WO2016166862A1 - 食品洗浄装置 - Google Patents

食品洗浄装置 Download PDF

Info

Publication number
WO2016166862A1
WO2016166862A1 PCT/JP2015/061686 JP2015061686W WO2016166862A1 WO 2016166862 A1 WO2016166862 A1 WO 2016166862A1 JP 2015061686 W JP2015061686 W JP 2015061686W WO 2016166862 A1 WO2016166862 A1 WO 2016166862A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
electrolyzed water
food
chlorine concentration
effective chlorine
Prior art date
Application number
PCT/JP2015/061686
Other languages
English (en)
French (fr)
Inventor
喜智 大野
鈴木 正喜
Original Assignee
大和ハウス工業株式会社
株式会社ホクエツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和ハウス工業株式会社, 株式会社ホクエツ filed Critical 大和ハウス工業株式会社
Priority to PCT/JP2015/061686 priority Critical patent/WO2016166862A1/ja
Priority to JP2017512146A priority patent/JP6650926B2/ja
Priority to CN201580078812.0A priority patent/CN107529811B/zh
Priority to TW105111834A priority patent/TW201701774A/zh
Publication of WO2016166862A1 publication Critical patent/WO2016166862A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/02Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for washing or blanching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • the present invention relates to a food washing apparatus for washing food that is fruit and vegetables using electrolyzed water.
  • electrolyzed water having a bactericidal action has been used to remove organic substances (dirt, bacteria) adhering to the surface of fruits and vegetables.
  • the electrolyzed water is, for example, electrolyzed hypochlorite produced by electrolyzing about 0.1 to 1% of diluted saline in an electrolyzed membrane cell.
  • Patent Document 1 proposes to generate strongly acidic electrolyzed water adjusted to a predetermined pH (hydrogen ion index) as sterilizing water.
  • Patent Document 2 proposes a chlorine concentration indicator that displays the effective chlorine concentration of the sterilizing water generated by the sterilizing water generator.
  • the chlorine concentration indicator is realized by mounting a cartridge portion containing a potassium iodide starch test paper on a head portion of a supply path. Since the color of the test paper changes according to the chlorine concentration, the effective chlorine concentration of the sterilizing water can be determined by comparing the discolored color with the color of the standard solution.
  • Patent Document 2 when it is desired to determine the effective chlorine concentration of the electrolyzed water, it is necessary to bother to mount the cartridge part, which is troublesome.
  • the food hygiene can be improved by washing the food with electrolyzed water, but the degree of contamination varies depending on the individual food. Therefore, in the food washing apparatus, when washing food with electrolyzed water, it is difficult to determine at what timing the washing should be completed because the degree of progress of the washing (progress status) is not known.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a food washing apparatus capable of determining the degree of washing progress with a simple configuration.
  • a food cleaning apparatus is a cleaning apparatus that cleans food using electrolytic water, stores a food as an object to be cleaned and is supplied with electrolytic water, and a food cleaning period And a measurement container into which the electrolyzed water that has flowed out of the washing tank flows, so that the progress of the cleaning can be determined according to the degree of decrease in the effective chlorine concentration of the electrolyzed water accumulated in the measurement container.
  • the food washing apparatus further includes an adding means for adding a predetermined liquid to the electrolyzed water in the measurement container.
  • the food cleaning device includes a measuring unit that measures the effective chlorine concentration of the electrolyzed water in the measurement container, and a determination unit that determines the progress of the cleaning based on the effective chlorine concentration of the electrolyzed water measured by the measuring unit. And further comprising.
  • the measurement means is attached to the measurement container, and detects the light transmittance of the electrolyzed water having discolored in the measurement container, and converts the output value from the light detection means into an effective chlorine concentration. Conversion processing means.
  • the food washing apparatus further includes storage means for previously storing correspondence information in which a voltage value or current value that can be output from the light detection means is associated with an effective chlorine concentration, and the conversion processing means is the storage means.
  • the output value from the light detection means is converted into an effective chlorine concentration based on the correspondence information stored in the above.
  • the food cleaning apparatus further includes a cleaning processing means for cleaning the food by repeatedly supplying and draining the electrolyzed water to the cleaning tank during the cleaning period. It is desirable that the determination means determine whether or not the cleaning process can be terminated according to the degree of decrease in the effective chlorine concentration of the electrolyzed water measured by the measurement means.
  • the measuring means measures the effective chlorine concentration of the electrolyzed water multiple times during the cleaning period.
  • the determination means may determine the progress of cleaning by comparing the effective chlorine concentration measured this time with the effective chlorine concentration measured last time.
  • an outlet through which electrolytic water flows out is provided on the side wall of the cleaning tank.
  • the food washing apparatus further includes a measurement valve for draining the electrolyzed water in the measurement container.
  • the measurement valve be controlled to be in an open state except during measurement by the measurement means.
  • the washing tank may be provided with an outlet through which the electrolytic water flows out
  • the food washing apparatus may further include a gate for opening and closing the outlet of the washing tank.
  • the gate is controlled to open and close at the start of measurement by the measuring means.
  • the measurement means may not include conversion processing means for converting the output value from the light detection means into an effective chlorine concentration. That is, the determination unit may determine the progress of cleaning based on the output value from the light detection unit.
  • the food washing apparatus may further include an informing unit that informs the progress of the washing based on the determination result by the determining unit.
  • the side wall of the measurement container is provided with an overflow port for storing a fixed amount of liquid in the measurement container.
  • the food washing apparatus further includes a lighting device that illuminates the washing tank so that the state in the washing tank can be visually confirmed.
  • the illuminator may also serve as illumination of the measurement container.
  • the progress of cleaning can be determined with a simple configuration.
  • the washing of food can be completed at an appropriate timing.
  • FIG. 1 It is a perspective view which shows the example of an external appearance of the food cleaning apparatus which concerns on embodiment of this invention.
  • it is a figure which shows the example of arrangement
  • it is a figure which shows the piping structural example of the food cleaning apparatus which concerns on embodiment of this invention.
  • it is a figure which shows the state by which the electrolyzed water was stored by the measurement container.
  • It is a block diagram which shows the function structural example of the food washing apparatus which concerns on embodiment of this invention. It is a graph which shows the relationship between the effective chlorine concentration of electrolyzed water, and the output voltage value of a photodetector.
  • the food washing apparatus 1 includes, for example, a cubic housing 90 and a washing tank 10 provided in the housing 90.
  • the cleaning tank 10 is provided with a net basket 11 for storing food as an object to be cleaned.
  • the cleaning tank 10 is, for example, a rectangular water tank in plan view, and includes a bottom wall and four side walls connected to the bottom wall.
  • a lid 91 that can be opened for loading and unloading food to and from the washing tank 10 and an operation button 93 for instructing start and stop of washing are provided on the upper surface of the housing 90. Is provided. Further, a transparent window 92 is provided on the front surface (front surface) of the housing 90.
  • the user can visually recognize how food is being cleaned in the cleaning tank 10 through the window 92. Further, an illumination tool 94 that illuminates the cleaning tank 10 is provided in the housing 90 along the lower end edge of the window portion 92. Therefore, the food in the cleaning tank 10 can be visually recognized even in a dark place.
  • the food washing apparatus 1 has a water supply path 21, a drainage path 22, and a circulation path 23 as a basic piping configuration.
  • the water supply path 21 is connected to the water supply port 12 of the cleaning tank 10.
  • a water supply valve 21 a that is controlled to open and close by the control device 50 is provided.
  • the electrolyzed water supplied through the water supply path 21 is slightly acidic electrolyzed water having an effective chlorine concentration of, for example, about 40 mg / kg.
  • the water supply port 12 is located in the upper part of the side wall of the cleaning tank 10.
  • the drainage path 22 is connected to the drainage port 13 of the cleaning tank 10.
  • a drainage valve 22 a that is controlled to open and close by the control device 50 is provided.
  • the drain valve 22a When the drain valve 22a is open, the cleaning water (electrolyzed water) in the cleaning tank 10 is drained through the drain path 22.
  • the drain port 13 is located on the bottom wall of the cleaning tank 10.
  • the circulation path 23 branches from the drainage path 22 and is connected to the return port 14 of the cleaning tank 10.
  • the circulation path 23 has a circulation pump 23a at an intermediate position. When the drain valve 22a is closed and the circulation pump 23a is ON, the cleaning water in the cleaning tank 10 circulates through the circulation path 23.
  • the return port 14 is located in the lower part of the side wall. Thereby, since circulating water is ejected from the return port 14 of the washing tank 10, a water flow is generated in the washing tank 10 and the food can be washed efficiently.
  • the circulation path 23 may be provided independently of the drainage path 22.
  • the washing of food is performed by repeatedly supplying electrolytic water to the cleaning tank 10 and draining the cleaning water (electrolytic water) from the cleaning tank 10. That is, the electrolyzed water contaminated by the cleaning is appropriately drained, and new electrolyzed water is added.
  • the electrolyzed water is drained from the overflow port 15 provided on the side wall of the cleaning tank 10 during the food cleaning period.
  • the electrolyzed water supplied from the water supply path 21 contains a hypochlorous acid component having a predetermined concentration.
