に示す巻鉄心が備える積層体の配置を説明するための説明図である。
 本実施形態に係る巻鉄心1は、第1の電磁鋼板20が巻き回されて形成され、側面から見て環状であって、側面から見て1以上の屈曲部22を有するコア部材2と、第2の電磁鋼板30が積層された1以上の積層体3と、を備え、積層体3は、コア部材2における第1の電磁鋼板20の側面の少なくとも一方に、積層体3における第2の電磁鋼板30の側面で形成される面が屈曲部22における第1の電磁鋼板20の側面で形成される面に沿うように配置されている。巻鉄心1は、図2に示すように、全体として、八角形に成形されている。本実施形態おいて、巻鉄心1は、コア部材2、積層体3、及び治具4を備える。
 図2に示すように、コア部材2は、帯状の第1の電磁鋼板20が巻き回されて形成された巻回体であり、1以上の屈曲部22を有する。具体的には、コア部材2は、第1の電磁鋼板20の側面が最内周において4つの隅部23を形成するように折り曲げられて方形状をなし、その外周の第1の電磁鋼板20は、最内周の第1の電磁鋼板20の隅部23において折り曲げられ、2つの角部24が形成されるように巻き回されている。この結果、コア部材2は、第1の電磁鋼板20の側面側から見たときに、その外周に8つの角部24を有する八角形をなし、一方で、内周に4つの隅部23を有する方形をなす。そして、コア部材2は、最内周の第1の電磁鋼板20の直線部分に沿った直線状の辺部21と、最内周の隅部23と当該隅部23の外周側に形成される2つの角部24とを有する4つの屈曲部22と、で構成される。
 第1の電磁鋼板20の厚みは、例えば、0.20mm以上0.40mm以下とすることができる。厚みの薄い電磁鋼板を第1の電磁鋼板20として用いることで、第1の電磁鋼板20の板厚面内において渦電流が生じ難くなり、鉄損のうちの渦電流損を低減することが可能となる。その結果、巻鉄心1の鉄損をより低減することが可能となる。第1の電磁鋼板20の厚みは、好ましくは、0.18mm以上0.35mm以下であり、さらに好ましくは、0.18mm以上0.27mm以下である。
 第1の電磁鋼板20には、例えば、既存の方向性電磁鋼板または既存の無方向性電磁鋼板を使用することができる。好ましくは、第1の電磁鋼板20は、方向性電磁鋼板である。方向性電磁鋼板をコア部材に使用することで、鉄損のうちのヒステリシス損を低減することが可能となり、巻鉄心1の鉄損をより低減することが可能となる。
 巻き回されて層をなす第1の電磁鋼板20同士の間は、絶縁されていることが好ましい。例えば、第1の電磁鋼板20の表面は、絶縁処理が施されていることが好ましい。第1の電磁鋼板20の層間が絶縁していることで、第1の電磁鋼板20の板厚面内において渦電流が生じ難くなり、渦電流損を低減することが可能となる。その結果、巻鉄心1の鉄損をより低減することが可能となる。例えば、第1の電磁鋼板20の表面は、コロイダルシリカ及びリン酸塩を含有する絶縁コーティング液を用いて絶縁処理が施されていることが好ましい。
 積層体3は、複数の板状の第2の電磁鋼板30が積層されて形成される。積層体3は、屈曲部22の側面の少なくとも一方の面に、積層体3の第2の電磁鋼板30の側面が屈曲部22の第1の電磁鋼板20の側面に絶縁を保ちながら接触して沿うように配置されている。コア部材2を通る磁束は、屈曲部22の第1の電磁鋼板20が屈曲した部分から漏れやすく、第1の電磁鋼板20が大きく屈曲する程、磁束は漏れやすい。図2に示したコア部材2では、隅部23と角部24とを結ぶ直線部分で第1の電磁鋼板20が大きく屈曲するため、コア部材2を通る磁束は、かかる部分で漏れやすい。しかしながら、積層体3が、屈曲部22の側面の少なくとも一方の面に、積層体3の第2の電磁鋼板30の側面が屈曲部22の第1の電磁鋼板20の側面に沿うように配置されているため、屈曲部22で生じる漏れ磁束は、一の辺部21から積層体3を通った後、当該積層体3と接続された他の辺部21を通ることが可能となる。その結果、巻鉄心1に生ずる鉄損を低減することが可能となる。特に、積層体3は、図1に示すように、屈曲部22の両側面に配置されることで、鉄損をより一層低減することが可能となる。
 積層体3とコア部材2との間は、絶縁されていることが好ましい。例えば、積層体3とコア部材2との間に、絶縁シートを配置されることが好ましい。絶縁シートの素材としては、天然ゴム、エポキシ樹脂、ポリ塩化ビニルまたはポリウレタン絶縁材等、各種公知の絶縁体を使用することができる。
 巻鉄心1は、図4に示すように、本実施形態においては、屈曲部22における側面内周の中点Mと、屈曲部22における側面外周の中点Mと、を結ぶ直線Lに対する、積層体3における第2の電磁鋼板30の積層面の角度θは、45度以上90度以下となるように配置されている。角度θが45度以上90度以下となることで、第2の電磁鋼板30が屈曲部22で生じる漏れ磁束の磁路となるため、磁路以外の部分に発生する渦電流がより一層抑制される。さらに好ましくは、積層体における電磁鋼板の積層面の角度は、75度以上90度以下である。
