WO2016186051A1 - 抗菌液、抗菌膜およびウェットワイパー - Google Patents

抗菌液、抗菌膜およびウェットワイパー Download PDF

Info

Publication number
WO2016186051A1
WO2016186051A1 PCT/JP2016/064369 JP2016064369W WO2016186051A1 WO 2016186051 A1 WO2016186051 A1 WO 2016186051A1 JP 2016064369 W JP2016064369 W JP 2016064369W WO 2016186051 A1 WO2016186051 A1 WO 2016186051A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
mass
less
fine particles
silver
Prior art date
Application number
PCT/JP2016/064369
Other languages
English (en)
French (fr)
Inventor
光正 ▲濱▼野
直裕 松永
優介 畠中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16796444.4A priority Critical patent/EP3295792B1/en
Priority to CN201680024890.7A priority patent/CN107529745B/zh
Publication of WO2016186051A1 publication Critical patent/WO2016186051A1/ja
Priority to US15/801,909 priority patent/US10433541B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/16Cloths; Pads; Sponges
    • A47L13/17Cloths; Pads; Sponges containing cleaning agents

Definitions

  • the present invention relates to an antibacterial liquid, an antibacterial film, and a wet wiper.
  • Patent Document 1 discloses that “glass microspheres containing an antibacterial metal in a glass composition and having an average particle diameter of 0.05 to 5.0 ⁇ m.
  • an antibacterial glass microsphere characterized in that the standard deviation of the particle diameter is within ⁇ 0.08 ⁇ m with respect to the specific value is disclosed.
  • an object of the present invention is to provide an antibacterial liquid excellent in sedimentation resistance, an antibacterial film formed using the antibacterial liquid, and a wet wiper using the antibacterial liquid.
  • the present inventors have found that the above object can be achieved by setting the average particle size of the antibacterial agent fine particles in a specific range and using a specific solvent, and completed the present invention. .
  • the present invention provides the following [1] to [21].
  • the antibacterial liquid according to [1], wherein the antibacterial agent fine particles have an average particle size of 0.7 ⁇ m or less.
  • an antibacterial solution excellent in sedimentation resistance, an antibacterial film formed using the antibacterial solution, and a wet wiper using the antibacterial solution can be provided.
  • FIG. 6 is an electron micrograph of the surface of antibacterial membrane B-8 of Example 8 taken with a scanning electron microscope image (magnification 5000 times).
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the antibacterial liquid of the present invention is an antibacterial liquid containing antibacterial fine particles, a binder and a solvent, wherein the antibacterial fine particles contain a silver-supporting inorganic oxide, and the average particle diameter of the antibacterial fine particles is 1.0 ⁇ m.
  • the antibacterial agent fine particles are difficult to settle and have excellent sedimentation resistance. For this reason, in the antibacterial liquid of the present invention, denaturation is suppressed for a long time. This may be because, for example, the average particle diameter of the antibacterial agent fine particles is small, so that aggregation is suppressed, or the proportion of the antibacterial agent fine particle aggregation is reduced by alcohol contained as a solvent.
  • each component contained in the antibacterial liquid of the present invention will be described in detail.
  • the antibacterial agent fine particles include at least a silver-supporting inorganic oxide.
  • the average particle diameter of the antibacterial agent fine particles is 1.0 ⁇ m or less.
  • support inorganic oxide has silver and the inorganic oxide which is a support
  • the type of silver is not particularly limited. Further, the form of silver is not particularly limited, and includes, for example, metallic silver, silver ions, silver salts (including silver complexes) and the like. In addition, in this specification, a silver complex is contained in the range of silver salt.
  • silver salts include silver acetate, silver acetylacetonate, silver azide, silver acetylide, silver arsenate, silver benzoate, silver hydrogen fluoride, silver bromate, silver bromide, silver carbonate, silver chloride, Silver chlorate, silver chromate, silver citrate, silver cyanate, silver cyanide, (cis, cis-1,5-cyclooctadiene) -1,1,1,5,5,5-hexafluoroacetylacetonic acid Silver, silver diethyldithiocarbamate, silver fluoride (I), silver fluoride (II), 7,7-dimethyl-1,1,1,2,2,3,3-heptafluoro-4,6-octanedione Silver oxide, silver hexafluoroantimonate, silver hexafluoroarsenate, silver hexafluorophosphate, silver iodate, silver iodide, silver isothiocyanate, potassium
  • the silver complex examples include a histidine silver complex, a methionine silver complex, a cysteine silver complex, a silver aspartate complex, a silver pyrrolidonecarboxylate complex, a silver oxotetrahydrofurancarboxylate complex, and an imidazole silver complex.
  • the inorganic oxide for example, zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated carbon, activated alumina, silica gel, glass (silicon oxide, phosphorus oxide, magnesium oxide, At least one compound selected from the group consisting of sodium oxide, aluminum oxide, zinc oxide, calcium oxide, boron oxide, and potassium oxide), zeolite, apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrous bismuth hydroxide , Hydrous zirconium oxide, hydrotalcite and the like.
  • silver-supported inorganic oxides include silver-supported zeolite, silver-supported apatite, silver-supported glass, silver-supported zirconium phosphate, and silver-supported calcium silicate. Silver-supported glass is preferable, and silver-supported glass is more preferable from the viewpoint of antibacterial properties.
  • the antibacterial agent fine particles may contain an antibacterial agent other than the silver-supporting inorganic oxide, and examples thereof include an organic antibacterial agent and an inorganic antibacterial agent not containing silver.
  • examples of the organic antibacterial agent include phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, quaternary ammonium salts, pyridine compounds, triazine compounds, benzoisothiazoline compounds, or Examples include isothiazoline-based compounds.
  • the inorganic antibacterial agent not containing silver include an antibacterial agent in which a metal such as copper or zinc is supported on the above-described carrier.
  • the antibacterial agent fine particles may be an embodiment containing an antibacterial agent other than the silver-carrying inorganic oxide, or may be an embodiment substantially consisting only of the silver-carrying inorganic oxide.
  • the content of the silver-supporting inorganic oxide in the antibacterial agent fine particles is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 95% by mass or more in terms of solid content.
  • the average particle diameter of the antibacterial agent fine particles is 1.0 ⁇ m or less, and is preferably 0.9 ⁇ m or less, and more preferably 0.7 ⁇ m or less, because the sedimentation resistance is more excellent. Although a minimum is not specifically limited, For example, it is 0.05 micrometer or more.
  • an average particle diameter measures the 50% volume cumulative diameter (D50) 3 times using the laser diffraction / scattering type particle size distribution measuring apparatus by Horiba, Ltd., and averages the value measured 3 times. Use the value.
  • the average particle diameter of the antibacterial agent fine particles can be adjusted by a conventionally known method.
  • dry pulverization or wet pulverization can be employed.
  • dry pulverization for example, a mortar, jet mill, hammer mill, pin mill, rotary mill, vibration mill, planetary mill, bead mill, etc. are appropriately used.
  • wet pulverization various ball mills, high-speed rotary pulverizers, jet mills, bead mills, ultrasonic homogenizers, high-pressure homogenizers, and the like are appropriately used.
  • the average particle size can be controlled by adjusting the diameter, type, mixing amount, etc. of beads serving as media.
  • the average particle diameter of the antibacterial agent fine particles can be adjusted by wet pulverization by dispersing the antibacterial agent fine particles as an object to be pulverized in ethanol or water, and mixing and vibrating zirconia beads having different sizes.
  • wet pulverization by dispersing the antibacterial agent fine particles as an object to be pulverized in ethanol or water, and mixing and vibrating zirconia beads having different sizes.
  • an appropriate method may be selected for controlling the particle size.
  • the content of the antibacterial agent fine particles with respect to the total mass of the antibacterial liquid of the present invention is solid content, for example, 1.5% by mass or less, and preferably 1.0% by mass or less from the viewpoint of sedimentation resistance. 2 mass% or less is more preferable, and 0.1 mass% or less is still more preferable. Although a minimum is not specifically limited, For example, it is 0.0001 mass% or more.
  • the application of the antibacterial liquid and the formation of a coating film (antibacterial film) are repeated (hereinafter, this action is referred to as “recoating”).
  • the content of the antibacterial fine particles with respect to the total mass of the antibacterial liquid of the present invention is 0.2% by mass in terms of solid content because the whitening of the antibacterial film obtained by this overcoating can be suppressed.
  • the following is preferable, and 0.01% by mass or less is more preferable.
  • the antibacterial film peels off little by little when a person or object touches or rubs the surface of the antibacterial film.
  • the antibacterial solution is continuously applied (for example, every day), such as when performing a cleaning operation using the like, it may be required to suppress whitening.
  • the content of the antibacterial agent fine particles with respect to the total solid content mass of the antibacterial liquid of the present invention is a solid content, for example, 25% by mass or less, preferably 20% by mass or less from the viewpoint of sedimentation resistance, and 4% by mass. % Or less is more preferable, and 3 mass% or less is still more preferable. Although a minimum is not specifically limited, For example, it is 0.1 mass% or more.
  • the content of silver in the antibacterial agent fine particles is not particularly limited, but is, for example, 0.1 to 30% by mass, and preferably 0.3 to 10% by mass with respect to the total mass of the antibacterial agent fine particles.
  • the binder includes at least one silane compound. In addition, it is preferable that a binder shows hydrophilicity.
  • silane compound examples include a siloxane compound (siloxane oligomer) represented by the following general formula (1 ′).
  • R a , R b , R c and R d each independently represent a hydrogen atom or an organic group.
  • M represents an integer of 1 to 100.
  • R a to R d may be the same or different, and R a to R d may be bonded to each other to form a ring.
  • Examples of the organic group represented by R a to R d include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a heterocyclic group having 4 to 16 carbon atoms.
  • R a to R d are preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 6 to 6 carbon atoms. 10 aryl groups are more preferred.
  • the alkyl group represented by R a to R d may be branched.
  • the organic group represented by R a to R d may have a substituent, and this substituent may further have a substituent.
  • R a to R d include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, Examples thereof include a cyclohexyl group, a phenyl group, and a naphthyl group.
  • m is preferably 2 to 20, more preferably 3 to 15, and still more preferably 5 to 10.
  • silane compound examples include a silane compound having an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group from the viewpoint of obtaining an antibacterial film having hydrophilicity and excellent antibacterial properties.
  • the siloxane compound (siloxane oligomer) represented by (1) is preferred.
  • R 1 to R 4 each independently represents an organic group having 1 to 6 carbon atoms.
  • N represents an integer of 1 to 100.
  • the organic group may be linear or branched.
  • R 1 to R 4 each independently represents an organic group having 1 to 6 carbon atoms. Each of R 1 to R 4 may be the same or different. R 1 to R 4 may be linear or branched.
  • the organic group represented by R 1 to R 4 is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group represented by R 1 to R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, and a cyclohexyl group. Etc.
  • the alkyl group represented by R 1 to R 4 By making the alkyl group represented by R 1 to R 4 have 1 to 6 carbon atoms, the hydrolyzability of the siloxane oligomer can be enhanced.
  • the organic group represented by R 1 to R 4 is more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably an alkyl group having 1 or 2 carbon atoms.
  • n is preferably an integer of 2 to 20.
  • the viscosity of the solution containing the hydrolyzate can be adjusted to an appropriate range, and the reactivity of the siloxane oligomer can be controlled within a preferable range.
  • n exceeds 20, the viscosity of the solution containing the hydrolyzate of siloxane oligomer may become too high and handling may be difficult.
  • n is 1, it may be difficult to control the reactivity of alkoxysilane and it may be difficult to exhibit hydrophilicity after coating.
  • n is more preferably from 3 to 15, and further preferably from 5 to 10.
  • the siloxane oligomer is at least partially hydrolyzed by being mixed with the water component.
  • a hydrolyzate of a siloxane oligomer can be obtained by reacting a siloxane oligomer with a water component to change an alkoxy group bonded to silicon to a hydroxy group.
  • the minimum amount of water component required for hydrolysis is equal to the molar amount of the alkoxy group of the siloxane oligomer, but it is preferable that a large excess of water is present to facilitate the reaction.
  • This hydrolysis reaction proceeds even at room temperature, but may be heated to promote the reaction. A longer reaction time is preferable because the reaction proceeds more.
  • a hydrolyzate can be obtained in about half a day in the presence of a catalyst described later.
  • the hydrolysis reaction is a reversible reaction, and when water is removed from the system, the hydrolyzate of the siloxane oligomer starts to condense between the hydroxy groups. Accordingly, when a large excess of water is reacted with the siloxane oligomer to obtain an aqueous solution of the hydrolyzate, it is preferable to use the aqueous solution as it is without forcibly isolating the hydrolyzate therefrom.
  • the antibacterial liquid of the present invention contains water as a solvent
  • the use of a water component as a solvent reduces the burden on workers' health and the environment during handling and reduces the water content of the siloxane oligomer. It can suppress that a decomposition product is condensed in a liquid during storage.
  • siloxane oligomer represented by the general formula (1) Commercially available products can be used as the siloxane oligomer represented by the general formula (1), and specific examples include MKC (registered trademark) silicate manufactured by Mitsubishi Chemical Corporation.
  • the binder may be an embodiment containing a binder other than the above-described silane compound, or may be an embodiment substantially consisting of only the above-described silane compound. 70 mass% or more is preferable, as for content of the silane compound mentioned above in a binder, 80 mass% or more is more preferable, and 90 mass% or more is still more preferable.
  • the content of the binder with respect to the total solid content of the antibacterial liquid of the present invention is preferably 3 to 95% by mass, more preferably 5 to 90% by mass, and still more preferably 10 to 85% by mass.
  • the content of the binder with respect to the total mass of the antibacterial liquid of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the solvent includes alcohol and water.
  • it does not specifically limit as water, For example, a pure water is mentioned.
  • Alcohol is preferred because it kills a wide range of microorganisms in a short time.
  • limit especially as alcohol For example, chain
  • the lower alcohol include lower alcohols having 1 to 6 carbon atoms. Specific examples thereof include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, i-butanol, and t-butanol.
  • N-pentanol N-pentanol
  • t-amyl alcohol n-hexanol and the like
  • these may be used alone or in combination of two or more.
  • methanol, ethanol, isopropanol, butanol, or n-propanol is preferable, and ethanol and isopropanol are more preferable.
  • the alcohol may be a higher alcohol.
  • Preferred examples of the higher alcohol include higher alcohols having 7 or more carbon atoms (preferably 7 to 15 carbon atoms), and specific examples thereof include capryl alcohol, lauryl alcohol, and myristyl alcohol.
  • Examples of alcohols other than the above include phenylethyl alcohol, ethylene glycol, ethylene glycol mono-n-butyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol mono-n-butyl ether, tetraethylene glycol mono-n-butyl ether. And dipropylene glycol monobutyl ether. These may be used alone or in combination of two or more.
  • the alcohol content relative to the total mass of the antibacterial liquid of the present invention is 10% by mass or more, preferably 50% by mass or more, more preferably 65% by mass or more, and further more preferably 80% by mass or more. preferable.
  • an upper limit is not specifically limited, For example, it is 99 mass% or less.
  • the content of alcohol in the solvent is, for example, 5 to 100% by mass, preferably 30 to 95% by mass, and more preferably 40 to 95% by mass.
  • the content of the total solid content with respect to the total mass of the antibacterial liquid of the present invention is preferably 0.0005 to 30% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.05 to 10% by mass. Furthermore, from the reason that whitening of the antibacterial film obtained by overcoating can be suppressed, the content of the total solid content relative to the total mass of the antibacterial liquid of the present invention is preferably 10% by mass or less, and preferably 1% by mass or less. More preferred.
  • the solvent may contain other hydrophilic organic solvents other than alcohol.
  • hydrophilic organic solvents include benzol, toluol, MEK (methyl ethyl ketone), acetone, 10% denatonium alcohol benzoate, ethyl acetate, hexane, ethyl ether, geraniol, octaacetylated sucrose, brucine, linalool Linalyl acetate, acetic acid, butyl acetate and the like.
  • the solvent contains a hydrophilic organic solvent other than alcohol
  • the content of the hydrophilic organic solvent other than alcohol in the solvent is preferably 20% by mass or less, for example.
  • the solvent is substantially composed of alcohol and water. In the present invention, a dilute solution (water, alcohol, etc.) of each component is also included in the solvent.
  • the antibacterial liquid of the present invention preferably contains a dispersant from the viewpoint of enhancing the dispersibility of the above-described antibacterial agent fine particles and improving the sedimentation resistance.
  • a dispersant a nonionic or anionic dispersant is preferably used.
  • a dispersant having an anionic polar group such as a carboxy group, a phosphate group, and a hydroxyl group (anionic dispersant) is more preferable.
  • anionic dispersant Commercially available products can be used as the anionic dispersant.
  • the content of the dispersant is, for example, 50% by mass or more in terms of solid content with respect to the content of the antibacterial fine particles described above, and the reason why the sedimentation resistance is further improved. Therefore, 200 mass% or more is preferable and 400 mass% or more is more preferable. On the other hand, although an upper limit is not specifically limited, For example, it is 1500 mass% or less.
  • the antibacterial liquid of the present invention contains the above-described siloxane oligomer as a binder, it is preferable that the antibacterial liquid further includes a catalyst for promoting the condensation.
  • a catalyst for promoting the condensation By drying the antibacterial liquid of the present invention after drying to eliminate moisture, the hydroxy groups (at least part of) of the hydrolyzate of the siloxane oligomer condense with each other to form a bond and obtain a stable coating film (antibacterial film). It is done. At this time, the formation of the antibacterial film can be promoted more rapidly by having a catalyst that promotes the condensation of the siloxane oligomer.
  • an acid catalyst an alkali catalyst, an organometallic catalyst, etc.
  • the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, formic acid, oxalic acid, toluenesulfonic acid and the like.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and the like.
