WO2016162939A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2016162939A1
WO2016162939A1 PCT/JP2015/060811 JP2015060811W WO2016162939A1 WO 2016162939 A1 WO2016162939 A1 WO 2016162939A1 JP 2015060811 W JP2015060811 W JP 2015060811W WO 2016162939 A1 WO2016162939 A1 WO 2016162939A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
air conditioner
rotation speed
fan
unit
Prior art date
Application number
PCT/JP2015/060811
Other languages
English (en)
French (fr)
Inventor
修平 多田
長橋 克章
内藤 宏治
浦田 和幹
隼人 森
Original Assignee
ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド filed Critical ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド
Priority to JP2017510824A priority Critical patent/JP6499752B2/ja
Priority to CN201580078569.2A priority patent/CN107429931B/zh
Priority to EP15888433.8A priority patent/EP3282202B1/en
Priority to PCT/JP2015/060811 priority patent/WO2016162939A1/ja
Priority to US15/562,514 priority patent/US10274211B2/en
Publication of WO2016162939A1 publication Critical patent/WO2016162939A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/40Vibration or noise prevention at outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/245Means for preventing or suppressing noise using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/40Noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present invention relates to an air conditioner.
  • Injection-molded products made of resin materials are often used for propeller fans used in many outdoor air blowers of air conditioners and turbo fans used in indoor units such as ceiling cassette type four-way blowers. . Since the injection-molded product made of a resin material is not made of sheet metal, it has a high degree of freedom in shape and is advantageous for mass production, and can achieve high efficiency, low noise, and low cost.
  • the fan of the blower calculates from the outside air temperature or the temperature of the refrigerant in the refrigeration cycle constituting the air conditioner, and blows air at a wide rotational speed from about 100 rpm to about 1000 rpm. .
  • vibration and noise may increase at a specific rotation speed due to resonance with the casing of the air conditioner.
  • Increase in vibration and noise due to resonance is a big problem for air conditioner users, so investigate the rotation speed at which resonance with the air conditioner casing occurs in advance, and control such that the rotation speed is not used. Ingenuity has been made.
  • an outdoor unit of an air conditioner for example, a multi-type outdoor unit for buildings
  • a plurality of units are installed together on the roof of a building such as an office building.
  • an air conditioner outdoor unit is installed on a vibration isolation frame during construction of the air conditioner.
  • Tohoku, Hokkaido, and Hokuriku regions in order to prevent the outdoor unit heat exchanger of the air conditioner from being buried in snow, a stand was created in order to install the outdoor unit at a height that considered snow.
  • An outdoor unit may be installed above.
  • the length of the fishing bolt for suspending the indoor unit due to the structure of the building also varies depending on the construction site.
  • the natural frequency with the air conditioner suspended is slightly different depending on the construction conditions.
  • the natural vibration value obtained by integrating the air conditioner outdoor unit and the gantry differs depending on the local construction state.
  • Patent Document 1 compares a detection device that detects at least one of vibration and noise generated from an electric blower and at least one frequency component of the detected vibration and noise with a frequency component specific to a normal electric blower.
  • a failure diagnosis device for an electric blower having control means for executing failure detection and failure mode determination of the electric blower.
  • Patent Document 2 includes a vibration detection unit that detects vibration of a blower provided in a housing, and a control device that controls the blower based on an output from the vibration detection unit.
  • An air conditioner that is installed on a support plate of a blower so as to detect vibrations in the short direction of the casing is described.
  • the failure diagnosis device for an electric blower described in Patent Document 1 requires a calculation means with a high processing capability that is more sophisticated than the air conditioner control, for frequency analysis of vibration or noise. For this reason, there is a problem that the use of an inexpensive microcomputer is hindered and the cost is increased. Further, in the air conditioner described in Patent Document 2, there is a possibility that the vibration sensor may be erroneously detected due to a disturbance such as a gust of wind, an earthquake, or vibration during maintenance inspection. Moreover, since a vibration sensor is required, there exists a problem that cost increases.
