WO2016175103A1 - ポリマーの製造方法、感光性樹脂組成物および電子装置 - Google Patents

ポリマーの製造方法、感光性樹脂組成物および電子装置 Download PDF

Info

Publication number
WO2016175103A1
WO2016175103A1 PCT/JP2016/062535 JP2016062535W WO2016175103A1 WO 2016175103 A1 WO2016175103 A1 WO 2016175103A1 JP 2016062535 W JP2016062535 W JP 2016062535W WO 2016175103 A1 WO2016175103 A1 WO 2016175103A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
resin composition
photosensitive resin
group
film
Prior art date
Application number
PCT/JP2016/062535
Other languages
English (en)
French (fr)
Inventor
大西 治
今村 裕治
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2017515503A priority Critical patent/JP6677247B2/ja
Priority to CN201680025916.XA priority patent/CN107531824B/zh
Priority to KR1020177033737A priority patent/KR101914409B1/ko
Publication of WO2016175103A1 publication Critical patent/WO2016175103A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers

Definitions

  • the present invention relates to a method for producing a polymer, a photosensitive resin composition, and an electronic device.
  • Photolithography technology is used to form a fine circuit pattern such as a semiconductor integrated circuit.
  • a photosensitive resin composition is used to form a resist pattern.
  • Patent Document 1 discloses a photosensitive resin composition containing a polymer and a photosensitive agent. And it is disclosed that the polymer has a unit composed of a cyclic aliphatic hydrocarbon skeleton and a unit derived from maleic anhydride, and hydrolyzes the acid anhydride ring of the unit derived from maleic anhydride. Yes.
  • a step of polymerizing a norbornene-type monomer and maleic anhydride to obtain a copolymer The first heat treatment is performed on the copolymer to which the compound represented by the following formula (1) is added without adding an acidic catalyst and a basic catalyst, and the maleic anhydride derived from the copolymer is present. Opening the anhydrous ring of A process for producing a polymer comprising
  • R a is a hydrocarbon group having 1 to 18 carbon atoms which may contain a hydrogen atom or an oxygen atom
  • a photosensitive resin composition comprising a polymer containing a structural unit represented by the following formula (3a) and a structural unit represented by the following formula (3b):
  • the transmittance of the polymer with respect to light having a wavelength of 400 nm is 40% or more,
  • the photosensitive resin composition whose viscosity change rate measured on condition of the following is 150% or less is provided.
  • n 0, 1 or 2.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms.
  • Formula (3b) A is a structural unit represented by the following formula (4a), (4b), (4c) or (4d))
  • R 5 , R 6 and R 7 are each independently a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom
  • a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so as to have a solid content of 50% by mass was stored at a temperature of 30 ⁇ 1 ° C. for 7 days with an initial viscosity at 25 ° C. before storage of ⁇ 0 .
  • the subsequent viscosity at 25 ° C. is ⁇ 1
  • ⁇ 1 / ⁇ 0 ⁇ 100 is the viscosity change rate.
  • An electronic device provided with the cured film of the said photosensitive resin composition is provided.
  • the present invention it is possible to improve the balance between the temporal stability of the photosensitive resin composition and the transparency of the resin film formed using the photosensitive resin composition.
  • the method for producing the polymer (A) according to this embodiment is performed as follows. First, a norbornene-type monomer and maleic anhydride are polymerized to obtain a copolymer. Next, heat treatment is performed on the copolymer to which the compound represented by the following formula (1) is added without adding an acidic catalyst and a basic catalyst, and the maleic anhydride present in the copolymer is derived. Open the anhydrous ring.
  • R a is a hydrocarbon group having 1 to 18 carbon atoms which may contain a hydrogen atom or an oxygen atom
  • the resin contained in the photosensitive resin composition for example, a polymer obtained by polymerizing a norbornene-type monomer and maleic anhydride may be used.
  • a ring opening step using a catalyst can be performed in order to open the maleic anhydride-derived ring.
  • a resin film formed using a photosensitive resin composition containing such a polymer further improvement in transparency has been demanded. In particular, it has been difficult to achieve high transparency for a resin film that has been post-baked at a high temperature of 250 ° C. or higher.
  • the present inventor has intensively studied a method for producing a polymer. .
  • the production method of the polymer (A) according to the present embodiment is realized based on such novel findings. For this reason, according to this embodiment, the transparency of the resin film formed using the photosensitive resin composition can be improved. Thereby, even when a thick resin film is formed, a resin film exhibiting excellent transparency can be realized.
  • a photosensitive resin composition suitable for an optical device can be obtained.
  • the present inventor can improve the temporal stability of a photosensitive resin composition comprising a polymer obtained by heating the ring-opening step without adding either an acidic catalyst or a basic catalyst. I also found out that I can contribute. Therefore, according to this embodiment, there is provided a polymer (A) that can improve both the stability over time of the photosensitive resin composition and the transparency of the resin film obtained using the photosensitive resin composition. Realized.
  • the polymer (A) includes a structural unit represented by the following formula (3a) and a structural unit represented by the following formula (3b).
  • n is 0, 1 or 2.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms.
  • A is a structural unit represented by the following formula (4a), (4b), (4c) or (4d).
  • the molar ratio of the structural unit represented by the formula (3a) is not particularly limited, but it is particularly preferably 10 or more and 90 or less with respect to 100 as the whole polymer (A). Further, the molar ratio of the structural unit represented by the formula (3b) is not particularly limited, but is particularly preferably 10 or more and 90 or less with respect to 100 as the whole polymer (A).
  • the polymer (A) may contain a structural unit other than the structural unit represented by the formula (3a) and the structural unit represented by the formula (3b).
  • R 5 , R 6 and R 7 are each independently a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom.
  • the polymer (A) contains one or more structural units A selected from the above formulas (4a), (4b), (4c) and (4d). In the present embodiment, it is more preferable that the polymer (A) contains at least a component having one or more structural units A selected from the above formulas (4a), (4b) and (4c). It is particularly preferred that the polymer (A) contains a component having both the structural unit A represented by the above formula (4a) and the structural unit A represented by the above formula (4c).
  • Examples of the organic group having 1 to 30 carbon atoms constituting R 1 , R 2 , R 3 and R 4 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, and an alkoxysilyl group. And cycloalkyl groups.
  • the organic group may be a carboxyl group or an organic group having a hetero ring such as an epoxy ring or an oxetane ring.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the alkoxysilyl group include a trialkoxysilyl group exemplified by a trimethoxysilyl group, a triethoxysilyl group, a tripolopoxysilyl group, a tributoxysilyl group, and the like.
  • cycloalkyl group examples include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • one or more hydrogen atoms may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • an alkyl group as R 1 , R 2 , R 3 or R 4 , it is possible to improve the film forming property of a film made of the photosensitive resin composition containing the polymer (A). Further, by including an aryl group as R 1 , R 2 , R 3, or R 4 , a film made of the photosensitive resin composition containing the polymer (A) is subjected to development using an alkaline developer in a lithography process. Film loss can be suppressed. In addition, by including an organic group having a heterocycle as R 1 , R 2 , R 3, or R 4 , it becomes easy to effectively improve the balance between stability over time and curability of the polymer (A).
  • R 1 , R 2 , R 3 and R 4 are hydrogen, and R 1 , R 2 , R 3 and R 4 are particularly preferably all hydrogen.
  • Examples of the hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom constituting R 5 , R 6 and R 7 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, An alkaryl group, a cycloalkyl group, and a (meth) acryloyl group are mentioned.
  • the hydrocarbon group may have a carboxyl group or a hetero ring such as an epoxy ring or an oxetane ring.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • Examples of the (meth) acryloyl group include a (meth) acryloyloxyalkyl group having 1 to 8 carbon atoms and an (meth) acryloyl polyoxyalkyl group having 4 to 12 carbon atoms.
  • One or more hydrogen atoms contained in R 5 , R 6 and R 7 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • R 6 and R 7 are more preferably the same group, for example.
  • R 5 , R 6 or R 7 By including an alkyl group as R 5 , R 6 or R 7 , the crack resistance of a film made of the photosensitive resin composition containing the polymer (A) can be improved.
  • R 5 , R 6 or R 7 is more preferably an alkyl group having 3 or more carbon atoms, and particularly preferably an alkyl group having 4 or more carbon atoms. preferable.
  • the polymer (A) includes an alternating copolymer in which, for example, the structural unit represented by the above formula (3a) and the structural unit represented by the above formula (3b) are alternately arranged.
  • the polymer (A) includes a random copolymer or a block copolymer composed of the structural unit represented by the above formula (3a) and the structural unit represented by the above formula (3b). Also good.
  • the polymer (A) may contain at least one of a monomer represented by the following formula (2) and maleic anhydride as a low molecular weight component.
  • the polymer (A) according to the present embodiment has a transmittance of 40% or more for light having a wavelength of 400 nm.
  • a photosensitive resin composition By producing a photosensitive resin composition using such a polymer (A), the transparency of the resin film obtained using the photosensitive resin composition can be improved. It is also possible to improve the temporal stability of the photosensitive resin composition.
  • the transmittance of the polymer (A) with respect to light having a wavelength of 400 nm is more preferably 60% or more, and particularly preferably 80% or more.
  • permeability with respect to the light with a wavelength of 400 nm of a polymer (A) is not specifically limited, For example, it can be 100%.
  • the ring-opening step of the anhydrous ring is performed by heating without adding any of an acidic catalyst and a basic catalyst, the neutralization step accompanying the addition of the catalyst or the water washing step is not performed, the ring-opening step This is considered to be due to appropriately adjusting the heating conditions in the above.
  • the polymer (A) whose transmittance with respect to light having a wavelength of 400 nm is within the above-described range.
  • the transmittance of polymer (A) with respect to light having a wavelength of 400 nm is measured by, for example, using a polymer solution having a solid content of 20% by mass obtained by dissolving polymer (A) in PGMEA (propylene glycol monomethyl ether acetate). It can be carried out by placing in a glass cell having an optical path width of 1 cm and measuring the transmittance for light having a wavelength of 400 nm using an ultraviolet-visible light spectrophotometer.
  • the dissolution rate can be set to 1000 kg / second or more.
  • the developability of the photosensitive resin composition can be improved, and a resin film having high lithography performance can be realized. For this reason, favorable pattern formation using the photosensitive resin composition is attained.
  • the dissolution rate is more preferably 2000 K / sec or more, and particularly preferably 3000 K / sec or more.
  • the dissolution rate is preferably 20000 kg / sec or less, and more preferably 15000 kg / sec or less.
  • the dissolution rate of the polymer (A) can be set within the above range by appropriately selecting the production method and chemical structure of the polymer (A). Among these, it is considered that selection of conditions for the ring opening step of the anhydrous ring is particularly important from the viewpoint of controlling the dissolution rate.
  • the dissolution rate of the polymer (A) can be measured, for example, as follows. First, a polymer solution having a solid content of 20% by mass obtained by dissolving polymer (A) in PGMEA (propylene glycol monomethyl ether acetate) is applied onto a silicon wafer by a spin method, and then heat-treated at 110 ° C. for 100 seconds. Thus, a polymer film having a film thickness H of 3 ⁇ m is obtained. Next, the polymer film is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and a time T until the polymer film is visually erased is measured. Next, the film thickness H / time T is calculated as the dissolution rate based on the measured value obtained in this way.
  • PGMEA propylene glycol monomethyl ether acetate
  • a norbornene-type monomer and maleic anhydride are prepared.
  • the norbornene-type monomer for example, those represented by the above formula (2) can be used. Thereby, about the photosensitive resin composition obtained using the obtained polymer (A), it becomes possible to improve the balance of the various characteristics calculated
  • a norbornene-type monomer and maleic anhydride are polymerized to obtain a copolymer (A1).
  • a copolymer (A1) is obtained by addition polymerization of a norbornene type monomer and maleic anhydride.
  • other monomers other than these may be polymerized together with the norbornene-type monomer and maleic anhydride.
  • treatment S1 for example, one or more of norbornene type monomers represented by the above formula (2) and maleic anhydride can be polymerized.
  • a copolymer (A1) containing a structural unit represented by the following formula (5a) and a structural unit represented by the following formula (5b) will be obtained.
  • n, R 1 , R 2 , R 3 and R 4 may be those exemplified in formula (3a))
  • the structural unit represented by the above formula (5a) and the structural unit represented by the above formula (5b) may be randomly arranged or alternately arranged. There may be. Further, a block copolymer of the norbornene-type monomer represented by the formula (2) and maleic anhydride may be used. However, from the viewpoint of ensuring the uniformity of solubility of the photosensitive resin composition using the polymer (A) produced in the present embodiment, the repeating unit represented by the above formula (5a) and the above formula (5b) It is preferable that the repeating unit represented by () is alternately arranged. That is, the copolymer (A1) particularly preferably has a repeating unit of the following formula (6).
  • a norbornene-type monomer represented by the above formula (2), maleic anhydride, and a polymerization initiator are dissolved in a solvent, and then solution polymerization can be performed by heating for a predetermined time.
  • the heating temperature can be, for example, 50 ° C. or higher and 80 ° C. or lower.
  • the heating time can be, for example, 1 hour or more and 20 hours or less. It is more preferable to perform solution polymerization after removing dissolved oxygen in the solvent by nitrogen bubbling.
  • a molecular weight modifier and a chain transfer agent can be used as needed.
  • the chain transfer agent include thiol compounds such as dodecyl mercaptan, mercaptoethanol, and 4,4-bis (trifluoromethyl) -4-hydroxy-1-mercaptobutane. These chain transfer agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • methyl ethyl ketone MK
  • propylene glycol monomethyl ether diethyl ether
  • tetrahydrofuran THF
  • toluene ethyl acetate
  • butyl acetate a solvent used in the solution polymerization
  • the polymerization initiator one or more of azo compounds and organic peroxides can be used.
  • the azo compound include azobisisobutyronitrile (AIBN), dimethyl 2,2′-azobis (2-methylpropionate), and 1,1′-azobis (cyclohexanecarbonitrile) (ABCN).
  • organic peroxide examples include hydrogen peroxide, ditertiary butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide (BPO)), and methyl ethyl ketone peroxide (MEKP).
  • DTBP ditertiary butyl peroxide
  • BPO benzoyl peroxide
  • MEKP methyl ethyl ketone peroxide
  • solvent replacement can be performed on a solution in which the copolymer (A1) is dissolved using a solvent composed of a compound represented by the formula (1) described later.
  • the solvent substitution is performed by washing the precipitate deposited by reprecipitating the solution in which the copolymer (A1) is dissolved with a large amount of methanol, and then converting the precipitate into a compound represented by the formula (1). It can carry out by mixing with the solvent which consists of.
  • the maleic anhydride-derived anhydride ring present in the copolymer (A1) obtained by the polymerization step (treatment S1) is opened.
  • the dissolution rate of the photosensitive resin composition provided with the polymer (A) can be improved by opening the anhydrous ring.
  • the ring opening of the anhydrous ring is based on the copolymer (A1) added with one or more compounds represented by the following formula (1) without adding an acidic catalyst and a basic catalyst. This is done by performing a heat treatment.
  • photosensitivity comprising the polymer (P) produced by opening the anhydrous ring present in the copolymer (A1) without adding an acidic catalyst and a basic catalyst.
  • the said heat processing can be performed with respect to the solution which melt
  • R a is a hydrocarbon group having 1 to 18 carbon atoms which may contain a hydrogen atom or an oxygen atom.
  • R a for example, those exemplified as the hydrocarbon group having 1 to 18 carbon atoms which may contain oxygen atoms constituting R 5 , R 6 and R 7 in the above formulas (4a) and (4b) are applied can do.
  • R a is more preferably an alkyl group having 1 to 18 carbon atoms.
  • R a is alkyl group having 3 or more carbon atoms, and particularly preferably an alkyl group having 4 or more carbon atoms.
  • the structural unit derived from maleic anhydride in which the anhydride ring has been opened by the ring-opening step (treatment S2) can be, for example, a structural unit represented by the following formula (7a), (7b) or (7c).
  • the copolymer (A1) after the ring-opening step (treatment S2) includes a component containing one or more of the following formulas (7a), (7b) and (7c): Become.
  • the ring-opening step (treatment S2) can be performed, for example, under the condition that the dissolution rate of the copolymer (A1) after the ring-opening step (treatment S2) is 1000 kg / second or more.
  • the ring-opening rate of a copolymer (A1) can be improved effectively.
  • the dissolution rate is more preferably 2000 kg / sec or more, and particularly preferably 3000 kg / sec or more.
  • the dissolution rate is preferably 20000 kg / sec or less, and more preferably 15000 kg / sec or less.
  • the dissolution rate of the copolymer (A1) after the ring-opening step (treatment S2) is adjusted, for example, by the heating conditions in the ring-opening step (treatment S2), the addition amount of the compound represented by the above formula (1) It is possible to control by doing.