  • organometallic catalysts include aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), aluminum chelate compounds such as aluminum ethylacetoacetate diisopropylate; zirconium tetrakis (acetylacetonate) Zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate), titanium bis (butoxy) bis (acetylacetonate); dibutyltin diacetate, dibutyltin dilaurate, Organotin compounds such as dibutyltin dioctiate; and the like.
  • an organometallic catalyst is preferable, and an aluminum chelate compound or a zirconium chelate compound is more preferable.
  • the content of the catalyst for promoting the condensation of the siloxane oligomer is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, based on the total solid content of the antibacterial liquid of the present invention. Preferably, 0.3 to 10% by mass is more preferable.
  • a catalyst that promotes condensation of the siloxane oligomer is also useful for hydrolysis of the siloxane oligomer.
  • the antibacterial liquid of the present invention may contain a surfactant (a component exhibiting surface activity).
  • a surfactant a component exhibiting surface activity
  • paintability can be improved and surface tension is lowered
  • coating is attained.
  • the surfactant any of nonionic surfactants, ionic (anionic, cationic and amphoteric) surfactants can be suitably used.
  • an ionic surfactant is added excessively, the electrolytic mass in the system may increase, leading to aggregation of silica fine particles, etc., so when using an ionic surfactant, a nonionic interface is used. It is preferable to further include a component showing activity.
  • nonionic surfactants include polyalkylene glycol monoalkyl ethers, polyalkylene glycol monoalkyl esters, polyalkylene glycol monoalkyl esters / monoalkyl ethers, and the like. More specifically, polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, polyethylene glycol monostearyl ester and the like can be mentioned.
  • ionic surfactants include anionic surfactants such as alkyl sulfates, alkylbenzene sulfonates, and alkyl phosphates; cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts; alkyls Amphoteric surfactants such as carboxybetaine; and the like.
  • the content of the surfactant with respect to the total mass of the antibacterial liquid of the present invention is a solid content, for example, 0.0001% by mass or more, preferably 0.001% by mass or more, and more preferably 0.003% by mass or more.
  • the content of the surfactant with respect to the total solid mass of the antibacterial liquid of the present invention is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less.
  • the antibacterial liquid of the present invention may contain silica particles.
  • the silica particles exhibit further hydrophilicity while enhancing the physical resistance of the antibacterial film formed using the antibacterial liquid of the present invention. That is, the silica particles play a role as a hard filler and contribute to hydrophilicity by the hydroxy groups on the surface.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, a needle shape, and a necklace shape, and a spherical shape is preferable. Further, air and organic resin may be included in the core using silica as a shell.
  • the surface of the silica particles may be subjected to a surface treatment in order to stabilize the dispersion.
  • the average particle size (primary particle size) of the silica particles is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less.
  • the particle diameter of the silica particles can be measured in the same manner as the antibacterial fine particles described above. Two or more types of silica particles having different shapes and sizes may be used in combination.
  • the content of the silica fine particles with respect to the total solid mass of the antibacterial liquid of the present invention is preferably from 0 to 95 mass%, more preferably from 10 to 90 mass%, still more preferably from 20 to 80 mass% in terms of solid content. Further, the content of the silica fine particles with respect to the total mass of the antibacterial liquid of the present invention is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less in terms of solid content.
  • the antibacterial liquid of the present invention may further contain an acidic material.
  • an acidic material By containing an acidic material, antiviral properties can be imparted to the antibacterial liquid of the present invention.
  • the acidic material used in the present invention include inorganic acids such as phosphoric acid and sulfuric acid; malic acid, lactic acid, tartaric acid, salicylic acid, gluconic acid, adipic acid, phytic acid, fumaric acid, succinic acid, ascorbic acid, sorbin Organic acids such as acid, glyoxylic acid, meldrum acid, glutamic acid, picric acid, aspartic acid, acetic acid, formic acid, citric acid; alkali metal salts of these acids; and the like, and these may be used alone, Two or more kinds may be used in combination.
  • the content of the acidic material in the antibacterial liquid of the present invention is not particularly limited. For example, an appropriate amount of acidic material is added so that the pH of the antibacterial liquid of the present invention falls
  • the antibacterial liquid of the present invention can further contain other additives (for example, preservatives, deodorants, fragrances, etc.) as necessary, as long as the object of the present invention is not impaired.
  • the antibacterial liquid of the present invention can be obtained by appropriately mixing the above-described essential components and optional components.
  • the viscosity of the antibacterial liquid of the present invention is not particularly limited. However, when the viscosity is high, the sedimentation of the antibacterial agent fine particles can be further suppressed, while the applicability may be inferior. Therefore, it is preferable to adjust the viscosity to an appropriate range. From such a viewpoint, the viscosity at 25 ° C. of the antibacterial liquid of the present invention is preferably 100 cP (centipoise) or less, more preferably 50 cP or less, and further preferably 0.5 to 5 cP. In the present invention, the viscosity is measured using VISCOMETER TUB-10 manufactured by Toki Sangyo Co., Ltd. or SEKONIC VISCOMETER manufactured by Seconic Co., Ltd., and the unit is converted to cP (centipoise).
  • the turbidity of the antibacterial liquid of the present invention is not particularly limited. For example, increasing the content of the antibacterial agent fine particles increases the turbidity, but ensures transparency when applying the antibacterial liquid of the present invention. From the viewpoint, it is preferable to adjust the turbidity to an appropriate range. From such a viewpoint, the turbidity of the antibacterial liquid of the present invention is preferably 200 ppm or less, more preferably 100 ppm or less, and still more preferably 80 ppm or less. On the other hand, although a minimum is not specifically limited, For example, it is 1 ppm or more. In the present invention, the turbidity is measured using an integrating sphere turbidimeter PT200 manufactured by Mitsubishi Chemical Analytech, based on JIS K0101.
  • the antibacterial liquid of the present invention is preferably not denatured for a long time. Specifically, when the antibacterial liquid of the present invention is stored in a low temperature environment of 5 ° C. for 500 hours, the change in viscosity at 25 ° C. is 2 cP or less, and the change in turbidity is 10 ppm or less. It is preferable that When the antibacterial solution of the present invention is stored in a high temperature environment of 40 ° C. and 80% relative humidity for 500 hours, the change in viscosity at 25 ° C. is 2 cP or less and the change in turbidity is 20 ppm. The following is preferable.
  • the pH of the antibacterial liquid of the present invention is not particularly limited, but it is preferable to adjust the pH to an appropriate range in consideration of rough hand of the user in an actual use environment.
  • the antibacterial solution of the present invention has a pH of preferably 3 to 10, more preferably 4 to 9.
  • the pH of the antibacterial liquid of the present invention is preferably 6 or less.
  • the pH is measured using a pH meter HM-30R manufactured by Toa DKK Corporation.
  • the surface tension of the antibacterial liquid of the present invention is not particularly limited, but is preferably adjusted to an appropriate range in consideration of wettability when the antibacterial liquid of the present invention is applied.
  • the surface tension of the antibacterial liquid of the present invention is preferably 80 mN / m or less, more preferably 60 mN / m or less, and still more preferably 40 mN / m or less.
  • a minimum is not specifically limited, For example, it is 5 mN / m or more.
  • the surface tension is measured using a surface tension meter DY-300 manufactured by Kyowa Interface Science.
  • the antibacterial film of the present invention is a coating film formed using the antibacterial liquid of the present invention, and can be formed, for example, by applying the antibacterial liquid of the present invention on a substrate and drying it.
  • the substrate to which the antibacterial liquid of the present invention is applied is not particularly limited, and glass, resin, metal, ceramics, cloth, etc. are appropriately used.
  • the resin include polypropylene, polystyrene, polyurethane, acrylic resin, polycarbonate, polyamide, fluororesin, latex, polyvinyl chloride, polyolefin, melamine resin, ABS (acrylonitrile butadiene styrene) resin, polyester (for example, polyethylene terephthalate (PET)). Etc.).
  • the shape of the substrate is not particularly limited, and examples thereof include a plate shape, a film shape, and a sheet shape.
  • the substrate surface may be a flat surface, a concave surface, or a convex surface.
  • a conventionally known easy-adhesion layer may be formed on the surface of the substrate.
  • the method for applying the antibacterial liquid of the present invention is not particularly limited.
  • spray method, brush coating method, dipping method, electrostatic coating method, bar coating method, roll coating method, flow coating method, die coating method, non-woven fabric examples thereof include a coating method, an inkjet method, a casting method, a spin coating method, and an LB (Langmuir-Blodgett) method.
  • Drying after coating may be drying at room temperature or heating at 40 to 120 ° C. The drying time is, for example, about 1 to 30 minutes.
  • the water contact angle on the surface of the antibacterial membrane of the present invention is preferably 60 ° or less, more preferably 40 ° or less, and still more preferably 20 ° or less.
  • the antibacterial film of the present invention is excellent in the removability (antifouling property) of contaminants by washing or the like, and is excellent in antibacterial property by exhibiting hydrophilicity. Since the antibacterial film is hydrophilic, moisture can easily penetrate into the antibacterial film, and the antibacterial agent fine particles (silver-supported inorganic oxide) in the antibacterial film can reach the water and release silver ions.
  • the antibacterial fine particles in the antibacterial layer are also effectively used, so that the supply of silver can be continued, and the antibacterial property is improved.
  • the minimum of a water contact angle is not specifically limited, For example, in many cases, it is 5 degrees or more.
  • the water contact angle is measured based on the JIS R 3257: 1999 sessile drop method.
  • FAMMS DM-701 manufactured by Kyowa Interface Science Co., Ltd. is used. More specifically, 2 ⁇ L of a droplet was dropped on the surface of the antibacterial layer kept at a room temperature of 20 ° C. using pure water, and the contact angle at 20 seconds after the dropping was measured at 10 locations. Is the contact angle.
  • the antibacterial property of the antibacterial film (1st antibacterial film) formed on the base material using the antibacterial liquid of the present invention decreases, it may be applied twice. That is, the second antibacterial film may be formed on the first antibacterial film using the same antibacterial liquid of the present invention. At this time, it is preferable that the physical properties of the second antibacterial film are not affected by the first antibacterial film.
  • the water contact angle X of the first antibacterial film formed by applying the antibacterial liquid of the present invention on the substrate, and the second antibacterial film formed by applying on the first antibacterial film The absolute value
  • the film thickness (average film thickness) of the antibacterial film of the present invention is preferably 1.0 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the minimum of a film thickness is not specifically limited, For example, it is 0.01 micrometer or more. In the present invention, the film thickness is determined as follows.
  • an antibacterial film sample piece is embedded in a resin, the cross section is cut out with a microtome, the cut out cross section is observed with a scanning electron microscope, and the film thickness at any 10 positions of the antibacterial film is measured, The value obtained by arithmetically averaging them is defined as the film thickness (average film thickness) of the antibacterial film.
  • the antibacterial fine particles are buried in the antibacterial film, the antibacterial properties are difficult to exert, so the antibacterial fine particles are arranged in a convex shape (the antibacterial fine particles protrude from the surface of the antibacterial film Is preferred.
  • the ratio (B / A) of the average particle diameter B of the antibacterial fine particles to the film thickness A is preferably 1 or more, and more preferably 2 or more.
  • the antimicrobial film itself can be used as an antimicrobial sheet.
  • the antibacterial liquid of the present invention may be directly applied to the surface (front surface) of the device to form the antibacterial film, or the antibacterial film is separately formed. In addition, it may be attached to the surface of the apparatus via an adhesive layer or the like.
  • a base material with an antibacterial film can also be used as a front plate of each device.
  • an apparatus with which an antibacterial film (antibacterial sheet) and a base material with an antibacterial film are used a radiography apparatus, a touch panel, etc. are mentioned, for example.
  • the place where the antibacterial liquid of the present invention is directly applied is, for example, a wall, ceiling, floor, door knob, handrail, switch, button in a facility such as a hospital or a nursing facility. And toilet seats.
  • the antibacterial film formed by applying the antibacterial liquid of the present invention is excellent in hydrophilicity, so when dirt (for example, dirt of blood, body fluid, etc.) on the medical site adheres, it can be easily wiped with water. Dirt can be removed.
  • the wet wiper of the present invention is a wet wiper obtained by impregnating a base fabric with the antibacterial liquid of the present invention.
  • a base fabric a nonwoven fabric etc. are mentioned suitably, for example.
  • the basis weight (mass per unit area) of the base fabric is preferably 100 g / m 2 or less.
  • the amount of impregnation when the base fabric is impregnated with the antibacterial liquid of the present invention is preferably 1 or more times the mass of the base fabric.
  • the wet wiper of the present invention can itself be used as a wet wiper having antibacterial properties.
  • the antibacterial liquid of the present invention can be applied to the surface of a substrate using the wet wiper of the present invention.
  • Example 1 While stirring ethanol 260 g in a container, pure water 200 g, siloxane compound binder (“MKC (registered trademark) silicate MS51” manufactured by Mitsubishi Chemical Corporation) 4.7 g, aluminum chelate D (aluminum bis (ethyl acetoacetate)) Mono (acetylacetonate), ethanol dilution: solid content concentration 1% by weight 15 g, nonionic surfactant (“Emulex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) 60 g, And 10 g of an anionic surfactant (sodium di (2-ethylhexyl) sulfosuccinate, diluted with pure water: solid content concentration 0.2% by mass) in order, and then the antibacterial agent having an average particle size controlled to 1.0 ⁇ m Add 2.2 g of fine particles (silver-supported glass, manufactured by Fuji Chemical Co., Ltd., ethanol
  • the average particle size of the antibacterial agent fine particles was adjusted in advance by wet grinding by mixing and vibrating the zirconia beads using a bead mill (hereinafter the same). Furthermore, the antibacterial solution A-1 was applied on the easy-adhesion-treated surface of a polyethylene terephthalate (PET) base material that had been subjected to easy-adhesion treatment on one side using a bar coater, and dried at room temperature for 20 minutes. An antibacterial membrane B-1 was obtained.
  • PET polyethylene terephthalate
  • Example 2 The composition of the antibacterial solution A-1 was changed. Specifically, an antibacterial solution A-2 was obtained in the same manner as in Example 1 except that the blending amount was changed to 345 g of ethanol and 115 g of pure water. Further, in the same manner as in Example 1, an antibacterial film B-2 was obtained using the antibacterial liquid A-2.
  • Example 3 The composition of the antibacterial solution A-1 was changed. Specifically, an antibacterial solution A-3 was obtained in the same manner as in Example 1 except that the blending amount was changed to 427 g of ethanol and 33 g of pure water. Further, in the same manner as in Example 1, an antibacterial film B-3 was obtained using the antibacterial liquid A-3.
  • Example 4 While stirring 280 g of ethanol in a container, 185 g of pure water, 24 g of a binder which is a siloxane compound (“MKC (registered trademark) silicate MS51” manufactured by Mitsubishi Chemical Corporation), a nonionic surfactant (“Emalex” manufactured by Nippon Emulsion Co., Ltd.) 715 ", pure water dilution: solid content concentration of 0.5 mass%) 60 g, and anionic surfactant (di (2-ethylhexyl) sulfosuccinate sodium, pure water dilution: solid content concentration of 0.2 mass%) 10 g Then, 11.5 g of antibacterial fine particles (silver-supported glass, manufactured by Fuji Chemical Co., Ltd., ethanol dilution: solid content concentration 50% by mass) whose average particle size is controlled to 1.0 ⁇ m is added and stirred for 20 minutes.
  • MKC registered trademark
  • a nonionic surfactant di (2-ethylhexyl
  • Antibacterial liquid A-4 was obtained. Further, the antibacterial solution A-4 was applied on the easy adhesion treated surface of the PET base material which had been easily adhered on one side using a bar coater and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-4. .
  • Example 5 While stirring 360 g of ethanol in a container, 94 g of pure water, 15 g of a binder (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate) mono ( Acetyl acetonate), ethanol dilution: solid content concentration 1% by mass) 15 g, nonionic surfactant (“Emalex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) 60 g, anionic Surfactant (sodium di (2-ethylhexyl) sulfosuccinate, pure water dilution: solid concentration 0.2 mass%) and silica particles (“Snowtex O-33” manufactured by Nissan Chemical Industries, Ltd., pure water dilution) : Solid content concentration 33 mass%) After adding 22 g in sequence, antibacterial fine particles whose average particle
  • the antibacterial solution A-5 was applied onto the easy adhesion treated surface of the PET base material that had been subjected to easy adhesion treatment on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-5. .
  • Example 6 The above antibacterial solution A-5 was used.
  • the antibacterial solution A-5 was applied onto the easy adhesion treated surface of the PET base material that had been easily adhered on one side using a bar coater different from that used in Example 5, and dried at room temperature for 20 minutes.
  • Antibacterial membrane B-6 was obtained.
  • Example 7 The composition of the antibacterial solution A-5 was changed. Specifically, 384 g of ethanol, 94 g of pure water, 17 g of a binder (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), silica particles (“ Snowtex O-33 ”manufactured by Nissan Chemical Industries, Ltd.) Example 5 except that the blending amount was changed to 32 g and the dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK Co., Ltd.) 0.6 g was added. In the same manner as above, an antibacterial solution A-7 was obtained. Further, the antibacterial solution A-7 was applied to the easy adhesion treated surface of the PET base material which had been easily adhered on one side using a bar coater and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-7. .
  • Example 8 The composition of the antibacterial solution A-7 was changed. Specifically, 360 g of ethanol, 88 g of pure water, 14 g of a binder which is a siloxane compound (“MKC (registered trademark) silicate MS51” manufactured by Mitsubishi Chemical Corporation), a dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK) ) An antibacterial solution A-8 was obtained in the same manner as in Example 7 except that the blending amount was changed to 3.6 g and 15 g of isopropanol was added. Furthermore, the antibacterial solution A-8 was applied on the easy adhesion treated surface of the PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-8. .