  • An object of the present invention is to provide an air conditioner capable of accurately detecting resonance of an outdoor unit of an air conditioner or a housing of an indoor unit at low cost.
  • an air conditioner includes a fan that blows air to a heat exchanger, a motor that drives the fan, a rotation speed detection unit that detects a rotation speed of the motor, A current detecting means for detecting a current value; a phase detecting means for detecting the magnetic pole position of the motor; a pulsation detecting means for detecting a pulsation of the current value based on the detected current value and magnetic pole position of the motor; Resonance determining means for determining resonance of an outdoor unit having the motor or a housing of the indoor unit based on the pulsation of the current value and the rotation speed.
  • an air conditioner capable of accurately detecting resonance of an outdoor unit of an air conditioner or a housing of an indoor unit at low cost.
  • FIG. 1 is a diagram illustrating a configuration of an outdoor unit 1 of an air conditioner according to a first embodiment of the present invention.
  • an outdoor unit 1 of an air conditioner includes a propeller fan 2 that blows air to an outdoor heat exchanger (not shown), a fan motor 3 that rotationally drives the propeller fan 2, and a desired rotation of the fan motor 3.
  • a control unit 4 (control means) that performs drive control so as to rotate at a speed and executes resonance avoidance control is provided.
  • the propeller fan 2 is a fan for sending air to the outdoor unit heat exchanger of the air conditioner.
  • the propeller fan 2 may be a turbo fan, a sirocco fan, or a once-through fan for blowing air to the indoor unit of the air conditioner, and the form of the blower is not limited.
  • the control unit 4 includes a current detection unit 5 (current detection unit) that detects an output current of the fan motor 3 as a current value, a phase detection unit 6 (phase detection unit) that detects a magnetic pole position of the fan motor 3, and a fan motor.
  • Fan rotation speed detection unit 7 rotation speed detection means
  • pulsation detection unit 8 detects a pulsation of the current value based on the detected current value and magnetic pole position of the fan motor 3.
  • a resonance determining unit 9 for determining the resonance of the outdoor unit having the fan motor 3 or the system of the housing of the indoor unit based on the pulsation of the detected current value and the fan rotation speed; Is provided.
  • the control unit 4 executes resonance avoidance control (see FIGS. 5 and 6) that increases or decreases the fan rotation speed by a predetermined rotation speed.
  • the control unit 4 adjusts the rotational speed of the fan motor 3 based on the resonance determination result of the resonance determination unit 9 to avoid the resonance state. That is, if the resonance determination part 9 determines with resonance, the control part 4 will adjust the rotational speed of the fan 1 and will try whether it can avoid from a resonance state.
  • the pulsation detection unit 8 detects the pulsation of the current value of the fan motor 3 (hereinafter referred to as the motor current value) from the detection results of the current detection unit 4 and the phase detection unit 5.
  • the resonance determination unit 9 tries to determine the resonance again after increasing or decreasing control of the fan rotation speed by the control unit 4, and determines that the resonance is abnormal when the resonance is determined.
  • the resonance determination unit 9 tries to determine the resonance again after the control of the increase or decrease of the fan rotation speed by the control unit 4, and when the resonance is not determined, the control unit 4 continues the operation at the fan rotation speed.
  • FIG. 2 is a diagram illustrating a configuration example of the pulsation detecting unit 8.
  • the current detection unit 5 detects three-phase output currents (Iu, Iv, Iw) from the fan motor 3. Specifically, the current flowing through the DC portion of the inverter (not shown) that drives the fan motor 3 is measured from the voltage generated across the shunt resistor (not shown). Then, motor currents (Iu, Iv, Iw) are derived by a current calculation unit (not shown) in the control unit 4.
  • the motor current (Iu, Iv, Iw) can be detected by various methods such as connecting a resistor having a small resistance value to the motor current output section, detecting from the voltage applied to the resistor, and detecting by a current sensor. There is.
  • the detected motor currents (Iu, Iv, Iw) are converted in the order of ⁇ conversion and dq conversion in accordance with the following equation (1), and the result is subjected to first-order lag filter processing. Q-axis current feedback value is calculated.