  • the dissolution rate of the copolymer (A1) after the ring-opening step (treatment S2) can be measured, for example, as follows. First, a solution having a solid content of 20% by mass in which the copolymer (A1) after the ring-opening step (treatment S2) was dissolved in PGMEA (propylene glycol monomethyl ether acetate) was applied onto a silicon wafer by a spin method, and then 110 ° C. , Heat treatment under conditions of 100 seconds to obtain a polymer film having a film thickness H of 3 ⁇ m.
  • PGMEA propylene glycol monomethyl ether acetate
  • the polymer film is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and a time T until the polymer film is visually erased is measured.
  • the film thickness H / time T is calculated as the dissolution rate based on the measured value obtained in this way.
  • dissolution rate of the copolymer (A1) after a ring-opening process is not limited to the above-mentioned thing, It is possible to select suitably according to a use.
  • the copolymer (A1) to which the compound represented by the following formula (1) is added is subjected to a heat treatment in the absence of a catalyst.
  • Conditions for this heat treatment can be appropriately adjusted according to, for example, the desired dissolution rate of the copolymer (A1).
  • the said heat processing can be performed on the conditions of 30 to 200 degreeC and 1 to 50 hours.
  • the ring opening of an anhydrous ring in a copolymer (A1) can be performed effectively. For this reason, it is possible to effectively realize a high dissolution rate while improving the transmittance of the polymer (A).
  • the ring-opening step (processing S2) may be performed in a closed system or an open system. When the ring-opening step (processing S2) is performed in a closed system, the internal temperature is further increased and the reaction time can be shortened.
  • the amount of the compound represented by the above formula (1) added to the copolymer (A1) is, for example, the amount of maleic anhydride monomer or the desired copolymer ( It is possible to adjust appropriately according to the dissolution rate of A1).
  • the polymerization step (process S1) the number of moles of maleic anhydride added in the (mol) and M 1
  • the ring opening of an anhydrous ring in a copolymer (A1) can be performed effectively. For this reason, it is possible to effectively realize a high dissolution rate while improving the transmittance of the polymer (A).
  • solvent replacement step (processing S3) In the method for producing the polymer (A) according to this embodiment, solvent replacement can be performed after the ring-opening step (treatment S2). Solvent replacement can be performed, for example, by removing the compound represented by the above formula (1) by distillation and replacing the system while adding a product solvent such as PGMEA.
  • Heating step In the manufacturing method of the polymer (A) which concerns on this embodiment, the process of heat-processing with respect to a copolymer (A1) can be further included after a ring-opening process (process S2). Thereby, re-ring closure by dehydration of the ring-opening structure of the anhydrous ring in the copolymer (A1) occurs. For this reason, it becomes possible to reduce the dissolution rate of the polymer (A). Thus, by adjusting the dissolution rate of the polymer (A) again in this step, the dissolution rate of the photosensitive resin composition containing the polymer (A) can be controlled to a higher degree.
  • a heating process can be performed on the conditions of 100 to 140 degreeC, 0.5 to 10 hours, for example. These heat treatment conditions can be appropriately adjusted according to the desired dissolution rate of the polymer (A). In the present embodiment, for example, the polymer (A) is produced in this way.
  • the photosensitive resin composition according to the present embodiment can be used, for example, to form a permanent film.
  • the permanent film is composed of a cured film obtained by curing the photosensitive resin composition.
  • a permanent film is formed by curing the coating film by heat treatment or the like.
  • the photosensitive resin composition may be used for forming a photoresist used in a lithography process.
  • Examples of the permanent film formed using the photosensitive resin composition include an interlayer film, a surface protective film, a color filter, and a dam material.
  • the permanent film can also be used as an optical material such as an optical lens.
  • the application of the permanent film is not limited to these.
  • a photosensitive resin composition can be used to form a thick permanent film having a thickness of 10 ⁇ m or more. Even such a thick permanent film is provided with the polymer (A) manufactured by the manufacturing method according to the present embodiment, so that a highly transparent permanent film can be realized.
  • membrane of the photosensitive resin composition fine processing uses, such as photoresists, such as an etching resist, MEMS, etc. are mentioned.
  • the interlayer film refers to an insulating film provided in a multilayer structure, and the type thereof is not particularly limited.
  • the interlayer film include those used in semiconductor device applications such as an interlayer insulating film constituting a multilayer wiring structure of a semiconductor element, a buildup layer or a core layer constituting a circuit board.
  • the interlayer film for example, a flattening film that covers a thin film transistor (TFT) in the display device, a liquid crystal alignment film, a protrusion provided on a color filter substrate of an MVA (Multi Domain Vertical Alignment) type liquid crystal display device Or what is used in display apparatus uses, such as a partition for forming the cathode of an organic EL element, is also mentioned.
  • TFT thin film transistor
  • MVA Multi Domain Vertical Alignment
  • the surface protective film refers to an insulating film that is formed on the surface of an electronic component or an electronic device and protects the surface, and the type thereof is not particularly limited. Examples of such a surface protective film include a passivation film provided on a semiconductor element, a bump protective film or a buffer coat layer, or a cover coat provided on a flexible substrate.
  • the dam material is a spacer used to form a hollow portion for arranging an optical element or the like on the substrate.
  • the photosensitive resin composition obtained by dissolving in an organic solvent so that the photosensitive resin composition comprising a polymer (A) and a solid content 50 wt%, the initial viscosity at 25 ° C. before storage eta 0
  • the viscosity at 25 ° C. after storage for 7 days at an air temperature of 30 ⁇ 1 ° C. is ⁇ 1
  • ⁇ 1 / ⁇ 0 ⁇ 100 viscosity change rate
  • it can contribute to the improvement of balance with the temporal stability of the photosensitive resin composition, and the transparency of the resin film obtained using a photosensitive resin composition.
  • the viscosity change rate is particularly preferably 110% or less.
  • the lower limit value of the viscosity change rate is not particularly limited, but may be, for example, 90% or more.
  • the initial viscosity ⁇ 0 is preferably 10 mPa ⁇ s or more and 1000 mPa ⁇ s or less, for example. This makes it easy to set ⁇ 1 / ⁇ 0 to the above range. In addition, workability and film formability can be effectively improved.
  • After preparing the varnish-like photosensitive resin composition by dissolving the initial viscosity ⁇ 0 in, for example, each component described later in an organic solvent so as to have a solid content of 50% by mass It can be defined as the viscosity at 25 ° C. measured within 12 hours.
  • the viscosity ⁇ 1 is preferably 10 mPa ⁇ s or more and 1000 mPa ⁇ s or less, for example. This makes it easy to set ⁇ 1 / ⁇ 0 to the above range. Further, it is possible to contribute to improvement of a process margin in the production of a permanent film.
  • the viscosity ⁇ 1 is measured immediately after the varnish-like photosensitive resin composition is prepared by, for example, dissolving each component described later in an organic solvent so as to have a solid content of 50% by mass and stirring. It can be the viscosity at 25 ° C. measured after storage at 30 ⁇ 1 ° C. for 7 days.
  • the varnish-like photosensitive resin composition is stored by placing an airtight container containing the varnish-like photosensitive resin composition in a clean oven maintained at a temperature of 30 ⁇ 1 ° C. It can be carried out.
  • the viscosity ⁇ 0, the viscosity ⁇ 1 , and ⁇ 1 / ⁇ 0 ⁇ 100 by appropriately adjusting the types and blending amounts of the components contained in the photosensitive resin composition. It is. Among these, in the control of ⁇ 1 / ⁇ 0 ⁇ 100, it is particularly important to adjust the production method of the polymer (A), the type of solid content, and the blending amount of each component.
  • the photosensitive resin composition includes a polymer (A).
  • the photosensitive resin composition which concerns on this embodiment can contain the 1 type (s) or 2 or more types in the polymer (A) illustrated above.
  • the content of the polymer (A) in the photosensitive resin composition is not particularly limited, but is preferably 10% by mass or more and 90% by mass or less with respect to the entire solid content of the photosensitive resin composition. More preferably, it is 80 mass% or less.
  • solid content of the photosensitive resin composition refers to the component except the solvent contained in the photosensitive resin composition. The same applies hereinafter.
  • the photosensitive resin composition can contain, for example, a photosensitive agent.
  • a photosensitizer it can have a diazoquinone compound, for example.
  • diazoquinone compound used as the photosensitizer include those exemplified below.
  • N2 is an integer from 1 to 5
  • Q is any one of the structures (a), (b) and (c) shown below, or a hydrogen atom.
  • at least one of Q contained in each compound is any one of the structure (a), the structure (b), and the structure (c).
  • an o-naphthoquinonediazidesulfonic acid derivative in which Q is the structure (a) or the structure (b) is more preferable.
  • the content of the photosensitive agent in the photosensitive resin composition is preferably 1% by mass or more and 40% by mass or less, and preferably 5% by mass or more and 30% by mass or less with respect to the entire solid content of the photosensitive resin composition. It is more preferable. Thereby, it becomes possible to effectively improve the balance of reactivity, stability with time, and developability in the photosensitive resin composition.
  • the photosensitive resin composition can contain, for example, an acid generator that generates an acid by light or heat.
  • an acid generator that generates an acid by light examples include triphenylsulfonium trifluoromethanesulfonate, tris (4-t-butylphenyl) sulfonium-trifluoromethanesulfonate, diphenyl [4- (phenylthio) phenyl] sulfonium trifluorotris.
  • Sulfonium salts such as pentafluoroethyl phosphate and diphenyl [4- (phenylthio) phenyl] sulfonium tetrakis (pentafluorophenyl) borate, diazonium salts such as p-nitrophenyldiazonium hexafluorophosphate, ammonium salts, phosphonium salts, diphenyliodonium trifluoro Iodo such as lomethanesulfonate, (triccumyl) iodonium-tetrakis (pentafluorophenyl) borate Umum salts, quinonediazides, diazomethanes such as bis (phenylsulfonyl) diazomethane, sulfones such as 1-phenyl-1- (4-methylphenyl) sulfonyloxy-1-benzoylmethane, N-hydroxynaphthalimi
  • thermal acid generators that generate acid by heat
  • acid generators thermal acid generators
  • thermal acid generators include SI-45L, SI-60L, SI-80L, SI-100L, SI-110L, SI-150L (Sanshin Chemical Industry Co., Ltd.) And an aromatic sulfonium salt.
  • the photosensitive resin composition in the present embodiment may contain one or more of the thermal acid generators exemplified above. Moreover, in this embodiment, it is also possible to use together the photo acid generator illustrated above and these thermal acid generators.
  • the content of the acid generator in the photosensitive resin composition is preferably 0.1% by mass or more and 15% by mass or less, and preferably 0.5% by mass or more and 10% by mass or less with respect to the entire solid content of the photosensitive resin composition. It is more preferable that the amount is not more than mass%. Thereby, it becomes possible to effectively improve the balance of reactivity, stability with time, and developability in the photosensitive resin composition.
  • the photosensitive resin composition may contain a crosslinking agent.
  • a crosslinking agent preferably includes, for example, a compound having a hetero ring as a reactive group, and particularly preferably includes a compound having a glycidyl group or an oxetanyl group.
  • Examples of the compound having a glycidyl group used as a crosslinking agent include epoxy compounds.
  • the epoxy compound include n-butyl glycidyl ether, 2-ethoxyhexyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerol polyglycidyl ether.
  • Glycidyl ether such as sorbitol polyglycidyl ether, glycidyl ether of bisphenol A (or F), glycidyl ether such as adipic acid diglycidyl ester, o-phthalic acid diglycidyl ester, 3,4-epoxycyclohexylmethyl (3,4) -Epoxycyclohexane) carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy -6-methylcyclohexane) carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, dicyclopentanediene oxide, bis (2,3-epoxycyclopentyl) ether, and Celoxide made by Daicel Corporation 2021, celoxide 2081, ceroxide 2083, celoxide 2085, celoxide 8000, epoxide GT401, and the like, 2,2 ′-((
  • bisphenols such as LX-01 (manufactured by Daiso Corporation), jER1001, 1002, 1003, 1004, 1007, 1009, 1010, and 828 (trade names; manufactured by Mitsubishi Chemical Corporation)
  • a type epoxy resin bisphenol F type epoxy resin such as jER807 (trade name; manufactured by Mitsubishi Chemical Corporation), jER152, 154 (trade name; manufactured by Mitsubishi Chemical Corporation), EPPN201, 202 (trade name; Japan)
  • Phenolic novolak type epoxy resins such as EOCN102, 103S, 104S, 1020, 1025, 1027 (trade name; manufactured by Nippon Kayaku Co., Ltd.), jER157S70 (trade name; Mitsubishi Chemical Corporation) Cresol novolac type epoxy resin, Araldite CY179, 184 (trade name; Hunts) Advanced Materials, Inc.), ERL-4206, 4221, 4234, 4299 (trade name; manufactured by Dow Chemical), Epicron 200, 400 (trade name; manufactured by DIC Corporation), jER871, 872
  • Examples of the compound having an oxetanyl group used as a crosslinking agent include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, bis [1-ethyl (3-oxetanyl)] methyl ether, 4 , 4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 4,4′-bis (3-ethyl-3-oxetanylmethoxy) biphenyl, ethylene glycol bis (3-ethyl-3-oxetanylmethyl) ) Ether, diethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) diphenoate, trimethylolpropane tris (3-ethyl-3-oxetanylmethyl) ether, pentaerythritol t
  • the content of the crosslinking agent in the photosensitive resin composition is preferably 1% by mass or more, more preferably 5% by mass or more based on the entire solid content of the photosensitive resin composition.
  • the content of the crosslinking agent in the photosensitive resin composition is preferably 50% by mass or less and more preferably 40% by mass or less with respect to the entire solid content of the photosensitive resin composition.
  • the photosensitive resin composition may contain an adhesion assistant.
  • the adhesion aid is not particularly limited, but may include, for example, a silane coupling agent such as amino silane, epoxy silane, acrylic silane, mercapto silane, vinyl silane, ureido silane, or sulfide silane. These may be used alone or in combination of two or more. Among these, it is more preferable to use epoxysilane from the viewpoint of effectively improving the adhesion to other members.
  • aminosilanes include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, and ⁇ -aminopropyl.
  • Methyldimethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, N - ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, and N-phenyl- ⁇ -amino-propyltrimethoxysilane.
  • Examples of the epoxy silane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Examples of the acrylic silane include ⁇ - (methacryloxypropyl) trimethoxysilane, ⁇ - (methacryloxypropyl) methyldimethoxysilane, and ⁇ - (methacryloxypropyl) methyldiethoxysilane.
  • Examples of mercaptosilane include ⁇ -mercaptopropyltrimethoxysilane.
  • Examples of the vinyl silane include vinyl tris ( ⁇ methoxyethoxy) silane, vinyl triethoxy silane, and vinyl trimethoxy silane.
  • Examples of ureidosilane include 3-ureidopropyltriethoxysilane.
  • Examples of the sulfide silane include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
  • the content of the adhesion assistant in the photosensitive resin composition is preferably 0.1% by mass or more, and 0.5% by mass or more with respect to the entire solid content of the photosensitive resin composition. It is more preferable that On the other hand, the content of the adhesion assistant in the photosensitive resin composition is preferably 20% by mass or less and more preferably 15% by mass or less with respect to the entire solid content of the photosensitive resin composition. . By adjusting the content of the adhesion aid to such a range, the adhesion of the cured film formed using the photosensitive resin composition to other members can be more effectively improved.
  • the photosensitive resin composition may contain a surfactant.
  • the surfactant includes, for example, a compound containing a fluorine group (for example, a fluorinated alkyl group) or a silanol group, or a compound having a siloxane bond as a main skeleton.
  • a surfactant containing a fluorosurfactant or a silicone surfactant it is more preferable to use a surfactant containing a fluorosurfactant or a silicone surfactant, and it is particularly preferable to use a fluorosurfactant.
  • the surfactant include, but are not limited to, Megafac F-554, F-556, and F-557 manufactured by DIC Corporation.
  • the content of the surfactant in the photosensitive resin composition is preferably 0.1% by mass or more, and 0.2% by mass or more with respect to the entire solid content of the photosensitive resin composition. It is more preferable that On the other hand, the content of the surfactant in the photosensitive resin composition is preferably 3% by mass or less and more preferably 2% by mass or less with respect to the entire solid content of the photosensitive resin composition. . By adjusting the content of the surfactant to such a range, the flatness of the photosensitive resin composition can be effectively improved. In addition, it is possible to prevent the occurrence of radial striations on the coating film during spin coating.
  • the photosensitive resin composition can contain a colorant.
  • the colorant is not particularly limited. I. PR254, C.I. I. PR177 and C.I. I. A red pigment exemplified by PR224 and the like; I. PG7 and C.I. I. Green pigments exemplified by PG36 and the like, C.I. I. PB15: 6 and C.I. I. A blue pigment exemplified by PB60 and the like; I. PY138, C.I. I. PY139, C.I. I. PY150, C.I. I. PY128 and C.I. I.
  • Organic pigments such as yellow pigments exemplified by PY185, carbon, titanium carbon, iron oxide, titanium white, silica, talc, magnesium carbonate, calcium carbonate, mica, aluminum hydroxide, precipitated barium carbonate, chromium oxide, manganese oxide , And one or more selected from inorganic pigments such as titanium oxide.
  • the content of the colorant in the photosensitive resin composition is preferably 1% by mass or more and more preferably 5% by mass or more with respect to the entire solid content of the photosensitive resin composition. It is preferably 10% by mass or more.