 積層体3は、例えば、図3では、直線Lに対して、第2の電磁鋼板30の積層面が90度となるように配置されている。これにより、第2の電磁鋼板30が屈曲部22で生じる漏れ磁束の磁路となるため、磁路以外の部分に発生する渦電流が抑制される。その結果、鉄損が低減される。
 第2の電磁鋼板30の厚みTは、特に限定されない。しかしながら、第2の電磁鋼板30の厚みTは、好ましくは、第1の電磁鋼板20の厚みTと同一、または第1の電磁鋼板20の厚みT以下とすることができる。第2の電磁鋼板30の厚みTを第1の電磁鋼板20の厚みTより小さくすることで、コア部材2の屈曲部22で生じる漏れ磁束がより一層効率よく積層体3を通るようになる。また、積層体3の第2の電磁鋼板30の厚みTが、コア部材2の第1の電磁鋼板20の厚みTと同じか、またはコア部材2の第1の電磁鋼板20の厚みTよりも薄いことで、渦電流損が低くなり、積層体3における損失が抑えられる。これにより、漏れ磁束によって生じる渦電流損をより一層低減させることが可能となる。その結果、巻鉄心1の鉄損をより低減することが可能となる。したがって、好ましくは、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/Tは、1.0以下である。一方、製造可能な板厚の範囲を考慮した場合,T/Tの下限は0.5程度になる。
 図13は、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/Tと、コア部材2の鉄損との関係を示す特性図である。図13では、本実施形態に係る巻鉄心1を用いて25kVAと75kVAのトランスを製造した場合の特性を示している。図13に示すように、25kVAと75kVAのトランスのいずれにおいても、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/Tが小さくなるほど鉄損が低下する結果が得られた。したがって、T/Tの値はできるだけ小さくすることが好ましい。T/Tが1.0以下になると、T/Tが1.0よりも大きい場合に比べて、T/Tの低下に伴って鉄損が低下する割合がより大きくなり、75kVAのトランスではこの傾向がより顕著に表れている。したがって、上述のように、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/Tは、1.0以下とすることが好ましい。
 また、第2の電磁鋼板30は、第1の電磁鋼板20と同一または異なる電磁鋼板のいずれであってもよい。具体的には、第2の電磁鋼板30として、例えば、既存の方向性電磁鋼板または既存の無方向性電磁鋼板を使用することができる。好ましくは、第2の電磁鋼板30は、方向性電磁鋼板である。方向性電磁鋼板を積層体3に使用することで、鉄損のうちのヒステリシス損を低減することが可能となり、その結果、巻鉄心1の鉄損をより低減することが可能となる。
 第2の電磁鋼板30同士の間は、絶縁されていることが好ましく、例えば、電磁鋼板の表面は、絶縁処理が施されることが好ましい。第2の電磁鋼板30の積層間が絶縁されていることで、第2の電磁鋼板30の板厚面内において渦電流がより確実に生じ難くなり、渦電流損をより一層低減することが可能となる。その結果、巻鉄心1の鉄損をより低減することが可能となる。例えば、第2の電磁鋼板30の表面は、コロイダルシリカ及びリン酸塩を含有する絶縁コーティング液を用いて絶縁処理が施されていることが好ましい。
 なお、積層体3は、必要に応じて、側面から積層体3を貫通する貫通孔を有していてもよい。この貫通孔に、治具4のボルト等の止め具が挿入されることで、積層体3は、コア部材2に固定される。
 治具4は、屈曲部22の周囲に設けられ、積層体3をコア部材2に固定する。ここで、図5を参照して、本実施形態に係る治具4の一例を説明する。図5は、図1に示す巻鉄心が備える積層体の取付け方法の一例を示す分解斜視図である。治具4は、図5に示すように、支持柱41、固定板42、外板43、内板44、ボルト45、及びナット46を有する。
 図5に示すように、屈曲部22の外周側及び内周側に、積層体3を支持する支持柱41が配置される。また、屈曲部22と積層体3とを挟むように配置された固定板42と、コア部材2の外周側に配置される外板43と、コア部材2の内周側に配置される内板44と、によって、積層体3は、屈曲部22に固定される。積層体3は、ボルト45が挿入される貫通孔を有しており、支持柱41及び固定板42は、積層体3の貫通孔に対応した位置に貫通孔をそれぞれ有している。積層体3の貫通孔、支持柱41の貫通孔及び固定板42の貫通孔にボルト45が挿入され、ボルト45の先端にナット46が締結される。外板43及び内板44は、板厚方向に、それぞれ対応する複数の貫通孔を有しており、ボルト45は、これらの対応する貫通孔に挿入され、ナット46は、ボルト45の端部で締結される。
 なお、ボルト45には、少なくとも表面が絶縁処理されたものを使用することができ、例えば、ボルト45には、セラミック等に例示される絶縁体を使用することができる。これにより、ボルト45によって、コア部材2と積層体3とが導通することなく、積層体3はコア部材2の側面に固定される。