  • Equation (1) ⁇ dc at the time of dq conversion is a d-axis phase, and indicates the magnetic pole position of the fan motor.
  • the mechanical angle phase ⁇ r that is the second input value of the pulsation detecting unit 8 is calculated from ⁇ dc. It is shown in the following formula (2).
  • ⁇ r is calculated by integrating ⁇ r.
  • a pulsation component is extracted from the two input q-axis current feedback values and the mechanical angle phase ⁇ r.
  • sin ⁇ r and cos ⁇ r are calculated from the mechanical angle phase ⁇ r by a sin and cos calculation 71, multiplied by a q-axis current feedback value, and a first-order lag filtering process 72 is performed to remove high-frequency components.
  • the setting value of the time constant of the first-order lag filter process is set by simulation so that the period of torque pulsation can be extracted based on a test by an actual machine. That is, in order to set the filter time constant, it is necessary to make the filter time constant larger than the pulsation period in order to extract the pulsation component. Set.
  • FIG. 3 is a waveform diagram showing current pulsation during resonance of the air conditioner.
  • a curve 50a shown in FIG. 3 shows a current value waveform in a non-resonance state
  • a curve 50b shows a current value waveform in a resonance state.
  • the current detector 5 shown in FIG. 1 detects the fan motor current every moment. When the outdoor unit 1 or the indoor unit of the air conditioner is in a resonance state, the torque fluctuation of the fan motor 3 becomes larger than that at the time of non-resonance, and this also occurs in the applied current of the fan motor 3. For this reason, as shown by the curve 50b in FIG.
  • the pulsation (or amplitude) Ia with respect to the current average value Im increases.
  • the applied current also increases, so the current average value Im also increases.
  • the resonance can be determined by the current pulsation value Ia.
  • FIG. 4 is a diagram illustrating the relationship between the fan rotation speed and the current pulsation value when the casing of the air conditioner resonates.
  • the curve 51b shown in FIG. 4 shows the relationship when there is resonance, and the curve 51a shows the relationship when there is no resonance.
  • a curve 51a shown in FIG. 4 shows a current value waveform in a non-resonance state, and a curve 51b shows a current value waveform in a resonance state.
  • the inventors have found that the current pulsation value of the fan motor 3 increases at a certain fan rotation speed [Hz] when in a resonance state as shown by a curve 51b in FIG. This is different from the current pulsation value that occurs when the propeller fan 2 is damaged.
  • the current pulsation value increases regardless of the rotation speed due to the unbalance of the propeller fan 2 itself. Therefore, when an increase in the current pulsation value is detected, if the rotation speed is changed and, as a result, the current pulsation value decreases, it is not the resonance state of the outdoor unit 1 due to damage to the propeller fan 2. Can be determined. By the way, if the resonance state of the outdoor unit 1 is canceled by changing the rotation speed, the outdoor unit 1 is rotated at the rotation speed using the rotation speed when the resonance state is canceled. Without stopping 1, it is possible to drive with less vibration, noise, and abnormal noise.
  • the rotational speed of the propeller fan 2 is increased or decreased.
  • the decrease in the current pulsation value Ia of the fan motor 3 is detected again after the change in the fan rotation speed, it can be determined that the rotation speed before the change is in the resonance state.
  • the resonance it is desirable to increase or decrease the rotation speed of the propeller fan 2 to operate the air conditioner without resonance.
  • FIG. 5 is a flowchart showing avoidance control (part 1) when resonance is detected during operation of the air conditioner.
  • S indicates each step of the flow. This flow is executed in the control unit 4 including the microcomputer of FIG.
  • the control unit 4 measures current pulsation (motor current pulsation) of the fan motor 3 of the outdoor unit 1 of the air conditioner. Specifically, the current detector 5 detects the output current from the fan motor 3, and the phase detector 6 detects the magnetic pole position of the fan motor 3. Then, the pulsation detecting unit 8 extracts the pulsation of the motor current due to the torque fluctuation using the detected output current of the fan motor 3 and the mechanical angle phase.