  • the content of the colorant in the photosensitive resin composition is preferably 80% by mass or less, more preferably 70% by mass or less, based on the entire solid content of the photosensitive resin composition. More preferably, it is 60 mass% or less, and it is especially preferable that it is 50 mass% or less. Thereby, sufficient coloring property can be ensured, improving the developability and mechanical characteristic of the resin film formed using the photosensitive resin composition.
  • antioxidant can include, for example, one or more selected from the group of phenolic antioxidants, phosphorus antioxidants, and thioether antioxidants.
  • the filler can contain 1 type, or 2 or more types selected from inorganic fillers, such as a silica, for example.
  • the sensitizer is selected from the group of, for example, anthracene, xanthone, anthraquinone, phenanthrene, chrysene, benzpyrene, fluoracene, rubrene, pyrene, indanthrine and thioxanthen-9-ones 1 type, or 2 or more types can be included.
  • the photosensitive resin composition may contain a solvent.
  • the photosensitive resin composition is varnished.
  • the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, methyl isobutyl carbinol (MIBC), gamma butyrolactone (GBL), N-methylpyrrolidone (NMP), methyl n-amyl ketone.
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • MIBC methyl isobutyl carbinol
  • GBL gamma butyrolactone
  • NMP N-methylpyrrolidone
  • methyl n-amyl ketone One or more of (MAK), diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and benzyl alcohol can be included.
  • the photosensitive resin composition according to the present embodiment can be, for example, a positive type. Thereby, when patterning the resin film formed using the photosensitive resin composition by lithography, it is possible to further facilitate the formation of a fine pattern. It is also possible to contribute to the reduction of the dielectric constant of the resin film. In addition, as compared with a negative photosensitive resin composition to be described later, PEB (Post Exposure Bake) treatment is not necessary when performing lithography, and thus the number of steps can be reduced.
  • the photosensitive resin composition is a positive type
  • the photosensitive resin composition includes, for example, a polymer (A) and a photosensitive agent. Further, the positive photosensitive resin composition may contain an acid generator together with the polymer (A) and the photosensitive agent. Thereby, the sclerosis
  • the positive photosensitive resin composition can further contain components other than the polymer (A), the photosensitive agent, and the acid generator exemplified above.
  • Patterning of a resin film formed using a positive photosensitive resin composition can be performed, for example, as follows. First, the exposure process is performed with respect to the resin film obtained by prebaking the coating film of the photosensitive resin composition. Next, the exposed resin film is developed with a developer and then rinsed with pure water. As a result, a resin film on which a pattern is formed is obtained. In addition, when forming a permanent film
  • a permanent film having excellent transparency can be realized even in a post-baking process at a high temperature of 230 ° C. or higher, for example. It is. This is the same also about the negative photosensitive resin composition mentioned later.
  • the photosensitive resin composition according to the present embodiment can be a negative type, for example. Thereby, transparency and chemical
  • the photosensitive resin composition is a negative type
  • the photosensitive resin composition includes, for example, a polymer (A) and a photoacid generator.
  • the negative photosensitive resin composition does not contain a photosensitizer.
  • a negative photosensitive resin composition can further contain each component other than the polymer (A) illustrated above, a photoacid generator, and a photosensitizer.
  • the negative photosensitive resin composition may include, for example, a photo radical polymerization initiator that generates radicals upon irradiation with actinic rays such as ultraviolet rays.
  • a photo radical polymerization initiator that generates radicals upon irradiation with actinic rays such as ultraviolet rays.
  • the photoradical polymerization initiator include alkylphenone type initiators, oxime ester type initiators, and acylphosphine oxide type polymerization initiators.
  • the radical photopolymerization initiator is preferably 5 to 20 parts by mass, more preferably 8 to 15 parts by mass with respect to 100 parts by mass of the polymer (A). Is preferred.
  • the negative photosensitive resin composition may contain a first crosslinking agent that is crosslinked with the polymer (A) by a radical polymerization initiator.
  • the first crosslinking agent is preferably a polyfunctional acrylic compound having two or more (meth) acryloyl groups.
  • trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • tetrafunctional (meth) acrylates such as pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
  • Acrylates and hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate, and any one or more of these is preferably used.
  • the polyfunctional acrylic compound and the polymer (A) can be cross-linked by radicals generated by the radical polymerization initiator, and the polyfunctional acrylic compound is also cross-linked. be able to.
  • a film with high chemical resistance can be formed with a negative photosensitive resin composition.
  • the first crosslinking agent is preferably 50 to 70 parts by mass, and more preferably 55 to 65 parts by mass with respect to 100 parts by mass of the polymer (A). Is preferred.
  • the negative photosensitive resin composition may contain a second crosslinking agent different from the first crosslinking agent.
  • This second cross-linking agent cross-links with the polymer (A) by heat.
  • the second cross-linking agent is preferably a compound having a cyclic ether group as a reactive group, and more preferably a compound having a glycidyl group or an oxetanyl group.
  • the chemical resistance of a film composed of a negative photosensitive resin composition can be improved.
  • a compound which has a glycidyl group the same thing as the compound which has a glycidyl group used as a crosslinking agent mentioned above can be mentioned, for example.
  • a compound which has an oxetanyl group the same thing as the compound which has an oxetanyl group used as a crosslinking agent mentioned above can be mentioned, for example.
  • the second crosslinking agent is preferably 10 to 30 parts by mass, more preferably 15 to 25 parts by mass with respect to 100 parts by mass of the polymer (A). Is preferred.
  • Patterning of a resin film formed using a negative photosensitive resin composition can be performed, for example, as follows. First, the exposure process is performed with respect to the resin film obtained by prebaking the coating film of the photosensitive resin composition. Next, a PEB (Post Exposure Bake) process is performed on the exposed resin film as necessary.
  • the PEB conditions are not particularly limited, but can be, for example, 100 to 150 ° C. and 120 seconds. Next, the resin film that has been subjected to the PEB treatment is developed using a developer, and then rinsed with pure water. As a result, a resin film on which a pattern is formed is obtained.
  • the electronic device 100 includes an insulating film 20 that is a permanent film formed of, for example, the above-described photosensitive resin composition.
  • the electronic device 100 according to the present embodiment is not particularly limited as long as it includes an insulating film formed of a photosensitive resin composition.
  • FIG. 1 is a cross-sectional view illustrating an example of the electronic device 100.
  • FIG. 1 illustrates the case where the electronic device 100 is a liquid crystal display device and the insulating film 20 is used as a planarization film.
  • An electronic device 100 illustrated in FIG. 1 is provided on, for example, a substrate 10, a transistor 30 provided on the substrate 10, an insulating film 20 provided on the substrate 10 so as to cover the transistor 30, and the insulating film 20. Wiring 40.
  • the substrate 10 is, for example, a glass substrate.
  • the transistor 30 is a thin film transistor that constitutes a switching element of a liquid crystal display device, for example.
  • the transistor 30 shown in FIG. 1 includes, for example, a gate electrode 31, a source electrode 32, a drain electrode 33, a gate insulating film 34, and a semiconductor layer 35.
  • the gate electrode 31 is provided on the substrate 10, for example.
  • the gate insulating film 34 is provided on the substrate 10 so as to cover the gate electrode 31.
  • the semiconductor layer 35 is provided on the gate insulating film 34.
  • the semiconductor layer 35 is, for example, a silicon layer.
  • the source electrode 32 is provided on the substrate 10 so that a part thereof is in contact with the semiconductor layer 35.
  • the drain electrode 33 is provided on the substrate 10 so as to be separated from the source electrode 32 and partially in contact with the semiconductor layer 35.
  • the insulating film 20 functions as a planarization film for eliminating a step due to the transistor 30 and the like and forming a flat surface on the substrate 10. Moreover, the insulating film 20 is comprised with the hardened
  • the insulating film 20 is provided with an opening 22 that penetrates the insulating film 20 so as to be connected to the drain electrode 33.
  • a wiring 40 connected to the drain electrode 33 is formed on the insulating film 20 and in the opening 22.
  • the wiring 40 functions as a pixel electrode that constitutes a pixel together with the liquid crystal.
  • An alignment film 90 is provided on the insulating film 20 so as to cover the wiring 40.
  • a counter substrate 12 is disposed above one surface of the substrate 10 where the transistor 30 is provided so as to face the substrate 10.
  • a wiring 42 is provided on one surface of the counter substrate 12 facing the substrate 10. The wiring 42 is provided at a position facing the wiring 40.
  • An alignment film 92 is provided on the one surface of the counter substrate 12 so as to cover the wiring 42.
  • the liquid crystal constituting the liquid crystal layer 14 is filled between the substrate 10 and the counter substrate 12.
  • the electronic device 100 shown in FIG. 1 can be formed as follows, for example. First, the transistor 30 is formed over the substrate 10. Next, the photosensitive resin composition is applied to one surface of the substrate 10 on which the transistor 30 is provided by a printing method or a spin coating method, and the insulating film 20 that covers the transistor 30 is formed. Next, lithography processing is performed on the insulating film 20 to pattern the insulating film 20. Thereby, an opening 22 is formed in a part of the insulating film 20. Next, the insulating film 20 is heated and cured. As a result, the insulating film 20 that is a planarizing film is formed on the substrate 10. Next, a wiring 40 connected to the drain electrode 33 is formed in the opening 22 of the insulating film 20. Thereafter, the counter substrate 12 is disposed on the insulating film 20, and liquid crystal is filled between the counter substrate 12 and the insulating film 20 to form the liquid crystal layer 14. As a result, the electronic device 100 shown in FIG. 1 is formed.
  • Example 1 (Manufacture of polymers) (Example 1) Into a suitably sized reaction vessel equipped with a stirrer and condenser, maleic anhydride (735 g, 7.5 mol), 2-norbornene (706 g, 7.5 mol) and dimethyl 2,2′-azobis (2-methylpro) Pionate) (69 g, 0.3 mol) was weighed and dissolved in methyl ethyl ketone and toluene. After removing dissolved oxygen in the system by nitrogen bubbling, this solution was heat-treated at 60 ° C. for 15 hours with stirring. As a result, a copolymer of 2-norbornene and maleic anhydride was obtained.
  • the obtained polymer was a copolymer containing the structural unit represented by Formula (3a) and the structural unit represented by Formula (3b).
  • the copolymer contained a structural unit represented by the formula (4a) and a structural unit represented by the formula (4c).
  • Example 4 In a suitably sized reaction vessel equipped with a stirrer and a condenser, maleic anhydride (39.2 g, 0.4 mol), (3-ethyloxetan-3-yl) methylbicyclo [2.1.1] hept- 5-ene-2-carboxylate (94.4 g, 0.4 mol) and dimethyl 2,2′-azobis (2-methylpropionate) (9.2 g) were weighed and dissolved in methyl ethyl ketone and toluene. After removing dissolved oxygen in the system by nitrogen bubbling, this solution was heat-treated at 60 ° C. for 15 hours with stirring.
  • Example 6 40.0 g of a copolymer of 2-norbornene and maleic anhydride synthesized in the same procedure as in Example 1, 8.0 g of methanol and 152 g of butanol were mixed to form a suspension, and an acidic catalyst and a basic catalyst were added. Without stirring, the mixture was stirred at 100 ° C. for 12 hours. As a result, the maleic anhydride-derived anhydride ring present in the copolymer was opened. Thereafter, PGMEA was added, and methanol and butanol in the system were distilled off under reduced pressure until the residual amount was less than 1%.
  • MEK (320 g) was added to the solution, and then a suspension of sodium hydroxide (12.5 g, 0.31 mol), butanol (463.1 g, 6.25 mol), and toluene (480 g) was added. In addition, the mixture was mixed at 45 ° C. for 3 hours. The mixture is cooled to 40 ° C., treated with formic acid (88% by mass aqueous solution, 49.0 g, 0.94 mol) and protonated, and then MEK and water are added to separate the aqueous layer. Inorganic residues were removed. Subsequently, methanol and hexane were added and the organic layer was separated to remove unreacted monomers.
  • the dissolution rate of the obtained polymer was measured as follows. First, the polymer solution obtained above was applied onto a silicon wafer by a spin method and then heat-treated at 110 ° C. for 100 seconds to obtain a polymer film having a film thickness H of 3.0 ⁇ m. Next, this polymer film was impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and the time T until the polymer film was visually erased was measured. Subsequently, based on the measured value obtained by this, the film thickness H / time T was calculated as a dissolution rate ( ⁇ / sec). The results are shown in Table 1.
  • the transmittance of the obtained polymer was measured for each example and each comparative example.
  • the polymer solution having a solid content of 20% by mass obtained above is put in a glass cell having an optical path width of 1 cm, and the transmittance (%) for light having a wavelength of 400 nm is measured using an ultraviolet-visible light spectrophotometer. Was done. The results are shown in Table 1.
  • the photosensitive resin composition was spin-coated on a 1737 glass substrate manufactured by Corning Inc. having a size of 100 mm in length and 100 mm in width (number of revolutions: 500 rpm), and then subjected to a heat treatment at 100 ° C. for 120 seconds to form a film.
  • a thin film having a thickness of 10 ⁇ m was obtained.
  • the entire surface of the thin film was exposed for 50 seconds using a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc.
  • the exposed thin film was baked on a hot plate at 120 ° C. for 120 seconds.
  • the thin film was developed with a 0.5 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds, and then rinsed with pure water.
  • a post-baking process was performed by heating in an oven for 60 minutes, and a sample composed of a thin film having no pattern was obtained on a glass substrate.
  • two samples having post-baking temperatures of 230 ° C. and 250 ° C. were prepared.
  • the transmittance (%) of light at a wavelength of 400 nm was measured using an ultraviolet-visible light spectrophotometer. The results are shown in Table 1.
  • Example 5 transparency evaluation of the photosensitive resin composition manufactured using the obtained polymer was performed as follows. First, 100 parts by mass of the polymer obtained in Example 5, 10 parts by mass of a photopolymerization initiator (IRGACURE OXE-02, manufactured by BASF), and 5 parts by mass of an adhesion assistant (KBM-403, manufactured by Shin-Etsu Silicone Co., Ltd.) And 1 part by mass of a surfactant (F-557, manufactured by DIC Corporation) were dissolved in a solvent (propylene glycol monomethyl ether acetate) to a solid content of 40% by mass. Next, this solution was filtered through a 0.2 ⁇ m PTFE filter to prepare a photosensitive resin composition.
  • a photopolymerization initiator IRGACURE OXE-02, manufactured by BASF
  • KBM-403 an adhesion assistant
  • F-557 a surfactant
  • the photosensitive resin composition was spin-coated on a 1737 glass substrate manufactured by Corning Inc. having a size of 100 mm in length and 100 mm in width (number of revolutions: 500 rpm), and then subjected to a heat treatment at 100 ° C. for 120 seconds to form a film.
  • a thin film having a thickness of 10 ⁇ m was obtained.
  • the entire surface of the thin film was exposed for 50 seconds using a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc.
  • the thin film was developed with a 0.5 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds, and then rinsed with pure water.
  • a post-baking process was performed by heating in an oven for 30 minutes, and a sample composed of a thin film having no pattern was obtained on a glass substrate.
  • two samples having post-baking temperatures of 230 ° C. and 250 ° C. were prepared.
  • the transmittance (%) of light at a wavelength of 400 nm was measured using an ultraviolet-visible light spectrophotometer. The results are shown in Table 1.
  • the photosensitive resin composition was prepared as follows. 100 parts by mass of the polymer obtained in Example 5, 10 parts by mass of a photopolymerization initiator (IRGACURE OX-02, manufactured by BASF), and 5 parts by mass of an adhesion assistant (KBM-403, manufactured by Shin-Etsu Silicone Co., Ltd.) Then, 1 part by mass of a surfactant (F-557, manufactured by DIC Corporation) was dissolved in a solvent (propylene glycol monomethyl ether acetate) to a solid content of 50% by mass. Subsequently, this solution was filtered through a 0.2 ⁇ m PTFE filter to prepare a varnish-like photosensitive resin composition.
  • a photopolymerization initiator IRGACURE OX-02, manufactured by BASF
  • KBM-403 an adhesion assistant
  • F-557 propylene glycol monomethyl ether acetate
  • the viscosity at 25 ° C. of the photosensitive resin composition immediately after preparation was measured using an E-type viscometer, and this was defined as the initial viscosity ⁇ 0 .
  • the sealed container containing the photosensitive resin composition immediately after preparation was stored for 7 days at an air temperature of 30 ⁇ 1 ° C., and the viscosity of the photosensitive resin composition after storage was measured at 25 ° C. It was set to 1 .
  • viscosity change rate (eta) 1 / (eta) 0 * 100 was computed from these measurement results.
  • the stability evaluation with time was performed with ⁇ indicating that the viscosity change rate was 150% or less, and x indicating that the viscosity change rate exceeded 150%. The results are shown in Table 1.
  • a step of opening an anhydrous ring without using an acidic catalyst and a basic catalyst is performed.
  • the favorable result is obtained compared with the comparative example about the transparency of the cured film formed using the photosensitive resin composition containing a polymer (A).
  • the favorable result was obtained also about the temporal stability of the photosensitive resin composition containing a polymer (A).
  • a good pattern could be formed by exposing and developing the resin film obtained by applying the photosensitive resin composition containing the polymer (A).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