  • the hypochlorous acid component of the electrolyzed water reacts with the organic matter adhering to the food surface, so that the food is sterilized or sterilized. Therefore, when the effective chlorine concentration of the electrolyzed water supplied from the water supply path 21 is expressed as “initial concentration”, the effective chlorine concentration of the electrolyzed water in the cleaning tank 10 decreases from the initial concentration as the degree of soiling of the food increases. There is a tendency.
  • the degree of decrease in the effective chlorine concentration of the electrolyzed water in the cleaning tank 10 focusing on the tendency that the effective chlorine concentration of the electrolyzed water in the cleaning tank 10 decreases as the degree of soiling of the food increases, in the present embodiment, the degree of decrease in the effective chlorine concentration of the electrolyzed water in the cleaning tank 10. Depending on the situation, it is possible to determine the degree of progress of cleaning and whether or not cleaning can be completed. A specific configuration will be described below with further reference to FIG.
  • the food washing apparatus 1 includes a measurement container 30 for sampling the electrolyzed water in the washing tank 10 during the washing period. That is, in the present embodiment, the effective chlorine concentration of the electrolyzed water can be measured or determined in the measurement container 30.
  • the measurement container 30 is provided adjacent to the side wall of the cleaning tank 10 so as to cover the outflow port 16 provided on the front side wall of the cleaning tank 10.
  • the lower end height of the outlet 16 is equal to or lower than the lower end height of the overflow port 15 shown in FIG. 2, and is equal to the lower end height of the overflow port 15 in this embodiment.
  • the measurement container 30 is a transparent container, and includes, for example, a bottom wall portion that intersects the side wall of the cleaning tank 10 and a side wall portion connected to the bottom wall portion.
  • the measurement container 30 may further include a top wall portion that intersects the side wall of the cleaning tank 10.
  • the food washing apparatus 1 includes an adding means (mechanism) for automatically adding an aqueous potassium iodide solution to the electrolyzed water stored in the measurement container 30. That is, as addition means, a liquid container 41 for storing a potassium iodide aqueous solution of a predetermined concentration (for example, 10%), an addition path 42 for introducing the potassium iodide aqueous solution in the liquid container 41 to the measurement container 30, and addition And a positive displacement pump 44 provided on the passage 42. That is, the addition path 42 includes a suction pipe 42 a upstream of the positive displacement pump 44 and a supply pipe 42 b downstream of the positive displacement pump 44. The supply pipe 42b of the addition path 42 is preferably provided with a check valve (not shown) for preventing the liquid from flowing back to the liquid container 41.
  • a liquid container 41 for storing a potassium iodide aqueous solution of a predetermined concentration (for example, 10%)
  • an addition path 42 for introducing the potassium iod
  • the measurement container 30 is provided with an addition port 31, a drain port 32, and an overflow port 33.
  • the addition port 31 communicates with the end of the supply pipe 42b of the addition path 42.
  • the addition port 31 may be provided in the top wall portion of the measurement container 30 as shown in FIGS. 3 and 4, or may be provided in the side wall portion as shown in FIG. 2.
  • the drain port 32 is provided in the bottom wall portion of the measurement container 30 and is connected to the drain passage 45.
  • a valve (hereinafter referred to as “measurement valve”) 45 a that is controlled to be opened and closed by the control device 50 is provided on the drainage path 45. When the measurement valve 45 a is open, the electrolyzed water in the measurement container 30 is drained through the drainage path 45.
  • the overflow port 33 is provided on the side wall of the measurement container 30 and connected to the drainage path 46.
  • the overflow port 33 is provided at a position lower than the addition port 31. Further, the lower end height of the overflow port 33 is equal to or lower than the lower end height of the outlet 16 of the cleaning tank 10.
  • the potassium iodide reacts with the hypochlorous acid component of the electrolyzed water, and the electrolyzed water is discolored. As the effective chlorine concentration increases, the color changes to yellow, brown, and dark brown.
  • the measurement container 30 is provided at a position overlapping the window portion 92 when viewed from the front. Therefore, the color of the liquid in the measurement container 30 can be visually recognized from the outside through the window 92. Therefore, the user can judge the reduction degree of effective chlorine concentration visually by comparing with the color sample according to the density
  • the illumination tool 94 that illuminates the cleaning tank 10 also serves as illumination of the measurement container 30. Therefore, even if the food washing apparatus 1 is installed in a dark place, the color of the liquid in the measurement container 30 can be confirmed through the window 92. Further, the colorimetric determination can be performed stably by making the amount of illumination light constant.
  • the food washing apparatus 1 further has a function of measuring the effective chlorine concentration of the electrolyzed water.
  • This measurement function is realized by the photodetector 61 attached to the measurement container 30 and the control device 50 as a sequencer.
  • the photodetector 61 is an absorptiometer that quantitatively measures the ratio (transmittance) of light transmitted through the sample.
  • the photodetector 61 includes an LED as a light emitting unit and a photosensor (phototransistor) as a light receiving unit. It is configured.
  • the light transmittance is represented by a voltage value (for example, 0 to 5 V) output from the photosensor. Note that a current value (for example, 4 to 20 mA) may be output from the photosensor.
  • control device 50 includes a control unit 51 that performs various arithmetic processes, a storage unit 52 that stores various types of data and programs, an operation unit 53 that receives instructions from the user, and a timing operation.
  • the timer unit 54 to perform and the A / D converter 55 which converts the analog signal from the photo sensor of the photodetector 61 into a digital signal are included.
  • the operation unit 53 includes the operation buttons 93 described above.
  • the controller 51 is electrically connected to the circulation pump 23a, the valves 21a, 22a, and 45a, and the positive displacement pump 44 described above.
  • the control unit 51 is realized by, for example, a CPU (Central Processing Unit).
  • the control part 51 has the washing
  • the cleaning processing unit 511 executes a food cleaning process. That is, ON / OFF of the circulation pump 23a and opening / closing of the water supply valve 21a and the drain valve 22a are controlled.
  • the cleaning processing unit 511 supplies the electrolytic water to the cleaning tank 10 until the water level of the electrolyzed water reaches a predetermined level (becomes full), and supplies the electrolyzed water continuously or intermittently even after the water level becomes full. .
  • the electrolyzed water in the cleaning tank 10 is drained naturally from the overflow port 15.
  • the cleaning processing unit 511 also performs processing for generating a water flow in the electrolyzed water in the cleaning tank 10 during the cleaning period. It can be considered that the effective chlorine concentration of the electrolyzed water in the cleaning tank 10 is substantially uniform as a whole during the period in which the water flow is generated in the cleaning tank 10.
  • the cleaning processing unit 511 opens the drain valve 22a at the end of cleaning, and drains all of the electrolyzed water. Even during the cleaning period, part of the electrolyzed water may be drained from the drain port 13 by appropriately opening the drain valve 22a.
  • the measurement processing unit 512 stores the electrolytic water in the measurement container 30 and executes a process of measuring the effective chlorine concentration of the stored electrolytic water. Specifically, opening / closing control of the measurement valve 45a, ON / OFF control of the positive displacement pump 44, supply of the power source 62 to the photodetector 61, and the like are performed.
  • the measurement processing unit 512 closes the measurement valve 45a and drives the positive displacement pump 44 for a certain period of time to inject a certain amount of aqueous potassium iodide solution in the liquid container 41 into the measurement container 30.
  • the measurement processing unit 512 performs processing for converting the light transmittance (output value from the photosensor) of the electrolyzed water after discoloration in the measurement container 30 detected by the photodetector 61 into an effective chlorine concentration.
  • the photodetector 61, its power supply 62, the A / D converter 55, and the measurement processing unit 512 are included in the measurement unit 60 for measuring the effective chlorine concentration of the electrolyzed water.
  • the storage unit 52 stores in advance correspondence information in which a voltage value that can be output from the light receiving unit of the photodetector 61 and an effective chlorine concentration are associated with each other. Correspondence information is determined by experiments.
  • FIG. 6 A graph of the experimental results in the table above is shown in FIG. As shown in the graph of FIG. 6, the output voltage value from the photodetector 61 increases almost in proportion to the effective chlorine concentration. Therefore, the relationship between the output voltage value from the photodetector 61 and the effective chlorine concentration of the electrolyzed water can be approximated by a linear expression.
  • the storage unit 52 may store an approximate expression as correspondence information, or may store a data table. Similarly, when the current is output from the photodetector 61, the output current value rises almost in proportion to the effective chlorine concentration.
  • the determination unit 513 determines the progress of cleaning based on the effective chlorine concentration of the electrolyzed water obtained by the measurement processing unit 512. Specifically, the degree of progress of cleaning is determined according to how much the measured effective chlorine concentration has decreased from the initial concentration of electrolyzed water. As a result, it is determined whether or not cleaning can be completed.
  • the cleaning processing unit 511 ends the series of cleaning processing. Thereby, even if a user does not operate the operation part 53 and instruct
  • the progress of the cleaning is determined by comparing with the effective chlorine concentration of the electrolyzed water measured last time.
  • the measurement timing of the effective chlorine concentration may be arbitrarily set.
  • the functions of the above-described cleaning processing unit 511, measurement processing unit 512, and determination unit 513 can be realized by the control unit 51 executing software. Note that at least one of these may be realized by hardware.