  • step S2 the control unit 4 determines the resonance of the outdoor unit 1 of the air conditioner based on the pulsation of the motor current and the rotation speed of the propeller fan 2 of the outdoor unit 1 of the air conditioner (hereinafter referred to as fan rotation speed). To do. When it determines with the outdoor unit 1 of an air conditioner not resonating, this flow is complete
  • the control unit 4 changes the fan rotation speed by a predetermined rotation speed in step S3.
  • the change in fan rotation speed is an increase or decrease in fan rotation speed.
  • the control unit 4 increases the fan rotation speed of the air conditioner by a predetermined rotation speed (for example, 5 rpm).
  • the reason for changing the fan rotation speed to the predetermined rotation speed is as follows. That is, when the fan rotation speed of the air conditioner fluctuates greatly, the amount of change in the air volume of the outdoor unit 1 increases. For this reason, the amount of heat exchange in the heat exchanger increases, and the fluctuation of the refrigerant pressure in the refrigeration cycle increases. Then, stable control of the refrigeration cycle of the air conditioner is disturbed.
  • the resonance point is near the natural frequency of the system in which the air conditioner is installed. Therefore, from the influence on the refrigeration cycle and the characteristic of the resonance phenomenon, it is desirable that the change (increase here) of the fan rotation speed is about 5 rpm at most (one step).
  • whether to change the fan rotation speed to increase or decrease is as follows. That is, when the fan rotation speed is increased and the air volume is increased while the heat exchanger of the refrigeration cycle is operating as an evaporator as in the outdoor unit 1 of the air conditioner during heating operation at a low outdoor temperature, the refrigerant pressure is increased. The evaporation temperature decreases and frosting increases. When there is a problem in the operation of the air conditioner, the change of the fan rotation speed is decreased instead of being increased. Resonance is avoided by reducing the fan speed.
  • step S4 the control unit 4 determines whether or not a predetermined time has elapsed after changing the fan rotation speed by a predetermined rotation speed, and is determined from a predetermined time (measured data until the system becomes stable, which is short. If the system cannot obtain valid data after stabilization, and if it is long, the resonance avoidance control is delayed), it is determined that the system is stable, and the process proceeds to step S5.
  • step S5 the control unit 4 determines the resonance of the outdoor unit 1 of the air conditioner based on the pulsation of the motor current and the fan rotation speed after the fan rotation speed change (increase or decrease).
  • step S6 determines in step S6 that this resonance is resonance due to an abnormal state ("abnormality determination"). Then, this flow is finished. In the case of this abnormality determination, the control unit 4 performs control to notify the user to that effect by failure notification control (not shown) and to stop the fan motor 3 when an abnormality is detected.
  • step S5 If it is determined in step S5 that the outdoor unit 1 of the air conditioner is not resonating, the control unit 4 determines in step S7 that the air conditioner has exited the resonance point, and determines the fan rotation speed (changed fan rotation). (Speed) is maintained and this flow ends. Thereafter, the air conditioner continues to operate at the changed fan rotation speed.
  • FIG. 6 is a flowchart showing avoidance control (part 2) when resonance is detected during operation of the air conditioner.
  • This avoidance control is executed in the control unit 4 including the microcomputer of FIG.
  • the control unit 4 calculates the fan rotation speed change width ⁇ F in step S11. Since the rotational speed change width ⁇ F changes depending on the refrigerant pressure and each temperature of the refrigeration cycle, the control unit 4 sequentially calculates the fan rotational speed change width ⁇ F.
  • step S14 the control unit 4 determines resonance of the outdoor unit 1 of the air conditioner when the fan rotation speed is changed. Specifically, the resonance of the outdoor unit 1 of the air conditioner is determined based on the pulsation of the motor current and the fan rotation speed after the fan rotation speed change width ⁇ F.
  • step S16 the control unit 4 increases (increases) the fan rotation speed by a predetermined rotation speed (for example, 10 rpm) and returns to step S14.