  • MKC siloxane compound
  • DISPERBYK registered trademark
  • -180 manufactured by BYK
  • Example 9 The composition of the antibacterial solution A-7 was changed. Specifically, 540 g of ethanol, 20 g of pure water, 14 g of a binder that is a siloxane compound (“MKC (registered trademark) silicate MS51” manufactured by Mitsubishi Chemical Corporation), a dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK) ) Antibacterial microparticles with a blending amount changed to 2.88 g and antibacterial microparticles controlled to an average particle size of 0.7 ⁇ m (silver-carrying glass, manufactured by Fuji Chemical Co., Ltd., ethanol dilution: solid content concentration 30% by mass) ) Antibacterial solution A-9 was obtained in the same manner as in Example 7 except that the amount was changed to 2.4 g.
  • MKC siloxane compound
  • DISPERBYK registered trademark
  • -180 manufactured by BYK
  • the antibacterial solution A-9 was applied on the easy-adhesive surface of the PET base material that had been subjected to an easy-adhesion treatment on one side using a bar coater and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-9. .
  • Example 10 While stirring 560 g of ethanol in a container, 10 g of pure water, 50 g of a binder (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate) mono ( Acetylacetonate), ethanol dilution: solid content concentration 1% by weight) 15 g, nonionic surfactant (“Emalex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by weight) 30 g, anionic Surfactant (sodium di (2-ethylhexyl) sulfosuccinate, pure water dilution: solid concentration 0.2 mass%), silica particles (“Snowtex O-33” manufactured by Nissan Chemical Industries, Ltd., pure water dilution: solid) 40 g of a concentration of 33% by mass), a dispersant (“DISPERBYK
  • Antibacterial solution A-10 was obtained. Further, the antibacterial solution A-10 was applied onto the easy-adhesion-treated surface of the PET base material that had been subjected to easy-adhesion treatment on one side, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-10. .
  • Example 11 The composition of the antibacterial solution A-10 was changed. Specifically, 640 g of ethanol, 15 g of pure water, 6 g of a siloxane compound binder (“MKC (registered trademark) silicate MS51” manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate) mono (acetylacetoacetate) Nate), ethanol dilution: solid content concentration 1 mass%) 16 g, nonionic surfactant (“Emulex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5 mass%) 40 g, silica particles (Nissan) “Snowtex O-33” manufactured by Chemical Industry Co., Ltd., 29 g of pure water dilution: solid content concentration of 33% by mass, 2.88 g of dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK), average particle size of 0 Antibacterial fine particles controlled to
  • an antibacterial film can be similarly formed by dropping an appropriate amount of antibacterial liquid onto a PET substrate with a dropper and then wiping with a non-woven fabric (“Wipe All” manufactured by Nippon Paper Crecia Co., Ltd.). It was. In addition, a non-woven fabric (“Wipeall” manufactured by Nippon Paper Crecia Co., Ltd.) was impregnated with an antibacterial solution, and was similarly applied to a PET substrate as a wet wiper.
  • a non-woven fabric (“Wipeall” manufactured by Nippon Paper Crecia Co., Ltd.) was impregnated with an antibacterial solution, and was similarly applied to a PET substrate as a wet wiper.
  • Example 12 While stirring 350 g of ethanol in a container, 135 g of pure water, 4.9 g of a binder that is a siloxane compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethyl acetoacetate)) Mono (acetylacetonate), ethanol dilution: solid content concentration 1% by mass 16 g, nonionic surfactant (“Emulex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) 60 g After sequentially adding, 6 g of antibacterial agent fine particles (silver-supported apatite, manufactured by Fuji Chemical Co., Ltd., ethanol dilution: solid content concentration 20% by mass) whose average particle size was controlled to 1.0 ⁇ m was added and stirred for 20 minutes to obtain an antibacterial solution. A-12 was obtained. Further, the antibacterial agent fine particles
  • Example 13 The composition of the antibacterial solution A-1 was changed. Specifically, 40 g of ethanol, 430 g of pure water, 5 g of a binder that is a siloxane compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), and antibacterial fine particles (silver) with an average particle size controlled to 1.0 ⁇ m Antibacterial solution A-13 was obtained in the same manner as in Example 1 except that the amount was changed to 2.4 g (supported glass, manufactured by Fuji Chemical Co., Ltd., ethanol dilution: solid concentration 50 mass%). Further, in the same manner as in Example 1, an antibacterial film B-13 was obtained using the antibacterial liquid A-13.
  • MKC registered trademark siloxane compound
  • Example 14 While stirring 400 g of ethanol in a container, 30 g of pure water, 9.5 g of a binder which is a siloxane compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate)) Mono (acetylacetonate), ethanol dilution: solid content concentration 1% by weight 15 g, nonionic surfactant (“Emulex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) 40 g, And 10 g of an anionic surfactant (di (2-ethylhexyl) sulfosuccinate sodium, pure water diluted: solid content concentration 0.2% by mass) were sequentially added, and then a dispersant ("DISPERBYK (registered trademark)” manufactured by BYK Co., Ltd.
  • a dispersant DISPER
  • Example 15 The composition of the antibacterial solution A-14 was changed. Specifically, the antibacterial agent fine particles in which the blending amount is changed to 2.88 g of a dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK) and the antibacterial agent fine particles are controlled to have an average particle size of 0.5 ⁇ m.
  • Antibacterial solution A-15 was obtained in the same manner as in Example 14 except that the amount was changed to 2.4 g (silver-supported glass, manufactured by Fuji Chemical Co., Ltd., ethanol dilution: solid content concentration 60 mass%). Further, the antibacterial solution A-15 was applied on the easy-adhesion treated surface of the PET base material on which one side was easy-adhered using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-15. .
  • Example 16 While stirring 360 g of ethanol in a container, 60 g of pure water, 14 g of a binder (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate) mono ( Acetylacetonate), ethanol dilution: solid content concentration 1% by mass) 15 g, nonionic surfactant (“Emulex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) 60 g, and 10 g of an anionic surfactant (di (2-ethylhexyl) sulfosuccinate sodium, diluted with pure water: solid content concentration 0.2% by mass) was added successively, followed by 18 g of isopropanol and a dispersant (“DISPERBYK (registered trademark) manufactured by BYK).
  • MKC registered trademark
  • MS51 aluminum chel
  • antibacterial solution A-16 was applied on the easy adhesion treated surface of the PET base material on which one surface was easily adhered using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-16.
  • an antibacterial film could be formed in the same manner even when an appropriate amount of the antibacterial solution was dropped onto the PET substrate with a dropper and then wiped off with a non-woven fabric (“Bencott” manufactured by Asahi Kasei Fibers).
  • a non-woven fabric (“Bencot” manufactured by Asahi Kasei Fibers Co., Ltd.) was impregnated with an antibacterial solution and applied as a wet wiper to the PET substrate in the same manner.
  • Example 17 The composition of the antibacterial solution A-16 was changed. Specifically, antibacterial solution A-17 was obtained in the same manner as in Example 16 except that isopropanol was changed to methanol. Further, an antibacterial solution A-17 was applied onto the easy adhesion treated surface of the PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-17. .
  • Example 18 The composition of the antibacterial solution A-4 was changed. Specifically, 29 g of a binder (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), which is a siloxane compound, antibacterial fine particles (silver-supported glass, manufactured by Fuji Chemical Co., Ltd.) having an average particle size controlled to 1.0 ⁇ m Antibacterial solution A-18 was obtained in the same manner as in Example 4 except that 14 g of ethanol dilution: solid content concentration 50% by mass) was added. Further, the antibacterial solution A-18 was applied onto the easy adhesion treated surface of the PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-18. .
  • MKC registered trademark silicate
  • Example 19 The composition of the antibacterial solution A-4 was changed. Specifically, 350 g of ethanol, 250 g of pure water, 25 g of a binder that is a siloxane compound (“MKC (registered trademark) silicate MS51” manufactured by Mitsubishi Chemical Corporation), and antibacterial fine particles (silver) with an average particle size controlled to 1.0 ⁇ m Antibacterial solution A-19 was obtained in the same manner as in Example 4 except that 14 g of supported glass, manufactured by Fuji Chemical Co., Ltd., ethanol dilution: solid content concentration 50 mass% was added. Furthermore, the antibacterial solution A-19 was applied on the easy adhesion treated surface of the PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-19. .
  • Example 20 The composition of the antibacterial solution A-12 was changed. Specifically, antibacterial fine particles (silver-supported apatite) were changed to 2 g of antibacterial fine particles (silver-supported glass, manufactured by Fuji Chemical Co., ethanol dilution: solid content concentration 50 mass%) with an average particle size controlled to 1.0 ⁇ m. Except that, Antibacterial Solution A-20 was obtained in the same manner as Example 12. Further, an antibacterial solution A-20 was applied onto the easy adhesion treated surface of a PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-20. .
  • Example 21 While stirring 600 g of ethanol in a container, 8 g of pure water, 5 g of a binder that is a siloxane compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate) mono ( Acetylacetonate), ethanol dilution: solid content concentration 1 mass%) 16 g, nonionic surfactant ("Emulex 715" manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5 mass%) 40 g, and 10 g of an anionic surfactant (sodium di (2-ethylhexyl) sulfosuccinate, pure water diluted: solid content concentration: 0.2% by mass) was added successively, followed by 30 g of isopropanol and a dispersant (“DISPERBYK (registered trademark) manufactured by BYK).
  • MKC registered trademark
  • antibacterial agent fine particles with an average particle size controlled to 0.5 ⁇ m Child (silver-loaded glass, Fuji Chemical Co., diluted ethanol: solid content concentration 25 wt%) was added to 0.8 g, was stirred for 20 minutes to obtain an antimicrobial solution A-21. Further, an antibacterial solution A-21 was applied on the easy adhesion treated surface of a PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-21. .
  • Example 22 The composition of the antibacterial solution A-21 was changed. Specifically, an antibacterial solution A-22 was obtained in the same manner as in Example 21 except that 3.5 g of citric acid was further added and stirred. Further, an antibacterial solution A-22 was applied onto the easy adhesion treated surface of a PET base material that had been easily adhered on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-22. .
  • Example 23 The composition of the antibacterial solution A-21 was changed. Specifically, an antibacterial solution A-23 was obtained in the same manner as in Example 21 except that 3.5 g of malic acid was further added and stirred. Furthermore, the antibacterial solution A-23 was applied on the easy-adhesion-treated surface of the PET base material on which one surface was easy-adhered using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-23. .
  • Example 24 While stirring 830 g of ethanol in a container, 66 g of pure water, 0.8 g of a binder that is a siloxane compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), aluminum chelate D (aluminum bis (ethylacetoacetate)) Mono (acetylacetonate), ethanol dilution: solid content concentration 1% by mass) 2.3 g, nonionic surfactant ("Emulex 715" manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) 6 g and 1.5 g of an anionic surfactant (di (2-ethylhexyl) sulfosuccinate sodium, pure water diluted: solid content concentration 0.2% by mass) were sequentially added, and then 4.5 g of isopropanol and a dispersant ( BYK “DISPERBYK (registered
  • an antibacterial solution A-24 was applied onto the easy-adhesion-treated surface of a PET base material that had been subjected to easy-adhesion treatment on one side, and dried at room temperature for 20 minutes to obtain an antibacterial membrane B-24. .
  • antibacterial fine particles silica-supported glass, manufactured by Fuji Chemical Co., Ltd., pure water dilution: solid content concentration: 50% by mass
  • the mixture was stirred for 20 minutes to obtain antibacterial liquid C-1.
  • an antibacterial solution C-1 was applied to the easy-adhesion treated surface of a PET base material that had been subjected to an easy-adhesion treatment on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane D-1. It was.
  • the antibacterial solution C-2 was applied to the easy adhesion treated surface of the PET base material that had been subjected to easy adhesion treatment on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial film D-2. It was.
  • ⁇ Comparative Example 3> While stirring 470 g of pure water in a container, 60 g of a nonionic surfactant (“Emalex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass) and an anionic surfactant ( After sequentially adding 10 g of sodium di (2-ethylhexyl) sulfosuccinate, diluted with pure water (solid content concentration: 0.2% by mass), 10 g of malic acid and antibacterial fine particles with an average particle size controlled to 3.0 ⁇ m ( 2.5 g of silver-supported glass, manufactured by Fuji Chemical Co., Ltd.
  • a nonionic surfactant (“Emalex 715” manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5% by mass)
  • an anionic surfactant After sequentially adding 10 g of sodium di (2-ethylhexyl) sulfosuccinate, diluted with pure
  • an antibacterial solution C-3 (diluted with pure water: solid concentration: 50% by mass) was added and stirred for 20 minutes to obtain an antibacterial solution C-3. Furthermore, the antibacterial solution C-3 was applied on the easy adhesion surface of the PET base material that had been subjected to easy adhesion treatment on one side using a bar coater, and dried at room temperature for 20 minutes to obtain an antibacterial membrane D-3. It was.
  • the film thickness (average film thickness, unit: micrometer) and the water contact angle (unit: degree) were calculated
  • the antibacterial property of the antibacterial membrane was evaluated in accordance with the evaluation method described in JIS Z 2801, and the test was carried out by changing the contact time to the bacterial solution to 3 hours.
  • the antibacterial activity value after the test was measured and evaluated according to the following criteria. Practically, “A”, “B” or “C” is preferable. “A”: antibacterial activity value of 3.5 or more “B”: antibacterial activity value of 2.0 or more and less than 3.5 “C”: antibacterial activity value of 1.0 or more and less than 2.0 “D”: antibacterial activity The value is less than 1.0
  • the antifouling property was evaluated based on the water contact angle of the antibacterial membrane. “A” if the water contact angle is less than 20 °, “B” if it is 20 ° or more and less than 40 °, “C” if it is 40 ° or more and 60 ° or less, and “D” if it is greater than 60 °. did.
  • An antibacterial liquid was impregnated in a non-woven fabric (“Wipe All” manufactured by Nippon Paper Crecia Co., Ltd.) at a mass four times the mass of the non-woven fabric to obtain a wet wiper.
  • a wet wiper an antibacterial liquid was applied to the surface of a transparent PET substrate and dried at room temperature for 20 minutes to form an antibacterial film.
  • an antibacterial liquid was applied onto the antibacterial film already formed to form an antibacterial film.
  • Such application of the antibacterial liquid and formation of the antibacterial film were repeated 50 times. Haze values were measured for the antibacterial film after the first application and the antibacterial film after the 50th application, respectively.
  • the difference between the measured haze values was determined as the amount of change in haze value (unit:%) and evaluated according to the following criteria.
  • the Nippon Denshoku Industries Co., Ltd. haze meter NDH5000 was used for the measurement of a haze value. It can be evaluated that the smaller the amount of change in haze value, the better the effect of suppressing whitening of the antibacterial film obtained by overcoating. Practically, it is preferably “A”, “B” or “C”, and more preferably “A” or “B”.
  • B” Haze value change amount is 3 or more and less than 10
  • C Haze value change amount is 10 or more
  • D Haze value change amount is 15 or more
  • the antiviral properties of the antibacterial solution were evaluated as follows. First, an equal amount of feline calicivirus (norovirus substitute) virus solution adjusted to 5 ⁇ 10 6 PFU / mL was added dropwise to the antibacterial solution, stirred for 10 seconds, and then allowed to stand at 25 ° C. for 1 minute. Thereafter, the liquid was recovered and mixed well with the SCDLP medium, and the resulting mixture was inoculated into 0.1 mL of CRFK cells cultured in a 6-well plate and adsorbed at 37 ° C. for 1 hour. Thereafter, the inoculum was washed away, and agar medium was overlaid and cultured for 2 days.
  • Mv antiviral activity value
  • lg (Va) common logarithm of the virus infectivity value of the comparison target liquid
  • lg (Vb) common logarithm of the virus infectivity value of the antibacterial liquid of Example or Comparative Example.
  • the comparison target liquid was sterilized distilled water, the same test as the above test was performed, and the evaluation was performed according to the following criteria. Practically, it is preferably “A”, “B”, “C” or “D”, and more preferably “A” or “B”.
  • PFU is an abbreviation for “Plaque Forming Unit”
  • SCDLP is an abbreviation for “Soybean-Casein Digest Agar with Lecithin & Polysorbate 80”
  • CRFK is an abbreviation for “Crandell Rees feline kidney”.
  • A antiviral activity value is 3.0 or more
  • B antiviral activity value is 2.0 or more and less than 3.0
  • C antiviral activity value is 1.0 or more and less than 2.0
  • D Antiviral activity value is 0.2 or more and less than 1.0
  • E Antiviral activity value is less than 0.2
  • Comparative Examples 1 to 3 in which the average particle diameter of the antibacterial agent fine particles is more than 1.0 ⁇ m and the alcohol content is less than 10% by mass are resistant to sedimentation. Was insufficient. Further, Comparative Examples 1 and 3 containing no siloxane compound and having a water contact angle of 80 ° also had insufficient antibacterial properties. On the other hand, Examples 1 to 24 all had good sedimentation resistance and antibacterial properties. In Examples 9 to 11 and 14 to 17 in which the average particle diameter of the antibacterial agent fine particles was 0.7 ⁇ m or less, the sedimentation resistance was better.
  • Example 4 and Example 18 when Example 4 and Example 18 are compared, the content of the antibacterial agent fine particles with respect to the total mass of the antibacterial solution is 1.0% by mass or less in Example 4 than in Example 18. Sedimentation resistance was good. Further, when Example 4 and Example 19 are compared, the content of the antibacterial fine particles with respect to the total solid content mass of the antibacterial liquid is 20% by mass or less in Example 4 than in Example 18. Sedimentation resistance was good. Further, when Example 12 and Example 20 are compared, Example 20 using silver-supported glass as antibacterial fine particles (silver-supported inorganic oxide) has better antibacterial properties than Example 12. It was.
  • Examples 1 to 24 in which the alcohol content (with respect to the total mass) in the antibacterial solution is 10% by mass or more are compared, when the pH of the antibacterial solution is 6 or less, the pH of the antibacterial solution is more than 6. Antiviral properties were better than in some cases. In addition, even if it is a case where pH of an antibacterial liquid is reduced by mix
  • FIG. 1 is an electron micrograph of the surface of the antibacterial membrane B-8 of Example 8 taken with a scanning electron microscope image (5000 times magnification). In addition, imaging