  • the cleaning processing unit 511 opens the water supply valve 21a and supplies electrolytic water to the cleaning tank 10 (step S2).
  • the measurement processing unit 512 opens the measurement valve 45a (step S3).
  • the water level of the electrolyzed water continues to rise because the drain valve 22a of the cleaning tank 10 is closed.
  • the cleaning processing unit 511 turns on the circulation pump 23a. Thereby, a water flow is generated in the cleaning tank 10.
  • the full water level (level L1) of the electrolyzed water is equal to the lower end height of the outlet 16. However, since the water surface in the washing tank 10 undulates by driving the circulation pump 23a, the water level of the electrolyzed water during washing with running food is higher than the full water level (level L2).
  • the level of the electrolyzed water has reached the full water level can be determined by the following method, for example. That is, the discharge path (not shown) connected to the overflow port 15 of the cleaning tank 10 is provided with a flow sensor (not shown) for detecting the outflow of the electrolytic water from the overflow port 15. When the outflow of the liquid is detected by the flow sensor, the cleaning processing unit 511 can determine that the full water level has been reached. After the electrolyzed water reaches the full water level, unnecessary electrolyzed water is drained from the overflow port 15.
  • the electrolytic water in the cleaning tank 10 is discharged from the outlet 16.
  • the electrolyzed water flowing into the measurement container 30 is drained through the drain port 32 as it is.
  • the cleaning processing unit 511 closes the water supply valve 21a and stops the supply of electrolyzed water (step S6).
  • the measurement processing unit 512 closes the measurement valve 45a (step S7).
  • the cleaning processing unit 511 turns off the circulation pump 23a and stops the circulation of the electrolyzed water. Thereby, since the water flow in the washing tank 10 gradually disappears, the level of the electrolyzed water becomes the full water level L1 or less.
  • the measurement processing unit 512 turns on the positive displacement pump 44 to add the potassium iodide aqueous solution to the electrolyzed water in the measurement container 30 (step S8). ). Whether or not the level of the electrolyzed water has become equal to or lower than the level L1 can also be determined based on the signal from the flow sensor described above. That is, when the flow sensor no longer detects the outflow of the electrolyzed water from the overflow port 15, it can be determined that the level of the electrolyzed water has become the level L1 or less.
  • the electrolyzed water in the measurement container 30 changes color according to the effective chlorine concentration.
  • the positive displacement pump 44 is driven for a certain period (for example, 10 seconds), so that a prescribed amount of aqueous potassium iodide solution can be added to the measurement container 30.
  • the measurement processing unit 512 supplies a DC power source 62 (for example, 12 V) to the photodetector 61.
  • a DC power source 62 for example, 12 V
  • the photodetector 61 detects the transmittance of the liquid after the color change in the measurement container 30 and outputs a voltage corresponding to the transmittance.
  • the measurement processing unit 512 converts the output voltage value (0 to 5V) from the photodetector 61 into an effective chlorine concentration based on the correspondence information stored in advance in the storage unit 52 (step S10).
  • the effective chlorine concentration of the electrolyzed water during cleaning is thus measured.
  • the measured effective chlorine concentration is recorded, for example, in time series in the internal memory (step S12).
  • the illuminator 94 may function as a notification unit that notifies the degree of cleaning progress. In this case, the user can more easily grasp the progress of the cleaning without looking at the change in the color of the liquid in the measurement container 30.
  • step S 14 If the effective chlorine concentration is measured for the first time (YES in step S14), the process returns to step S2 and the above process is repeated.
  • step S ⁇ b> 3 the measurement valve 45 a is opened, so that the electrolytic water flowing out from the outlet 16 passes through the measurement container 30, whereby the measurement container 30 is cleaned.
  • the measurement valve 45a is controlled to be in an open state except during measurement by the measurement processing unit 512.
  • determination unit 513 determines whether or not the cleaning can be completed. Specifically, if the difference between the effective chlorine concentration measured this time and the effective chlorine concentration measured last time exceeds the specified value (NO in step S16), the food is not sufficiently washed. It is determined that cleaning cannot be completed. If it is determined that the cleaning cannot be completed, the process returns to step S2 and the above process is repeated.
  • step S16 it is determined that cleaning can be completed. If the determination unit 513 determines that the cleaning can be completed, the cleaning processing unit 511 ends the cleaning process. That is, the drain valve 22a is opened, and the electrolyzed water in the cleaning tank 10 is drained. When the cleaning is completed, the user is notified of the completion of the cleaning, for example, by changing the light emission color of the lighting device 94 to a predetermined color.
  • whether or not cleaning can be completed is determined by comparing the effective chlorine concentration measured this time with the effective chlorine concentration measured last time.
  • the end of cleaning may be determined by comparing the measured effective chlorine concentration with the effective chlorine concentration of electrolyzed water before cleaning. Specifically, when the amount of decrease from the initial concentration of the electrolyzed water is equal to or less than a predetermined value, it may be determined that the cleaning can be completed.
  • the effective chlorine concentration (initial concentration) of the electrolyzed water supplied from the water supply path 21 may be stored in the storage unit 52 in advance.
  • the effective chlorine concentration is measured at least three times, and if the relationship of “the first measured value ⁇ the second measured value ⁇ the third measured value” is satisfied, it may be determined that the cleaning can be completed.
  • 1.8 kg of cabbage is stored in the washing tank 10 (net basket 11) and washed, and the effective chlorine concentration is measured three times every 5 minutes after the electrolytic water in the washing tank 10 is full. did.
  • the first time was 24 mg / kg
  • the second time was 34 mg / kg
  • the third time was 38 mg / kg.
  • the degree of decrease in the effective chlorine concentration is reduced according to the cleaning time (number of measurements).
  • the outlet 16 of the cleaning tank 10 is always open.
  • the outlet 16 may be provided with a gate 34.
  • the gate 34 is controlled by the control device 50 to open and close the outlet 16.
  • the gate 34 is controlled to open and close only at the start of measurement.
  • the gate 34 may be configured by an electromagnetic valve.
  • step S2 after the supply of electrolyzed water to cleaning tank 10 is started (step S2), gate 34 and measurement valve 45a are closed. Thereby, since the outflow port 16 is blocked by the gate 34, the electrolyzed water does not flow out into the measurement container 30.
  • step S4 When the measurement timing comes (YES in step S4), the gate 34 is left open for a certain period of time (step S7A). That is, the gate 34 is controlled to open and close when the measurement processing unit 512 starts measurement. Thereby, the electrolyzed water in the cleaning tank 10 is stored in the measurement container 30 via the outlet 16.
  • the circulation pump 23a may be continuously driven even during the measurement process by the measurement processing unit 512.
  • the measurement valve 45a is opened (step S13), and the discolored electrolyzed water in the measurement container 30 is drained.
  • the gate 34 may be kept open for a certain period of time to clean the inside of the measurement container 30.
  • the outlet 16 is provided on the side wall of the cleaning tank 10, so that the electrolyzed water in the cleaning tank 10 naturally flows into the measurement container 30. Therefore, according to the food cleaning apparatus 1, it is possible to determine the progress of the cleaning and whether or not the cleaning can be completed with a simple configuration.
  • the measurement container 30 only needs to communicate with the outlet 16 and does not have to be adjacent to the cleaning tank 10. In this case, the outlet 16 may be provided on the bottom wall of the cleaning tank 10.
  • the food washing apparatus 1 since the food washing apparatus 1 has the addition means which automatically adds potassium iodide aqueous solution to the electrolyzed water in the measurement container 30, it can carry out colorimetric determination of the effective chlorine concentration of electrolyzed water easily. Can do.
  • the liquid added to the electrolyzed water is not limited to an aqueous potassium iodide solution as long as it is a liquid that changes color by reacting with a hypochlorous acid component, and may be a DPD reagent, for example.
  • the effective chlorine concentration of the electrolyzed water is measured using the photodetector 61 without using a normal concentration measuring device. Therefore, both the manufacturing cost and running cost of the food washing apparatus 1 are extremely low. Therefore, the food washing apparatus 1 can be used not only at the store but also at home.
  • the measured value is obtained by converting the output value (voltage value or current value) from the photodetector 61 into the effective chlorine concentration.
  • the output value from the photodetector 61 has a correlation with the effective chlorine concentration of the electrolyzed water, the progress of cleaning may be determined by comparing the output value itself without being converted into the effective chlorine concentration. That is, the determination unit 513 may determine the degree of progress of cleaning and whether or not cleaning can be completed based on the output value from the photodetector 61.
  • the measuring unit 60 may include a concentration measuring device instead of the above-described photodetector 61.
  • the food washing apparatus since it is not necessary to change the color of the electrolyzed water in the measurement container 30, the food washing apparatus may not include the above-described addition means.
  • the measurement processing unit 512 the value itself output from the concentration measuring device is acquired as the effective chlorine concentration of the electrolyzed water.
  • the processing after step S10 in the flowcharts of FIGS. 7 and 9 may not be executed.
  • the storage of the electrolyzed water and the addition of the potassium iodide aqueous solution to the measurement container 30 are repeated until an instruction to end the cleaning is input via the operation unit 53.
  • the user himself / herself determines the degree of decrease in the effective chlorine concentration by visual observation, and determines the progress of cleaning and whether or not cleaning can be completed. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Abstract