  • a predetermined rotation speed for example, 10 rpm
  • the increase / decrease in the rotation speed during the resonance avoidance control is preferably within about 10 rpm.
  • the reason why the increase / decrease width of the fan rotation speed is limited to the predetermined rotation speed is to prevent the heat exchange amount from increasing / decreasing due to the increase / decrease in the air volume, and not affecting the performance of the air conditioner.
  • step S18 the control unit 4 decreases (decreases) the fan rotation speed by a predetermined rotation speed (for example, 10 rpm) and returns to step S14.
  • a predetermined rotation speed for example, 10 rpm
  • the rotation speed is increased (step S16).
  • the rotation speed is decreased (step S18). If F ⁇ Fmax in step S17, the process proceeds to step S19.
  • step S19 the control unit 4 determines whether or not the fan rotation speed change width ⁇ F is larger than 0 ( ⁇ F> 0).
  • step S19 ⁇ YES When the fan rotation speed change width ⁇ F is larger than 0 ( ⁇ F> 0) (step S19 ⁇ YES), the control unit 4 increases the fan rotation speed by a predetermined rotation speed (for example, 10 rpm) in step S20 and returns to step S14. . If the fan rotation speed change width ⁇ F is equal to or less than 0 ( ⁇ F ⁇ 0), the step S21 control unit 4 decreases the fan rotation speed by a predetermined rotation speed (for example, 10 rpm) and returns to step S14. Steps S14 to S21 correspond to the steps of resonance avoidance control. On the other hand, if it is determined in step S14 that the outdoor unit 1 of the air conditioner has not resonated even after the fan rotation speed has been changed, this flow ends.
  • a predetermined rotation speed for example, 10 rpm
  • the outdoor unit 1 of the air conditioner detects the propeller fan 2 that blows air to the heat exchanger, the fan motor 3 that drives the propeller fan 2, and the current value of the fan motor 3.
  • Current detecting unit 5 for detecting the phase detecting unit 6 for detecting the magnetic pole position of the fan motor 3, the fan rotational speed detecting unit 7 for detecting the rotational speed of the fan motor 3, and the detected current value and magnetic pole position of the fan motor 3.
  • a pulsation detector 8 that detects pulsation of the current value based on the current value, and a resonance determination that determines the resonance of the system of the outdoor unit having the fan motor 3 or the housing of the indoor unit based on the detected pulsation of the current value and the fan rotation speed Part 9.
  • the control unit 4 executes resonance avoidance control that increases or decreases the fan rotation speed by a predetermined rotation speed.
  • This configuration eliminates the need for an advanced high processing capacity microcomputer or vibration sensor, so that the resonance of the enclosure of the outdoor unit 1 of the air conditioner can be detected accurately at low cost.
  • the control unit 4 instructs to increase or decrease the fan rotation speed and determines the resonance again, so that the resonance stops the operation of the air conditioner. It is possible to discriminate between abnormal resonances that do not and resonances that are not. In other words, erroneous determination of resonance can be prevented, and the detection accuracy of resonance can be improved.
  • the operation of the air conditioner can be continued by maintaining the changed fan rotation speed.
  • casing of the outdoor unit 1 of an air conditioner is determined, it becomes possible to avoid the resonance which considered the field construction state.
  • the resonance of the outdoor unit or indoor unit of the air conditioner can be accurately detected at low cost, and an air conditioner that can be stably operated with less vibration, noise, and abnormal noise can be realized. .
  • FIG. 7 and FIG. 8 are diagrams for explaining a construction example of the air conditioner according to the second embodiment of the present invention.
  • FIG. 7 shows an example in which the outdoor unit 100 of the air conditioner is constructed on a vibration isolation stand
  • FIG. 8 shows an example in which the outdoor unit 100 of the air conditioner is constructed on a mold stand in a snowfall area.
  • the outdoor unit 100 of the air conditioner according to the present embodiment includes a blower 101 on a housing and a leg 102 at the bottom.
  • the front surface of the housing is provided with a front cover 100a and a service cover 100b, and includes a left and right side surface 100c and a heat exchanger 100d from the left and right side surfaces to the back surface.