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

耐沈降性に優れる抗菌液、ならびに、上記抗菌液を用いて形成される抗菌膜、および、上記抗菌液を用いたウェットワイパーを提供する。上記抗菌液は、抗菌剤微粒子、バインダおよび溶媒を含有する抗菌液であって、上記抗菌剤微粒子が、銀担持無機酸化物を含み、上記抗菌剤微粒子の平均粒径が、1.0μm以下であり、上記バインダが、少なくとも1種のシラン化合物を含み、上記溶媒が、アルコールおよび水を含み、上記抗菌液の全質量に対する上記アルコールの含有量が、10質量%以上である、抗菌液である。

Description

抗菌液、抗菌膜およびウェットワイパー
 本発明は、抗菌液、抗菌膜およびウェットワイパーに関する。
 従来、抗菌剤微粒子の一種として、例えば、特許文献1には、「ガラス組成に抗菌性金属を含むガラス微小球であって、その平均粒子径が0.05~5.0μmの特定値を有し、粒子径の標準偏差がその特定値に対して±0.08μm以内であることを特徴とする抗菌性ガラス微小球」が開示されている。
特開2003-206139号公報
 本発明者らは、抗菌剤微粒子を含有する液(抗菌液)について検討した。その結果、抗菌液中の抗菌剤微粒子が沈降しやすい場合(すなわち、耐沈降性が不十分な場合)があることが分かった。抗菌液の耐沈降性が不十分であると、短時間で変性してしまい、抗菌性、塗布性に問題が生じる可能性がある。
 そこで、本発明は、耐沈降性に優れる抗菌液、ならびに、上記抗菌液を用いて形成される抗菌膜、および、上記抗菌液を用いたウェットワイパーを提供することを目的とする。
 本発明者らは、鋭意検討した結果、抗菌剤微粒子の平均粒径を特定の範囲とし、かつ、特定の溶媒を用いることで、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[21]を提供する。
 [1]抗菌剤微粒子、バインダおよび溶媒を含有する抗菌液であって、上記抗菌剤微粒子が、銀担持無機酸化物を含み、上記抗菌剤微粒子の平均粒径が、1.0μm以下であり、上記バインダが、少なくとも1種のシラン化合物を含み、上記溶媒が、アルコールおよび水を含み、上記抗菌液の全質量に対する上記アルコールの含有量が、10質量%以上である、抗菌液。
 [2]上記抗菌剤微粒子の平均粒径が0.7μm以下である、上記[1]に記載の抗菌液。
 [3]上記銀担持無機酸化物が銀担持ガラスである、上記[1]または[2]に記載の抗菌液。
 [4]上記抗菌液の全質量に対する上記アルコールの含有量が50質量%以上である、上記[1]~[3]のいずれかに記載の抗菌液。
 [5]上記抗菌液の全質量に対する上記抗菌剤微粒子の含有量が、固形分で、1.0質量%以下である、上記[1]~[4]のいずれかに記載の抗菌液。
 [6]上記抗菌液の全質量に対する上記抗菌剤微粒子の含有量が、固形分で、0.2質量%以下である、上記[1]~[5]のいずれかに記載の抗菌液。
 [7]上記抗菌液の全固形分質量に対する上記抗菌剤微粒子の含有量が、固形分で、20質量%以下である、上記[1]~[6]のいずれかに記載の抗菌液。
 [8]25℃における粘度が0.5~5cPである、上記[1]~[7]のいずれかに記載の抗菌液。
 [9]濁度が100ppm以下である、上記[1]~[8]のいずれかに記載の抗菌液。
 [10]更に、アニオン系分散剤を含有する、上記[1]~[9]のいずれかに記載の抗菌液。
 [11]上記アニオン系分散剤の含有量が、上記抗菌剤微粒子の含有量に対して、50質量%以上である、上記[10]に記載の抗菌液。
 [12]温度5℃の低温環境下に500時間保管した場合において、25℃における粘度の変化量が2cP以下であり、濁度の変化量が10ppm以下である、上記[1]~[11]のいずれかに記載の抗菌液。
 [13]温度40℃および相対湿度80%の高温環境下に500時間保管した場合において、25℃における粘度の変化量が2cP以下であり、濁度の変化量が20ppm以下である、上記[1]~[12]のいずれかに記載の抗菌液。
 [14]基材上に塗布して形成される第1の抗菌膜の水接触角Xと、上記第1の抗菌膜上に塗布して形成される第2の抗菌膜の水接触角Yとの差の絶対値|X-Y|が、10°以下である、上記[1]~[13]のいずれかに記載の抗菌液。
 [15]pHが6以下である、上記[1]~[14]のいずれかに記載の抗菌液。
 [16]上記[1]~[15]のいずれかに記載の抗菌液を用いて形成される抗菌膜。
 [17]水接触角が60°以下である、上記[16]に記載の抗菌膜。
 [18]上記抗菌剤微粒子が凸状に配置されている、上記[16]または[17]に記載の抗菌膜。
 [19]膜厚Aに対する上記抗菌剤微粒子の平均粒径Bの比B/Aが、1以上である、上記[16]~[18]のいずれかに記載の抗菌膜。
 [20]膜厚が1.0μm以下である、上記[16]~[19]のいずれかに記載の抗菌膜。
 [21]上記[1]~[15]のいずれかに記載の抗菌液が基布に含浸されたウェットワイパー。
 本発明によれば、耐沈降性に優れる抗菌液、ならびに、上記抗菌液を用いて形成される抗菌膜、および、上記抗菌液を用いたウェットワイパーを提供できる。
実施例8の抗菌膜B-8の表面を走査型電子顕微鏡像で撮影(倍率5000倍)した電子顕微鏡写真である。
 以下に、本発明の抗菌液、抗菌膜およびウェットワイパーについて説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[抗菌液]
 本発明の抗菌液は、抗菌剤微粒子、バインダおよび溶媒を含有する抗菌液であって、上記抗菌剤微粒子が、銀担持無機酸化物を含み、上記抗菌剤微粒子の平均粒径が、1.0μm以下であり、上記バインダが、少なくとも1種のシラン化合物を含み、上記溶媒が、アルコールおよび水を含み、上記抗菌液の全質量に対する上記アルコールの含有量が、10質量%以上である、抗菌液である。
 本発明の抗菌液は、抗菌剤微粒子が沈降しにくく、耐沈降性に優れる。このため、本発明の抗菌液は、変性が長時間にわたって抑制される。これは、例えば、抗菌剤微粒子の平均粒径が小さいため凝集が抑制される、溶媒として含まれるアルコールによって抗菌剤微粒子の凝集割合が減少する等の理由が考えられる。
 以下、本発明の抗菌液に含有される各成分について詳述する。
 〔抗菌剤微粒子〕
 抗菌剤微粒子は、少なくとも、銀担持無機酸化物を含む。また、抗菌剤微粒子の平均粒径は、1.0μm以下である。
 〈銀担持無機酸化物〉
 銀担持無機酸化物は、銀と、この銀を担持する担体である無機酸化物とを有する。
 銀(銀原子)としては、その種類は特に制限されない。また、銀の形態も特に制限されず、例えば、金属銀、銀イオン、銀塩(銀錯体を含む)など形態で含まれる。なお、本明細書では、銀錯体は銀塩の範囲に含まれる。
 なお、銀塩としては、例えば、酢酸銀、アセチルアセトン酸銀、アジ化銀、銀アセチリド、ヒ酸銀、安息香酸銀、フッ化水素銀、臭素酸銀、臭化銀、炭酸銀、塩化銀、塩素酸銀、クロム酸銀、クエン酸銀、シアン酸銀、シアン化銀、(cis,cis-1,5-シクロオクタジエン)-1,1,1,5,5,5-ヘキサフルオロアセチルアセトン酸銀、ジエチルジチオカルバミン酸銀、フッ化銀(I)、フッ化銀(II)、7,7-ジメチル-1,1,1,2,2,3,3-ヘプタフルオロ-4,6-オクタンジオン酸銀、ヘキサフルオロアンチモン酸銀、ヘキサフルオロヒ酸銀、ヘキサフルオロリン酸銀、ヨウ素酸銀、ヨウ化銀、イソチオシアン酸銀、シアン化銀カリウム、乳酸銀、モリブデン酸銀、硝酸銀、亜硝酸銀、酸化銀(I)、酸化銀(II)、シュウ酸銀、過塩素酸銀、ペルフルオロ酪酸銀、ペルフルオロプロピオン酸銀、過マンガン酸銀、過レニウム酸銀、リン酸銀、ピクリン酸銀一水和物、プロピオン酸銀、セレン酸銀、セレン化銀、亜セレン酸銀、スルファジアジン銀、硫酸銀、硫化銀、亜硫酸銀、テルル化銀、テトラフルオロ硼酸銀、テトラヨードムキュリウム酸銀、テトラタングステン酸銀、チオシアン酸銀、p-トルエンスルホン酸銀、トリフルオロメタンスルホン酸銀、トリフルオロ酢酸銀、バナジン酸銀などが挙げられる。
 また、銀錯体の一例としては、ヒスチジン銀錯体、メチオニン銀錯体、システイン銀錯体、アスパラギン酸銀錯体、ピロリドンカルボン酸銀錯体、オキソテトラヒドロフランカルボン酸銀錯体、イミダゾール銀錯体などが挙げられる。
 一方、担体である無機酸化物としては、例えば、リン酸亜鉛カルシウム、リン酸カルシウム、リン酸ジルコニウム、リン酸アルミニウム、ケイ酸カルシウム、活性炭、活性アルミナ、シリカゲル、ガラス(酸化ケイ素、酸化リン、酸化マグネシウム、酸化ナトリウム、酸化アルミニウム、酸化亜鉛、酸化カルシウム、酸化ホウ素、および、酸化カリウムからなる群から選ばれる少なくとも1種の化合物)、ゼオライト、アパタイト、ヒドロキシアパタイト、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイトなどが挙げられる。
 このような銀担持無機酸化物としては、例えば、銀担持ゼオライト、銀担持アパタイト、銀担持ガラス、銀担持リン酸ジルコニウム、銀担持ケイ酸カルシウムなどが好適に挙げられ、なかでも、銀担持アパタイト、銀担持ガラスが好ましく、抗菌性の観点から、銀担持ガラスがより好ましい。
 なお、抗菌剤微粒子は、銀担持無機酸化物以外の抗菌剤を含んでいてもよく、例えば、有機系抗菌剤、銀を含まない無機系抗菌剤などが挙げられる。
 有機系抗菌剤としては、例えば、フェノールエーテル誘導体、イミダゾール誘導体、スルホン誘導体、N-ハロアルキルチオ化合物、アニリド誘導体、ピロール誘導体、第4アンモニウム塩、ピリジン系化合物、トリアジン系化合物、ベンゾイソチアゾリン系化合物、又はイソチアゾリン系化合物などが挙げられる。
 銀を含まない無機系抗菌剤としては、例えば、銅、亜鉛などの金属を上述した担体に担持させた抗菌剤が挙げられる。
 抗菌剤微粒子は、銀担持無機酸化物以外の抗菌剤を含む態様であっても、実質的に銀担持無機酸化物のみからなる態様であってもよい。
 抗菌剤微粒子中における銀担持無機酸化物の含有量は、固形分で、60質量%以上が好ましく、70質量%以上がより好ましく、95質量%以上が更に好ましい。
 〈抗菌剤微粒子の平均粒径〉
 抗菌剤微粒子の平均粒径は、1.0μm以下であり、耐沈降性がより優れるという理由から、0.9μm以下が好ましく、0.7μm以下がより好ましい。下限は特に限定されないが、例えば、0.05μm以上である。
 なお、本発明において、平均粒径は、堀場製作所社製のレーザー回折/散乱式粒度分布測定装置を用いて50%体積累積径(D50)を3回測定して、3回測定した値の平均値を用いる。
 抗菌剤微粒子の平均粒径は、従来公知の方法により調節でき、例えば、乾式粉砕または湿式粉砕を採用できる。乾式粉砕においては、例えば、乳鉢、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、ビーズミル等が適宜用いられる。また、湿式粉砕においては、各種ボールミル、高速回転粉砕機、ジェットミル、ビーズミル、超音波ホモジナイザー、高圧ホモジナイザー等が適宜用いられる。
 例えば、ビーズミルにおいては、メディアとなるビーズの径、種類、混合量等を調節することで平均粒径を制御できる。
 本発明においては、例えば、粉砕対象物である抗菌剤微粒子をエタノールまたは水中に分散させ、サイズが異なるジルコニアビーズを混合し振動させることで、湿式粉砕により、抗菌剤微粒子の平均粒径を調節できるが、この方法に限定されず、粒径を制御するうえで適切な方法を選択すればよい。
 〈抗菌剤微粒子の含有量〉
 本発明の抗菌液の全質量に対する抗菌剤微粒子の含有量は、固形分で、例えば、1.5質量%以下であり、耐沈降性の観点から、1.0質量%以下が好ましく、0.2質量%以下がより好ましく、0.1質量%以下が更に好ましい。下限は特に限定されないが、例えば、0.0001質量%以上である。
 更に、本発明の抗菌液を基布に含浸させてなるウェットワイパー等を用いて、抗菌液の塗布および塗膜(抗菌膜)の形成を繰り返して行なう(以下、この行為を「重ね塗り」と呼ぶ)場合において、この重ね塗りによって得られる抗菌膜の白色化を抑制できるという理由からは、本発明の抗菌液の全質量に対する抗菌剤微粒子の含有量は、固形分で、0.2質量%以下が好ましく、0.01質量%以下がより好ましい。
 なお、実環境においては、抗菌膜の表面を人または物体が触れたり擦れたりすることによって、抗菌膜が少しずつ剥がれることが想定されるため、白色化の影響は少ないと考えられるが、ウェットワイパー等を用いて清掃作業する場合など、抗菌液の塗布が連続的に(例えば、毎日)行なわれる環境においては、白色化の抑制が要求される場合がある。
 また、本発明の抗菌液の全固形分質量に対する抗菌剤微粒子の含有量は、固形分で、例えば、25質量%以下であり、耐沈降性の観点から、20質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましい。下限は特に限定されないが、例えば、0.1質量%以上である。
 なお、抗菌剤微粒子中における銀の含有量は特に制限されないが、抗菌剤微粒子の全質量に対して、例えば、0.1~30質量%であり、0.3~10質量%が好ましい。
 〔バインダ〕
 バインダは、少なくとも1種のシラン化合物を含む。なお、バインダは、親水性を示すことが好ましい。
 〈シラン化合物〉
 シラン化合物としては、例えば、下記一般式(1′)で表されるシロキサン化合物(シロキサンオリゴマー)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 ここで、一般式(1′)中、Ra、Rb、RcおよびRdはそれぞれ独立に、水素原子または有機基を表す。また、mは1~100の整数を表す。なお、Ra~Rdの各々は同じであっても、異なっていてもよく、Ra~Rdはそれぞれ互いに結合して環を形成してもよい。
 Ra~Rdが表す有機基としては、例えば、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数4~16の複素環基などが挙げられる。
 Ra~Rdは、水素原子、炭素数1~12のアルキル基、または、炭素数6~14のアリール基が好ましく、水素原子、炭素数1~6のアルキル基、または、炭素数6~10のアリール基がより好ましい。なお、Ra~Rdが表すアルキル基は、分岐状であってもよい。また、Ra~Rdが表す有機基は置換基を有していてもよく、この置換基が更に置換基を有していてもよい。
 Ra~Rdの好ましい具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、ナフチル基などが挙げられる。
 mは、2~20が好ましく、3~15がより好ましく、5~10が更に好ましい。
 また、シラン化合物としては、親水性を示し抗菌性に優れる抗菌膜を得る観点から、例えば、メトキシ基、エトキシ基などの炭素数1~6のアルコキシ基を有するシラン化合物が挙げられ、下記一般式(1)で表されるシロキサン化合物(シロキサンオリゴマー)が好ましい。
Figure JPOXMLDOC01-appb-C000002
 ここで、一般式(1)中、R1~R4はそれぞれ独立に炭素数1~6の有機基を表す。また、nは1~100の整数を表す。なお、有機基は、直鎖状であっても、分岐状であってもよい。
 一般式(1)において、R1~R4はそれぞれ独立に炭素数1~6の有機基を表す。なお、R1~R4の各々は同じであっても、異なっていてもよい。また、R1~R4は直鎖状であっても、分枝を有していてもよい。R1~R4で表される有機基としては、炭素数1~6のアルキル基が好ましい。R1~R4で表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert―ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基などが挙げられる。R1~R4で表されるアルキル基の炭素数を1~6とすることにより、シロキサンオリゴマーの加水分解性を高めることができる。加水分解の容易さから、R1~R4で表される有機基としては、炭素数1~4のアルキル基がより好ましく、炭素数1又は2のアルキル基が更に好ましい。