食品洗浄装置(1)は、電解水を用いて食品を洗浄する洗浄装置であって、被洗浄物としての食品を収容し、電解水が供給される洗浄タンク(10)と、食品の洗浄期間に洗浄タンク(10)から流出した電解水が流入する測定容器(30)とを備え、測定容器(30)に溜まった電解水の有効塩素濃度の低下度合に応じて、洗浄の進行度合を判定できるようにした。

Description

食品洗浄装置
 本発明は、電解水を用いて、青果である食品を洗浄する食品洗浄装置に関する。
 従来から、青果の表面に付着した有機物(汚れ、細菌類)を除去するために、殺菌作用を有する電解水が利用されている。電解水は、たとえば、0.1~1%程度の希薄食塩水が無隔膜の電解槽内で電解されることによって生成される電解次亜水である。
 食品の洗浄には、濃度の高い電解水を淡水で希釈して生成された希釈電解水が用いられる。たとえば、特開平8-318273号公報(特許文献1)では、殺菌水として、所定のpH(水素イオン指数)に調整された強酸性電解水を生成することが提案されている。
 また、特開2001-149939号公報(特許文献2)では、殺菌水生成装置で生成された殺菌水の有効塩素濃度を表示する塩素濃度表示器が提案されている。塩素濃度表示器は、ヨウ化カリウムでんぷん試験紙が収容されたカートリッジ部を、供給経路のヘッド部に装着することで実現されている。塩素濃度に応じて試験紙の色が変化するため、変色した色と標準溶液の色とを比較することで、殺菌水の有効塩素濃度が判定可能である。
特開平8-318273号公報 特開2001-149939号公報
 上記特許文献2では、電解水の有効塩素濃度を判定したいときに、わざわざカートリッジ部を装着する必要があり、手間が掛かる。
 また、電解水で食品を洗浄することにより、食品の衛生状態を向上させることができるが、個々の食品によって汚れ度合は異なる。そのため、食品洗浄装置において、電解水で食品を洗浄する場合、洗浄の進行度合(進捗状況)が分からないため、どのタイミングで洗浄終了とすればよいかを判断することは困難であった。
 本発明は、上記のような課題を解決するためになされたものであって、その目的は、簡易な構成で、洗浄の進行度合を判定することのできる食品洗浄装置を提供することである。
 この発明のある局面に従う食品洗浄装置は、電解水を用いて食品を洗浄する洗浄装置であって、被洗浄物としての食品を収容し、電解水が供給される洗浄タンクと、食品の洗浄期間に洗浄タンクから流出した電解水が流入する測定容器とを備え、測定容器に溜まった電解水の有効塩素濃度の低下度合に応じて、洗浄の進行度合を判定できるようにした。
 好ましくは、測定容器内の電解水の有効塩素濃度を比色判定可能とするために、食品洗浄装置は、測定容器内の電解水に所定の液体を添加する添加手段をさらに備える。
 好ましくは、食品洗浄装置は、測定容器内の電解水の有効塩素濃度を測定する測定手段と、測定手段により測定された電解水の有効塩素濃度に基づいて、洗浄の進行度合を判定する判定手段とをさらに備える。
 好ましくは、測定手段は、測定容器に取付けられ、測定容器内の変色した電解水の光の透過度を検出するための光検出手段と、光検出手段からの出力値を有効塩素濃度に変換する変換処理手段とを含む。
 好ましくは、食品洗浄装置は、光検出手段から出力され得る電圧値または電流値と、有効塩素濃度とが対応付けられた対応情報を予め記憶する記憶手段をさらに備え、変換処理手段は、記憶手段に記憶された対応情報に基づいて、光検出手段からの出力値を有効塩素濃度に変換する。
 好ましくは、食品洗浄装置は、洗浄期間において、洗浄タンクへの電解水の供給および排水を繰り返すことで、食品の洗浄処理を行う洗浄処理手段をさらに備える。判定手段は、測定手段により測定された電解水の有効塩素濃度の低下度合に応じて、洗浄処理の終了可否を判定することが望ましい。
 測定手段は、洗浄期間において、複数回、電解水の有効塩素濃度を測定することが望ましい。この場合、判定手段は、今回測定された有効塩素濃度と前回測定された有効塩素濃度とを比較して、洗浄の進行度合を判定してもよい。
 好ましくは、洗浄タンクの側壁に、電解水が流出する流出口が設けられている。食品洗浄装置は、測定容器内の電解水を排水するための測定用バルブをさらに備える。この場合、測定用バルブは、測定手段による測定時を除き、開状態に制御されることが望ましい。
 あるいは、洗浄タンクに、電解水が流出する流出口が設けられており、食品洗浄装置は、洗浄タンクの流出口を開放および閉鎖するためのゲートをさらに備えていてもよい。この場合、ゲートは、測定手段による測定開始時に開閉制御されることが望ましい。
 上記測定手段は、光検出手段からの出力値を有効塩素濃度に変換する変換処理手段を含まなくてもよい。つまり、判定手段は、光検出手段からの出力値に基づいて、洗浄の進行度合を判定してもよい。
 また、食品洗浄装置は、判定手段による判定結果に基づいて、洗浄の進行度合を報知する報知手段をさらに備えていてもよい。
 好ましくは、測定容器の側壁には、測定容器内に定量の液体を溜めるためのオーバーフロー口が設けられている。
 好ましくは、食品洗浄装置は、洗浄タンク内の様子を視認可能とするために、洗浄タンクを照らす照明具をさらに備える。照明具は、測定容器の照明を兼ねていてもよい。
 本発明によれば、簡易な構成で、洗浄の進行度合を判定することができる。その結果、適切なタイミングで食品の洗浄を終了することができる。
本発明の実施の形態に係る食品洗浄装置の外観例を示す斜視図である。 本発明の実施の形態において、測定容器の配置例を示す図である。 本発明の実施の形態に係る食品洗浄装置の配管構成例を示す図である。 本発明の実施の形態において、測定容器に電解水が貯水された状態を示す図である。 本発明の実施の形態に係る食品洗浄装置の機能構成例を示すブロック図である。 電解水の有効塩素濃度と光検出器の出力電圧値との関係を示すグラフである。 本発明の実施の形態において、食品の洗浄期間における食品洗浄装置の動作を示すフローチャートである。 本発明の実施の形態の変形例において、洗浄タンクの流出口に設けられたゲートを示す図である。 本発明の実施の形態の変形例において、食品の洗浄期間における食品洗浄装置の動作を示すフローチャートである。
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 <構成について>
 はじめに、図1~図3を参照して、本実施の形態に係る食品洗浄装置1の基本構成について説明する。
 食品洗浄装置1は、たとえば立方体形状の筐体90と、筐体90内に設けられた洗浄タンク10とを備えている。洗浄タンク10には、被洗浄物としての食品を収納する網カゴ11が設置される。洗浄タンク10は、たとえば、平面視矩形状の水槽であり、底壁と、底壁に連結された4つの側壁とで構成されている。
 図1に示されるように、筐体90の上面に、洗浄タンク10への食品の投入および取り出しのために開放可能な蓋91と、洗浄の開始および停止を指示するための操作ボタン93とが設けられている。また、筐体90の前面(正面)には、透明の窓部92が設けられている。
 洗浄タンク10の少なくとも前面は透明であるため、ユーザは、窓部92から洗浄タンク10内で食品が洗浄されている様子を視認することができる。さらに、筐体90内には、洗浄タンク10を照らす照明具94が、窓部92の下端縁に沿って設けられている。そのため、暗い場所でも洗浄タンク10内の食品が視認可能である。
 図3に示されるように、食品洗浄装置1は、基本の配管構成として、給水経路21と、排水経路22と、循環経路23とを有している。
 給水経路21は、洗浄タンク10の給水口12に接続されている。給水経路21上には、制御装置50によって開閉制御される給水バルブ21aが設けられている。給水バルブ21aが開状態のとき、殺菌作用を有する電解水が給水経路21を介して洗浄タンク10に供給される。給水経路21を介して供給される電解水は、たとえば40mg/kg程度の有効塩素濃度の微酸性電解水である。給水口12は、洗浄タンク10の側壁上部に位置する。
 排水経路22は、洗浄タンク10の排水口13に接続されている。排水経路22上には、制御装置50によって開閉制御される排水バルブ22aが設けられている。排水バルブ22aが開状態のとき、洗浄タンク10内の洗浄水(電解水)が排水経路22を介して排水される。排水口13は、洗浄タンク10の底壁に位置する。
 循環経路23は、排水経路22から分岐し、洗浄タンク10の戻り口14に接続されている。循環経路23は、途中位置に循環ポンプ23aを有している。排水バルブ22aが閉状態で、かつ、循環ポンプ23aがONのとき、洗浄タンク10内の洗浄水が循環経路23を介して循環する。戻り口14は、側壁下部に位置する。これにより、洗浄タンク10の戻り口14から循環水が噴出されるため、洗浄タンク10内に水流が発生し、食品を効率良く洗浄することができる。なお、循環経路23は、排水経路22とは独立して設けられていてもよい。
 ところで、食品の洗浄は、洗浄タンク10への電解水の供給と、洗浄タンク10からの洗浄水(電解水)の排水とを繰り返すことで行われる。つまり、洗浄により汚れた電解水が適宜排水され、新しい電解水が継ぎ足される。本実施の形態では、食品の洗浄期間において、洗浄タンク10の側壁に設けられたオーバーフロー口15から電解水が排水される。
 給水経路21から供給される電解水は、所定濃度の次亜塩素酸成分を含んでいる。洗浄タンク10内において、電解水の次亜塩素酸成分が、食品表面に付着した有機物と反応することで、食品の除菌または殺菌が行われる。そのため、給水経路21から供給される電解水の有効塩素濃度を「初期濃度」と表わした場合、食品の汚れ度合が大きい程、洗浄タンク10内の電解水の有効塩素濃度は初期濃度から低下する傾向にある。
 上述のように、筐体90の窓部92から、洗浄タンク10において食品が洗浄されている様子を確認することができるものの、実際に食品の洗浄の進行度合を把握することは困難である。また、食品ごとに汚れ具合が異なるため、洗浄終了のタイミングを時間で判断することも困難である。
 そこで、食品の汚れ度合が大きい程、洗浄タンク10内の電解水の有効塩素濃度は低下するという傾向に着目し、本実施の形態では、洗浄タンク10内の電解水の有効塩素濃度の低下度合に応じて、洗浄の進行度合および洗浄終了の可否を判定できるようにした。具体的な構成については、図4をさらに参照して以下に説明する。
 食品洗浄装置1は、洗浄期間中に、洗浄タンク10内の電解水をサンプリングするための測定容器30を備えている。すなわち、本実施の形態では、測定容器30において、電解水の有効塩素濃度を測定または判定可能としている。
 測定容器30は、洗浄タンク10の正面側の側壁に設けられた流出口16を覆うように、洗浄タンク10の側壁に隣接して設けられている。流出口16の下端高さは、図2に示したオーバーフロー口15の下端高さ以下であり、本実施の形態では、オーバーフロー口15の下端高さと等しい。