  • the outdoor unit 100 is installed on the anti-vibration racks 103 and 104.
  • Anti-vibration rubber 105 is sandwiched between the anti-vibration stands 103 and 104.
  • the outdoor unit 100 of the air conditioner is often installed on the building rooftop. Moreover, since the fan, the compressor, and the like of the blower have a motor, vibration is generated during operation.
  • the main vibration limits of the outdoor unit 100 are as follows. When the outdoor unit 100 of the air conditioner is fixed directly to the building, the vibration of the outdoor unit 100 is transmitted to the housing of the building, the vibration is also transmitted to the living space of the building, and depending on the strength of the vibration The comfort of the building occupants will be impaired.
  • the anti-vibration racks 103 and 104 are installed in the building, and the outdoor unit 100 of the air conditioner is placed on the anti-vibration racks 103 and 104.
  • Anti-vibration rubbers 105 are provided on the anti-vibration bases 103 and 104.
  • the natural frequency in the system including the outdoor unit 100 and the anti-vibration bases 103 and 104 is the height of the anti-vibration bases 103 and 104, the number of the outdoor units 100 placed on one anti-vibration base 103 and 104, and the like. Depending on the installation status of the air conditioner, it varies.
  • the spring constant of the anti-vibration rubber 105 of the anti-vibration racks 103 and 104 varies depending on the temperature
  • the natural frequency in the system including the outdoor unit 100 and the anti-vibration racks 103 and 104 varies depending on the season.
  • the outdoor unit 100 of the air conditioner when the outdoor unit 100 of the air conditioner is constructed on a mold base in a snowfall area, the outdoor unit 100 is installed on the anti-vibration base 103.
  • the anti-vibration frame 103 is installed on a high-leg frame 106.
  • the gantry 106 is a gantry having a height higher than the assumed snow cover, and the outdoor unit 100 of the air conditioner is installed on a vibration isolation gantry 103 on the gantry 106.
  • the height of the gantry 106 varies depending on snow conditions in the area. If the height of the gantry 106 is different, the natural frequency in the system including the outdoor unit 100, the vibration isolation gantry 103, and the gantry 106 is different.
  • the outdoor unit 100 of the air conditioner according to the present embodiment performs the resonance determination of the entire system by detecting the pulsation of the motor current described in the first embodiment of the outdoor unit 100 of the air conditioner according to the present embodiment. It is mounted on a control unit (not shown). That is, the control unit 4 of the outdoor unit 1 of the air conditioner shown in FIG. 1 is mounted as the control unit of the outdoor unit 100 of the air conditioner according to the present embodiment, and the resonance shown in the flow of FIG. 5 or FIG. Execute avoidance control.
  • FIG. 9 is a diagram illustrating a construction example of the indoor unit 200 for an air conditioner according to the third embodiment of the present invention.
  • the indoor unit 200 of the air conditioner according to the present embodiment is a suspension type in which the housing 200 ⁇ / b> A is suspended so as to face the ceiling surface 204.
  • a decorative board 201 is attached to the ceiling surface 204 side of the casing 200A.
  • the indoor unit 200 is suspended and fixed to the building housing 205 by a suspension bolt 203 installed in the building housing 205 and a hanging metal fitting 202 provided in the housing 200A.
  • a suspension bolt 203 installed in the building housing 205 and a hanging metal fitting 202 provided in the housing 200A.
  • the intervals between the indoor unit 200 and the building housing 205 and the intervals between the indoor units 200 are instructed by the installation inspection procedure manual.
  • the length of the suspension bolt 203 varies depending on the building. Therefore, the natural frequency of the indoor unit 200 of the air conditioner including the suspension bolt 203 is different.