 また、ボルト45の素材は、非磁性体であるが好ましい。ボルト45の素材を非磁性体とすることで、漏れ磁束がボルト45に侵入して、渦電流が生じるのを防止することが可能となる。
 次に、図8~図10に基づいて、複数の板状の第2の電磁鋼板30が積層されてなる積層体3を設けたことによる作用を説明する。図8は、積層体3を設けていない場合に、コア部材2を磁束が通る様子を示す模式図である。
 コア部材2の第1の電磁鋼板20は角部24の位置で屈曲し、角部24の位置では歪が生じる。このため、図8に示すように、コア部材2には、2つの角部24の位置に沿って、歪領域50が形成されている。図8に示す矢印A1、矢印A2、矢印A3は、歪領域50を磁束が通る際に、磁束が漏れる様子を模式的に示している。また、矢印A1、矢印A2、矢印A3の太さは、磁束の大きさを示している。図8に示すように、歪領域50を磁束が通る際に、磁束が漏れることで、磁束の大きさが小さくなり、鉄損が発生する。
 図9は、図8に対して、歪領域50を覆うように積層体3を配置した状態を示している。また、図10は、図9に示す一点鎖線I-I’に沿った断面を示す図であって、一点鎖線I-I’に沿った断面を磁束が通る様子を模式的に示す模式図である。図10では、磁束の流れを矢印で示している。図10に示すように、角部24に対応する歪領域50を積層体3が覆うことで、角部24の位置では積層体3を通って磁束が通るようになる。
 具体的には、図10に示すように、磁束が角部24を通過する際に、角部24の位置で漏れ磁束が生じるが、漏れ磁束は、コア部材2の一の辺部21から積層体3を通り、当該積層体3と接続された他の辺部21を通る。つまり、角部24の歪領域50を磁束が通過する際に生じる漏れ磁束は、積層体3で補足(トラップ)され、積層体3を通ってコア部材2に戻される。
 そして、積層体3は、複数の板状の第2の電磁鋼板30が積層されることで形成され、好ましくは、隣接する第2の電磁鋼板30同士は互いに絶縁されている。したがって、積層体3を磁束が通る際の渦電流損が抑制される。これにより、巻鉄心1の鉄損が低減される。なお、図10では、コア部材2の両方の側面に積層体3を配置した例を示したが、積層体3は、コア部材2の少なくとも一方の側面に配置されていてもよい。
 一方、この積層体3の代わりに、積層体3と同様の形状の一体の連続な金属板を用いると、金属板をコア部材2の側面に配置することによって、第1の電磁鋼板20の積層面が短絡されることになり、第1の電磁鋼板20同士の絶縁が保たれなくなる。したがって、第1の電磁鋼板20の断面に大きな渦電流が流れ、損失(渦電流損)が増大する。仮に、金属板とコア部材2との間を絶縁したとしても、磁束は金属板の大きな断面を通るため、渦電流損は増大してしまう。
 本実施形態によれば、複数の板状の第2の電磁鋼板30が積層されることで積層体3が形成され、積層体3の第2の電磁鋼板30同士が絶縁されることで、磁束がより小さい断面を通ることになり、渦電流損が確実に低下される。したがって、巻鉄心1の鉄損が低下される。
 次に、図11及び図12に基づいて、積層体3の形状のバリエーションについて説明する。図3では、矩形状の積層体3を示したが、積層体3は、第1電磁鋼板20の隅部23を頂点とし角部24を辺とする三角形と、その周辺部を含む領域を覆うような略V字型の形状をなしてもよい。
 図11は、図3に示した矩形状の積層体3の辺部21側の領域を、角部24よりも外側の位置でカットした例を示す模式図である。積層体3の2つの辺部21側の端部は、角部24から所定量Dだけオフセットされている。漏れ磁束は、角部24よりも辺部21側の所定量Dの領域で補足される。なお、所定量Dを大きくするほど漏れ磁束がより確実に補足されるが、積層体3の面積が増加するため、積層体3の製造コストは増加する。
 また、図12は、積層体3を構成する第2の電磁鋼板30を円弧状にした例を示す模式図である。図12に示す例においても、積層体3の2つの辺部21側の端部は、角部24から所定量Dだけオフセットされている。第2の電磁鋼板30を円弧状にすることで、角部24よりも辺部21側の領域では、第2の電磁鋼板30は、第1の電磁鋼板20により沿った方向に延在することになる。換言すれば、図3、図11に比べて、図12の構成では、角部24よりも辺部21側の領域で、第2の電磁鋼板30の方向が第1の電磁鋼板20の方向により近づくことになる。したがって、積層体3が漏れ磁束をより確実に補足することが可能となる。
 以上、本実施形態によれば、巻鉄心1に生ずる鉄損を低減することが可能となる。また、本実施形態に係る巻鉄心1により、巻鉄心1を用いて製造した変圧器の騒音を抑制することが可能となる。すなわち、積層体3が、屈曲部22の側面の少なくとも一方の面に、積層体3の第2の電磁鋼板30の側面が屈曲部22の第1の電磁鋼板20の側面に沿うように配置されているため、屈曲部22で生じる漏れ磁束は、一の辺部21から積層体3を通った後、当該積層体3と接続された他の辺部21を通ることが可能となる。その結果、巻鉄心1に生ずる騒音を低減することが可能となる。