 後述するように、洗浄期間において洗浄タンク10内に水流が発生させられるため、その水流によって洗浄タンク10内の水位は、流出口16の下端高さよりも高くなる。そのため、食品洗浄中、洗浄タンク10内の洗浄水は流出口16から自然と測定容器30に流入する。
 測定容器30は、透明の容器であり、たとえば、洗浄タンク10の側壁に交差する底壁部と、底壁部に連結された側壁部とで構成されている。測定容器30は、洗浄タンク10の側壁に交差する天壁部をさらに有していてもよい。
 本実施の形態の食品洗浄装置1は、測定容器30内に溜められた電解水に、自動的にヨウ化カリウム水溶液を添加する添加手段(機構)を備えている。すなわち、添加手段として、所定濃度(たとえば10%)のヨウ化カリウム水溶液を貯留する液体容器41と、液体容器41内のヨウ化カリウム水溶液を測定容器30へと導くための添加経路42と、添加経路42上に設けられた容積式ポンプ44とを有している。つまり、添加経路42は、容積式ポンプ44よりも上流側の吸入管42aと、容積式ポンプ44よりも下流側の供給管42bとにより構成されている。添加経路42の供給管42bには、液体容器41への液体の逆流を防止するための逆止弁(図示せず)が設けられていることが望ましい。
 測定容器30には、添加口31と、排水口32と、オーバーフロー口33とが設けられている。
 添加口31は、添加経路42の供給管42bの端部と連通する。添加口31は、図3および図4に示されるように、測定容器30の天壁部に設けられていてもよいし、図2に示されるように、側壁部に設けられてもよい。
 排水口32は、測定容器30の底壁部に設けられ、排水経路45に接続されている。排水経路45上には、制御装置50によって開閉制御されるバルブ(以下「測定用バルブ」という)45aが設けられている。測定用バルブ45aが開状態のとき、測定容器30内の電解水が排水経路45を介して排水される。
 オーバーフロー口33は、測定容器30の側壁部に設けられ、排水経路46に接続される。オーバーフロー口33は、添加口31よりも低い位置に設けられる。また、オーバーフロー口33の下端高さは、洗浄タンク10の流出口16の下端高さ以下である。
 測定容器30に溜められた電解水に所定量のヨウ化カリウム水溶液が添加されると、ヨウ化カリウムが電解水の次亜塩素酸成分と反応し、電解水が変色する。有効塩素濃度が大きくなるにつれて、黄色、茶色、こげ茶と変色する。
 測定容器30は、正面から見て窓部92と重なる位置に設けられている。したがって、測定容器30内の液体の色が、窓部92を介して外部から視認できる。そのため、ユーザは、たとえば、電解水の濃度に応じた色見本と比較することで、目視により有効塩素濃度の低下度合を判断することができる。すなわち、測定容器30内の液体の色が濃い程、有効塩素濃度の低下度合が大きく、液体の色が薄い程、有効塩素濃度の低下度合が小さいため、液体の色により、直感的に食品の汚れ度合を把握することができる。
 本実施の形態では、洗浄タンク10を照らす照明具94は、測定容器30の照明も兼ねている。したがって、食品洗浄装置1が暗い場所に設置されていたとしても、窓部92を介して測定容器30内の液体の色を確認することができる。また、照明の光量を一定とすることで、安定的に比色判定を行うことができる。
 このように、目視により電解水の有効塩素濃度を把握することができるが、本実施の形態に係る食品洗浄装置1は、さらに、電解水の有効塩素濃度を測定する機能を有している。この測定機能は、測定容器30に取り付けられた光検出器61と、シーケンサとしての制御装置50とによって実現される。
 光検出器61は、試料を透過した光の割合(透過度)を定量的に測定する吸光光度計であり、たとえば、発光部としてのLEDと、受光部としてのフォトセンサ(フォトトランジスタ)とで構成されている。光の透過度は、フォトセンサから出力される電圧値(たとえば0~5V)により表わされる。なお、フォトセンサから電流値(たとえば4~20mA)が出力されてもよい。
 次に、図5を参照して、制御装置50の機能構成について説明する。図5を参照して、制御装置50は、各種演算処理を行う制御部51と、各種データおよびプログラムを記憶するための記憶部52と、ユーザからの指示を受け付ける操作部53と、計時動作を行う計時部54と、光検出器61のフォトセンサからのアナログ信号をデジタル信号に変換するA/D変換器55とを含む。操作部53は、上記した操作ボタン93を含む。
 制御部51は、上記した循環ポンプ23a、バルブ21a,22a,45a、および容積式ポンプ44に電気的に接続されている。制御部51は、たとえばCPU(Central Processing Unit)により実現される。
 制御部51は、その機能として、洗浄処理部511と、測定処理部512と、判定部513とを有している。
 洗浄処理部511は、食品の洗浄処理を実行する。すなわち、循環ポンプ23aのON/OFF、給水バルブ21aおよび排水バルブ22aの開閉を制御する。洗浄処理部511は、電解水の水位が所定レベルとなる(満水となる)まで洗浄タンク10に電解水を供給し、満水となった後も、電解水の供給を継続的または断続的に行う。電解水が満水となると、洗浄タンク10内の電解水がオーバーフロー口15から自然と排水される。洗浄処理部511は、また、洗浄期間中に、洗浄タンク10内の電解水に水流を発生させる処理を行う。洗浄タンク10内に水流が発生させられている期間、洗浄タンク10内における電解水の有効塩素濃度は、全体的にほぼ均一であるとみなすことができる。
 洗浄処理部511は、洗浄終了時に、排水バルブ22aを開状態とし、電解水の全てを排水する。なお、洗浄期間においても、排水バルブ22aを適宜開状態とすることで、排水口13から電解水の一部を排水してもよい。
 測定処理部512は、測定容器30に電解水を貯水し、貯水した電解水の有効塩素濃度を測定する処理を実行する。具体的には、測定用バルブ45aの開閉制御、容積式ポンプ44のON/OFF制御、光検出器61への電源62の供給などを行う。
 測定処理部512は、測定用バルブ45aを閉状態として、容積式ポンプ44を一定期間駆動することにより、液体容器41内のヨウ化カリウム水溶液を一定量、測定容器30に注入する。
 また、測定処理部512は、光検出器61より検出される、測定容器30内の変色後の電解水の光の透過度(フォトセンサからの出力値)を、有効塩素濃度に変換する処理を行う。本実施の形態では、光検出器61と、その電源62と、A/D変換器55と、測定処理部512とが、電解水の有効塩素濃度を測定するための測定部60に含まれる。
 記憶部52には、光検出器61の受光部から出力され得る電圧値と、有効塩素濃度とが対応付けられた対応情報が予め記憶されている。対応情報は、実験により定められている。
 実験では、様々な有効塩素濃度(0~50mg/kg)の電解水50mLに、濃度10%のヨウ化カリウム水溶液2mLを添加し、その液体に対し、光検出器61で光の透過度を測定した場合の出力電圧値を測定した。試料である電解水の有効塩素濃度と、光検出器61からの出力電圧値との関係は、以下の通りである。
Figure JPOXMLDOC01-appb-T000001
 上の表の実験結果をグラフ化したものが図6に示されている。図6のグラフに示されるように、光検出器61からの出力電圧値は、有効塩素濃度にほぼ比例して上昇している。したがって、光検出器61からの出力電圧値と、電解水の有効塩素濃度との関係は、一次式で近似することができる。記憶部52には、対応情報として、近似式が記憶されていてもよいし、データテーブルが記憶されていてもよい。なお、光検出器61から電流が出力される場合も同様に、出力電流値は有効塩素濃度にほぼ比例して上昇する。
 判定部513は、測定処理部512により得られた電解水の有効塩素濃度に基づいて、洗浄の進行度合を判定する。具体的には、測定された有効塩素濃度が、電解水の初期濃度からどれぐらい低下したかに応じて、洗浄の進行度合を判定する。また、その結果、洗浄終了の可否を判定する。判定部513により洗浄終了可能と判断されると、洗浄処理部511は一連の洗浄処理を終了する。これにより、ユーザが操作部53を操作して洗浄終了を指示しなくても、自動的に食品の洗浄を終了することができる。
 本実施の形態では、洗浄期間中、複数回、電解水の有効塩素濃度が測定(算出)されるため、前回測定された電解水の有効塩素濃度と比較することによって、洗浄の進行度合を判定することもできる。なお、有効塩素濃度の測定タイミングは、任意に設定できてもよい。
 上記した洗浄処理部511、測定処理部512、および判定部513の機能は、制御部51がソフトウェアを実行することで実現可能である。なお、これらのうち少なくとも1つは、ハードウェアにより実現されてもよい。
 <動作について>
 食品の洗浄期間における食品洗浄装置1の動作について、図7のフローチャートを参照しながら説明する。図7に示す各処理は、制御装置50の制御部51が、記憶部52に記憶されたプログラムを読み出して実行することにより実現される。なお、洗浄処理が開始される前は、各バルブは閉状態であり、各ポンプはOFFである。
 ユーザにより操作ボタン93が操作されて、洗浄開始の指示が入力されると、洗浄処理部511は、給水バルブ21aを開状態として洗浄タンク10に電解水を供給する(ステップS2)。また、測定処理部512は、測定用バルブ45aを開状態とする(ステップS3)。
 電解水の供給開始時、洗浄タンク10の排水バルブ22aが閉じられているため、電解水の水位は上昇し続ける。電解水の水位が一定レベル(たとえば満水レベル)に達すると、洗浄処理部511は循環ポンプ23aをONにする。これにより、洗浄タンク10内に水流が発生する。
 図4に示されるように、電解水の満水レベル(レベルL1)は、流出口16の下端高さに等しい。しかし、循環ポンプ23aの駆動により洗浄タンク10内の水面が波打つため、食品の流水洗浄中の電解水の水位は、満水レベルよりも高くなる(レベルL2)。
 なお、電解水の水位が満水レベルに達したか否かは、たとえば次のような方法で判断できる。すなわち、洗浄タンク10のオーバーフロー口15に接続された排出経路(図示せず)には、オーバーフロー口15からの電解水の流出を検知するためのフローセンサ(図示せず)が設けられている。フローセンサにおいて液体の流出が検知されると、洗浄処理部511は満水レベルに達したと判断することができる。電解水が満水レベルに達した後、不要な電解水はオーバーフロー口15から排水される。
 図4に示すように、洗浄タンク10内において、電解水の水位が満水レベル、すなわち流出口16の下端高さ(レベルL1)に達した時点で、洗浄タンク10内の電解水が流出口16から測定容器30内に流出する。測定容器30内に流入した電解水は、そのまま排水口32を介して排水される。