ポリマーの製造方法は、ノルボルネン型モノマーと、無水マレイン酸と、を重合させて共重合体を得る工程と、酸性触媒および塩基性触媒を添加せずに、下記式(1)で示される化合物を添加した共重合体に対して第1加熱処理を行い、共重合体中に存在する無水マレイン酸由来の無水環を開環させる工程と、を備える。HO-R(式(1)中、Rは、水素原子または酸素原子を含んでいてもよい炭素数1~18の炭化水素基である)

Description

ポリマーの製造方法、感光性樹脂組成物および電子装置
 本発明は、ポリマーの製造方法、感光性樹脂組成物および電子装置に関する。
 半導体集積回路等のような微細な回路パターンを形成する際に、フォトリソグラフィ技術が利用されている。フォトリソグラフィ技術においてはレジストパターンを形成するために感光性樹脂組成物が使用される。たとえば、特許文献1には、ポリマーと、感光剤とを含む感光性樹脂組成物が開示されている。そして、ポリマーは、環状脂肪炭化水素骨格からなる単位と、無水マレイン酸に由来する単位とを有し、無水マレイン酸に由来する単位の酸無水環を加水分解したものであることが開示されている。
特開平2-146045号公報
 感光性樹脂組成物については、これを用いて形成される樹脂膜の透明性を向上させることが求められている。
 本発明者らの検討によると、無水マレイン酸由来の無水環を開環するための触媒の種類を調整することにより、得られる樹脂膜の透明性を向上できることを明らかにした。しかし、このような感光性樹脂組成物は経時安定性に劣っていた。
 本発明によれば、
 ノルボルネン型モノマーと、無水マレイン酸と、を重合させて共重合体を得る工程と、
 酸性触媒および塩基性触媒を添加せずに、下記式(1)で示される化合物を添加した前記共重合体に対して第1加熱処理を行い、前記共重合体中に存在する無水マレイン酸由来の無水環を開環させる工程と、
 を備えるポリマーの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは、水素原子または酸素原子を含んでいてもよい炭素数1~18の炭化水素基である)
 また、本発明によれば、
 下記式(3a)により示される構造単位および下記式(3b)により示される構造単位を含むポリマーを備える感光性樹脂組成物であって、
 前記ポリマーの波長400nmの光に対する透過率が40%以上であり、
 以下の条件により測定される粘度変化率が150%以下である感光性樹脂組成物が提供される。
Figure JPOXMLDOC01-appb-C000006
(式(3a)中、nは0、1または2である。R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である。式(3b)中、Aは下記式(4a)、(4b)、(4c)または(4d)により示される構造単位である)
Figure JPOXMLDOC01-appb-C000007
(上記式(4a)、(4b)中、R、RおよびRはそれぞれ独立して酸素原子を含んでいてもよい炭素数1~18の炭化水素基である)
<条件>
 前記感光性樹脂組成物を固形分50質量%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温30±1℃で7日間保管した後の25℃における粘度をηとして、η/η×100を粘度変化率とする。
 また、本発明によれば、
 上記感光性樹脂組成物の硬化膜を備える電子装置が提供される。
 本発明によれば、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて形成される樹脂膜の透明性のバランスを向上させることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
電子装置の一例を示す断面図である。
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本実施形態に係るポリマー(A)の製造方法は、次のようにして行われる。まず、ノルボルネン型モノマーと、無水マレイン酸と、を重合させて共重合体を得る。次いで、酸性触媒および塩基性触媒を添加せずに、下記式(1)で示される化合物を添加した上記共重合体に対して加熱処理を行い、上記共重合体中に存在する無水マレイン酸由来の無水環を開環させる。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Rは、水素原子または酸素原子を含んでいてもよい炭素数1~18の炭化水素基である)
 感光性樹脂組成物に含まれる樹脂としては、たとえばノルボルネン型モノマーと、無水マレイン酸と、を重合させて得られるポリマーが用いられる場合がある。このようなポリマーに対しては、感光性樹脂組成物の現像性を向上させる観点から、無水マレイン酸由来の無水環を開環するため、触媒を用いた開環工程を行うことができる。一方で、このようなポリマーを含む感光性樹脂組成物を用いて形成される樹脂膜については、透明性のさらなる向上を図ることが求められていた。とくに250℃以上の高温でのポストベーク処理が施された樹脂膜については、高い透明性を実現することは困難であった。このような問題は、たとえば10μm以上という厚膜の樹脂膜を形成する場合において、より顕著となっていた。
 ここで、本発明者らの検討によると、無水マレイン酸由来の無水環を開環するための触媒の種類を調整することにより、得られる樹脂膜の透明性が向上できることを明らかにした。しかし、このような感光性樹脂組成物は経時安定性に劣っていた。また、本発明者らの検討によると、例えば、ノルボルネン型モノマーの置換基としてグリシジル基やオキセタニル基を有するポリマー中の無水マレイン酸由来の無水環を開環する際に酸触媒を使用すると、カチオン重合が進行し、ゲル化してしまう場合があることが明らかになった。そのため、触媒を使用する場合は、使用するノルボルネン型モノマーや上記式(1)で示される化合物の構造に制約があった。
 本発明者は、感光性樹脂組成物の経時安定性を向上させつつ、感光性樹脂組成物を用いて形成される樹脂膜の透明性を向上させるため、ポリマーの製造方法について鋭意検討を行った。その結果、上記開環工程を酸性触媒および塩基性触媒のいずれをも添加せずに加熱して行うことによって、得られるポリマーを備える感光性樹脂組成物を用いて形成される樹脂膜の透明性を向上させることができることを新たに知見した。本実施形態に係るポリマー(A)の製造方法は、このような新規な知見に基づいて実現されたものである。このため、本実施形態によれば、感光性樹脂組成物を用いて形成される樹脂膜の透明性を向上させることができる。これにより、厚膜の樹脂膜を形成する場合であっても、優れた透明性を示す樹脂膜を実現することが可能となる。特に、本実施形態によれば光学デバイスに好適な感光性樹脂組成物を得ることができる。
 また、本発明者は、上記開環工程を酸性触媒および塩基性触媒のいずれをも添加せずに加熱して行うことにより、得られるポリマーを備える感光性樹脂組成物の経時安定性の向上に寄与することができることについても新たに見出した。したがって、本実施形態によれば、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて得られる樹脂膜の透明性と、をともに向上させることが可能なポリマー(A)が実現される。
 以下、ポリマー(A)、感光性樹脂組成物および電子装置について詳細に説明する。
(ポリマー(A))
 まず、ポリマー(A)について説明する。
 本実施形態に係るポリマー(A)は、下記式(3a)により示される構造単位および下記式(3b)により示される構造単位を含む。
Figure JPOXMLDOC01-appb-C000009
 式(3a)中、nは0、1または2である。R、R、RおよびRは、それぞれ独立して水素または炭素数1~30の有機基である。式(3b)中、Aは下記式(4a)、(4b)、(4c)または(4d)により示される構造単位である。式(3a)により示される構造単位のモル比は、とくに限定されないが、ポリマー(A)全体を100として10以上90以下であることがとくに好ましい。また、式(3b)により示される構造単位のモル比は、とくに限定されないが、ポリマー(A)全体を100として10以上90以下であることがとくに好ましい。なお、ポリマー(A)は、式(3a)により示される構造単位および式(3b)により示される構造単位以外の他の構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
 上記式(4a)および(4b)中、R、RおよびRはそれぞれ独立して酸素原子を含んでいてもよい炭素数1~18の炭化水素基である。ポリマー(A)中には、上記式(4a)、(4b)、(4c)および(4d)から選択される1種または2種以上の構造単位Aが含まれる。本実施形態においては、少なくとも上記式(4a)、(4b)および(4c)から選択される1種または2種以上の構造単位Aを有する成分がポリマー(A)中に含まれることがより好ましく、上記式(4a)により示される構造単位Aおよび上記式(4c)により示される構造単位Aをともに有する成分をポリマー(A)中に含むことがとくに好ましい。
 R、R、RおよびRを構成する炭素数1~30の有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、アルコキシシリル基、およびシクロアルキル基が挙げられる。また、当該有機基は、カルボキシル基、またはエポキシ環もしくはオキセタン環等のヘテロ環を有する有機基であってもよい。アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、およびキシリル基が挙げられる。アルコキシシリル基としては、たとえばトリメトキシシリル基、トリエトキシシリル基、トリポロポキシシリル基およびトリブトキシシリル基等に例示されるトリアルコキシシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。なお、R、R、RおよびRを構成する有機基は、一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。
 R、R、RまたはRとしてアルキル基を含むことにより、ポリマー(A)を含む感光性樹脂組成物からなる膜の製膜性を向上させることができる。また、R、R、RまたはRとしてアリール基を含むことにより、ポリマー(A)を含む感光性樹脂組成物からなる膜について、リソグラフィ工程におけるアルカリ現像液を用いた現像の際の膜減りを抑えることができる。また、R、R、RまたはRとしてヘテロ環を有する有機基を含むことにより、ポリマー(A)の経時安定性と硬化性のバランスを効果的に向上させることが容易となる。また、ポリマー(A)を含んで構成される膜の透明性を高める観点からは、R、R、RおよびRの少なくとも一つが水素であることがより好ましく、R、R、RおよびRの全てが水素であることがとくに好ましい。
 R、RおよびRを構成する酸素原子を含んでいてもよい炭素数1~18の炭化水素基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、および(メタ)アクリロイル基が挙げられる。また、当該炭化水素基は、カルボキシル基、またはエポキシ環もしくはオキセタン環等のヘテロ環を有していてもよい。アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。(メタ)アクリロイル基としては、たとえばアルキル基の炭素数が1~8の(メタ)アクリロイルオキシアルキル基、炭素数4~12の(メタ)アクリロイルポリオキシアルキル基が挙げられる。なお、R、RおよびRに含まれる一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。また、RおよびRは、たとえば互いに同じ基であることがより好ましい。
 R、RまたはRとしてアルキル基を含むことにより、ポリマー(A)を含む感光性樹脂組成物からなる膜の耐クラック性を向上させることができる。本実施形態においては、耐クラック性を向上させる観点から、R、RまたはRとして炭素数3以上のアルキル基を含むことがより好ましく、炭素数4以上のアルキル基を含むことがとくに好ましい。
 ポリマー(A)は、たとえば上記式(3a)により示される構造単位と、上記式(3b)により示される構造単位と、が交互に配列されてなる交互共重合体を含むことがより好ましい。一方で、ポリマー(A)は、上記式(3a)により示される構造単位と、上記式(3b)により示される構造単位と、により構成されるランダム共重合体やブロック共重合体を含んでいてもよい。
 ポリマー(A)は、低分子量成分として下記式(2)により示されるモノマーおよび無水マレイン酸のうちの少なくとも一方を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000011
(式(2)中、n、R、R、RおよびRとしては、式(3a)において例示したものを適用することができる)
 本実施形態に係るポリマー(A)は、波長400nmの光に対する透過率が40%以上である。このようなポリマー(A)を用いて感光性樹脂組成物を作製することにより、感光性樹脂組成物を用いて得られる樹脂膜の透明性を向上させることができる。また、感光性樹脂組成物の経時安定性を向上させることも可能となる。上記樹脂膜の透明性を向上させる観点からは、たとえばポリマー(A)の波長400nmの光に対する透過率が60%以上であることがより好ましく、80%以上であることがとくに好ましい。なお、ポリマー(A)の波長400nmの光に対する透過率の上限値は、とくに限定されないが、たとえば100%とすることができる。
 これまで、ノルボルネン型モノマーと無水マレイン酸を重合させて得られるポリマーについては、感光性樹脂組成物の経時安定性を向上させつつ、波長400nmの光に対して高い透過率を実現することは困難であった。本発明者による鋭意検討の結果、後述する本実施形態に係るポリマー(A)の製造方法によってポリマー(A)を製造することにより、感光性樹脂組成物の経時安定性を向上させつつ、波長400nmの光に対する透過率を上述の範囲まで向上させることができることが見出された。これは、無水環の開環工程を酸性触媒および塩基性触媒のいずれをも添加せずに加熱して行うことや、触媒の添加に伴う中和工程や水洗工程を行わないこと、開環工程における加熱条件を適切に調整すること等によるものと考えられる。このように、本実施形態によれば、波長400nmの光に対する透過率が上述の範囲内であるポリマー(A)を実現することが可能となる。
 本実施形態において、ポリマー(A)の波長400nmの光に対する透過率の測定は、たとえばポリマー(A)をPGMEA(プロピレングリコールモノメチルエーテルアセテート)に溶解して得た固形分20質量%のポリマー溶液を光路幅1cmのガラスセルに入れて、紫外-可視光分光光度計を用いて波長400nmの光に対する透過率を測定することにより行うことができる。
 また、本実施形態に係るポリマー(A)については、たとえば溶解速度を1000Å/秒以上とすることができる。これにより、感光性樹脂組成物の現像性を向上させ、高度なリソグラフィ性能を有する樹脂膜を実現することができる。このため、感光性樹脂組成物を用いた良好なパターン形成が可能となる。感光性樹脂組成物の現像性を向上させる観点からは、上記溶解速度が2000Å/秒以上であることがより好ましく、3000Å/秒以上であることがとくに好ましい。このように、本実施形態によれば、高い溶解速度を維持しつつ、400nmの光に対する透過率を向上させることが可能である。一方で、現像工程における残膜率を向上させる観点からは、上記溶解速度が20000Å/秒以下であることが好ましく、15000Å/秒以下であることがより好ましい。
 本実施形態においては、たとえばポリマー(A)の製造方法や化学構造を適切に選択することによりポリマー(A)の上記溶解速度を上記範囲とすることができる。これらの中でも、無水環の開環工程の条件を選択することが、上記溶解速度を制御する観点からとくに重要であると考えられる。
 ポリマー(A)の上記溶解速度は、たとえば次のようにして測定することができる。まず、ポリマー(A)をPGMEA(プロピレングリコールモノメチルエーテルアセテート)に溶解して得た固形分20質量%のポリマー溶液をシリコンウェハ上にスピン方式で塗布した後、110℃、100秒の条件で熱処理して、膜厚Hが3μmのポリマー膜を得る。次いで、このポリマー膜を23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的にポリマー膜が消去するまでの時間Tを測定する。次いで、これにより得られた測定値に基づいて、膜厚H/時間Tを溶解速度として算出する。
 次に、ポリマー(A)の製造方法について説明する。
(重合工程(処理S1))
 まず、ノルボルネン型モノマーと、無水マレイン酸と、を用意する。ノルボルネン型モノマーとしては、たとえば上記式(2)により示されるものを用いることができる。これにより、得られるポリマー(A)を用いて得られる感光性樹脂組成物について、感光性樹脂組成物に求められる諸特性のバランスを向上させることが可能となる。
 次いで、ノルボルネン型モノマーと、無水マレイン酸と、を重合させて共重合体(A1)を得る。ここでは、たとえばノルボルネン型モノマーと無水マレイン酸を付加重合させることにより共重合体(A1)が得られる。本実施形態においては、ノルボルネン型モノマーおよび無水マレイン酸とともに、これら以外の他のモノマーを重合させることもできる。
 重合工程(処理S1)においては、たとえば上記式(2)により示されるノルボルネン型モノマーのうちの一種または二種以上と、無水マレイン酸と、を重合させることができる。この場合、下記式(5a)により示される構造単位と、下記式(5b)により示される構造単位と、を含む共重合体(A1)が得られることとなる。
Figure JPOXMLDOC01-appb-C000012
(式(5a)中、n、R、R、RおよびRとしては、式(3a)において例示したものを適用することができる)
 本実施形態においては、上記式(5a)により示される構造単位と、上記式(5b)により示される構造単位と、がランダムに配置されたものであってもよく、交互に配置されたものであってもよい。また、式(2)で示されるノルボルネン型モノマーと、無水マレイン酸と、がブロック共重合したものであってもよい。ただし、本実施形態で製造されるポリマー(A)を用いた感光性樹脂組成物の溶解性の均一性を確保する観点からは、上記式(5a)で示される繰り返し単位と、上記式(5b)で示される繰り返し単位とが交互に配置された構造であることが好ましい。すなわち、共重合体(A1)は、下記式(6)の繰り返し単位を有するものであることがとくに好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(6)中、n、R、R、RおよびRとしては、式(3a)において例示したものを適用することができる。また、aは10以上200以下の整数である)
 本実施形態においては、たとえば上記式(2)により示されるノルボルネン型モノマーと、無水マレイン酸と、重合開始剤と、を溶媒に溶解した後、所定時間加熱することにより溶液重合を行うことができる。また、反応熱制御やポリマー構造制御の観点から、重合開始剤やモノマーの全量または一部を逐次添加してもよい。このとき、加熱温度は、たとえば50℃以上80℃以下とすることができる。また、加熱時間は、たとえば1時間以上20時間以下とすることができる。なお、窒素バブリングにより溶媒中の溶存酸素を除去したうえで、溶液重合を行うことがより好ましい。また、必要に応じて分子量調整剤や連鎖移動剤を使用する事ができる。連鎖移動剤としては、例えば、ドデシルメルカプタン、メルカプトエタノール、4,4-ビス(トリフルオロメチル)-4-ヒドロキシ-1-メルカプトブタン等のチオール化合物を挙げることができる。これらの連鎖移動剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記溶液重合において用いられる溶媒としては、たとえばメチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、トルエン、酢酸エチル、酢酸ブチルのうち一種または二種以上を使用することができる。また、上記重合開始剤としては、アゾ化合物および有機過酸化物のうちの一種または二種以上を使用できる。アゾ化合物としては、たとえばアゾビスイソブチロニトリル(AIBN)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(シクロヘキサンカルボニトリル)(ABCN)が挙げられる。有機過酸化物としては、たとえば過酸化水素、ジターシャリブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド(BPO))、およびメチルエチルケトンパーオキサイド(MEKP)が挙げられる。
 本実施形態においては、たとえば共重合体(A1)が溶解した溶解液に対して、後述する式(1)により示される化合物からなる溶媒を用いて溶媒置換を行うことができる。溶媒置換は、たとえば共重合体(A1)が溶解した溶解液を大量のメタノールを用いて再沈させることにより析出された析出物を洗浄した後、当該析出物を式(1)により示される化合物からなる溶媒と混合させることにより行うことができる。
(開環工程(処理S2))
 次に、重合工程(処理S1)により得られた共重合体(A1)中に存在する無水マレイン酸由来の無水環を開環させる。このように、無水環を開環させることにより、ポリマー(A)を備える感光性樹脂組成物の溶解速度を向上させることができる。本実施形態において、無水環の開環は、酸性触媒および塩基性触媒を添加せずに、下記式(1)で示される化合物を一種または二種以上添加した共重合体(A1)に対して加熱処理を行うことにより行われる。このように、酸性触媒および塩基性触媒を添加せずに共重合体(A1)中に存在する無水環の開環を行うことによって、上述のとおり、製造されるポリマー(P)を備える感光性樹脂組成物の経時安定性や、当該感光性樹脂組成物を用いて形成される樹脂膜の透明性を向上させることが可能となる。本実施形態では、たとえば共重合体(A1)を溶媒に溶解した溶解液に対して上記加熱処理を行うことができる。
Figure JPOXMLDOC01-appb-C000014
 上記式(1)中、Rは、水素原子または酸素原子を含んでいてもよい炭素数1~18の炭化水素基である。Rとしては、たとえば上記式(4a)および(4b)におけるR、RおよびRを構成する酸素原子を含んでいてもよい炭素数1~18の炭化水素基として例示したものを適用することができる。本実施形態においては、感光性樹脂組成物の経時安定性や樹脂膜の透明性を向上させる観点から、Rが炭素数1~18のアルキル基であることがより好ましい。また、樹脂膜の耐クラック性を向上させる観点からは、Rが炭素数3以上のアルキル基であることがより好ましく、炭素数4以上のアルキル基であることがとくに好ましい。
 開環工程(処理S2)により無水環が開環された無水マレイン酸由来の構造単位は、たとえば以下の式(7a)、(7b)または(7c)により示される構造単位となることができる。この場合、開環工程(処理S2)後における共重合体(A1)には、下記式(7a)、(7b)および(7c)のうちの一種または二種以上を含む成分が含まれることとなる。
Figure JPOXMLDOC01-appb-C000015
(式(7a)、(7b)中、Rとしては、式(1)において例示したものを適用することができる)
 開環工程(処理S2)は、たとえば開環工程(処理S2)後における共重合体(A1)の溶解速度が1000Å/秒以上となる条件により行うことができる。これにより、共重合体(A1)の開環率を効果的に向上させることができる。このため、感光性樹脂組成物の溶解速度を効果的に向上させて、現像性能に優れた樹脂膜を得ることが可能となる。また、現像性能を向上させる観点からは、上記溶解速度を2000Å/秒以上とすることがより好ましく、3000Å/秒以上とすることがとくに好ましい。一方で、現像工程における残膜率を向上させる観点からは、上記溶解速度を20000Å/秒以下とすることが好ましく、15000Å/秒以下とすることがより好ましい。なお、開環工程(処理S2)後における共重合体(A1)の溶解速度は、たとえば開環工程(処理S2)における加熱条件や、上記式(1)で示される化合物の添加量等を調整することにより制御することが可能である。
 開環工程(処理S2)後における共重合体(A1)の溶解速度は、たとえば次のようにして測定することができる。まず、開環工程(処理S2)後における共重合体(A1)がPGMEA(プロピレングリコールモノメチルエーテルアセテート)に溶解した固形分20質量%の溶液をシリコンウェハ上にスピン方式で塗布した後、110℃、100秒の条件で熱処理して、膜厚Hが3μmのポリマー膜を得る。次いで、このポリマー膜を23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的にポリマー膜が消去するまでの時間Tを測定する。次いで、これにより得られた測定値に基づいて、膜厚H/時間Tを溶解速度として算出する。