 本実施形態に係る巻鉄心は、変圧器に適用可能である。本実施形態に係る変圧器は、本実施形態に係る巻鉄心と、1次巻線と、2次巻線とを備える。1次巻線に交流電圧が印加されることにより、本実施形態に係る巻鉄心に磁束が生じ、生じた磁束の変化により、2次巻線に電圧が生じる。当該巻鉄心が有する積層体は、屈曲部の側面の少なくとも一方の面に、積層体の第2の電磁鋼板の側面が屈曲部の第1の電磁鋼板の側面に沿うように配置されているため、本実施形態に係る巻鉄心に生じた磁束の巻鉄心外への漏れが抑制される。その結果、巻鉄心に生ずる鉄損を低減することが可能となり、また、変圧器の騒音を抑制することが可能となる。
<2.変形例>
 以上、本発明の一実施形態を説明した。以下では、本発明の上記実施形態の幾つかの変形例を説明する。なお、以下に説明する各変形例は、単独で本発明の上記実施形態に適用されてもよいし、組み合わせで本発明の上記実施形態に適用されてもよい。また、各変形例は、本発明の上記実施形態で説明した構成に代えて適用されてもよいし、本発明の上記実施形態で説明した構成に対して追加的に適用されてもよい。
 上述した実施形態では、コア部材における側面外周が八角形の場合を説明したが、本発明は、これに限定されない。コア部材における側面外周は、多角形、角丸方形、長円形、または楕円形等とすることができる。この場合、屈曲部は、隣り合う一の辺部と他の辺部との間に位置し、一の辺部における第1の電磁鋼板及び他の辺部における第1の電磁鋼板の延在方向に対して、第1の電磁鋼板が屈曲して積層された部分である。図6及び図7を参照して、コア部材における側面外周を説明する。図6は、本実施形態に係るコア部材における屈曲部の別の一例を説明するための、コア部材の側面の一部を示す拡大平面図である。図7は、本実施形態に係るコア部材における屈曲部の別の一例を説明するための、コア部材の側面の一部を示す拡大平面図である。
 例えば、図6に示す屈曲部22Aにおける第1の電磁鋼板20は、一の辺部21Aにおける第1の電磁鋼板20及び他の辺部21Aにおける第1の電磁鋼板20の延在方向に対して、第1の電磁鋼板20の側面側から見たときに、その外周に3つの角部24Aを有するように屈曲されている。この結果、コア部材2Aは、第1の電磁鋼板20の側面側から見たときに、その外周に12の角部24Aを有する十二角形をなす。例えば、図6に示したコア部材2Aでは、隅部23Aと角部24Aとを結ぶ直線部分で第1の電磁鋼板20が屈曲するため、コア部材2を通る磁束は、当該部分で漏れやすい。しかしながら、本実施形態に係る積層体は、屈曲部22Aの側面の少なくとも一方の面に、積層体の第2の電磁鋼板30の側面が屈曲部22Aの第1の電磁鋼板20の側面に沿うように配置されている。そのため、屈曲部22Aで生じる漏れ磁束は、一の辺部21Aから本実施形態に係る積層体を通った後、当該積層体と接続された他の辺部21Aを通ることが可能となる。その結果、巻鉄心に生ずる鉄損を低減することが可能となる。
 また、例えば、図7に示すコア部材2Bは、第1の電磁鋼板20が湾曲して巻き回され、屈曲部22Bが円弧状となるように形成されている。屈曲部22Bは、円弧状の第1の電磁鋼板20が積層された領域である。コア部材2Bを通る磁束は、屈曲部22Bから漏れやすい。しかしながら、本実施形態に係る積層体は、屈曲部22Bの側面の少なくとも一方の面に、積層体の第2の電磁鋼板30の側面が屈曲部22Bの第1の電磁鋼板20の側面に沿うように配置されている。そのため、屈曲部22Bで生じる漏れ磁束は、一の辺部21Bから本実施形態に係る積層体を通った後、当該積層体と接続された他の辺部21Bを通ることが可能となる。その結果、巻鉄心に生ずる鉄損を低減することが可能となる。
 また、本実施形態では、コア部材における側面内周が四角形の場合を説明したが、本発明は、これに限定されず、コア部材における側面内周は、多角形、角丸方形、長円形、または楕円形等とすることができる。例えば、コア部材の側面内周は、側面外周の形状に応じた形状とすることができ、例えば、コア部材の側面外周が八角形の場合、側面内周を八角形とすることができ、コア部材の側面外周が角丸方形の場合、側面内周を角丸方形とすることができる。コア部材における側面内周は、コア部材の側面外周と異なる形状であってもよい。この場合においても、先立って説明したように、屈曲部は、隣り合う一の辺部と他の辺部との間に位置し、一の辺部における第1の電磁鋼板及び他の辺部における第1の電磁鋼板の延在方向に対して、第1の電磁鋼板が屈曲して積層された部分である。
 また、本実施形態では、コア部材の辺部を構成する第1の電磁鋼板が直線状である場合を説明したが、コア部材の辺部を構成する第1の電磁鋼板は、直線状でなくてもよく、湾曲していてもよい。この場合、コア部材において曲率が大きい部分を屈曲部とし、曲率が小さい部分を辺部とすることができる。辺部が湾曲したコア部材の形状は、例えば、円形、または楕円形となる。
 また、本実施形態では、積層体の形状が、四角形の板状である場合を説明したが、積層体の形状は、特段制限されず、屈曲部の側面の形状に応じた形状にすることができる。