 洗浄処理の開始後、所定時間、たとえば5分経過すると(ステップS4にてYES)、洗浄処理部511は給水バルブ21aを閉状態とし、電解水の供給を停止する(ステップS6)。また、測定処理部512は、測定用バルブ45aを閉状態とする(ステップS7)。これにより、流出口16から流出した洗浄タンク10内の電解水が測定容器30に溜められる。測定容器30の側壁部にはオーバーフロー口33が設けられているため、オーバーフロー口33から不要な電解水が溢れる。したがって、測定容器30に所定量の電解水が溜められる。
 このとき、洗浄処理部511は、循環ポンプ23aをOFFし、電解水の循環を停止する。これにより、洗浄タンク10内の水流が徐々になくなるため、電解水の水位は満水レベルL1以下となる。
 洗浄タンク10内の水位がレベルL1以下となった後、測定処理部512は、容積式ポンプ44をONにすることで、ヨウ化カリウム水溶液を測定容器30内の電解水に添加する(ステップS8)。電解水の水位がレベルL1以下となったか否かについても、上記したフローセンサからの信号に基づき判断可能である。つまり、フローセンサによって、オーバーフロー口15からの電解水の流出が検知されなくなった時点で、電解水の水位がレベルL1以下となったと判断することができる。
 測定容器30内にヨウ化カリウム水溶液が注入されると、測定容器30内の電解水は、その有効塩素濃度に応じて変色する。なお、容積式ポンプ44が一定期間(たとえば10秒)駆動されることで、測定容器30に規定量のヨウ化カリウム水容液を添加することができる。
 続いて、測定処理部512は、光検出器61に直流電源62(たとえば12V)を供給する。これにより、光検出器61は、測定容器30内の変色後の液体の透過度を検出し、透過度に応じた電圧を出力する。測定処理部512は、記憶部52に予め記憶された対応情報に基づいて、光検出器61からの出力電圧値(0~5V)を、有効塩素濃度に変換する(ステップS10)。
 本実施の形態では、このようにして、洗浄途中の電解水の有効塩素濃度が測定される。測定された有効塩素濃度は、たとえば内部メモリに時系列に記録される(ステップS12)。
 なお、測定した有効塩素濃度を、数値またはレベルとして表示部(図示せず)に表示してもよい。あるいは、照明具94の発光色を変えることで、有効塩素濃度の低下度合、すなわち、洗浄の進行度合を報知してもよい。つまり、照明具94は、洗浄の進行度合を報知する報知手段としても機能してよい。この場合、ユーザは、測定容器30内の液体の色の変化を見なくても、洗浄の進行度合をより簡易に把握することができる。
 有効塩素濃度の測定が1回目であれば(ステップS14にてYES)、ステップS2に戻り、上記処理を繰り返す。ステップS3において、測定用バルブ45aが開状態とされるため、流出口16から流出する電解水が測定容器30内を通過することで、測定容器30の洗浄が行われる。このように、本実施の形態では、測定用バルブ45aは、測定処理部512による測定時を除き、開状態に制御される。
 一方、有効塩素濃度の測定が2回目以降であれば(ステップS14にてNO)、判定部513が洗浄終了の可否を判定する。具体的には、今回測定された有効塩素濃度と、前回測定された有効塩素濃度との差が、規定値を越えていれば(ステップS16にてNO)、食品の洗浄は十分ではないとして、洗浄終了不可と判定する。洗浄終了不可と判定されると、ステップS2に戻り、上記処理が繰り返される。
 これに対し、今回測定された有効塩素濃度と、前回測定された有効塩素濃度との差が、規定値以下であり、有効塩素濃度の低下率が小さい場合には(ステップS16にてYES)、洗浄終了可能と判定する。判定部513により洗浄終了可能と判定されると、洗浄処理部511は、洗浄処理を終了する。つまり、排水バルブ22aを開状態とし、洗浄タンク10内の電解水を排水する。洗浄が終了すると、たとえば照明具94の発光色を所定の色に変えることによって洗浄終了がユーザに報知される。
 なお、本実施の形態では、今回測定された有効塩素濃度と前回測定された有効塩素濃度との比較によって、洗浄終了の可否を判定したが、他の方法により洗浄終了の可否を判定してもよい。たとえば、測定された有効塩素濃度と、洗浄前の電解水の有効塩素濃度との比較により、洗浄終了の可否を判定してもよい。具体的には、電解水の初期濃度からの低下量が、所定値以下である場合に、洗浄終了可能と判定してもよい。この場合、給水経路21から供給される電解水の有効塩素濃度(初期濃度)が、記憶部52に予め記憶されていればよい。
 あるいは、少なくとも3回有効塩素濃度を測定し、「1回目の測定値<2回目の測定値<3回目の測定値」の関係を満たす場合に、洗浄終了可能と判定してもよい。なお、実際に、キャベツ1.8kgを洗浄タンク10(網カゴ11)に収容して洗浄し、洗浄タンク10内の電解水が満水となってから、5分ごとに3回有効塩素濃度を測定した。この場合、1回目24mg/kg、2回目34mg/kg、3回目38mg/kgとなった。このように、有効塩素濃度の低下度合は、洗浄時間(測定回数)に応じて小さくなっている。
 レタス2.0kgを洗浄し、上記と同様に3回有効塩素濃度を測定した場合、1回目28mg/kg、2回目31mg/kg、3回目37mg/kgが記録された。イチゴ1kgを洗浄し、上記と同様に3回有効塩素濃度を測定した場合、1回目27mg/kg、2回目36mg/kg、3回目40mg/kgが記録された。
 なお、ここでは3回としたが、予め定められた回数分連続して、有効塩素濃度の低下度合が減っていれば(つまり測定値が上昇していれば)、洗浄終了可能と判定してもよい。また、上記した他の判定方法と組み合わせてもよい。
 (変形例)
 上記実施の形態では、洗浄タンク10の流出口16は常に開放されていることとしたが、図8に示すように、流出口16にはゲート34が設けられていてもよい。ゲート34は、制御装置50により制御され、流出口16を開放および閉鎖する。この場合、ゲート34は、測定開始時のみ開閉制御される。ゲート34は、電磁弁により構成されてもよい。
 この場合の食品洗浄装置1の動作について、図9のフローチャートを参照して説明する。図9では、図7に示した処理と同じ処理については、同じステップ番号を付してある。したがって、ここでは、図7と異なる点のみ説明する。
 図9を参照して、変形例では、洗浄タンク10への電解水の供給開始後(ステップS2)、ゲート34および測定用バルブ45aを閉状態とする。これにより、流出口16はゲート34で塞がれるため、測定容器30に電解水は流出しない。
 ゲート34は、測定タイミングとなった場合に(ステップS4にてYES)、一定時間開状態とされる(ステップS7A)。つまり、ゲート34は、測定処理部512による測定開始時に開閉制御される。これにより、流出口16を介して洗浄タンク10内の電解水が測定容器30に溜められる。
 本変形例では、測定容器30に電解水が溜められるとゲート34が再び閉鎖されるため、有効塩素濃度の測定前に洗浄タンク10内の電解水の水位を下げなくてもよい。したがって、測定処理部512による測定処理中においても、循環ポンプ23aの駆動を継続してもよい。
 有効塩素濃度が測定されると、測定用バルブ45aを開状態とし(ステップS13)、測定容器30内の変色した電解水を排水する。なお、このときにも、ゲート34を一定時間開状態とし、測定容器30内を洗浄してもよい。
 以上説明したように、本実施の形態およびその変形例では、洗浄タンク10の側壁に流出口16が設けられているため、洗浄タンク10内の電解水が測定容器30に自然と流入する。したがって、食品洗浄装置1によれば、簡易な構成で、洗浄の進行度合および洗浄終了の可否を判定することができる。なお、測定容器30は流出口16と連通していればよく、洗浄タンク10に隣接していなくてもよい。この場合、流出口16は洗浄タンク10の底壁に設けられていてもよい。
 また、食品洗浄装置1は、測定容器30内の電解水にヨウ化カリウム水溶液を自動的に添加する添加手段を有しているため、容易に、電解水の有効塩素濃度を比色判定することができる。なお、電解水に添加される液体は、次亜塩素酸成分と反応して変色する液体であれば、ヨウ化カリウム水溶液に限定されず、たとえばDPD試薬であってもよい。
 また、本実施の形態では、測定部60によって測定容器30内の電解水の有効塩素濃度が測定されるため、食品の洗浄の進行度合に応じて、洗浄処理を自動的に終了することができる。そのため、食品ごとに最適な時間、洗浄処理を行うことができる。したがって、食品の衛生状態を向上させることができるとともに、過剰な洗浄を防止することもできる。
 さらに、本実施の形態では、通常の濃度測定器を用いることなく、光検出器61を利用して電解水の有効塩素濃度を測定している。したがって、食品洗浄装置1の製造コストおよびランニングコストは共に、極めて安価である。したがって、店舗だけでなく家庭などにおいても、食品洗浄装置1を利用することが可能となる。
 なお、本実施の形態では、光検出器61からの出力値(電圧値または電流値)を有効塩素濃度に変換することで測定値を得た。しかしながら、光検出器61からの出力値は電解水の有効塩素濃度と相関があることから、有効塩素濃度に変換せず、出力値自体の比較によって、洗浄の進行度合を判定してもよい。つまり、判定部513は、光検出器61からの出力値に基づいて、洗浄の進行度合および洗浄終了の可否を判定してもよい。
 あるいは、コストを重視しなければ、通常の濃度測定器を搭載してもよい。すなわち、測定部60は、上記した光検出器61に代えて、濃度測定器を含んでもよい。この場合、測定容器30内の電解水を変色させなくてもよいため、食品洗浄装置は上記した添加手段を含まなくてもよい。また、測定処理部512では、濃度測定器から出力される値そのものが、電解水の有効塩素濃度として取得される。
 あるいは、添加手段を必須の構成とし、電解水の有効塩素濃度の測定を行わなくてもよい。つまり、図7および図9のフローチャートのステップS10以降の処理を実行しなくてもよい。この場合、操作部53を介して洗浄終了の指示が入力されるまで、測定容器30への電解水の貯水とヨウ化カリウム水溶液の添加とが繰り返される。上述のように、測定容器30内の液体の色が窓部92から見えるため、ユーザ自身で、目視により有効塩素濃度の低下度合を判断し、洗浄の進行度合および洗浄終了の可否を判定することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 食品洗浄装置、10 洗浄タンク、11 網カゴ、12 給水口、13,32 排水口、14 戻り口、15,33 オーバーフロー口、16 流出口、21 給水経路、21a,22a,45a バルブ、22,45,46 排水経路、23 循環経路、23a 循環ポンプ、30 測定容器、31 添加口、34 ゲート、41 液体容器、42 添加経路、42a 吸入管、42b 供給管、44 容積式ポンプ、50 制御装置、51 制御部、52 記憶部、53 操作部、54 計時部、55 A/D変換器、60 測定部、61 光検出器、62 直流電源、90 筐体、91 蓋、92 窓部、93 操作ボタン、94 照明具、511 洗浄処理部、512 測定処理部、513 判定部。