 一般式(1)において、nは2~20の整数が好ましい。nをこの範囲内とすることにより、加水分解物を含む溶液の粘度を適切な範囲とすることができ、また、シロキサンオリゴマーの反応性を好ましい範囲に制御できる。nが20を超えると、シロキサンオリゴマーの加水分解物を含む溶液の粘度が高くなりすぎて取り扱いが難しくなる場合がある。一方、nが1であるとアルコキシシランの反応性の制御が難しくなり塗布後に親水性を発揮しにくくなる場合がある。nは、3~15がより好ましく、5~10が更に好ましい。
 シロキサンオリゴマーは、水成分とともに混合されることによって、少なくとも一部が加水分解された状態となる。シロキサンオリゴマーの加水分解物は、シロキサンオリゴマーを水成分と反応させ、ケイ素に結合したアルコキシ基をヒドロキシ基に変化させることによって得られる。加水分解に際しては必ずしも全てのアルコキシ基が反応する必要はないが、塗布後に親水性を発揮するためにはなるべく多くのアルコキシ基が加水分解されることが好ましい。また、加水分解に際して最低限必要な水成分の量はシロキサンオリゴマーのアルコキシ基と等しいモル量となるが、反応を円滑に進めるには大過剰の量の水が存在することが好ましい。
 この加水分解反応は室温でも進行するが、反応促進のために加温してもよい。また反応時間は長い方がより反応が進むため好ましい。また、後述する触媒の存在下であれば半日程度でも加水分解物を得ることが可能である。
 なお、加水分解反応は可逆反応であり、系から水が除かれるとシロキサンオリゴマーの加水分解物はヒドロキシ基間で縮合を開始してしまう。従って、シロキサンオリゴマーに大過剰の水を反応させて加水分解物の水溶液を得た場合、そこから加水分解物を無理に単離せずに水溶液のまま用いることが好ましい。
 なお、本発明の抗菌液は、溶媒として水を含有するが、水成分を溶媒とすることで取り扱い時の作業者の健康への負荷および環境への負荷が軽減されると共に、シロキサンオリゴマーの加水分解物が貯蔵中に液中で縮合されることを抑制できる。
 一般式(1)で表されるシロキサンオリゴマーとしては、市販品を用いることができ、具体的には、例えば、三菱化学社製のMKC(登録商標)シリケートが挙げられる。
 なお、バインダは、上述したシラン化合物以外のバインダを含む態様であっても、実質的に上述したシラン化合物のみからなる態様であってもよい。
 バインダ中における上述したシラン化合物の含有量は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。
 〈バインダの含有量〉
 本発明の抗菌液の全固形分質量に対するバインダの含有量は、3~95質量%が好ましく、5~90質量%がより好ましく、10~85質量%が更に好ましい。
 また、本発明の抗菌液の全質量に対するバインダの含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 〔溶媒〕
 溶媒は、アルコールおよび水を含む。なお、水としては、特に限定されず、例えば、純水が挙げられる。
 アルコールは、広範囲にわたる微生物を短時間で死滅させるため好ましい。
 アルコールとしては、特に制限されないが、例えば、鎖状低級炭化水素アルコール(以下、「低級アルコール」)が挙げられる。低級アルコールとしては、炭素数1~6の低級アルコールが好適に挙げられ、その具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、i-ブタノール、t-ブタノール、n-ペンタノール、t-アミルアルコール、n-ヘキサノール等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、メタノール、エタノール、イソプロパノール、ブタノール、またはn-プロパノールが好ましく、エタノール、イソプロパノールがより好ましい。
 また、アルコールとしては、高級アルコールであってもよい。高級アルコールとしては、炭素数7以上(好ましくは炭素数7~15)の高級アルコールが好適に挙げられ、その具体例としては、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール等が挙げられる。
 なお、上記以外のアルコールとしては、例えば、フェニルエチルアルコール、エチレングリコール、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノ-n-ブチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノブチルエーテル等が挙げられる。
 これらは1種単独で用いてもよく、2種以上を併用してもよい。
 本発明の抗菌液の全質量に対するアルコールの含有量は、耐沈降性の観点から、10質量%以上であり、50質量%以上が好ましく、65質量%以上がより好ましく、80質量%以上が更に好ましい。上限は特に限定されないが、例えば、99質量%以下である。
 溶媒中のアルコールの含有量は、例えば、5~100質量%であり、30~95質量%が好ましく、40~95質量%がより好ましい。
 本発明の抗菌液の全質量に対する全固形分質量の含有量は、0.0005~30質量%が好ましく、0.01~20質量%がより好ましく、0.05~10質量%が更に好ましい。
 更に、重ね塗りによって得られる抗菌膜の白色化を抑制できるという理由からは、本発明の抗菌液の全質量に対する全固形分質量の含有量は、10質量%以下が好ましく、1質量%以下がより好ましい。
 なお、溶媒は、アルコール以外の他の親水性有機溶媒を含んでいてもよい。他の親水性有機溶媒としては、例えば、ベンゾール、トルオール、MEK(メチルエチルケトン)、アセトン、10%安息香酸デナトニウムアルコール溶液、酢酸エチル、ヘキサン、エチルエーテル、ゲラニオール、八アセチル化ショ糖、ブルシン、リナロール、リナリールアセテート、酢酸、酢酸ブチル等が挙げられる。
 溶媒中に、アルコール以外の他の親水性有機溶媒を含む場合には、溶媒中のアルコール以外の他の親水性有機溶媒の含有量は、例えば、20質量%以下であることが好ましい。
 もっとも、溶媒は、実質的に、アルコールおよび水からなる態様が好ましい。
 また、本発明においては、各成分の希釈液(水、アルコールなど)も、溶媒に含まれる。
 〔分散剤〕
 本発明の抗菌液は、上述した抗菌剤微粒子の分散性を高め、耐沈降性をより良好にする観点から、分散剤を含有することが好ましい。分散剤としては、ノニオン系またはアニオン系の分散剤が好ましく用いられる。また、抗菌剤微粒子に対する親和性の観点から、例えばカルボキシ基、リン酸基および水酸基などのアニオン性の極性基を有する分散剤(アニオン系分散剤)がより好ましい。
 アニオン系分散剤としては、市販品を用いることができ、その具体例としては、BYK社の商品名DISPERBYK(登録商標)-110、-111、-116、-140、-161、-162、-163、-164、-170、-171、-174、-180および-182等が好適に挙げられる。
 分散剤(特に、アニオン系分散剤)の含有量は、上述した抗菌剤微粒子の含有量に対して、固形分で、例えば、50質量%以上であり、耐沈降性が更に良好になるという理由から、200質量%以上が好ましく、400質量%以上がより好ましい。一方、上限は特に限定されないが、例えば、1500質量%以下である。
 〔触媒〕
 本発明の抗菌液は、バインダとして上述したシロキサンオリゴマーを含有する場合、その縮合を促進する触媒を更に含むことが好ましい。本発明の抗菌液を塗布後に乾燥させて水分をなくすことによりシロキサンオリゴマーの加水分解物が持つヒドロキシ基(の少なくとも一部)が互いに縮合して結合を作り安定な塗膜(抗菌膜)が得られる。この際に、シロキサンオリゴマーの縮合を促進する触媒を有することで、抗菌膜の形成をより速やかに進めることが可能となる。
 シロキサンオリゴマーの縮合を促進する触媒としては、特に限定されないが、例えば、酸触媒、アルカリ触媒、有機金属触媒などが挙げられる。酸触媒の例としては、硝酸、塩酸、硫酸、酢酸、クロロ酢酸、蟻酸、シュウ酸、トルエンスルホン酸などが挙げられる。アルカリ触媒の例としては、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウムなどが挙げられる。有機金属触媒の例としては、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムエチルアセトアセテートジイソプロピレートなどのアルミキレート化合物;ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)などのジルコニウムキレート化合物;チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)などのチタンキレート化合物;ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクチエートなどの有機スズ化合物;等が挙げられる。
 これらのうち、有機金属触媒が好ましく、アルミキレート化合物またはジルコニウムキレート化合物がより好ましい。
 シロキサンオリゴマーの縮合を促進する触媒の含有量は、本発明の抗菌液の全固形分質量に対して、固形分で、0.1~20質量%が好ましく、0.2~15質量%がより好ましく、0.3~10質量%が更に好ましい。
 なお、シロキサンオリゴマーの縮合を促進する触媒は、シロキサンオリゴマーの加水分解に対しても有用である。
 〔界面活性剤〕
 本発明の抗菌液は、界面活性剤(界面活性を示す成分)を含有していてもよい。これにより、塗布性を高めることができ、また、表面張力が引き下げられ、より均一な塗布が可能となる。
 界面活性剤としては、ノニオン性界面活性剤、イオン性(アニオン性、カチオン性、両性)界面活性剤などいずれも好適に使用できる。なお、イオン性の界面活性剤を過剰に加えると系内の電解質量が増えてシリカ微粒子などの凝集を招く場合があることから、イオン性の界面活性剤を用いる場合には、ノニオン性の界面活性を示す成分を更に含むことが好ましい。
 ノニオン性の界面活性剤の例としては、ポリアルキレングリコールモノアルキルエーテル類、ポリアルキレングリコールモノアルキルエステル類、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテル類などが挙げられる。より具体的には、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、ポリエチレングリコールモノステアリルエステルなどが挙げられる。
 イオン性の界面活性剤の例としては、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルリン酸塩などのアニオン性界面活性剤;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩などのカチオン性界面活性剤;アルキルカルボキシベタインなどの両性型界面活性剤;等が挙げられる。
 本発明の抗菌液の全質量に対する界面活性剤の含有量は、固形分で、例えば0.0001質量%以上であり、0.001質量%以上が好ましく、0.003質量%以上がより好ましい。
 一方、本発明の抗菌液の全固形分質量に対する界面活性剤の含有量は、固形分で、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下が更に好ましい。
 〔シリカ粒子〕
 本発明の抗菌液は、シリカ粒子を含有していてもよい。シリカ粒子は、本発明の抗菌液を用いて形成される抗菌膜の物理耐性を高めつつ、さらに親水性を発揮させる。すなわち、シリカ粒子は、硬いフィラーとしての役割を果たすと共に、その表面のヒドロキシ基によって親水性に寄与する。
 シリカ粒子の形状は特に限定されず、球状、板状、針状、ネックレス状などが挙げられるが、球形が好ましい。また、シリカをシェルとしてコアに空気および有機樹脂などを内包していてもよい。更に、分散安定化するためにシリカ粒子の表面に表面処理が施されていてもよい。
 シリカ粒子の平均粒径(一次粒径)は、100nm以下が好ましく、50nm以下がより好ましく、30nm以下が更に好ましい。シリカ粒子の粒径は、上述した抗菌剤微粒子と同様に測定できる。
 形状およびサイズ等が異なる2種以上のシリカ粒子を併用してもよい。
 本発明の抗菌液の全固形分質量に対するシリカ微粒子の含有量は、固形分で、0~95質量%が好ましく、10~90質量%がより好ましく、20~80質量%が更に好ましい。また、本発明の抗菌液の全質量に対するシリカ微粒子の含有量は、固形分で、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましい。
 〔酸性材料〕
 本発明の抗菌液は、更に酸性材料を含有してもよい。酸性材料を含有することで本発明の抗菌液に抗ウイルス性を付与することができる。
 本発明に使用される酸性材料としては、例えば、リン酸、硫酸などの無機酸;リンゴ酸、乳酸、酒石酸、サリチル酸、グルコン酸、アジピン酸、フィチン酸、フマル酸、コハク酸、アスコルビン酸、ソルビン酸、グリオキシル酸、メルドラム酸、グルタミン酸、ピクリン酸、アスパラギン酸、酢酸、ギ酸、クエン酸などの有機酸;これら酸のアルカリ金属塩;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 本発明の抗菌液における酸性材料の含有量は、特に限定されず、例えば、本発明の抗菌液のpHが後述するpHの範囲内となるように、適量の酸性材料が添加される。
 〔抗菌液の製造方法〕
 なお、本発明の抗菌液は、更に、本発明の目的を損なわない範囲で、必要に応じて、その他の添加剤(例えば、防腐剤、消臭剤、芳香剤など)を含有することができる。
 本発明の抗菌液は、上述した必須成分および任意成分を、適宜混合することによって得られる。
 〔抗菌液の粘度〕
 本発明の抗菌液の粘度は、特に限定されない。もっとも、粘度が高い場合には、抗菌剤微粒子の沈降をより抑制できる一方で、塗布性が劣る場合があるため、粘度を適切な範囲に調整することが好ましい。
 このような観点から、本発明の抗菌液の25℃における粘度は、100cP(センチポアズ)以下が好ましく、50cP以下がより好ましく、0.5~5cPが更に好ましい。
 なお、本発明において、粘度は、東機産業社製VISCOMETER TUB-10、または、セコニック社製SEKONIC VISCOMETERを用いて測定し、単位をcP(センチポアズ)に換算する。
 〔抗菌液の濁度〕
 本発明の抗菌液の濁度は、特に限定されず、例えば、抗菌剤微粒子の含有量を増やすと濁度が増加するが、本発明の抗菌液を塗布する際の透明性を確保する等の観点から、濁度を適切な範囲に調整することが好ましい。
 このような観点から、本発明の抗菌液の濁度は、200ppm以下が好ましく、100ppm以下がより好ましく、80ppm以下が更に好ましい。一方、下限は特に限定されないが、例えば、1ppm以上である。
 なお、本発明において、濁度は、JIS K0101基づいて、三菱化学アナリテック社製の積分球式濁度計PT200を用いて測定する。
 〔粘度および濁度の変化量〕
 本発明の抗菌液は、長時間変性しないことが好ましい。
 具体的には、本発明の抗菌液を温度5℃の低温環境下に500時間保管した場合において、25℃における粘度の変化量が2cP以下であって、かつ、濁度の変化量が10ppm以下であることが好ましい。
 また本発明の抗菌液を温度40℃および相対湿度80%の高温環境下に500時間保管した場合において、25℃における粘度の変化量が2cP以下であって、かつ、濁度の変化量が20ppm以下であることが好ましい。
 〔抗菌液のpH〕
 本発明の抗菌液のpHは、特に限定されないが、実使用環境で使用者の手荒れなどを考慮した場合、pHを適切な範囲に調整することが好ましい。
 本発明の抗菌液のpHは、3~10が好ましく、4~9がより好ましい。
 更に、近年は、ノロウイルス等のウイルスに対する衛生管理の重要性が増しており、抗ウイルス性の観点からは、本発明の抗菌液のpHを、6以下にすることが好ましい。
 なお、本発明において、pHは、東亜ディーケーケー社製のpHメータ HM-30Rを用いて測定する。
 〔抗菌液の表面張力〕
 本発明の抗菌液の表面張力は、特に限定されないが、本発明の抗菌液を塗布する際の濡れ性を考慮すると、適切な範囲に調整することが好ましい。