  • the indoor unit 200 of the air conditioner according to the present embodiment performs the resonance determination of the entire system by detecting the pulsation of the motor current described in the first embodiment of the indoor unit 200 of the air conditioner according to the present embodiment. It is mounted on a control unit (not shown). That is, the control unit 4 of the outdoor unit 1 of the air conditioner shown in FIG. 1 is mounted as the control unit of the indoor unit 200 of the air conditioner according to the present embodiment, and the resonance shown in the flow of FIG. 5 or FIG. Execute avoidance control. Thereby, in the indoor unit 200 of the air conditioner according to the present embodiment, it is possible to determine the resonance of the entire system after construction. By reflecting this resonance determination in the blower rotational speed control of the indoor unit 200, resonance can be avoided and unpleasant factors such as vibration and noise can be reduced for the user of the air conditioner.
  • FIG. 10 is a diagram for explaining a construction example of the outdoor unit of the air conditioner according to the fourth embodiment of the present invention.
  • This embodiment is an example when the outdoor unit 100 of the air conditioner according to this embodiment includes a plurality of fans 101a, 101b, 101c, and 101d.
  • the air conditioner 100 of the air conditioner according to the present embodiment includes a plurality of blowers 101a, 101b, 101c, and 101d.
  • the outdoor unit 100 including a plurality of fans 101a, 101b, 101c, and 101d the resonance determination of the entire system based on the detection of the pulsation of the motor current described in the first embodiment is performed according to the present embodiment for each fan.
  • the resonance avoidance control similar to that of the first embodiment may be executed for each fan. However, when the plurality of fans 101a, 101b, 101c, and 101d are provided, the following resonance avoidance control is performed. Better.
  • the blower 101a is set so that the fan rotation speed change width ⁇ F (see FIG. 6) of the blowers 101a, 101b, 101c, and 101d is 0 rpm in total. , 101b, 101c, 101d, it is desirable to change the fan rotation speed.
  • the fan rotation speed is changed so that the fan rotation speed change width ⁇ F becomes 0 rpm in total, such as +5 rpm for the blower 101a, + 10rpm for the blower 101b, -10rpm for the blower 101c, and -5rpm for the blower 101d.
  • the air volume change while avoiding resonance from the natural frequency in the system where the outdoor unit 100 of the air conditioner is installed Can be made as small as possible.