Claims (13)

  1.  電解水を用いて食品を洗浄する洗浄装置であって、
     被洗浄物としての食品を収容し、電解水が供給される洗浄タンクと、
     食品の洗浄期間に前記洗浄タンクから流出した電解水が流入する測定容器とを備え、
     前記測定容器に溜まった電解水の有効塩素濃度の低下度合に応じて、洗浄の進行度合を判定できるようにした、食品洗浄装置。
  2.  前記測定容器内の電解水の有効塩素濃度を比色判定可能とするために、前記測定容器内の電解水に所定の液体を添加する添加手段をさらに備える、請求項1に記載の食品洗浄装置。
  3.  前記測定容器内の電解水の有効塩素濃度を測定する測定手段と、
     前記測定手段により測定された電解水の有効塩素濃度に基づいて、洗浄の進行度合を判定する判定手段とをさらに備える、請求項1に記載の食品洗浄装置。
  4.  前記測定容器内の電解水の有効塩素濃度を比色判定可能とするために、前記測定容器内の電解水に所定の液体を添加する添加手段をさらに備え、
     前記測定手段は、
      前記測定容器に取付けられ、前記測定容器内の変色した電解水の光の透過度を検出するための光検出手段と、
      前記光検出手段からの出力値を有効塩素濃度に変換する変換処理手段とを含む、請求項3に記載の食品洗浄装置。
  5.  前記光検出手段から出力され得る電圧値または電流値と、有効塩素濃度とが対応付けられた対応情報を予め記憶する記憶手段をさらに備え、
     前記変換処理手段は、前記記憶手段に記憶された前記対応情報に基づいて、前記光検出手段からの出力値を有効塩素濃度に変換する、請求項4に記載の食品洗浄装置。
  6.  洗浄期間において、前記洗浄タンクへの電解水の供給および排水を繰り返すことで、食品の洗浄処理を行う洗浄処理手段をさらに備え、
     前記判定手段は、前記測定手段により測定された電解水の有効塩素濃度の低下度合に応じて、前記洗浄処理の終了可否を判定する、請求項3~5のいずれかに記載の食品洗浄装置。
  7.  前記測定手段は、洗浄期間において、複数回、電解水の有効塩素濃度を測定し、
     前記判定手段は、今回測定された有効塩素濃度と前回測定された有効塩素濃度とを比較して、洗浄の進行度合を判定する、請求項3~6のいずれかに記載の食品洗浄装置。
  8.  前記洗浄タンクの側壁に、電解水が流出する流出口が設けられており、
     前記測定容器内の電解水を排水するための測定用バルブをさらに備え、
     前記測定用バルブは、前記測定手段による測定時を除き、開状態に制御される、請求項3~7のいずれかに記載の食品洗浄装置。
  9.  前記洗浄タンクには、電解水が流出する流出口が設けられており、
     前記洗浄タンクの前記流出口を開放および閉鎖するためのゲートをさらに備え、
     前記ゲートは、前記測定手段による測定開始時に開閉制御される、請求項3~7のいずれかに記載の食品洗浄装置。
  10.  前記測定容器に取付けられ、前記測定容器内の変色した電解水の光の透過度を検出するための光検出手段と、
     前記光検出手段からの出力値に基づいて、洗浄の進行度合を判定する判定手段とをさらに備える、請求項2に記載の食品洗浄装置。
  11.  前記判定手段による判定結果に基づいて、洗浄の進行度合を報知する報知手段をさらに備える、請求項3または10に記載の食品洗浄装置。
  12.  前記測定容器の側壁には、前記測定容器内に定量の液体を溜めるためのオーバーフロー口が設けられている、請求項1~11のいずれかに記載の食品洗浄装置。
  13.  前記洗浄タンク内の様子を視認可能とするために、前記洗浄タンクを照らす照明具をさらに備え、
     前記照明具は、前記測定容器の照明を兼ねている、請求項1~12のいずれかに記載の食品洗浄装置。
PCT/JP2015/061686 2015-04-16 2015-04-16 食品洗浄装置 WO2016166862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/061686 WO2016166862A1 (ja) 2015-04-16 2015-04-16 食品洗浄装置
JP2017512146A JP6650926B2 (ja) 2015-04-16 2015-04-16 食品洗浄装置
CN201580078812.0A CN107529811B (zh) 2015-04-16 2015-04-16 食品清洗装置
TW105111834A TW201701774A (zh) 2015-04-16 2016-04-15 食品洗淨裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061686 WO2016166862A1 (ja) 2015-04-16 2015-04-16 食品洗浄装置