 また、本実施形態では、積層体が、平板上の第2の電磁鋼板が積層されたものである場合を説明したが、第2の電磁鋼板は、平板に限られず、湾曲したものであってもよい。屈曲部における第1の電磁鋼板の積層面の形状に応じて、湾曲した第2の電磁鋼板を用いて形成された積層体を屈曲部の側面に配置することができる。これにより、積層体は、屈曲部で生じる漏れ磁束をより効果的に捕捉することが可能となる。その結果、生じる鉄損をより低減することが可能となる。
 また、本実施形態では、積層体が貫通孔を有する場合を説明したが、本発明は、図示の態様に限定されず、例えば、貫通孔を有しない積層体をコア部材に固定するための治具が用いられてもよいし、治具に代えて、既存の各種接着剤を使用して、積層体をコア部材の側面に接着することができる。接着剤を使用する場合は、その接着剤は、絶縁性を有するものであることが好ましい。
 以下に、実施例を示しながら、本発明の実施形態について、具体的に説明する。なお、以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。
 厚みが0.23mmの方向性電磁鋼板を巻き回し、4隅に屈曲部を有するコア部材を作製した。このコア部材の4つの屈曲部それぞれを挟み込むように、(方向性、無方向性)電磁鋼板を積層した積層体を、積層体の積層面が、屈曲部における第1の電磁鋼板の積層面と平行となるように配置して、巻鉄心を製造し、この巻鉄心を用いてトランスを製造した。
 上記の方法で、表1に示すように、25kVA~750kVAのトランスを製造して、それぞれの鉄損と、騒音の評価として音圧を測定した。表1に、製造した各巻鉄心の容量、コア部材の形状、トランス総重量、第1の電磁鋼板20からなるコア部材2の重量、コア寸法(縦、横、積層厚さ、幅)、鉄損、うなり音、及び第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/Tの値を示す。なお、トランス総重量は、ケース、巻線、コア部材2、積層体3等を含めた総重量である。比較例として、実施例と同様に厚みが0.23mmの方向性電磁鋼板を巻き回して4隅に屈曲部を有するコア部材を作製し、積層体は配置せずに巻鉄心とした比較例1~6と、積層体を配置してT/Tを1.0以上として巻鉄心とした比較例7、8を用意した。そして、この巻鉄心を用いてトランスを製造した。
 上記したように、実施例としてのトランスと、比較例としてのトランスとでは、積層体の有無の点で異なる。実施例1と比較例1とは、積層体の有無の点以外の条件は共通しており、同様に実施例2~6は、それぞれ比較例2~6と積層体の有無の点以外の条件は共通している。また、比較例7,8は、積層体を設けた場合に、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/Tを実施例と異ならせた例を示している。実施例1と比較例7とは、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/T以外の条件は共通している。また、実施例6と比較例8とは、第1の電磁鋼板20の厚みTに対する第2の電磁鋼板30の厚みTの比T/T以外の条件は共通している。なお、表1において、角丸方形とは、角部に折り曲げ部がなく、ある曲率をもって曲がっている形状であり、例えば図7に示す形状をいう。鉄損(無負荷損)、及び音圧の測定はJEC-2200に基づいて行った。
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1とを比較すると、実施例1の鉄損は28.1Wであり、比較例1の鉄損30.9Wよりも小さくなった。また、実施例1の音圧の値は、40.0dBであり、比較例1の音圧の値44.0dBと比較して小さな値であった。同様に、実施例2~実施例6をそれぞれ比較例2~比較例6と比較したところ、いずれについても、実施例のトランスの方が、鉄損及び音圧の値は小さくなった。
 また、実施例1と比較例7を比較すると、実施例1の鉄損は28.1Wであり、比較例7の鉄損29.8Wよりも小さくなった。また、実施例1の音圧の値は、40.0dBであり、比較例7の音圧の値42.1dBと比較して小さな値であった。
 また、実施例6と比較例8を比較すると、実施例6の鉄損は47.2Wであり、比較例8の鉄損50.3Wよりも小さくなった。また、実施例6の音圧の値は、47.2dBであり、比較例8の音圧の値50.3dBと比較して小さな値であった。
 以上、本発明によれば、鉄損が低減された、巻鉄心及び変圧器を提供することが可能となる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 1  巻鉄心
 2、2A、2B  コア部材
 20  第1の電磁鋼板
 21、21A、21B  辺部
 22、22A、22B  屈曲部
 23  隅部
 24  角部
 3  積層体
 30  第2の電磁鋼板
 4  治具
 41  支持柱41
 42  固定板
 43  外板
 44  内板
 45  ボルト
 46  ナット
 50  歪領域