 なお、開環工程(処理S2)後における共重合体(A1)の溶解速度は、上述のものに限定されるものではなく、用途に応じて適宜選択することが可能である。
 開環工程(処理S2)においては、下記式(1)で示される化合物を添加した共重合体(A1)に対して無触媒下で加熱処理が行われる。この加熱処理の条件は、たとえば所望する共重合体(A1)の溶解速度に合わせて適宜調整することが可能である。本実施形態においては、上記加熱処理を、30℃以上200℃以下、1時間以上50時間以下の条件により行うことができる。これにより、共重合体(A1)における無水環の開環を効果的に行うことができる。このため、ポリマー(A)の透過率を向上させつつ、高い溶解速度を効果的に実現することができる。
 また、開環工程(処理S2)は密閉系で実施してもよいし、開放系で実施してもよい。開環工程(処理S2)を密閉系でおこなうと、内温がより高まり反応時間を短縮することができる。
 開環工程(処理S2)において、共重合体(A1)に対して添加される上記式(1)で示される化合物の添加量は、たとえば無水マレイン酸モノマーの量や、所望する共重合体(A1)の溶解速度等に合わせて適宜調整することが可能である。本実施形態においては、重合工程(処理S1)において添加した無水マレイン酸のモル数(mol)をMとし、開環工程(処理S2)時の共重合体(A1)を溶解した溶解液中における上記式(1)で示される化合物のモル数をMとした場合に、Mを(1×M)以上(50×M)以下とすることができる。これにより、共重合体(A1)における無水環の開環を効果的に行うことができる。このため、ポリマー(A)の透過率を向上させつつ、高い溶解速度を効果的に実現することができる。
 本実施形態に係るポリマー(A)の製造方法においては、上述のように、開環工程(処理S2)において酸性触媒および塩基性触媒のいずれも添加しない。このため、当該触媒の添加に伴う中和工程や水洗工程を行わないものとすることができる。なお、本実施形態に係る開環工程(処理S2)において、酸性触媒および塩基性触媒を添加しないとは、重合工程(処理S1)において添加したノルボルネン型モノマーのモル数(mol)をMとして、0.01×M(mol)以上の上記触媒を添加しない場合を含む。本実施形態においては、開環工程(処理S2)において、酸性触媒および塩基性触媒を全く添加しない態様がとくに好ましい例として挙げられる。
(溶媒置換工程(処理S3))
 本実施形態に係るポリマー(A)の製造方法においては、開環工程(処理S2)の後において、溶媒置換を行うことができる。溶媒置換は、たとえば蒸留によって上記式(1)で示される化合物を除去し、PGMEA等の製品溶媒を添加しながら系内を置換していくことにより行うことができる。
(加熱工程(処理S4))
 本実施形態に係るポリマー(A)の製造方法においては、開環工程(処理S2)の後において、共重合体(A1)に対して加熱処理を行う工程をさらに含むことができる。これにより、共重合体(A1)中における無水環の開環構造の脱水による再度の閉環が生じる。このため、ポリマー(A)の溶解速度を低下させることが可能となる。このように、ポリマー(A)の溶解速度を本工程において再度調整することにより、ポリマー(A)を含む感光性樹脂組成物の溶解速度をより高度に制御することが可能となる。
 加熱工程(処理S4)は、たとえば100℃以上140℃以下、0.5時間以上10時間以下の条件で行うことができる。なお、これらの加熱処理条件は、所望するポリマー(A)の溶解速度に応じて適宜調整することが可能である。
 本実施形態においては、たとえばこのようにしてポリマー(A)が製造される。
(感光性樹脂組成物)
 次に、感光性樹脂組成物について説明する。
 本実施形態に係る感光性樹脂組成物は、たとえば永久膜を形成するために用いることができる。上記永久膜は、感光性樹脂組成物を硬化させることにより得られる硬化膜により構成される。本実施形態においては、たとえば感光性樹脂組成物により構成される塗膜を露光および現像により所望の形状にパターニングした後、当該塗膜を熱処理等によって硬化させることにより永久膜が形成される。一方で、感光性樹脂組成物は、リソグラフィ処理において用いるフォトレジストを形成するために用いられてもよい。
 感光性樹脂組成物を用いて形成される永久膜としては、たとえば層間膜、表面保護膜、カラーフィルタ、またはダム材が挙げられる。また、当該永久膜は、たとえば光学レンズ等の光学材料としても用いることができる。なお、永久膜の用途は、これらに限定されるものではない。本実施形態においては、たとえば膜厚10μm以上の厚膜の永久膜を形成するために感光性樹脂組成物を用いることができる。このような厚膜の永久膜であっても、本実施形態に係る製造方法により製造されたポリマー(A)を備えることから、透明性の高い永久膜を実現することが可能である。
 また、感光性樹脂組成物の永久膜以外の用途としては、エッチングレジスト等のフォトレジスト、MEMS等の微細加工用途等が挙げられる。
 層間膜は、多層構造中に設けられる絶縁膜を指し、その種類はとくに限定されない。層間膜としては、たとえば半導体素子の多層配線構造を構成する層間絶縁膜、回路基板を構成するビルドアップ層もしくはコア層等の半導体装置用途において用いられるものが挙げられる。また、層間膜としては、たとえば表示装置における薄膜トランジスタ(TFT(Thin Film Transistor))を覆う平坦化膜、液晶配向膜、MVA(Multi Domain Vertical Alignment)型液晶表示装置のカラーフィルタ基板上に設けられる突起、もしくは有機EL素子の陰極を形成するための隔壁等の表示装置用途において用いられるものも挙げられる。表面保護膜は、電子部品や電子装置の表面に形成され、当該表面を保護するための絶縁膜を指し、その種類はとくに限定されない。このような表面保護膜としては、たとえば半導体素子上に設けられるパッシベーション膜、バンプ保護膜もしくはバッファーコート層、またはフレキシブル基板上に設けられるカバーコートが挙げられる。また、ダム材は、基板上に光学素子等を配置するための中空部分を形成するために用いられるスペーサである。
 感光性樹脂組成物は、ポリマー(A)を含む感光性樹脂組成物を固形分50質量%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温30±1℃で7日間保管した後の25℃における粘度をηとして、η/η×100(粘度変化率)が150%以下であり、より好ましくは130%以下であり、さらに好ましくは115%以下である。これにより、前述したとおり、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて得られる樹脂膜の透明性と、のバランスの向上に寄与することができる。また、経時安定性を良好なものとすることにより、作業性や成膜性においても優れた感光性樹脂組成物を実現することが可能となる。なお、経時安定性と透明性のバランスをより効果的に向上させる観点からは、粘度変化率が110%以下であることがとくに好ましい。また、粘度変化率の下限値は、とくに限定されないが、たとえば90%以上とすることができる。
 初期粘度ηは、たとえば10mPa・s以上1000mPa・s以下であることが好ましい。これにより、η/ηを上述の範囲とすることが容易となる。また、作業性や成膜性を効果的に向上させることも可能となる。本実施形態においては、初期粘度ηを、たとえば後述する各成分を固形分50質量%となるように有機溶媒へ溶解させて撹拌することによりワニス状の感光性樹脂組成物を調製した後、12時間以内に測定した25℃における粘度として定義することができる。
 粘度ηは、たとえば10mPa・s以上1000mPa・s以下であることが好ましい。これにより、η/ηを上述の範囲とすることが容易となる。また、永久膜作製におけるプロセスマージンの向上等に寄与することも可能である。本実施形態においては、粘度ηを、たとえば後述する各成分を固形分50質量%となるように有機溶媒へ溶解させて撹拌することによりワニス状の感光性樹脂組成物を調製した直後から気温30±1℃で7日間保管した後に測定した25℃における粘度とすることができる。ここでは、たとえば温度30±1℃に保ったクリーンオーブン内に、上記ワニス状の感光性樹脂組成物を入れた密閉容器を載置することにより、上記ワニス状の感光性樹脂組成物の保管を行うことができる。
 本実施形態においては、感光性樹脂組成物に含まれる成分の種類や配合量を適切に調整することにより、粘度ηおよび粘度η、ならびにη/η×100を制御することが可能である。これらの中でも、η/η×100の制御においては、ポリマー(A)の製造方法や固形分の種類、各成分の配合量を調整することがとくに重要である。
 感光性樹脂組成物は、ポリマー(A)を備えている。これにより、上述のとおり、感光性樹脂組成物を用いて得られる樹脂膜の透明性を向上させることができる。また、感光性樹脂組成物の経時安定性の向上に寄与することもできる。このような経時安定性を向上させる効果については、ポジ型感光性樹脂組成物においてとくに顕著なものである。本実施形態に係る感光性樹脂組成物は、上記において例示したポリマー(A)のうちの一種または二種以上を含むことが可能である。感光性樹脂組成物中におけるポリマー(A)の含有量は、とくに限定されないが、感光性樹脂組成物の固形分全体に対して10質量%以上90質量%以下であることが好ましく、10質量%以上80質量%以下であることがより好ましい。なお、感光性樹脂組成物の固形分とは、感光性樹脂組成物中に含まれる溶媒を除く成分を指す。以下、本明細書において同様である。
 感光性樹脂組成物は、たとえば感光剤を含むことができる。感光剤としては、たとえばジアゾキノン化合物を有することができる。感光剤として用いられるジアゾキノン化合物は、たとえば以下に例示するものを含む。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
(n2は、1以上5以下の整数である)
 以上の各化合物において、Qは、以下に示す構造(a)、構造(b)および構造(c)のうちのいずれか、または水素原子である。ただし、各化合物に含まれるQのうちの少なくとも一つは、構造(a)、構造(b)および構造(c)のうちのいずれかである。感光性樹脂組成物の透明性および誘電率の観点からは、Qが構造(a)あるいは構造(b)であるo-ナフトキノンジアジドスルホン酸誘導体がより好ましい。
Figure JPOXMLDOC01-appb-C000022
 感光性樹脂組成物中における感光剤の含有量は、感光性樹脂組成物の固形分全体に対して1質量%以上40質量%以下であることが好ましく、5質量%以上30質量%以下であることがより好ましい。これにより、感光性樹脂組成物における、反応性、経時安定性、および現像性のバランスを効果的に向上させることが可能となる。
 感光性樹脂組成物は、たとえば光または熱により酸を発生する酸発生剤を含むことができる。光により酸を発生する光酸発生剤としては、たとえばトリフェニルスルフォニウムトリフルオロメタンスルホネート、トリス(4-t-ブチルフェニル)スルホニウム-トリフルオロメタンスルホネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムテトラキス(ペンタフルオロフェニル)ボラートなどのスルホニウム塩類、p-ニトロフェニルジアゾニウムヘキサフルオロホスフェートなどのジアゾニウム塩類、アンモニウム塩類、ホスホニウム塩類、ジフェニルヨードニウムトリフルオロメタンスルホネート、(トリキュミル)ヨードニウム-テトラキス(ペンタフルオロフェニル)ボレートなどのヨードニウム塩類、キノンジアジド類、ビス(フェニルスルホニル)ジアゾメタンなどのジアゾメタン類、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、N-ヒドロキシナフタルイミド-トリフルオロメタンサルホネートなどのスルホン酸エステル類、ジフェニルジスルホンなどのジスルホン類、トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-(3,4-メチレンジオキシフェニル)-4,6-ビス-(トリクロロメチル)-s-トリアジンなどのトリアジン類などの化合物を有することができる。本実施形態における感光性樹脂組成物は、上記において例示した光酸発生剤を一種または二種以上含むことも可能である。
 熱により酸を発生させる酸発生剤(熱酸発生剤)としては、たとえばSI-45L、SI-60L、SI-80L、SI-100L、SI-110L、SI-150L(三新化学工業(株)製)等の芳香族スルホニウム塩を有することができる。本実施形態における感光性樹脂組成物は、上記において例示した熱酸発生剤を一種または二種以上含むことも可能である。また、本実施形態においては、上記において例示した光酸発生剤と、これらの熱酸発生剤を併用することも可能である。
 感光性樹脂組成物中における酸発生剤の含有量は、感光性樹脂組成物の固形分全体に対して0.1質量%以上15質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましい。これにより、感光性樹脂組成物における、反応性、経時安定性、および現像性のバランスを効果的に向上させることが可能となる。
 感光性樹脂組成物は、架橋剤を含んでいてもよい。これにより、硬化性の向上を図り、硬化膜の機械特性の向上に寄与することができる。架橋剤は、たとえば反応性基としてヘテロ環を有する化合物を含むことが好ましく、なかでも、グリシジル基またはオキセタニル基を有する化合物を含むことが好ましい。これらのうち、カルボキシル基や水酸基等の活性水素を持つ官能基との反応性の観点からは、グリシジル基を有する化合物を含むことがより好ましい。
 架橋剤として用いられるグリシジル基を有する化合物としては、エポキシ化合物があげられる。エポキシ化合物としては、たとえばn-ブチルグリシジルエーテル、2-エトキシヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ビスフェノールA(又はF)のグリシジルエーテル、等のグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル等のグリシジルエステル、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル(3,4-エポキシ-6-メチルシクロヘキサン)カルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタンジエンオキサイド、ビス(2,3-エポキシシクロペンチル)エーテルや、(株)ダイセル製のセロキサイド2021、セロキサイド2081、セロキサイド2083、セロキサイド2085、セロキサイド8000、エポリードGT401などの脂環式エポキシ、2,2'-((((1-(4-(2-(4-(オキシラン-2-イルメトキシ)フェニル)プロパン-2-イル)フェニル)エタン-1,1-ジイル)ビス(4,1-フェニレン))ビス(オキシ))ビス(メチレン))ビス(オキシラン)(たとえば、Techmore VG3101L((株)プリンテック製))、エポライト100MF(共栄社化学工業(株)製)、エピオールTMP(日油(株)製)などの脂肪族ポリグリシジルエーテル、1,1,3,3,5,5-ヘキサメチル-1,5-ビス(3-(オキシラン-2-イル・メトキシ)プロピル)トリ・シロキサン(たとえば、DMS-E09(ゲレスト社製))等を用いることができる。
 また、たとえばLX-01(ダイソー(株)製)、jER1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(商品名;三菱化学(株)製)などのビスフェノールA型エポキシ樹脂、jER807(商品名;三菱化学(株)製)などのビスフェノールF型エポキシ樹脂、jER152、同154(商品名;三菱化学(株)製)、EPPN201、同202(商品名;日本化薬(株)製)などのフェノールノボラック型エポキシ樹脂、EOCN102、同103S、同104S、1020、1025、1027(商品名;日本化薬(株)製)、jER157S70(商品名;三菱化学(株)製)などのクレゾールノボラック型エポキシ樹脂、アラルダイトCY179、同184(商品名;ハンツマンアドバンスドマテリアル社製)、ERL-4206、4221、4234、4299(商品名;ダウケミカル社製)、エピクロン200、同400(商品名;DIC(株)製)、jER871、同872(商品名;三菱化学(株)製)などの環状脂肪族エポキシ樹脂、Poly[(2-oxiranyl)-1,2-cyclohexanediol]2-ethyl-2-(hydroxymethyl)-1,3-propanediol ether (3:1)等の多官能脂環式エポキシ樹脂、EHPE-3150((株)ダイセル製)を使用することもできる。
 なお、本実施形態における感光性樹脂組成物は、上記において例示したエポキシ化合物を一種または二種以上含むことが可能である。
 架橋剤として用いられるオキセタニル基を有する化合物としては、たとえば1,4-ビス{[(3-エチルー3-オキセタニル)メトキシ]メチル}ベンゼン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4'-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)ジフェノエート、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリ[[3-[(3-エチル-3-オキセタニル)メトキシ]プロピル]シラセスキオキサン]誘導体、オキセタニルシリケート、フェノールノボラック型オキセタン、1,3-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。
 本実施形態において、感光性樹脂組成物中における架橋剤の含有量は、感光性樹脂組成物の固形分全体に対して1質量%以上であることが好ましく、5質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における架橋剤の含有量は、感光性樹脂組成物の固形分全体に対して50質量%以下であることが好ましく、40質量%以下であることがより好ましい。架橋剤の含有量をこのような範囲に調整することにより、感光性樹脂組成物における、反応性と、経時安定性と、のバランスをより効果的に向上させることが可能となる。
 感光性樹脂組成物は、密着助剤を含んでいてもよい。密着助剤は、とくに限定されないが、たとえばアミノシラン、エポキシシラン、アクリルシラン、メルカプトシラン、ビニルシラン、ウレイドシラン、またはスルフィドシラン等のシランカップリング剤を含むことができる。これらは、一種類を単独で用いてもよく、二種類以上を併用してもよい。これらの中でも、他の部材に対する密着性を効果的に向上させる観点からは、エポキシシランを用いることがより好ましい。
 アミノシランとしては、たとえばビス(2―ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ―アミノプロピルトリエトキシシラン、γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルメチルジエトキシシラン、γ―アミノプロピルメチルジメトキシシラン、N―β(アミノエチル)γ―アミノプロピルトリメトキシシラン、N―β(アミノエチル)γ―アミノプロピルトリエトキシシラン、N―β(アミノエチル)γ―アミノプロピルメチルジメトキシシラン、N―β(アミノエチル)γ―アミノプロピルメチルジエトキシシラン、およびN―フェニル-γ―アミノ-プロピルトリメトキシシランが挙げられる。エポキシシランとしては、たとえばγ―グリシドキシプロピルトリメトキシシラン、γ―グリシドキシプロピルメチルジエトキシシラン、γ―グリシドキシプロピルトリエトキシシラン、およびβ―(3、4エポキシシクロヘキシル)エチルトリメトキシシランが挙げられる。アクリルシランとしては、たとえばγ―(メタクリロキシプロピル)トリメトキシシラン、γ―(メタクリロキシプロピル)メチルジメトキシシラン、およびγ―(メタクリロキシプロピル)メチルジエトキシシランが挙げられる。メルカプトシランとしては、たとえばγ―メルカプトプロピルトリメトキシシランが挙げられる。ビニルシランとしては、たとえばビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、およびビニルトリメトキシシランが挙げられる。ウレイドシランとしては、たとえば3-ウレイドプロピルトリエトキシシランが挙げられる。スルフィドシランとしては、たとえばビス(3-(トリエトキシシリル)プロピル)ジスルフィド、およびビス(3-(トリエトキシシリル)プロピル)テトラスルフィドが挙げられる。
 本実施形態において、感光性樹脂組成物中における密着助剤の含有量は、感光性樹脂組成物の固形分全体に対して0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における密着助剤の含有量は、感光性樹脂組成物の固形分全体に対して20質量%以下であることが好ましく、15質量%以下であることがより好ましい。密着助剤の含有量をこのような範囲に調整することにより、感光性樹脂組成物を用いて形成される硬化膜の他の部材に対する密着性を、より効果的に向上させることができる。
 感光性樹脂組成物は、界面活性剤を含んでいてもよい。界面活性剤は、たとえばフッ素基(たとえば、フッ素化アルキル基)もしくはシラノール基を含む化合物、またはシロキサン結合を主骨格とする化合物を含むものである。本実施形態においては、界面活性剤として、フッ素系界面活性剤またはシリコーン系界面活性剤を含むものを用いることがより好ましく、フッ素系界面活性剤を用いることがとくに好ましい。界面活性剤としては、たとえばDIC(株)製のメガファックF-554、F-556、およびF-557等が挙げられるが、これに限定されるものではない。
 本実施形態において、感光性樹脂組成物中における界面活性剤の含有量は、感光性樹脂組成物の固形分全体に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における界面活性剤の含有量は、感光性樹脂組成物の固形分全体に対して3質量%以下であることが好ましく、2質量%以下であることがより好ましい。界面活性剤の含有量をこのような範囲に調整することにより、感光性樹脂組成物の平坦性を効果的に向上させることができる。また、回転塗布の際に、塗布膜上に放射線状のストリエーションが発生することを防止することが可能となる。
 感光性樹脂組成物は、着色剤を含むことができる。着色剤は、とくに限定されないが、たとえばC.I.PR254、C.I.PR177およびC.I.PR224等に例示される赤色顔料、C.I.PG7およびC.I.PG36等に例示される緑色顔料、C.I.PB15:6およびC.I.PB60等に例示される青色顔料、C.I.PY138、C.I.PY139、C.I.PY150、C.I.PY128およびC.I.PY185等に例示される黄色顔料等の有機顔料、カーボン、チタンカーボン、酸化鉄、チタン白、シリカ、タルク、炭酸マグネシウム、炭酸カルシウム、マイカ、水酸化アルミニウム、沈降性炭酸バリウム、酸化クロム、酸化マンガン、および酸化チタン等の無機顔料から選択される一種または二種以上を含むことができる。
 本実施形態において、感光性樹脂組成物中における着色剤の含有量は、感光性樹脂組成物の固形分全体に対して1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが特に好ましい。一方で、感光性樹脂組成物中における着色剤の含有量は、感光性樹脂組成物の固形分全体に対して80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましく、50質量%以下であることが特に好ましい。これにより、感光性樹脂組成物を用いて形成される樹脂膜の現像性や機械特性を向上させつつ、十分な発色性を確保することができる。
 なお、感光性樹脂組成物中には、必要に応じて酸化防止剤、フィラー、増感剤等の添加剤を添加してもよい。酸化防止剤は、たとえばフェノール系酸化防止剤、リン系酸化防止剤およびチオエーテル系酸化防止剤の群から選択される一種または二種以上を含むことができる。フィラーは、たとえばシリカ等の無機充填剤から選択される一種または二種以上を含むことができる。増感剤は、たとえばアントラセン類、キサントン類、アントラキノン類、フェナントレン類、クリセン類、ベンツピレン類、フルオラセン類、ルブレン類、ピレン類、インダンスリーン類およびチオキサンテン-9-オン類の群から選択される一種または二種以上を含むことができる。