Publications (1)

Publication Number Publication Date
WO2016166862A1 true WO2016166862A1 (ja) 2016-10-20

Family

ID=57125907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061686 WO2016166862A1 (ja) 2015-04-16 2015-04-16 食品洗浄装置

Country Status (4)

Country Link
JP (1) JP6650926B2 (ja)
CN (1) CN107529811B (ja)
TW (1) TW201701774A (ja)
WO (1) WO2016166862A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157768A (ja) * 2017-03-22 2018-10-11 大和ハウス工業株式会社 食品洗浄装置
JP2019058329A (ja) * 2017-09-26 2019-04-18 大和ハウス工業株式会社 食品洗浄装置用の塩素臭吸着フィルターおよび食品洗浄装置
JP2019063782A (ja) * 2017-10-02 2019-04-25 株式会社ホクエツ pH自動測定器付き次亜塩素酸水生成装置
JP2019097514A (ja) * 2017-12-05 2019-06-24 大和ハウス工業株式会社 食品洗浄装置および方法
JP2019176823A (ja) * 2018-03-30 2019-10-17 大和ハウス工業株式会社 食品洗浄装置
JP2020162556A (ja) * 2019-03-29 2020-10-08 大和ハウス工業株式会社 食品洗浄装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313624B (zh) * 2019-05-24 2021-08-31 广州国为食品有限公司 利用食材加工系统加工食材的方法
CN110313575B (zh) * 2019-05-24 2022-08-30 广州国为食品有限公司 具备食材清洗装置和食材热处理装置的系统及加工食材的方法
CN114942300A (zh) * 2021-07-31 2022-08-26 上海世通检测技术服务有限公司 一种提高食品接触材料测试准确度的检测方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267029A (ja) * 1995-03-31 1996-10-15 Toray Ind Inc 超音波洗浄方法およびその装置
JP2001149939A (ja) * 1999-11-29 2001-06-05 Sanden Corp 殺菌水供給装置
JP2001353206A (ja) * 2000-06-15 2001-12-25 Matsushita Electric Ind Co Ltd 調理器具殺菌装置
JP2006280341A (ja) * 2005-04-05 2006-10-19 Kurabo Ind Ltd 食品洗浄殺菌装置および食品の洗浄殺菌方法
JP2010022325A (ja) * 2008-07-23 2010-02-04 Matsui Kiki Kogyo Kk 野菜洗浄システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646358U (ja) * 1992-11-30 1994-06-24 佳英 柴野 洗浄装置
JP2005137573A (ja) * 2003-11-06 2005-06-02 Kazuo Nakatsu 滅菌装置
JP2007093398A (ja) * 2005-09-29 2007-04-12 Miura Co Ltd 残留塩素濃度の測定方法および測定装置
CN2884186Y (zh) * 2005-11-09 2007-03-28 白莉 有效氯比色测定管
CN203324170U (zh) * 2013-07-05 2013-12-04 深圳市清时捷科技有限公司 一种快速测定有效氯的分析仪
CN203424267U (zh) * 2013-07-17 2014-02-12 兴化市东奥食品有限公司 一种带有照明设备的蔬菜清洗槽

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267029A (ja) * 1995-03-31 1996-10-15 Toray Ind Inc 超音波洗浄方法およびその装置
JP2001149939A (ja) * 1999-11-29 2001-06-05 Sanden Corp 殺菌水供給装置
JP2001353206A (ja) * 2000-06-15 2001-12-25 Matsushita Electric Ind Co Ltd 調理器具殺菌装置
JP2006280341A (ja) * 2005-04-05 2006-10-19 Kurabo Ind Ltd 食品洗浄殺菌装置および食品の洗浄殺菌方法
JP2010022325A (ja) * 2008-07-23 2010-02-04 Matsui Kiki Kogyo Kk 野菜洗浄システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157768A (ja) * 2017-03-22 2018-10-11 大和ハウス工業株式会社 食品洗浄装置
JP2019058329A (ja) * 2017-09-26 2019-04-18 大和ハウス工業株式会社 食品洗浄装置用の塩素臭吸着フィルターおよび食品洗浄装置
JP7111453B2 (ja) 2017-09-26 2022-08-02 大和ハウス工業株式会社 食品洗浄装置
JP2019063782A (ja) * 2017-10-02 2019-04-25 株式会社ホクエツ pH自動測定器付き次亜塩素酸水生成装置
JP2019097514A (ja) * 2017-12-05 2019-06-24 大和ハウス工業株式会社 食品洗浄装置および方法
JP7001447B2 (ja) 2017-12-05 2022-01-19 大和ハウス工業株式会社 食品洗浄装置および方法
JP2019176823A (ja) * 2018-03-30 2019-10-17 大和ハウス工業株式会社 食品洗浄装置
JP7157411B2 (ja) 2018-03-30 2022-10-20 大和ハウス工業株式会社 食品洗浄装置
JP2020162556A (ja) * 2019-03-29 2020-10-08 大和ハウス工業株式会社 食品洗浄装置
JP7244009B2 (ja) 2019-03-29 2023-03-22 大和ハウス工業株式会社 食品洗浄装置

Also Published As

Publication number Publication date
TW201701774A (zh) 2017-01-16
CN107529811B (zh) 2021-03-26
CN107529811A (zh) 2018-01-02
JPWO2016166862A1 (ja) 2017-12-14
JP6650926B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2016166862A1 (ja) 食品洗浄装置
JP2019037722A (ja) 洗濯機
WO2019044305A1 (ja) 洗濯機
TW201912878A (zh) 洗衣機
JP6490934B2 (ja) 食品洗浄装置
JP2019107309A (ja) 洗濯機
JP6648390B2 (ja) pH自動測定器付き次亜塩素酸水生成装置
JP6865077B2 (ja) 食品洗浄装置
JP7001447B2 (ja) 食品洗浄装置および方法
JP2019042183A (ja) 洗濯機
JP2004223419A (ja) 塩素濃度制御装置
JP2008142420A (ja) 内視鏡洗浄消毒装置
JPH0435684A (ja) 洗濯機
JP7097016B2 (ja) 食品洗浄装置
JP7324452B2 (ja) 食品洗浄装置
JP2018167207A (ja) バイオフィルム量監視方法及び水処理システム
JP7244009B2 (ja) 食品洗浄装置
US20010044153A1 (en) Automatic liquid analyser and quality controller
JP2020162558A (ja) 食品洗浄装置
JP2020162559A (ja) 食品洗浄装置
JP2019063711A (ja) 排水処理システム
JP7045666B2 (ja) 食品洗浄装置
JP4722868B2 (ja) 野菜の洗浄方法
JP2003225191A (ja) 食器洗浄機
JP2001149939A (ja) 殺菌水供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889200

Country of ref document: EP

Kind code of ref document: A1