Claims (10)

  1.  第1の電磁鋼板が巻かれて形成され、側面から見て環状であって、側面から見て1以上の屈曲部を有するコア部材と、
     第2の電磁鋼板が積層された1以上の積層体と、
    を備え、
     前記積層体は、前記コア部材の前記屈曲部における前記第1の電磁鋼板の側面で形成される面の少なくとも一方に、前記第2の電磁鋼板の側面で形成される面が沿うように配置されている、巻鉄心。
  2.  前記積層体の前記第2の電磁鋼板の積層面の方向は、前記コア部材の前記第1の電磁鋼板の積層面の方向に沿っている、請求項1に記載の巻鉄心。
  3.  前記コア部材を前記第1の電磁鋼板の面に沿う方向から見た側面の少なくとも一方において、前記屈曲部における内周部の中点と、前記屈曲部における外周部の中点と、を結ぶ直線に対する、前記第2の電磁鋼板の積層面の角度は、45度以上90度以下である、請求項1又は2に記載の巻鉄心。
  4.  前記コア部材は、前記コア部材を側面から見たときに角部を有する、請求項1~3のいずれか1項に記載の巻鉄心。
  5.  前記コア部材を側面から見たときの前記コア部材の形状は、八角形である、請求項1~4のいずれか1項に記載の巻鉄心。
  6.  前記第2の電磁鋼板の厚みは、前記第1の電磁鋼板の厚みと同一、または前記第1の電磁鋼板の厚みより小さい、請求項1~5のいずれか1項に記載の巻鉄心。
  7.  前記第1の電磁鋼板の厚みをT、前記第2の電磁鋼板の厚みをTとした時、T/Tの比が0.5以上1.0以下である、請求項6に記載の巻鉄心。
  8.  前記第2の電磁鋼板は、互いに絶縁されている、請求項1~7のいずれか1項に記載の巻鉄心。
  9.  前記コア部材と前記積層体は、互いに絶縁されている、請求項1~8のいずれか1項に記載の巻鉄心。
  10.  第1の電磁鋼板が巻き回されて形成され、側面から見て環状であって、側面から見て1以上の屈曲部を有するコア部材と、
     第2の電磁鋼板が積層された1以上の積層体と、
    を備え、
     前記積層体は、前記コア部材の前記屈曲部における前記第1の電磁鋼板の側面で形成される面の少なくとも一方に、前記第2の電磁鋼板の側面で形成される面が沿うように配置されている、変圧器。
PCT/JP2019/039206 2018-10-03 2019-10-03 巻鉄心及び変圧器 WO2020071512A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2019354345A AU2019354345A1 (en) 2018-10-03 2019-10-03 Wound core and transformer
EP19869378.0A EP3863032A4 (en) 2018-10-03 2019-10-03 Wound core and transformer
BR112021002652-5A BR112021002652A2 (pt) 2018-10-03 2019-10-03 núcleo magnético e transformador
KR1020217002251A KR102541759B1 (ko) 2018-10-03 2019-10-03 권철심 및 변압기
CN201980040771.4A CN112313762B (zh) 2018-10-03 2019-10-03 卷铁芯及变压器
JP2020551088A JP7047931B2 (ja) 2018-10-03 2019-10-03 巻鉄心及び変圧器
US17/273,142 US20210327631A1 (en) 2018-10-03 2019-10-03 Magnetic core and transformer
RU2021108844A RU2760332C1 (ru) 2018-10-03 2019-10-03 Магнитный сердечник и трансформатор
AU2022268384A AU2022268384A1 (en) 2018-10-03 2022-11-11 Wound core and transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018187874 2018-10-03
JP2018-187874 2018-10-03