 感光性樹脂組成物は、溶媒を含んでいてもよい。この場合、感光性樹脂組成物は、ワニス状となる。溶媒は、たとえばプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル、メチルイソブチルカルビノール(MIBC)、ガンマブチロラクトン(GBL)、N-メチルピロリドン(NMP)、メチルn-アミルケトン(MAK)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、およびベンジルアルコールのうちの一種または二種以上を含むことができる。なお、本実施形態において用いることのできる溶媒は、これらに限定されない。
 本実施形態に係る感光性樹脂組成物は、たとえばポジ型とすることができる。これにより、感光性樹脂組成物を用いて形成される樹脂膜をリソグラフィによってパターニングする際に、微細なパターン形成をさらに容易とすることができる。また、樹脂膜の低誘電率化に寄与することも可能である。また、後述するネガ型の感光性樹脂組成物と比較して、リソグラフィを行う際にPEB(Post Exposure Bake)処理が不要となることから、工程数の削減を図ることもできる。
 感光性樹脂組成物がポジ型である場合には、感光性樹脂組成物は、たとえばポリマー(A)と、感光剤と、を含む。また、ポジ型である感光性樹脂組成物は、ポリマー(A)および感光剤とともに、酸発生剤を含んでいてもよい。これにより、感光性樹脂組成物の硬化性をより効果的に向上させることができる。なお、ポジ型の感光性樹脂組成物は、上記において例示した、ポリマー(A)、感光剤、および酸発生剤以外の各成分をさらに含むことが可能である。
 ポジ型である感光性樹脂組成物を用いて形成される樹脂膜に対するパターニングは、たとえば次のように行うことができる。まず、感光性樹脂組成物の塗布膜をプリベークして得られる樹脂膜に対し、露光処理を行う。次いで、露光された樹脂膜に対し現像液を用いて現像処理を行った後、純水によりリンスを行う。これにより、パターンが形成された樹脂膜が得られることとなる。
 なお、感光性樹脂組成物を用いて永久膜を形成する場合には、たとえばパターニング後の樹脂膜に対してポストベーク処理を行うことができる。ポストベーク処理は、たとえば150℃以上300℃以下の条件で行われる。本実施形態に係る感光性樹脂組成物を用いて永久膜を作製することにより、たとえば230℃以上という高温でのポストベーク処理であっても優れた透明性を有する永久膜を実現することが可能である。これは、後述するネガ型感光性樹脂組成物についても同様である。
 本実施形態に係る感光性樹脂組成物は、たとえばネガ型とすることができる。これにより、感光性樹脂組成物を用いて形成される樹脂膜の透明性や薬液耐性をより効果的に向上させることができる。感光性樹脂組成物がネガ型である場合、感光性樹脂組成物は、たとえばポリマー(A)と、光酸発生剤と、を含む。一方で、ネガ型である感光性樹脂組成物は、感光剤を含まない。なお、ネガ型の感光性樹脂組成物は、上記において例示した、ポリマー(A)、光酸発生剤および感光剤以外の各成分をさらに含むことが可能である。
 ネガ型の感光性樹脂組成物は、例えば、紫外線等の活性光線の照射によりラジカルを発生する光ラジカル重合開始剤を含んでもよい。
 光ラジカル重合開始剤としては、アルキルフェノン型の開始剤、オキシムエステル型の開始剤、アシルフォスフィンオキサイド型の重合開始剤等が挙げられる。
 例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム) ]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等が挙げられ、これらのうち、いずれか1種以上を使用することができる。
 ネガ型の感光性樹脂組成物において、光ラジカル重合開始剤は、ポリマー(A)を100質量部に対し、5~20質量部であることが好ましく、さらには、8~15質量部であることが好ましい。
 ネガ型の感光性樹脂組成物は、ラジカル重合開始剤により、ポリマー(A)と架橋する第一の架橋剤を含んでもよい。
 第一の架橋剤は、2以上の(メタ)アクリロイル基を有する多官能アクリル化合物であることが好ましい。
 なかでも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の四官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の六官能(メタ)アクリレートがあげられ、これらのうちいずれか1以上を使用することが好ましい。
 このような多官能アクリル化合物を使用することで、ラジカル重合開始剤で発生するラジカルにより、多官能アクリル化合物と、ポリマー(A)とを架橋することができるとともに、多官能アクリル化合物同士も架橋することができる。これにより、ネガ型の感光性樹脂組成物により、耐薬品性の高い膜を形成することができる。
 ネガ型の感光性樹脂組成物において、第一の架橋剤は、ポリマー(A)を100質量部に対し、50~70質量部であることが好ましく、さらには、55~65質量部であることが好ましい。
 ネガ型の感光性樹脂組成物は、第一の架橋剤とは異なる第二の架橋剤を含んでいてもよい。この第二の架橋剤は熱により、ポリマー(A)と架橋するものである。
 この第二の架橋剤は、反応性基として、環状エーテル基を有する化合物が好ましく、なかでも、グリシジル基あるいはオキセタニル基を有する化合物が好ましい。このような第二の架橋剤を使用することで、ネガ型の感光性樹脂組成物で構成される膜の耐薬品性を向上させることができる。
 グリシジル基を有する化合物としては、例えば、前述した架橋剤として用いられるグリシジル基を有する化合物と同様のものを挙げることができる。
 また、オキセタニル基を有する化合物としては、例えば、前述した架橋剤として用いられるオキセタニル基を有する化合物と同様のものを挙げることができる。
 ネガ型の感光性樹脂組成物において、第二の架橋剤は、ポリマー(A)を100質量部に対し、10~30質量部であることが好ましく、さらには、15~25質量部であることが好ましい。
 ネガ型である感光性樹脂組成物を用いて形成される樹脂膜に対するパターニングは、たとえば次のように行うことができる。まず、感光性樹脂組成物の塗布膜をプリベークして得られる樹脂膜に対し、露光処理を行う。次いで、必要に応じて露光された樹脂膜に対しPEB(Post Exposure Bake)処理を行う。PEBの条件は、とくに限定されないが、たとえば100~150℃、120秒とすることができる。次いで、PEB処理が行われた樹脂膜に対し現像液を用いて現像処理を行った後、純水によりリンスを行う。これにより、パターンが形成された樹脂膜が得られることとなる。
(電子装置)
 次に、本実施形態に係る電子装置100について説明する。
 電子装置100は、たとえば上述の感光性樹脂組成物により形成される永久膜である絶縁膜20を備える。本実施形態に係る電子装置100は、感光性樹脂組成物により形成される絶縁膜を備えるものであればとくに限定されないが、たとえば絶縁膜20を平坦化膜やカラーフィルタ、マイクロレンズとして有する表示装置や、絶縁膜20を層間絶縁膜として用いた多層配線構造を備える半導体装置等が挙げられる。
 図1は、電子装置100の一例を示す断面図である。
 図1においては、電子装置100が液晶表示装置であり、絶縁膜20が平坦化膜として用いられる場合が例示されている。図1に示す電子装置100は、たとえば基板10と、基板10上に設けられたトランジスタ30と、トランジスタ30を覆うように基板10上に設けられた絶縁膜20と、絶縁膜20上に設けられた配線40と、を備えている。
 基板10は、たとえばガラス基板である。トランジスタ30は、たとえば液晶表示装置のスイッチング素子を構成する薄膜トランジスタである。基板10上には、たとえば複数のトランジスタ30がアレイ状に配列されている。図1に示すトランジスタ30は、たとえばゲート電極31と、ソース電極32と、ドレイン電極33と、ゲート絶縁膜34と、半導体層35と、により構成される。ゲート電極31は、たとえば基板10上に設けられている。ゲート絶縁膜34は、ゲート電極31を覆うように基板10上に設けられる。半導体層35は、ゲート絶縁膜34上に設けられている。また、半導体層35は、たとえばシリコン層である。ソース電極32は、一部が半導体層35と接触するよう基板10上に設けられる。ドレイン電極33は、ソース電極32と離間し、かつ一部が半導体層35と接触するよう基板10上に設けられる。
 絶縁膜20は、トランジスタ30等に起因する段差をなくし、基板10上に平坦な表面を形成するための平坦化膜として機能する。また、絶縁膜20は、上述の感光性樹脂組成物の硬化物により構成される。絶縁膜20には、ドレイン電極33に接続するよう絶縁膜20を貫通する開口22が設けられている。
 絶縁膜20上および開口22内には、ドレイン電極33と接続する配線40が形成されている。配線40は、液晶とともに画素を構成する画素電極として機能する。
 また、絶縁膜20上には、配線40を覆うように配向膜90が設けられている。
 基板10のうちトランジスタ30が設けられている一面の上方には、基板10と対向するよう対向基板12が配置される。対向基板12のうち基板10と対向する一面には、配線42が設けられている。配線42は、配線40と対向する位置に設けられる。また、対向基板12の上記一面上には、配線42を覆うように配向膜92が設けられている。
 基板10と当該対向基板12との間には、液晶層14を構成する液晶が充填される。
 図1に示す電子装置100は、たとえば次のように形成することができる。
 まず、基板10上にトランジスタ30を形成する。次いで、基板10のうちトランジスタ30が設けられた一面上に、印刷法あるいはスピンコート法により上記感光性樹脂組成物を塗布し、トランジスタ30を覆う絶縁膜20を形成する。次いで、絶縁膜20に対してリソグラフィ処理を行い、絶縁膜20をパターニングする。これにより、絶縁膜20の一部に開口22を形成する。次いで、絶縁膜20を加熱硬化させる。これにより、基板10上に、平坦化膜である絶縁膜20が形成されることとなる。
 次いで、絶縁膜20の開口22内に、ドレイン電極33に接続された配線40を形成する。その後、絶縁膜20上に対向基板12を配置し、対向基板12と絶縁膜20との間に液晶を充填し、液晶層14を形成する。
 これにより、図1に示す電子装置100が形成されることとなる。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 次に、本発明の実施例について説明する。
(ポリマーの製造)
(実施例1)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(735g、7.5mol)、2-ノルボルネン(706g、7.5mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(69g、0.3mol)を計量し、メチルエチルケトンおよびトルエンに溶解させた。この溶解液に対して、窒素バブリングにより系内の溶存酸素を除去した後、撹拌しつつ60℃、15時間の条件で熱処理を施した。これにより、2-ノルボルネンと無水マレイン酸の共重合体を得た。次いで、室温まで冷却した上記溶解液を大量のメタノールを用いて再沈させた後、析出物をろ取し、真空乾燥機にて乾燥させ、1100gの白色固体を得た。この白色固体400gをブタノール(1600g)と混合して懸濁液とし、酸性触媒および塩基性触媒は添加せずに、110℃、24時間の条件で撹拌した。これにより、上記共重合体中に存在する無水マレイン酸由来の無水環を開環させた。その後、PGMEAを添加し、系内のブタノールを残留量1%未満となるまで減圧留去した。これにより、固形分20質量%のポリマー溶液1100gを得た(GPC Mw=13100、Mn=6860)。アルカリ溶解速度は8,400Å/秒であった。また、得られたポリマーは、式(3a)により示される構造単位と、式(3b)により示される構造単位と、を含む共重合体であった。また、当該共重合体は、式(4a)により示される構造単位、および式(4c)により示される構造単位を含んでいた。
(実施例2)
 開環反応に使用するブタノールの量を2400gとした以外は実施例1と同様の手順によりポリマー溶液を得た。Mw=12,350、Mn=7,220。アルカリ溶解速度は12,000Å/秒であった。また、得られたポリマーは、式(3a)により示される構造単位と、式(3b)により示される構造単位と、を含む共重合体であった。また、当該共重合体は、式(4a)により示される構造単位、および式(4c)により示される構造単位を含んでいた。
(実施例3)
 実施例1と同様の手順で合成した2-ノルボルネンと無水マレイン酸の共重合体5.0gとベンジルアルコール25.0gとを混合して懸濁液とし、酸性触媒および塩基性触媒は添加せずに、100℃、12時間の条件で撹拌した。これにより、上記共重合体中に存在する無水マレイン酸由来の無水環を開環させた。その後、PGMEAを添加し、系内のベンジルアルコールを残留量1%未満となるまで減圧留去した。これにより、固形分20質量%のポリマー溶液17gを得た(GPC Mw=10400、Mn=4590)。アルカリ溶解速度は11,800Å/秒であった。
(実施例4)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(39.2g、0.4mol)、(3-エチルオキセタン-3-イル)メチルビシクロ[2.1.1]ヘプト-5-エン-2-カルボキシレート(94.4g、0.4mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(9.2g)を計量し、メチルエチルケトンおよびトルエンに溶解させた。この溶解液に対して、窒素バブリングにより系内の溶存酸素を除去した後、撹拌しつつ60℃、15時間の条件で熱処理を施した。これにより、(3-エチルオキセタン-3-イル)メチルビシクロ[2.1.1]ヘプト-5-エン-2-カルボキシレートと無水マレイン酸の共重合体を得た。次いで、室温まで冷却した上記溶解液を大量のメタノールを用いて再沈させた後、これにより析出された析出物を洗浄した。真空乾燥機にて24時間乾燥させ、62gの白色固体を得た。この白色固体30gをブタノール(150g)と混合して懸濁液とし、酸性触媒および塩基性触媒は添加せずに、115℃、24時間の条件で撹拌した。系内を50℃まで冷却し、アセトン30gを添加した。次いで、室温まで冷却した溶解液を大量のヘプタンを用いて再沈させた後、析出物を洗浄、ろ取した。真空乾燥機にて乾燥させ、32gのポリマーを得た(GPC Mw=7600、Mn=4500)。アルカリ溶解速度は4,800Å/秒であった。
 また、得られたポリマーをPGMEAに溶解し、固形分35質量%のポリマー溶液を得た。次いで、PGMEAによりポリマー溶液の濃度を固形分20質量%に調整した。
(実施例5)
 実施例1と同様の手順で合成した2-ノルボルネンと無水マレイン酸の共重合体10.0gと4-ヒドロキシブチルアクリレート37g、ヒドロキノン0.5gとを混合して懸濁液とし、酸性触媒および塩基性触媒は添加せずに、80℃、20時間の条件で撹拌した。その後、大量の純水にて再沈したのち、真空乾燥機で乾燥させ、ポリマー12gを得た(GPC Mw=20670、Mn=7940)。アルカリ溶解速度は16,500Å/秒であった。
 また、得られたポリマーをPGMEAに溶解し、固形分20質量%のポリマー溶液を得た。
(実施例6)
 実施例1と同様の手順で合成した2-ノルボルネンと無水マレイン酸の共重合体40.0gとメタノール8.0g、ブタノール152gとを混合して懸濁液とし、酸性触媒および塩基性触媒は添加せずに、100℃、12時間の条件で撹拌した。これにより、上記共重合体中に存在する無水マレイン酸由来の無水環を開環させた。その後、PGMEAを添加し、系内のメタノール及びブタノールを残留量1%未満となるまで減圧留去した。これにより、固形分35質量%のポリマー溶液132gを得た(GPC Mw=11400、Mn=5400)。アルカリ溶解速度は14,000Å/秒であった。次いで、PGMEAによりポリマー溶液の濃度を固形分20質量%に調整した。
(比較例1)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(MA、122.4g、1.25mol)、2-ノルボルネン(NB、117.6g、1.25mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(11.5g、50.0mmol)を計量し、メチルエチルケトン(MEK、150.8g)およびトルエン(77.7g)に溶解させた。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃、16時間、加熱した。その後、この溶解液に対してMEK(320g)を加えた後、水酸化ナトリウム(12.5g、0.31mol)、ブタノール(463.1g、6.25mol)、トルエン(480g)の懸濁液に加え、45℃で3時間混合した。そして、この混合液を40℃まで冷却し、ギ酸(88質量%水溶液、49.0g、0.94mol)で処理してプロトン付加し、その後、MEKおよび水を加え、水層を分離することで、無機残留物を除去した。次いで、メタノール、ヘキサンを加え有機層を分離することで未反応モノマーを除去した。さらにPGMEAを添加し、系内のメタノール及びブタノールを残留量1%未満となるまで減圧留去した。これにより、固形分20質量%のポリマー溶液1107.7gを得た(GPC Mw=13,700、Mn=7,030)。
(比較例2)
 実施例1と同様の手順で合成した2-ノルボルネンと無水マレイン酸の共重合体5.0gをTHF150gに溶解させ、ブタノール20g、濃硫酸0.5gを添加した。還流状態で8時間反応させたのち、大量の純水で再沈した。真空乾燥機で乾燥させ5.1gのポリマーを得た(GPC Mw=9,700、Mn=4,170)。
 また、得られたポリマーをPGMEAに溶解し、固形分20質量%のポリマー溶液を得た。
(溶解速度)
 各実施例および各比較例について、得られたポリマーの溶解速度を次のようにして測定した。まず、上記で得られたポリマー溶液を、シリコンウェハ上にスピン方式で塗布した後、110℃、100秒の条件で熱処理して、膜厚Hが3.0μmのポリマー膜を得た。次いで、このポリマー膜を23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的にポリマー膜が消去するまでの時間Tを測定した。次いで、これにより得られた測定値に基づいて、膜厚H/時間Tを溶解速度(Å/秒)として算出した。結果を表1に示す。
(透過率)
 各実施例および各比較例について、得られたポリマーの透過率を測定した。測定は、上記で得られた固形分20質量%のポリマー溶液を光路幅1cmのガラスセルに入れ、紫外-可視光分光光度計を用いて、波長400nmの光に対する透過率(%)を測定することにより行った。結果を表1に示す。
(感光性樹脂組成物の透明性評価)
 実施例1~4、6および比較例1~2について、得られたポリマーを用いて製造される感光性樹脂組成物の透明性評価を次のようにして行った。まず、上記で得られたポリマー100質量部と、光酸発生剤(CPI-210S、サンアプロ(株)製)5質量部と、エポキシ化合物(エポライト100MF、共栄社化学工業(株)製)50質量部と、密着助剤(KBM-403、信越シリコーン(株)製)5質量部と、界面活性剤(F-557、DIC(株)製)1質量部と、を溶剤(プロピレングリコールモノメチルエーテルアセテート)に固形分25質量%となるように溶解させた。次いで、この溶解液を0.2μmのPTFEフィルターで濾過して、感光性樹脂組成物を調製した。
 次いで、上記感光性樹脂組成物を、縦100mm、横100mmサイズのコーニング社製1737ガラス基板に回転塗布(回転数500rpm)した後、100℃、120秒間ホットプレートにて熱処理を施すことにより、膜厚10μmの薄膜を得た。次いで、上記薄膜を、キヤノン(株)製g+h+i線マスクアライナー(PLA-501F)を用いて50秒間全面露光した。次いで、露光後の上記薄膜を120℃、120秒間の条件でホットプレートにてベークした。次いで、上記薄膜を、0.5質量%水酸化テトラメチルアンモニウム水溶液を用いて23℃、60秒間現像した後、純水でリンスした。次いで、オーブン中で60分間加熱することによりポストベーク処理を行い、パターンのない薄膜からなるサンプルをガラス基板上に得た。ここでは、ポストベーク処理の温度が230℃、250℃である2つのサンプルを作製した。次いで、これらの各サンプルについて、光の波長400nmにおける透過率(%)を、紫外-可視光分光光度計を用いて測定した。結果を表1に示す。
 実施例5について、得られたポリマーを用いて製造される感光性樹脂組成物の透明性評価を次のようにして行った。
 まず、実施例5で得られたポリマー100質量部と、光重合開始剤(IRGACURE OXE-02、BASF製)10質量部と、密着助剤(KBM-403、信越シリコーン(株)製)5質量部と、界面活性剤(F-557、DIC(株)製)1質量部と、を溶剤(プロピレングリコールモノメチルエーテルアセテート)に固形分40質量%となるように溶解させた。次いで、この溶解液を0.2μmのPTFEフィルターで濾過して、感光性樹脂組成物を調製した。
 次いで、上記感光性樹脂組成物を、縦100mm、横100mmサイズのコーニング社製1737ガラス基板に回転塗布(回転数500rpm)した後、100℃、120秒間ホットプレートにて熱処理を施すことにより、膜厚10μmの薄膜を得た。次いで、上記薄膜を、キヤノン(株)製g+h+i線マスクアライナー(PLA-501F)を用いて50秒間全面露光した。次いで、上記薄膜を、0.5質量%水酸化テトラメチルアンモニウム水溶液を用いて23℃、60秒間現像した後、純水でリンスした。次いで、オーブン中で30間加熱することによりポストベーク処理を行い、パターンのない薄膜からなるサンプルをガラス基板上に得た。ここでは、ポストベーク処理の温度が230℃、250℃である2つのサンプルを作製した。次いで、これらの各サンプルについて、光の波長400nmにおける透過率(%)を、紫外-可視光分光光度計を用いて測定した。結果を表1に示す。
(感光性樹脂組成物の経時安定性評価)
 実施例1~6および比較例1~2について、得られたポリマーを用いて製造される感光性樹脂組成物の経時安定性評価を次のようにして行った。
 まず、実施例1~4、6および比較例1~2については以下のように感光性樹脂組成物を調製した。上記で得られたポリマー100質量部と、架橋剤としてプリンテック(株)製VG3101Lを40質量部と、ダイソー(株)製LX-01を15質量部と、感光剤としてダイトーケミックス製PA-28を20質量部と、界面活性剤としてDIC社製F-556を0.5質量部とを固形分50質量%となるようにプロピレングリコールモノメチルエーテルアセテートに溶解させた。次いで、この溶解液を0.2μmのPTFEフィルターで濾過して、ワニス状の感光性樹脂組成物を調製した。
 また、実施例5については、以下のように感光性樹脂組成物を調製した。
 実施例5で得られたポリマー100質量部と、光重合開始剤(IRGACURE OXE-02、BASF社製)10質量部と、密着助剤(KBM-403、信越シリコーン(株)製)5質量部と、界面活性剤(F-557、DIC(株)製)1質量部と、を溶剤(プロピレングリコールモノメチルエーテルアセテート)に固形分50質量%となるよう溶解させた。次いで、この溶解液を0.2μmのPTFEフィルターで濾過して、ワニス状の感光性樹脂組成物を調製した。
 次いで、調製直後における上記感光性樹脂組成物の25℃における粘度を、E型粘度計を用いて測定し、これを初期粘度ηとした。また、調製直後の上記感光性樹脂組成物を入れた密閉容器を気温30±1℃で7日間保管し、保管後の感光性樹脂組成物の25℃における粘度を測定して、これを粘度ηとした。そして、これらの測定結果から、粘度変化率η/η×100を算出した。ここでは、粘度変化率が150%以下であるものを○とし、粘度変化率が150%超過であるものを×として、経時安定性評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000023
 各実施例では、ポリマー(A)の製造において、酸性触媒および塩基性触媒を使用せずに無水環を開環する工程が行われている。このような実施例においては、ポリマー(A)含む感光性樹脂組成物を用いて形成された硬化膜の透明性について、比較例と比較して良好な結果が得られていることが分かる。また、ポリマー(A)含む感光性樹脂組成物の経時安定性についても良好な結果が得られた。また、いずれの実施例においても、ポリマー(A)を含む感光性樹脂組成物を塗布して得られる樹脂膜について、露光および現像を行うことによって良好なパターン形成が可能であった。
 この出願は、2015年4月30日に出願された日本出願特願2015-093036号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (7)