 本発明の抗菌液の表面張力は、80mN/m以下が好ましく、60mN/m以下がより好ましく、40mN/m以下が更に好ましい。一方、下限は特に限定されないが、例えば、5mN/m以上である。
 なお、本発明において、表面張力は、協和界面科学社製の表面張力計 DY-300を用い測定する。
[抗菌膜]
 本発明の抗菌膜は、本発明の抗菌液を用いて形成される塗膜であり、例えば、本発明の抗菌液を基材上に塗布し、乾燥させることによって形成できる。
 本発明の抗菌液が塗布される基材は特に限定されず、ガラス、樹脂、金属、セラミックス、布などが適宜使用される。樹脂としては、例えば、ポリプロピレン、ポリスチレン、ポリウレタン、アクリル樹脂、ポリカーボネート、ポリアミド、フッ素樹脂、ラテックス、ポリ塩化ビニル、ポリオレフィン、メラミン樹脂、ABS(アクリロニトリルブタジエンスチレン)樹脂、ポリエステル(例えば、ポリエチレンテレフタレート(PET)など)等が挙げられる。基材の形状は特に限定されず、板状、フィルム状、シート状などが挙げられる。また、基材表面は、平坦面でも、凹面でも、凸面でもよい。更に、基材の表面には、従来公知の易接着層が形成されていてもよい。
 本発明の抗菌液を塗布する方法としては、特に限定されず、例えば、スプレー法、刷毛塗り法、浸漬法、静電塗装法、バーコート法、ロールコート法、フローコート法、ダイコート法、不織布塗り法、インクジェット法、キャスト法、回転塗布法、LB(Langmuir-Blodgett)法などが挙げられる。
 塗布後の乾燥は、室温での乾燥でもよく、40~120℃での加熱でもよい。乾燥時間は、例えば、1~30分間程度である。
 〔抗菌膜の水接触角〕
 本発明の抗菌膜の表面の水接触角は、60°以下が好ましく、40°以下がより好ましく、20°以下が更に好ましい。これにより、本発明の抗菌膜は、洗浄等による汚染物質の除去性(防汚性)が優れ、また、親水性を示すことで抗菌性にも優れる。
 抗菌膜が親水性を示すことで、水分が抗菌膜中に浸透しやすくなり、抗菌膜中の抗菌剤微粒子(銀担持無機酸化物)にも水分が届いて銀イオンを放出できるようになり、こうして、抗菌層中の抗菌剤微粒子も有効活用されて、銀の供給を持続できるようになり、抗菌性が良好になると考えられる。
 なお、水接触角の下限は特に限定されないが、例えば、5°以上の場合が多い。
 本発明において、水接触角は、JIS R 3257:1999の静滴法に基づいて測定を行なう。測定には、協和界面科学株式会社製FAMMS DM-701を用いる。より具体的には、純水を用いて室温20℃で、水平を保った抗菌層表面上に液滴2μLを滴下し、滴下後20秒時点での接触角を10箇所で測定し、測定結果の平均値を接触角とする。
 なお、本発明の抗菌液を用いて基材上に形成した抗菌膜(第1の抗菌膜)の抗菌性が低下した場合には、二度塗りを行なってもよい。すなわち、第1の抗菌膜の上に、同じ本発明の抗菌液を用いて第2の抗菌膜を形成してもよい。このとき、第2の抗菌膜の物性は、第1の抗菌膜から影響を受けないことが好ましい。
 例えば、本発明の抗菌液を基材上に塗布して形成される第1の抗菌膜の水接触角Xと、この第1の抗菌膜上に塗布して形成される第2の抗菌膜の水接触角Yとの差の絶対値|X-Y|が、防汚性を安定して維持する観点から、10°以下であることが好ましい。
 〔抗菌膜の膜厚〕
 本発明の抗菌液が含有する抗菌性微粒子の平均粒径は1.0μm以下と小さいため、これを用いて形成される本発明の抗菌膜の膜厚が厚すぎる、抗菌性微粒子が埋もれてしまい、抗菌性が発揮しにくくなる。このため、本発明の抗菌膜の膜厚(平均膜厚)は、1.0μm以下が好ましく、0.5μm以下がより好ましい。膜厚の下限は特に限定されないが、例えば、0.01μm以上である。
 なお、本発明において、膜厚は、次のように求める。まず、抗菌膜のサンプル片を樹脂に包埋して、ミクロトームで断面を削り出し、削り出した断面を走査電子顕微鏡で観察し、抗菌膜の任意の10点の位置における膜厚を測定し、それらを算術平均した値を、抗菌膜の膜厚(平均膜厚)とする。
 上述したように、抗菌膜において抗菌性微粒子が埋もれてしまうと抗菌性が発揮しにくくなることから、抗菌剤微粒子は凸状に配置されている(抗菌剤微粒子が抗菌膜の表面から突出している)ことが好ましい。具体的には、膜厚Aに対する抗菌剤微粒子の平均粒径Bの比(B/A)が、1以上であることが好ましく、2以上であることがより好ましい。
 〔用途〕
 抗菌膜は、それ自体を抗菌シートとして使用できる。抗菌膜(抗菌シート)を各装置に配置する方法としては、例えば、装置の表面(前面)に本発明の抗菌液を直接塗布して抗菌膜を形成してもよいし、抗菌膜を別途形成しておいて粘着剤層等を介して装置の表面に張り合わせてもよい。
 また、抗菌膜付き基材を、各装置の前面板として使用することもできる。
 なお、抗菌膜(抗菌シート)および抗菌膜付き基材が使用される装置としては、例えば、放射線撮影装置、タッチパネルなどが挙げられる。
 その他、医療現場での交差感染を抑制するために、本発明の抗菌液を直接塗布する場所としては、例えば、病院、介護施設など施設における、壁、天井、床、ドアノブ、手すり、スイッチ、ボタン、便座などが挙げられる。また、本発明の抗菌液を塗布して形成される抗菌膜は、親水性に優れるため、医療現場での汚れ(例えば、血液、体液などの汚れ)が付着した際に、水拭きで簡単に汚れを取り除くことができる。
[ウェットワイパー]
 本発明のウェットワイパーは、本発明の抗菌液が基布に含浸されたウェットワイパーである。基布としては、例えば、不織布などが好適に挙げられる。基布の目付(単位面積当たりの質量)は、100g/m2以下が好ましい。本発明の抗菌液を基布に含浸させる際の含浸量は、基布の質量に対して1倍以上の量が好ましい。
 本発明のウェットワイパーは、それ自体を、抗菌性を有するウェットワイパーとして使用できる。また、本発明のウェットワイパーを用いて、基材表面に本発明の抗菌液を塗布することもできる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
 〈実施例1〉
 容器中でエタノール260gを攪拌しながら、純水200g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)4.7g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)2.2gを加えて、20分間攪拌し、抗菌液A-1を得た。
 なお、抗菌剤微粒子の平均粒径は、ビーズミルを用いてジルコニアビーズを混合し振動させることで湿式粉砕により事前に調節した(以下、同様)。
 更に、片面に易接着処理が施されたポリエチレンテレフタレート(PET)基材の易接着処理面上に、バーコーターを用いて抗菌液A-1を塗布し、20分間室温で乾燥し、塗膜である抗菌膜B-1を得た。
 〈実施例2〉
 上記抗菌液A-1の組成を変更した。具体的には、エタノール345g、純水115gに配合量を変更した以外は、実施例1と同様にして抗菌液A-2を得た。
 また、実施例1と同様にして、抗菌液A-2を用いて抗菌膜B-2を得た。
 〈実施例3〉
 上記抗菌液A-1の組成を変更した。具体的には、エタノール427g、純水33gに配合量を変更した以外は、実施例1と同様にして抗菌液A-3を得た。
 また、実施例1と同様にして、抗菌液A-3を用いて抗菌膜B-3を得た。
 〈実施例4〉
 容器中でエタノール280gを攪拌しながら、純水185g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)24g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)11.5gを加えて、20分間攪拌し、抗菌液A-4を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-4を塗布し、20分間室温で乾燥し、抗菌膜B-4を得た。
 〈実施例5〉
 容器中でエタノール360gを攪拌しながら、純水94g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)15g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10g、および、シリカ粒子(日産化学工業社製「スノーテックスO-33」、純水希釈:固形分濃度33質量%)22gを順次加えた後、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)2.4gを加えて、20分間攪拌し、抗菌液A-5を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-5を塗布し、20分間室温で乾燥し、抗菌膜B-5を得た。
 〈実施例6〉
 上記抗菌液A-5を使用した。
 片面に易接着処理がされたPET基材の易接着処理面上に、実施例5で用いたバーコーターとは異なるバーコーターを用いて抗菌液A-5を塗布し、20分間室温で乾燥し、抗菌膜B-6を得た。
 〈実施例7〉
 上記抗菌液A-5の組成を変更した。具体的には、エタノール384g、純水94g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)17g、シリカ粒子(日産化学工業社製「スノーテックスO-33」、純水希釈:固形分濃度33質量%)32gに配合量を変更し、かつ、分散剤(BYK社製「DISPERBYK(登録商標)-180」)0.6gを添加した以外は、実施例5と同様にして抗菌液A-7を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-7を塗布し、20分間室温で乾燥し、抗菌膜B-7を得た。
 〈実施例8〉
 上記抗菌液A-7の組成を変更した。具体的には、エタノール360g、純水88g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6gに配合量を変更し、かつ、イソプロパノール15gを添加した以外は、実施例7と同様にして抗菌液A-8を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-8を塗布し、20分間室温で乾燥し、抗菌膜B-8を得た。
 〈実施例9〉
 上記抗菌液A-7の組成を変更した。具体的には、エタノール540g、純水20g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)2.88gに配合量を変更し、かつ、抗菌剤微粒子を、平均粒径を0.7μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度30質量%)2.4gに変更した以外は、実施例7と同様にして抗菌液A-9を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-9を塗布し、20分間室温で乾燥し、抗菌膜B-9を得た。
 〈実施例10〉
 容器中でエタノール560gを攪拌しながら、純水10g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)50g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)30g、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10g、シリカ粒子(日産化学工業社製「スノーテックスO-33」、純水希釈:固形分濃度33質量%)40g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6gを順次加えた後、平均粒径を0.5μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度40質量%)1.2gを加えて、20分間攪拌し、抗菌液A-10を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-10を塗布し、20分間室温で乾燥し、抗菌膜B-10を得た。
 〈実施例11〉
 上記抗菌液A-10の組成を変更した。具体的には、エタノール640g、純水15g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)6g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)16g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)40g、シリカ粒子(日産化学工業社製「スノーテックスO-33」、純水希釈:固形分濃度33質量%)29g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)2.88g、平均粒径を0.5μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度60質量%)0.8gに配合量を変更した以外は、実施例10と同様にして抗菌液A-11を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-11を塗布し、20分間室温で乾燥し、抗菌膜B-11を得た。
 なお、実施例10および11においては、抗菌液をスポイトでPET基材に適量を滴下した後、不織布(日本製紙クレシア社製「ワイプオール」)で拭きのばしても、同様に抗菌膜を形成できた。また、不織布(日本製紙クレシア社製「ワイプオール」)に抗菌液を含浸させてウェットワイパーとしても、同様にPET基材に塗布することができた。
 〈実施例12〉
 容器中でエタノール350gを攪拌しながら、純水135g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)4.9g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)16g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60gを順次加えた後、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持アパタイト、富士ケミカル社製、エタノール希釈:固形分濃度20質量%)6gを加えて、20分間攪拌し、抗菌液A-12を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-12を塗布し、20分間室温で乾燥し、抗菌膜B-12を得た。
 〈実施例13〉
 上記抗菌液A-1の組成を変更した。具体的には、エタノール40g、純水430g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)5g、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)2.4gに配合量を変更した以外は、実施例1と同様にして抗菌液A-13を得た。
 また、実施例1と同様にして、抗菌液A-13を用いて抗菌膜B-13を得た。
 〈実施例14〉
 容器中でエタノール400gを攪拌しながら、純水30g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)9.5g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)40g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、分散剤(BYK社製「DISPERBYK(登録商標)-180」)2.16g、および、平均粒径を0.7μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度30質量%)2.4gを加えて、20分間攪拌し、抗菌液A-14を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-14を塗布し、20分間室温で乾燥し、抗菌膜B-14を得た。
 〈実施例15〉