Publications (1)

Publication Number Publication Date
WO2020071512A1 true WO2020071512A1 (ja) 2020-04-09

Family

ID=70054661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039206 WO2020071512A1 (ja) 2018-10-03 2019-10-03 巻鉄心及び変圧器

Country Status (9)

Country Link
US (1) US20210327631A1 (ja)
EP (1) EP3863032A4 (ja)
JP (1) JP7047931B2 (ja)
KR (1) KR102541759B1 (ja)
CN (1) CN112313762B (ja)
AU (2) AU2019354345A1 (ja)
BR (1) BR112021002652A2 (ja)
RU (1) RU2760332C1 (ja)
WO (1) WO2020071512A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318845B1 (ja) 2022-03-03 2023-08-01 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法
JP7318846B1 (ja) 2022-03-03 2023-08-01 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法
WO2023167016A1 (ja) * 2022-03-03 2023-09-07 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法
WO2023167015A1 (ja) * 2022-03-03 2023-09-07 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083307A (ja) * 1983-10-14 1985-05-11 Toshiba Corp 巻鉄心型静止誘導電器
JPH10261536A (ja) * 1997-03-17 1998-09-29 Nippon Steel Corp 三相変圧器積鉄心のヨーク締め付け方法
JP2005038987A (ja) 2003-07-18 2005-02-10 Nippon Steel Corp 分離式トランス
JP2017022189A (ja) 2015-07-08 2017-01-26 株式会社日立製作所 積層鉄心および静止電磁機器
JP2017157806A (ja) 2016-03-04 2017-09-07 新日鐵住金株式会社 巻鉄心および巻鉄心の製造方法
JP2017212261A (ja) * 2016-05-23 2017-11-30 東芝産業機器システム株式会社 鉄心
JP2018032703A (ja) 2016-08-24 2018-03-01 新日鐵住金株式会社 トランス
JP2018148036A (ja) * 2017-03-06 2018-09-20 新日鐵住金株式会社 巻鉄心