  1.  ノルボルネン型モノマーと、無水マレイン酸と、を重合させて共重合体を得る工程と、
     酸性触媒および塩基性触媒を添加せずに、下記式(1)で示される化合物を添加した前記共重合体に対して第1加熱処理を行い、前記共重合体中に存在する無水マレイン酸由来の無水環を開環させる工程と、
     を備えるポリマーの製造方法。
    Figure JPOXMLDOC01-appb-I000001
    (式(1)中、Rは、水素原子または酸素原子を含んでいてもよい炭素数1~18の炭化水素基である)
  2.  請求項1に記載のポリマーの製造方法において、
     前記ノルボルネン型モノマーは、下記式(2)で表されるポリマーの製造方法。
    Figure JPOXMLDOC01-appb-I000002
    (nは0、1または2である。R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である)
  3.  請求項1または2に記載のポリマーの製造方法において、
     無水環を開環させる前記工程後に得られる前記共重合体について、以下の測定方法により算出される溶解速度が1000Å/秒以上であるポリマーの製造方法。
    <測定方法>
     まず、無水環を開環させる前記工程後の前記共重合体を、プロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分20質量%に調整したポリマー溶液を得る。次いで、前記ポリマー溶液をシリコンウェハ上にスピン方式で塗布した後、110℃、100秒の条件で熱処理して、膜厚Hが3μmのポリマー膜を得る。次いで、前記ポリマー膜を23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的に前記ポリマー膜が消去するまでの時間Tを測定する。次いで、これにより得られた測定値に基づいて、膜厚H/時間Tを前記溶解速度として算出する。
  4.  請求項1~3いずれか一項に記載のポリマーの製造方法において、
     前記第1加熱処理は、30℃以上200℃以下の条件で行われるポリマーの製造方法。
  5.  請求項1~4いずれか一項に記載のポリマーの製造方法において、
     前記無水環を開環させる前記工程の後において、前記共重合体に対して第2加熱処理する工程をさらに含むポリマーの製造方法。
  6.  下記式(3a)により示される構造単位および下記式(3b)により示される構造単位を含むポリマーを備える感光性樹脂組成物であって、
     前記ポリマーの波長400nmの光に対する透過率が40%以上であり、
     以下の条件により測定される粘度変化率が150%以下である感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000003
    (式(3a)中、nは0、1または2である。R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である。式(3b)中、Aは下記式(4a)、(4b)、(4c)または(4d)により示される構造単位である) 
    Figure JPOXMLDOC01-appb-I000004
    (上記式(4a)、(4b)中、R、RおよびRはそれぞれ独立して酸素原子を含んでいてもよい炭素数1~18の炭化水素基である)
    <条件>
     前記感光性樹脂組成物を固形分50質量%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温30±1℃で7日間保管した後の25℃における粘度をηとして、η/η×100を粘度変化率とする。
  7.  請求項6に記載の感光性樹脂組成物の硬化膜を備える電子装置。
PCT/JP2016/062535 2015-04-30 2016-04-20 ポリマーの製造方法、感光性樹脂組成物および電子装置 WO2016175103A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017515503A JP6677247B2 (ja) 2015-04-30 2016-04-20 ポリマーの製造方法
CN201680025916.XA CN107531824B (zh) 2015-04-30 2016-04-20 聚合物的制造方法、感光性树脂组合物和电子装置
KR1020177033737A KR101914409B1 (ko) 2015-04-30 2016-04-20 폴리머의 제조 방법, 감광성 수지 조성물 및 전자 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-093036 2015-04-30
JP2015093036 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016175103A1 true WO2016175103A1 (ja) 2016-11-03