 上記抗菌液A-14の組成を変更した。具体的には、分散剤(BYK社製「DISPERBYK(登録商標)-180」)2.88gに配合量を変更し、かつ、抗菌剤微粒子を、平均粒径0.5μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度60質量%)2.4gに変更した以外は、実施例14と同様にして抗菌液A-15を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-15を塗布し、20分間室温で乾燥し、抗菌膜B-15を得た。
 〈実施例16〉
 容器中でエタノール360gを攪拌しながら、純水60g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、イソプロパノール18g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6g、および、平均粒径を0.5μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度60質量%)2.4gを加えて、20分間攪拌し、抗菌液A-16を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-16を塗布し、20分間室温で乾燥し、抗菌膜B-16を得た。
 なお、実施例15および16においては、抗菌液をスポイトでPET基材に適量を滴下した後、不織布(旭化成せんい社製「ベンコット」)で拭きのばしても、同様に抗菌膜を形成できた。また、不織布(旭化成せんい社製「ベンコット」)に抗菌液を含浸させてウェットワイパーとしても、同様にPET基材に塗布することができた。
 〈実施例17〉
 上記抗菌液A-16の組成を変更した。具体的には、イソプロパノールをメタノールに変更した以外は、実施例16と同様にして抗菌液A-17を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-17を塗布し、20分間室温で乾燥し、抗菌膜B-17を得た。
 〈実施例18〉
 上記抗菌液A-4の組成を変更した。具体的には、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)29g、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)14gを添加した以外は、実施例4と同様にして抗菌液A-18を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-18を塗布し、20分間室温で乾燥し、抗菌膜B-18を得た。
 〈実施例19〉
 上記抗菌液A-4の組成を変更した。具体的には、エタノール350g、純水250g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)25g、平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)14gを添加した以外は、実施例4と同様にして抗菌液A-19を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-19を塗布し、20分間室温で乾燥し、抗菌膜B-19を得た。
 〈実施例20〉
 上記抗菌液A-12の組成を変更した。具体的には、抗菌剤微粒子(銀担持アパタイト)を平均粒径を1.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度50質量%)2gに変更した以外は、実施例12と同様にして抗菌液A-20を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-20を塗布し、20分間室温で乾燥し、抗菌膜B-20を得た。
 〈実施例21〉
 容器中でエタノール600gを攪拌しながら、純水8g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)5g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)16g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)40g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、イソプロパノール30g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)0.6g、および、平均粒径を0.5μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度25質量%)0.8gを加えて、20分間攪拌し、抗菌液A-21を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-21を塗布し、20分間室温で乾燥し、抗菌膜B-21を得た。
 〈実施例22〉
 上記抗菌液A-21の組成を変更した。具体的には、更にクエン酸3.5gを配合して撹拌した以外は、実施例21と同様にして抗菌液A-22を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-22を塗布し、20分間室温で乾燥し、抗菌膜B-22を得た。
 〈実施例23〉
 上記抗菌液A-21の組成を変更した。具体的には、更にリンゴ酸3.5gを配合して撹拌した以外は、実施例21と同様にして抗菌液A-23を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-23を塗布し、20分間室温で乾燥し、抗菌膜B-23を得た。
 〈実施例24〉
 容器中でエタノール830gを攪拌しながら、純水66g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)0.8g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)2.3g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)6g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)1.5gを順次加えた後、イソプロパノール4.5g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)0.08g、および、平均粒径を0.5μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、エタノール希釈:固形分濃度25.4質量%)0.105gを加えて、20分間攪拌し、抗菌液A-24を得た。
 更に、片面に易接着処理がされたPET基材の易接着処理面上に、バーコーターを用いて抗菌液A-24を塗布し、20分間室温で乾燥し、抗菌膜B-24を得た。
 〈比較例1〉
 容器中で純水470gを攪拌しながら、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、純水希釈:固形分濃度1質量%)60g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、平均粒径を3.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、純水希釈:固形分濃度50質量%)2.5gを加えて、20分間攪拌し、抗菌液C-1を得た。
 更に、片面に易接着処理が施されたPET基材の易接着処理面上に、バーコーターを用いて抗菌液C-1を塗布し、20分間室温で乾燥し、抗菌膜D-1を得た。
 〈比較例2〉
 容器中でエタノール33gを攪拌しながら、純水460g、シロキサン化合物であるバインダ(三菱化学社製「MKC(登録商標)シリケート」MS51」)9g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、平均粒径を2.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、純水希釈:固形分濃度80質量%)9gを加えて、20分間攪拌し、抗菌液C-2を得た。
 更に、片面に易接着処理が施されたPET基材の易接着処理面上に、バーコーターを用いて抗菌液C-2を塗布し、20分間室温で乾燥し、抗菌膜D-2を得た。
 〈比較例3〉
 容器中で純水470gを攪拌しながら、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、および、アニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、リンゴ酸10g、および、平均粒径を3.0μmに制御した抗菌剤微粒子(銀担持ガラス、富士ケミカル社製、純水希釈:固形分濃度50質量%)2.5gを加えて、20分間攪拌し、抗菌液C-3を得た。
 更に、片面に易接着処理が施されたPET基材の易接着処理面上に、バーコーターを用いて抗菌液C-3を塗布し、20分間室温で乾燥し、抗菌膜D-3を得た。
 〈抗菌液および抗菌膜の物性〉
 各抗菌液について、上述した測定方法により、25℃における粘度(単位:cP)、濁度(単位:ppm)、pH、および、表面張力(単位:mN/m)を求めた。
 粘度および濁度については、抗菌液をキャップ付きガラス瓶に入れたうえで、温度5℃の低温環境下に500時間保管した場合の変化量、および、温度40℃および相対湿度80%の高温環境下に500時間保管した場合の変化量も求めた。
 また、各抗菌膜について、上述した測定方法により、膜厚(平均膜厚、単位:μm)および水接触角(単位:°)を求めた。更に、二度塗りを行ない、水接触角差の絶対値(|X-Y|)も求めた。いずれも結果を下記表1および表2に示す。
 〈評価〉
 各抗菌液および各抗菌膜について、以下の評価を行なった。結果を下記表1および表2に示す。なお、評価を行なわなかった場合には「-」を記載した。
 (耐沈降性)
 各抗菌液を室温で静置保管し、目視により沈降の有無を確認し、沈降の抑制が可能であった時間により、以下の基準に従って耐沈降性を評価した。実用上、「S」、「A」、「B」、「B-」または「C」であることが好ましい。
 「S」:300時間以上
 「A」:100時間以上300時間未満
 「B」:72時間以上100時間未満
 「B-」:48時間以上72時間未満
 「C」:24時間以上48時間未満
 「D」:24時間未満(24時間経過時点で沈降が飽和)
 (抗菌性)
 抗菌膜の抗菌性の評価は、JIS Z 2801記載の評価方法に準拠し、菌液への接触時間を3時間に変更して試験を実施した。試験後の抗菌活性値を測定し、以下の基準に従って評価を行なった。実用上、「A」、「B」または「C」であることが好ましい。
 「A」:抗菌活性値が3.5以上
 「B」:抗菌活性値が2.0以上3.5未満
 「C」:抗菌活性値が1.0以上2.0未満
 「D」:抗菌活性値が1.0未満
 (防汚性)
 抗菌膜の水接触角に基づいて防汚性を評価した。水接触角が20°未満の場合は「A」、20°以上40°未満の場合は「B」、40°以上60°以下の場合は「C」、60°より大きい場合は「D」とした。
 (重ね塗り性)
 不織布(日本製紙クレシア社製「ワイプオール」)に抗菌液を、不織布の質量に対して4倍の質量で含浸させて、ウェットワイパーとした。
 このウェットワイパーを用いて、透明なPET基材の表面に抗菌液を塗布し、20分間室温で乾燥することによって抗菌膜を形成した。その後、同様に、新しいウェットワイパーを用いて、既に形成された抗菌膜の上に、抗菌液を塗布し、抗菌膜を形成した。このような抗菌液の塗布および抗菌膜の形成を、50回繰り返した。
 1回目の塗布後の抗菌膜、および、50回目の塗布後の抗菌膜について、それぞれ、ヘイズ値を測定した。測定したヘイズ値どうしの差を、ヘイズ値変化量(単位:%)として求め、以下の基準に従って評価を行なった。なお、ヘイズ値の測定には、日本電色工業社製のヘイズメータ NDH5000を用いた。
 ヘイズ値変化量が小さいほど、重ね塗りによって得られる抗菌膜の白色化を抑制する効果が優れていると評価できる。実用上、「A」、「B」または「C」であることが好ましく、「A」または「B」であることがより好ましい。
 「A」:ヘイズ値変化量が3未満
 「B」:ヘイズ値変化量が3以上10未満
 「C」:ヘイズ値変化量が10以上
 「D」:ヘイズ値変化量が15以上
 (抗ウイルス性)
 抗菌液の抗ウイルス性を次のように評価した。
 まず、5×106PFU/mLに調整したネコカリシウイルス(ノロウイルス代替)のウイルス液を、抗菌液に対して等量滴下し、10秒間撹拌した後、25℃で1分間放置した。その後、液を回収し、SCDLP培地によく混合し、得られた混合物を、6穴プレートに培養したCRFK細胞に0.1mLずつ接種し、37℃で1時間吸着させた。その後、接種液を洗い流し、寒天培地を重層して2日間培養した。培養後のプラーク数をカウントし、下記式を用いて抗ウイルス活性値を算出した。
 Mv=lg(Va)-lg(Vb)
 ここで、Mv:抗ウイルス活性値、lg(Va):比較対象液のウイルス感染価の常用対数、lg(Vb):実施例または比較例の抗菌液のウイルス感染価の常用対数である。比較対象液は、滅菌済蒸留水とし、上記試験と同じ試験を行ない、以下の基準に従って評価を行なった。実用上、「A」、「B」、「C」または「D」であることが好ましく、「A」または「B」であることがより好ましい。
 なお、PFUは「Plaque Forming Unit」の略語であり、SCDLPは「Soybean-Casein Digest Agar with Lecithin & Polysorbate80」の略語であり、CRFKは「Crandell Rees feline kidney」の略語である。
 「A」:抗ウイルス活性値が3.0以上
 「B」:抗ウイルス活性値が2.0以上3.0未満
 「C」:抗ウイルス活性値が1.0以上2.0未満
 「D」:抗ウイルス活性値が0.2以上1.0未満
 「E」:抗ウイルス活性値が0.2未満
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表1および表2から明らかなように、抗菌剤微粒子の平均粒径が1.0μm超であり、かつ、アルコールの含有量が10質量%未満である比較例1~3は、耐沈降性が不十分であった。また、シロキサン化合物を含有せず水接触角が80°である比較例1および3は、抗菌性も不十分であった。
 これに対して、実施例1~24は、いずれも耐沈降性および抗菌性が良好であった。
 なお、抗菌剤微粒子の平均粒径が0.7μm以下である実施例9~11および14~17は、耐沈降性がより良好であった。
 また、実施例4と実施例18とを対比すると、抗菌液の全質量に対する抗菌剤微粒子の含有量が固形分で1.0質量%以下である実施例4の方が、実施例18よりも耐沈降性が良好であった。
 また、実施例4と実施例19とを対比すると、抗菌液の全固形分質量に対する抗菌剤微粒子の含有量が固形分で20質量%以下である実施例4の方が、実施例18よりも耐沈降性が良好であった。
 また、実施例12と実施例20とを対比すると、抗菌剤微粒子(銀担持無機酸化物)として、銀担持ガラスを使用した実施例20の方が、実施例12よりも抗菌性が良好であった。
 また、実施例1~24を対比すると、抗菌液の全質量に対する抗菌剤微粒子の含有量が固形分で0.2質量%以下である場合は、これが0.2質量%超である場合よりも、重ね塗り性が良好であることが分かる。
 また、抗菌液中のアルコール含有量(対全質量)が10質量%以上である実施例1~24を対比すると、抗菌液のpHが6以下である場合は、抗菌液のpHが6超である場合よりも、抗ウイルス性が良好であった。
 なお、比較例3の結果から、酸性材料を配合することによって抗菌液のpHを低下させた場合であっても、抗菌液がアルコールを含有しない場合には、抗ウイルス性が十分でないことが分かる。
 図1は、実施例8の抗菌膜B-8の表面を走査型電子顕微鏡像で撮影(倍率5000倍)した電子顕微鏡写真である。なお、撮影は、抗菌膜の表面上に、金属蒸着膜(金属種:白金パラジウム)を形成してから行なった。図1に示す電子顕微鏡写真から、抗菌膜において抗菌剤微粒子が凸状に配置されていることが分かる。図1中、白色部分が、凸状部分である。