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB731500A (en) * 1952-07-25 1955-06-08 British Thomson Houston Co Ltd Improvements in and relating to magnetic cores
US2909742A (en) * 1953-09-01 1959-10-20 Gen Electric Machine wound magnetic core
DE2723008A1 (de) * 1977-05-21 1978-11-30 Blum Eisen & Metallind Lamellierter eisenkern fuer transformatoren, drosselspulen o.dgl.
JPH0888128A (ja) * 1994-09-19 1996-04-02 Hitachi Ltd 多相変圧器鉄心
JP3727454B2 (ja) * 1997-10-30 2005-12-14 愛知電機株式会社 アモルファス鉄心変圧器の製造方法
JP3244120B2 (ja) * 1998-03-10 2002-01-07 日本電気株式会社 エラー判別処理システム
RU2266583C2 (ru) * 2003-09-25 2005-12-20 Общество с ограниченной ответственностью "Элсиб-У" (ООО "Элсиб-У") Шихтованный магнитопровод трансформатора
CN1897175B (zh) * 2005-07-08 2012-07-18 株式会社日立产机系统 静止装置用铁芯和静止装置
EA011997B1 (ru) * 2007-12-26 2009-06-30 Производственное Республиканское Унитарное Предприятие "Минский Электротехнический Завод Имени В.И. Козлова" Шихтованный магнитопровод индукционного аппарата и способ его изготовления
US9013263B2 (en) * 2008-09-03 2015-04-21 Hitachi Industrial Equipment Systems Co., Ltd. Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
JP2012134448A (ja) * 2010-12-03 2012-07-12 Hitachi Industrial Equipment Systems Co Ltd アモルファス材を使用したリアクトル装置及びその製造方法
JP6083307B2 (ja) 2013-04-11 2017-02-22 シンフォニアテクノロジー株式会社 回転機
KR101594482B1 (ko) * 2015-01-08 2016-02-17 주식회사 케이피일렉트릭 아몰퍼스 시트와 규소강 시트의 혼합 권철심형 변압기
KR20170083082A (ko) * 2015-05-27 2017-07-17 가부시키가이샤 히다치 산키시스템 적철심 구조체, 및 이를 구비한 변압기
KR102221444B1 (ko) * 2017-01-10 2021-03-02 닛폰세이테츠 가부시키가이샤 권철심, 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083307A (ja) * 1983-10-14 1985-05-11 Toshiba Corp 巻鉄心型静止誘導電器
JPH10261536A (ja) * 1997-03-17 1998-09-29 Nippon Steel Corp 三相変圧器積鉄心のヨーク締め付け方法
JP2005038987A (ja) 2003-07-18 2005-02-10 Nippon Steel Corp 分離式トランス
JP2017022189A (ja) 2015-07-08 2017-01-26 株式会社日立製作所 積層鉄心および静止電磁機器
JP2017157806A (ja) 2016-03-04 2017-09-07 新日鐵住金株式会社 巻鉄心および巻鉄心の製造方法
JP2017212261A (ja) * 2016-05-23 2017-11-30 東芝産業機器システム株式会社 鉄心
JP2018032703A (ja) 2016-08-24 2018-03-01 新日鐵住金株式会社 トランス
JP2018148036A (ja) * 2017-03-06 2018-09-20 新日鐵住金株式会社 巻鉄心

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3863032A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318845B1 (ja) 2022-03-03 2023-08-01 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法
JP7318846B1 (ja) 2022-03-03 2023-08-01 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法
WO2023167016A1 (ja) * 2022-03-03 2023-09-07 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法
WO2023167015A1 (ja) * 2022-03-03 2023-09-07 Jfeスチール株式会社 三相三脚巻鉄心およびその製造方法

Also Published As

Publication number Publication date
EP3863032A4 (en) 2022-06-29
CN112313762A (zh) 2021-02-02
AU2019354345A1 (en) 2021-05-13
KR20210021578A (ko) 2021-02-26
BR112021002652A2 (pt) 2021-05-11
JP7047931B2 (ja) 2022-04-05
AU2022268384A1 (en) 2022-12-15
US20210327631A1 (en) 2021-10-21
RU2760332C1 (ru) 2021-11-24
JPWO2020071512A1 (ja) 2021-09-02
KR102541759B1 (ko) 2023-06-13
CN112313762B (zh) 2024-02-09
EP3863032A1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2020071512A1 (ja) 巻鉄心及び変圧器
US20170103843A1 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
JP5544393B2 (ja) 静止機器用巻鉄心、及びそれを有する静止機器
JP5557797B2 (ja) 巻線素子
JP5127728B2 (ja) 変圧器
JP2015142095A (ja) 静止誘導機器およびその製造方法
JPS62222614A (ja) 変圧器用珪素鋼−非晶質鋼複合鉄心
JP5604059B2 (ja) 額縁形鉄心
US7471183B2 (en) Transformer
WO2021166314A1 (ja) 静止誘導機器および変圧器
JP2019050327A (ja) 内鉄型変圧器の鉄心
TW201814743A (zh) 磁芯片及磁芯
WO2019013131A1 (ja) プレーナ型トランス及びdcdcコンバータ
JP7288213B2 (ja) 巻鉄心
RU2796922C1 (ru) Ленточный сердечник
JP2020072211A (ja) 静止誘導機器用積層鉄心
JP7149908B2 (ja) 静止誘導機器
JP2018186113A (ja) 静止誘導電器
JP6890210B2 (ja) 静止機器
JP2010123650A (ja) リアクタ
JP2775221B2 (ja) 変圧器の積鉄心
JP2023043933A (ja) 鉄心構造及び変圧器
JP2023043934A (ja) 鉄心構造及び変圧器
JP2023043935A (ja) 鉄心構造及び変圧器
JP2019009379A (ja) 変圧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551088

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002251

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002652

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019869378

Country of ref document: EP

Effective date: 20210503

ENP Entry into the national phase

Ref document number: 112021002652

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210211

ENP Entry into the national phase

Ref document number: 2019354345

Country of ref document: AU

Date of ref document: 20191003

Kind code of ref document: A