Family

ID=57199829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062535 WO2016175103A1 (ja) 2015-04-30 2016-04-20 ポリマーの製造方法、感光性樹脂組成物および電子装置

Country Status (5)

Country Link
JP (1) JP6677247B2 (ja)
KR (1) KR101914409B1 (ja)
CN (1) CN107531824B (ja)
TW (1) TWI695850B (ja)
WO (1) WO2016175103A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057260A (ja) * 2015-09-15 2017-03-23 住友ベークライト株式会社 ポリマー、ポジ型感光性樹脂組成物、ネガ型感光性樹脂組成物、樹脂膜および電子装置
JP6332583B1 (ja) * 2017-01-10 2018-05-30 住友ベークライト株式会社 ネガ型感光性樹脂組成物、樹脂膜及び電子装置
WO2018131351A1 (ja) * 2017-01-10 2018-07-19 住友ベークライト株式会社 ネガ型感光性樹脂組成物、樹脂膜及び電子装置
US20180284609A1 (en) * 2017-03-28 2018-10-04 Promerus, Llc Photosensitive compositions, color filter and microlens derived therefrom
JP2019137762A (ja) * 2018-02-09 2019-08-22 住友ベークライト株式会社 ポリマー、感光性樹脂組成物、感光性樹脂膜、パターン、有機エレクトロルミネッセンス素子、パターンを備えた基板の製造方法およびポリマーの製造方法
TWI678596B (zh) * 2018-09-13 2019-12-01 新應材股份有限公司 正型光阻組成物及圖案化聚醯亞胺層之形成方法
WO2021075450A1 (ja) * 2019-10-16 2021-04-22 住友ベークライト株式会社 ポリマーおよび樹脂組成物
US11442364B2 (en) * 2018-06-28 2022-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Materials and methods for forming resist bottom layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139669A (ja) * 1999-11-10 2001-05-22 Jsr Corp 硬化剤、熱硬化性樹脂組成物、およびその硬化物
JP2002047317A (ja) * 2000-06-21 2002-02-12 Hynix Semiconductor Inc フォトレジスト重合体、フォトレジスト重合体の製造方法、重合体、フォトレジスト組成物、フォトレジストパターン形成方法、及び半導体素子
JP2002327021A (ja) * 2001-04-23 2002-11-15 Korea Kumho Petrochem Co Ltd 新規な感酸性重合体及びこれを含有するレジスト組成物
JP2014520935A (ja) * 2011-07-14 2014-08-25 住友ベークライト株式会社 自己現像層形成ポリマーおよびその組成物
JP5673880B1 (ja) * 2014-05-26 2015-02-18 住友ベークライト株式会社 感光性樹脂組成物、電子装置、および電子装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647379B1 (ko) * 1999-07-30 2006-11-17 주식회사 하이닉스반도체 신규의 포토레지스트용 단량체, 그의 공중합체 및 이를 이용한포토레지스트 조성물
KR20030072869A (ko) * 2002-03-07 2003-09-19 삼성전자주식회사 3-알콕시아크릴로니트릴의 공중합체를 포함하는 감광성폴리머 및 이를 이용한 레지스트 조성물
KR101050619B1 (ko) * 2005-02-18 2011-07-19 삼성전자주식회사 포토레지스트용 노르보넨 중합체 및 그를 포함하는 포토레지스트 조성물
JP6028580B2 (ja) * 2013-01-15 2016-11-16 住友ベークライト株式会社 ポリマーの製造方法
JP6065750B2 (ja) * 2013-05-29 2017-01-25 住友ベークライト株式会社 感光性樹脂組成物および電子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139669A (ja) * 1999-11-10 2001-05-22 Jsr Corp 硬化剤、熱硬化性樹脂組成物、およびその硬化物
JP2002047317A (ja) * 2000-06-21 2002-02-12 Hynix Semiconductor Inc フォトレジスト重合体、フォトレジスト重合体の製造方法、重合体、フォトレジスト組成物、フォトレジストパターン形成方法、及び半導体素子
JP2002327021A (ja) * 2001-04-23 2002-11-15 Korea Kumho Petrochem Co Ltd 新規な感酸性重合体及びこれを含有するレジスト組成物
JP2014520935A (ja) * 2011-07-14 2014-08-25 住友ベークライト株式会社 自己現像層形成ポリマーおよびその組成物
JP5673880B1 (ja) * 2014-05-26 2015-02-18 住友ベークライト株式会社 感光性樹脂組成物、電子装置、および電子装置の製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057260A (ja) * 2015-09-15 2017-03-23 住友ベークライト株式会社 ポリマー、ポジ型感光性樹脂組成物、ネガ型感光性樹脂組成物、樹脂膜および電子装置
KR20190101460A (ko) * 2017-01-10 2019-08-30 스미또모 베이크라이트 가부시키가이샤 네거티브형 감광성 수지 조성물, 수지막 및 전자 장치
JP6332583B1 (ja) * 2017-01-10 2018-05-30 住友ベークライト株式会社 ネガ型感光性樹脂組成物、樹脂膜及び電子装置
WO2018131351A1 (ja) * 2017-01-10 2018-07-19 住友ベークライト株式会社 ネガ型感光性樹脂組成物、樹脂膜及び電子装置
KR102614402B1 (ko) 2017-01-10 2023-12-15 스미또모 베이크라이트 가부시키가이샤 네거티브형 감광성 수지 조성물, 수지막 및 전자 장치
CN110178085B (zh) * 2017-01-10 2022-10-21 住友电木株式会社 负型感光性树脂组合物、树脂膜和电子装置
CN110178085A (zh) * 2017-01-10 2019-08-27 住友电木株式会社 负型感光性树脂组合物、树脂膜和电子装置
JP7051893B2 (ja) 2017-03-28 2022-04-11 プロメラス, エルエルシー 感光性組成物、カラーフィルタ及びそれに由来するマイクロレンズ
JP2020515893A (ja) * 2017-03-28 2020-05-28 プロメラス, エルエルシー 感光性組成物、カラーフィルタ及びそれに由来するマイクロレンズ
US10915019B2 (en) 2017-03-28 2021-02-09 Promerus, Llc Photosensitive compositions, color filter and microlens derived therefrom
US20180284609A1 (en) * 2017-03-28 2018-10-04 Promerus, Llc Photosensitive compositions, color filter and microlens derived therefrom
TWI732111B (zh) * 2017-03-28 2021-07-01 日商住友電木股份有限公司 感光性組成物、彩色濾光片及由其衍生之微透鏡
CN110462512B (zh) * 2017-03-28 2021-07-06 住友电木株式会社 感光性组合物、彩色滤光片及由其衍生的微透镜
CN110462512A (zh) * 2017-03-28 2019-11-15 普罗米鲁斯有限责任公司 感光性组合物、彩色滤光片及由其衍生的微透镜
WO2018183413A1 (en) * 2017-03-28 2018-10-04 Promerus, Llc Photosensitive compositions, color filter and microlens derived therefrom
JP2019137762A (ja) * 2018-02-09 2019-08-22 住友ベークライト株式会社 ポリマー、感光性樹脂組成物、感光性樹脂膜、パターン、有機エレクトロルミネッセンス素子、パターンを備えた基板の製造方法およびポリマーの製造方法
US11442364B2 (en) * 2018-06-28 2022-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Materials and methods for forming resist bottom layer
US11703766B2 (en) 2018-06-28 2023-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Materials and methods for forming resist bottom layer
TWI678596B (zh) * 2018-09-13 2019-12-01 新應材股份有限公司 正型光阻組成物及圖案化聚醯亞胺層之形成方法
US11609496B2 (en) 2018-09-13 2023-03-21 Echem Solutions Corp. Method of forming patterned polyimide layer
JP2022008256A (ja) * 2019-10-16 2022-01-13 住友ベークライト株式会社 ポリマーおよび樹脂組成物
CN114599686A (zh) * 2019-10-16 2022-06-07 住友电木株式会社 聚合物及树脂组合物
JP7081712B2 (ja) 2019-10-16 2022-06-07 住友ベークライト株式会社 ポリマーおよび樹脂組成物
JP7006837B2 (ja) 2019-10-16 2022-01-24 住友ベークライト株式会社 ポリマーの製造方法
JPWO2021075450A1 (ja) * 2019-10-16 2021-11-04 住友ベークライト株式会社 ポリマーの製造方法、ポリマーおよび樹脂組成物
WO2021075450A1 (ja) * 2019-10-16 2021-04-22 住友ベークライト株式会社 ポリマーおよび樹脂組成物

Also Published As

Publication number Publication date
KR101914409B1 (ko) 2018-11-01
TW201708284A (zh) 2017-03-01
TWI695850B (zh) 2020-06-11
JPWO2016175103A1 (ja) 2018-02-22
CN107531824A (zh) 2018-01-02
KR20170140307A (ko) 2017-12-20
JP6677247B2 (ja) 2020-04-08
CN107531824B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6677247B2 (ja) ポリマーの製造方法
WO2015141527A1 (ja) 感光性樹脂組成物および電子装置
JP2015007762A (ja) ネガ型感光性樹脂組成物、電子装置およびポリマー
WO2018131351A1 (ja) ネガ型感光性樹脂組成物、樹脂膜及び電子装置
JP6624049B2 (ja) ポリマー、感光性樹脂組成物および電子装置
JP2018115337A (ja) ポリマー、感光性樹脂組成物および電子装置
JP6459192B2 (ja) 感光性樹脂組成物
JP6720480B2 (ja) ポリマー、感光性樹脂組成物、樹脂膜および電子装置
WO2015141525A1 (ja) 感光性樹脂組成物、および電子装置
JP2015182957A (ja) 化合物、および感光性樹脂組成物
JP6558479B2 (ja) ポリマー、および感光性樹脂組成物
JP6772443B2 (ja) ポリマーの製造方法、ポリマー、感光性樹脂組成物、樹脂膜および電子装置
JP2017044860A (ja) ポジ型感光性樹脂組成物、硬化膜および電子装置
JP7180189B2 (ja) 感光性樹脂組成物、構造体、光学部品および光学部品の製造方法
WO2015141526A1 (ja) ポリマー、感光性樹脂組成物および電子装置
JP6710903B2 (ja) 感光性樹脂組成物
JP2019095581A (ja) 感光性樹脂組成物、感光性樹脂組成物溶液および電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033737

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16786380

Country of ref document: EP

Kind code of ref document: A1