Claims (21)

  1.  抗菌剤微粒子、バインダおよび溶媒を含有する抗菌液であって、
     前記抗菌剤微粒子が、銀担持無機酸化物を含み、
     前記抗菌剤微粒子の平均粒径が、1.0μm以下であり、
     前記バインダが、少なくとも1種のシラン化合物を含み、
     前記溶媒が、アルコールおよび水を含み、
     前記抗菌液の全質量に対する前記アルコールの含有量が、10質量%以上である、抗菌液。
  2.  前記抗菌剤微粒子の平均粒径が0.7μm以下である、請求項1に記載の抗菌液。
  3.  前記銀担持無機酸化物が銀担持ガラスである、請求項1または2に記載の抗菌液。
  4.  前記抗菌液の全質量に対する前記アルコールの含有量が50質量%以上である、請求項1~3のいずれか1項に記載の抗菌液。
  5.  前記抗菌液の全質量に対する前記抗菌剤微粒子の含有量が、固形分で、1.0質量%以下である、請求項1~4のいずれか1項に記載の抗菌液。
  6.  前記抗菌液の全質量に対する前記抗菌剤微粒子の含有量が、固形分で、0.2質量%以下である、請求項1~5のいずれか1項に記載の抗菌液。
  7.  前記抗菌液の全固形分質量に対する前記抗菌剤微粒子の含有量が、固形分で、20質量%以下である、請求項1~6のいずれか1項に記載の抗菌液。
  8.  25℃における粘度が0.5~5cPである、請求項1~7のいずれか1項に記載の抗菌液。
  9.  濁度が100ppm以下である、請求項1~8のいずれか1項に記載の抗菌液。
  10.  更に、アニオン系分散剤を含有する、請求項1~9のいずれか1項に記載の抗菌液。
  11.  前記アニオン系分散剤の含有量が、前記抗菌剤微粒子の含有量に対して、50質量%以上である、請求項10に記載の抗菌液。
  12.  温度5℃の低温環境下に500時間保管した場合において、25℃における粘度の変化量が2cP以下であり、濁度の変化量が10ppm以下である、請求項1~11のいずれか1項に記載の抗菌液。
  13.  温度40℃および相対湿度80%の高温環境下に500時間保管した場合において、25℃における粘度の変化量が2cP以下であり、濁度の変化量が20ppm以下である、請求項1~12のいずれか1項に記載の抗菌液。
  14.  基材上に塗布して形成される第1の抗菌膜の水接触角Xと、前記第1の抗菌膜上に塗布して形成される第2の抗菌膜の水接触角Yとの差の絶対値|X-Y|が、10°以下である、請求項1~13のいずれか1項に記載の抗菌液。
  15.  pHが6以下である、請求項1~14のいずれか1項に記載の抗菌液。
  16.  請求項1~15のいずれか1項に記載の抗菌液を用いて形成される抗菌膜。
  17.  水接触角が60°以下である、請求項16に記載の抗菌膜。
  18.  前記抗菌剤微粒子が凸状に配置されている、請求項16または17に記載の抗菌膜。
  19.  膜厚Aに対する前記抗菌剤微粒子の平均粒径Bの比B/Aが、1以上である、請求項16~18のいずれか1項に記載の抗菌膜。
  20.  膜厚が1.0μm以下である、請求項16~19のいずれか1項に記載の抗菌膜。
  21.  請求項1~15のいずれか1項に記載の抗菌液が基布に含浸されたウェットワイパー。
PCT/JP2016/064369 2015-05-15 2016-05-13 抗菌液、抗菌膜およびウェットワイパー WO2016186051A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16796444.4A EP3295792B1 (en) 2015-05-15 2016-05-13 Antibacterial solution, antibacterial film and wet wipe
CN201680024890.7A CN107529745B (zh) 2015-05-15 2016-05-13 抗菌液、抗菌膜及湿揩布
US15/801,909 US10433541B2 (en) 2015-05-15 2017-11-02 Antibacterial liquid, antibacterial film, and wet wipe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015100493 2015-05-15
JP2015-100493 2015-05-15
JP2015-242880 2015-12-14
JP2015242880 2015-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/801,909 Continuation US10433541B2 (en) 2015-05-15 2017-11-02 Antibacterial liquid, antibacterial film, and wet wipe

Publications (1)

Publication Number Publication Date
WO2016186051A1 true WO2016186051A1 (ja) 2016-11-24

Family

ID=57320044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064369 WO2016186051A1 (ja) 2015-05-15 2016-05-13 抗菌液、抗菌膜およびウェットワイパー

Country Status (5)

Country Link
US (1) US10433541B2 (ja)
EP (1) EP3295792B1 (ja)
JP (1) JP6550350B2 (ja)
CN (1) CN107529745B (ja)
WO (1) WO2016186051A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016047568A1 (ja) * 2014-09-22 2017-05-25 富士フイルム株式会社 抗菌シート、抗菌コート、積層体、抗菌液
JP6165953B1 (ja) * 2016-11-15 2017-07-19 株式会社ニイタカ ベシウイルス属ウイルス及び/又はノロウイルス属ウイルス用ウイルス不活性化剤及び衛生資材
WO2019124480A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 組成物、ウェットワイパー、スプレー、表面処理基材の製造方法
WO2020090351A1 (ja) * 2018-10-31 2020-05-07 富士フイルム株式会社 組成物、修飾基材、ウェットワイパー、スプレー

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018010161A (es) * 2016-02-24 2019-01-31 Edye Pty Ltd Una manga desechable que tiene propiedad antimicrobiana para cubrir un brazo de un par de gafas.
CN108882715B (zh) * 2016-04-13 2021-05-11 富士胶片株式会社 抗菌性组合物、抗菌膜及湿型擦拭布
JPWO2019013227A1 (ja) * 2017-07-10 2020-05-21 富士フイルム株式会社 組成物、膜、膜付き基材、膜付き基材の製造方法、及び、修飾基材
WO2020045413A1 (ja) * 2018-08-29 2020-03-05 富士フイルム株式会社 抗ウイルス用組成物、抗ノロウイルス用組成物、スプレー、ワイパー
JP7486302B2 (ja) * 2019-11-01 2024-05-17 イビデン株式会社 抗ウィルス性部材及び抗ウィルス性部材の製造方法
CN111378303B (zh) * 2020-04-10 2021-07-27 深圳深汕特别合作区昌茂粘胶新材料有限公司 一种杀菌涂层及其制备方法
TWI761833B (zh) * 2020-05-13 2022-04-21 新福光塗裝工程股份有限公司 抗菌塗料、抗菌塗料製造方法、及抗菌塗層
WO2021256560A1 (ja) * 2020-06-19 2021-12-23 富士フイルム株式会社 抗菌フィルム、タッチパネル、抗菌フィルムの製造方法
CN115996634A (zh) * 2020-07-06 2023-04-21 富士胶片株式会社 组合物、湿巾、喷雾剂、带抗菌剂的口罩、带抗菌剂的护面罩、抗菌液体材料
JP7098123B1 (ja) * 2020-12-28 2022-07-11 株式会社キャスティングイン 抗菌性コーティング剤
JP2022183968A (ja) * 2021-05-31 2022-12-13 日本ペイント・サーフケミカルズ株式会社 水性親水化組成物および物品
CN114806371A (zh) * 2022-04-25 2022-07-29 上海大学 一种高透明性抗菌涂层、其制备方法及其应用
CN115260593B (zh) * 2022-08-17 2023-11-21 科迈特新材料有限公司 一种基于纳米银的塑料用抗菌剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168349A (ja) * 1997-12-26 1998-06-23 Matsushita Electric Works Ltd 抗菌性無機塗料
JPH11279540A (ja) * 1998-03-27 1999-10-12 Matsushita Electric Ind Co Ltd 抗菌性透明撥水膜及びその製造方法
JP2003136054A (ja) * 2001-10-31 2003-05-13 Nippan Kenkyujo Co Ltd 浄水器用部品、その製造方法、および浄水器
JP2003206139A (ja) * 2002-01-15 2003-07-22 Nippon Electric Glass Co Ltd 抗菌性ガラス微小球及びその製造方法
JP2003286115A (ja) * 2002-03-28 2003-10-07 Shinto Fine Co Ltd 工業用抗菌組成物及び抗菌方法
JP2005060695A (ja) * 2003-07-30 2005-03-10 Satoshi Yoshimura コーティング剤の製造方法及びそのコーティング剤を用いたコーティング方法
JP2013129611A (ja) * 2011-12-20 2013-07-04 Trade Works Co Ltd 抗菌・抗カビ組成物及び該組成物を含浸させたウエットワイパー

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141803A (en) * 1988-06-29 1992-08-25 Sterling Drug, Inc. Nonwoven wipe impregnating composition
JP2810324B2 (ja) * 1993-06-04 1998-10-15 株式会社日板研究所 脂質分解性水の製造用触媒
JP2888741B2 (ja) * 1993-09-27 1999-05-10 日本ペイント株式会社 薄膜パターン形成法
JP2001219664A (ja) * 2000-02-08 2001-08-14 Fuji Photo Film Co Ltd 平版印刷用原板
JP2002023336A (ja) * 2000-07-03 2002-01-23 Konica Corp 熱現像方法
US20020183233A1 (en) * 2000-12-14 2002-12-05 The Clorox Company, Delaware Corporation Bactericidal cleaning wipe
JP2003162924A (ja) * 2002-08-09 2003-06-06 Sumitomo Osaka Cement Co Ltd 透明導電膜と透明導電膜用塗料および表示装置
JP2004262941A (ja) * 2003-02-13 2004-09-24 Asahi Kasei Chemicals Corp 防臭・抗菌・防カビ被覆用組成物
JP2007308442A (ja) * 2006-05-22 2007-11-29 Dainippon Jochugiku Co Ltd 防カビ・カビ取りシート
JP2009035621A (ja) * 2007-08-01 2009-02-19 Nobumasa Okuda シリコーン塗料組成物とその製造方法
JP2009035620A (ja) * 2007-08-01 2009-02-19 Nobumasa Okuda シリコーン塗料組成物とその製造方法
US8871232B2 (en) * 2007-12-13 2014-10-28 Kimberly-Clark Worldwide, Inc. Self-indicating wipe for removing bacteria from a surface
CN104312396B (zh) * 2014-10-10 2016-08-24 东莞市长安东阳光铝业研发有限公司 一种渗透型纳米石材防护剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168349A (ja) * 1997-12-26 1998-06-23 Matsushita Electric Works Ltd 抗菌性無機塗料
JPH11279540A (ja) * 1998-03-27 1999-10-12 Matsushita Electric Ind Co Ltd 抗菌性透明撥水膜及びその製造方法
JP2003136054A (ja) * 2001-10-31 2003-05-13 Nippan Kenkyujo Co Ltd 浄水器用部品、その製造方法、および浄水器
JP2003206139A (ja) * 2002-01-15 2003-07-22 Nippon Electric Glass Co Ltd 抗菌性ガラス微小球及びその製造方法
JP2003286115A (ja) * 2002-03-28 2003-10-07 Shinto Fine Co Ltd 工業用抗菌組成物及び抗菌方法
JP2005060695A (ja) * 2003-07-30 2005-03-10 Satoshi Yoshimura コーティング剤の製造方法及びそのコーティング剤を用いたコーティング方法
JP2013129611A (ja) * 2011-12-20 2013-07-04 Trade Works Co Ltd 抗菌・抗カビ組成物及び該組成物を含浸させたウエットワイパー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3295792A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016047568A1 (ja) * 2014-09-22 2017-05-25 富士フイルム株式会社 抗菌シート、抗菌コート、積層体、抗菌液
JP6165953B1 (ja) * 2016-11-15 2017-07-19 株式会社ニイタカ ベシウイルス属ウイルス及び/又はノロウイルス属ウイルス用ウイルス不活性化剤及び衛生資材
JP2018080126A (ja) * 2016-11-15 2018-05-24 株式会社ニイタカ ベシウイルス属ウイルス及び/又はノロウイルス属ウイルス用ウイルス不活性化剤及び衛生資材
WO2019124480A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 組成物、ウェットワイパー、スプレー、表面処理基材の製造方法
JPWO2019124480A1 (ja) * 2017-12-22 2021-01-07 富士フイルム株式会社 組成物、ウェットワイパー、スプレー、表面処理基材の製造方法
WO2020090351A1 (ja) * 2018-10-31 2020-05-07 富士フイルム株式会社 組成物、修飾基材、ウェットワイパー、スプレー

Also Published As

Publication number Publication date
CN107529745B (zh) 2021-02-05
EP3295792A4 (en) 2018-03-21
EP3295792B1 (en) 2021-04-28
EP3295792A1 (en) 2018-03-21
CN107529745A (zh) 2018-01-02
US10433541B2 (en) 2019-10-08
JP2017109983A (ja) 2017-06-22
US20180116208A1 (en) 2018-05-03
JP6550350B2 (ja) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2016186051A1 (ja) 抗菌液、抗菌膜およびウェットワイパー
JP6639652B2 (ja) 抗菌性組成物、抗菌膜及びウェットワイパー
EP1330501B1 (de) Mikrobizid beschichteter gegenstand, verfahren zu dessen herstellung und dessen verwendung
US20220408723A1 (en) Antibacterial liquid, antibacterial film, spray and cloth
JP4619601B2 (ja) 光触媒性コーティング組成物および光触媒性薄膜を有する製品
US20180177183A1 (en) Antibacterial liquid, antibacterial film, spray and cloth
JPWO2019013227A1 (ja) 組成物、膜、膜付き基材、膜付き基材の製造方法、及び、修飾基材
US20180255774A1 (en) Antiviral film
JP6635329B2 (ja) 光触媒層を有する有機系基材
KR102430677B1 (ko) 가시광 응답형 광촉매 활성을 갖는 표면층을 갖는 내장재 및 그 제조 방법
EP4162798A1 (en) Polymer dispersion having improved adhesion and wettability and methods for the same
JP2009263651A (ja) 光触媒コーティング組成物
JP6967086B2 (ja) 組成物、ウェットワイパー、スプレー、表面処理基材の製造方法
WO2020090351A1 (ja) 組成物、修飾基材、ウェットワイパー、スプレー
JP2002079109A (ja) 光半導体金属−有機物質混合体、光半導体金属含有組成物、光触媒性被膜の製造法及び光触媒性部材
JP2023019188A (ja) 抗菌性積層体
JP2002212505A (ja) 光半導体金属−有機物質混合体、光半導体金属含有組成物、光触媒性被膜の製造法及び光触媒性部材
JP2004106303A (ja) 防汚性能を有する化粧シート
JPWO2019087856A1 (ja) 臭気抑制方法、組成物、ワイパー、及び、スプレー
JP2003002688A (ja) 防曇鏡およびその製造方法
CN115996634A (zh) 组合物、湿巾、喷雾剂、带抗菌剂的口罩、带抗菌剂的护面罩、抗菌液体材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016796444

Country of ref document: EP