Abstract

空気調和機の室外機または室内機の筺体の共振を安価に精度よく検出できる空気調和機を提供する。空気調和機の室外機(1)は、熱交換器に送風するプロペラファン(2)と、プロペラファン(2)を駆動するファンモータ(3)と、ファンモータ(3)の電流値を検出する電流検出部(5)と、ファンモータ(3)の磁極位置を検出する位相検出部(6)と、ファンモータ(3)の回転速度を検出するファン回転速度検出部(7)と、検出したファンモータ(3)の電流値および磁極位置に基づいて電流値の脈動を検出する脈動検出部(8)と、検出した電流値の脈動およびファン回転速度に基づき、ファンモータ(3)を有する室外機または室内機の筺体の系の共振を判定する共振判定部(9)と、を備える。制御部(4)は、共振判定部(9)が共振と判定した場合、ファン回転速度を所定回転速度分増加または減少させる共振回避制御を実行する。

Description

空気調和機
 本発明は、空気調和機に関する。
 近年では、原材料費が高騰しても製品販売価格への添加は困難であるため、一層の低コストな製品提供が求められる。また、空調機の省エネ化や低騒音化も空気調和機の製品としての重要な訴求項目となっている。
 空気調和機の室外機送風機の多くに採用されるプロペラファンや、室内機、例えば天井カセット型4方向吹き出し機に使用されるターボファン等には、樹脂材料による射出成型品が多く用いられている。樹脂材料による射出成型品は、板金製ではないため、形状自由度が高く大量生産に有利であり、高効率且つ低騒音、低コストを実現することができる。
 一般に、空気調和機の室外機では、送風機のファンは外気温や空気調和機を構成する冷凍サイクル内の冷媒温度などから演算し、約100rpmから約1000rpm程度まで、幅広い回転速度で送風している。
 そのため、空気調和機の筐体との共振により、振動や騒音が特定の回転速度において大きくなってしまうことがある。共振による振動や騒音の増大は、空気調和機使用者にとって大きな問題となるため、予め空気調和機の筐体との共振が発生する回転速度を調査し、その回転速度を使用しないような制御等、工夫がなされている。
 一方、空気調和機の室外機、例えばビル用マルチ型の室外機では、オフィスビル等建物の屋上に複数台まとめて設置されるケースが多くある。その場合、建物構造物に振動を伝えないために、空気調和機施工時に、防振架台の上に空気調和機室外機を設置する事例が少なくない。
 また、東北や北海道、北陸地方では、空気調和機の室外機熱交換器が積雪にて埋まってしまわないようにするため、積雪を考慮した高さに室外機を据え付けるべく、架台を作成しその上に室外機を設置する場合がある。
 さらに、空気調和機の室内機については、室内機を施工する際、建物の構造により室内機を吊るための釣りボルトの長さも、施工場所によってそれぞれ異なる。このため、空気調和機を吊った状態での固有振動数は施工条件によって少しずつ異なる。
 これらの場合、現地の施工状態によって、空気調和機室外機と架台を一体とした固有振動値は異なることになる。
 特許文献1には、電動送風機から発生する振動および騒音の少なくとも1つを検出する検出装置と、検出された振動および騒音の少なくとも1つの周波数成分を、正常な電動送風機に特有の周波数成分と比較することで電動送風機の故障検知および故障モード判定を実行する制御手段と、を有する電動送風機の故障診断装置が記載されている。
 特許文献2には、筐体に設けられた送風装置の振動を検知する振動検知手段と、該振動検知手段からの出力に基づいて送風装置を制御する制御装置とを備え、振動検知手段は、筐体の短手方向の振動を検出するように、送風装置の支持板に設置されている空気調和機が記載されている。
特開2010-65594号公報 特開2013-234797号公報
 特許文献1記載の電動送風機の故障診断装置では、振動もしくは騒音の周波数分析のために、空気調和機制御よりも演算が高度な高い処理能力の演算手段を必要とする。このため、安価なマイクロコンピュータの使用を妨げ、コストが増大するという問題がある。
 また、特許文献2記載の空気調和機では、突風や地震、保守点検の際の振動等外乱により振動センサが誤検知してしまう虞れがある。また、振動センサを必要とするため、コストが増大するという問題がある。
 さらに、上記特許文献1および特許文献2記載の装置のいずれにおいても異常検知後は、空気調和機の運転を停止する構成であったため、下記の問題がある。すなわち、特定の周波数成分が増加して共振を検知した場合であっても、その共振が空気調和機の運転を停止する程までの異常ではない状況も存在することが判明した。このような状況においては、共振を検知すると空気調和機を一律に停止させることは問題がある。
 本発明の目的は、空気調和機の室外機または室内機の筺体の共振を安価に精度よく検出できる空気調和機を提供することである。
 上記課題を解決するために、本発明の空気調和機は、熱交換器に送風するファンと、前記ファンを駆動するモータと、前記モータの回転速度を検出する回転速度検出手段と、前記モータの電流値を検出する電流検出手段と、前記モータの磁極位置を検出する位相検出手段と、検出した前記モータの電流値および磁極位置に基づいて電流値の脈動を検出する脈動検出手段と、検出した前記電流値の脈動および前記回転速度に基づき、前記モータを有する室外機または室内機の筺体の共振を判定する共振判定手段と、を備える。
 本発明によれば、空気調和機の室外機または室内機の筺体の共振を安価に精度よく検出できる空気調和機を提供する。
本発明の第1の実施形態に係る空気調和機の室外機の構成を示す図である。 上記第1の実施形態に係る空気調和機の室外機の脈動検出部の構成例を示す図である。 上記第1の実施形態に係る空気調和機の共振時における電流の脈動を示す波形図である。 上記第1の実施形態に係る空気調和機の筐体が共振した場合のファン回転速度と電流脈動値の関係を示す図である。 上記第1の実施形態に係る空気調和機の運転中に共振を検知した場合の回避制御(その1)を示すフローチャートである。 上記第1の実施形態に係る空気調和機の運転中に共振を検知した場合の回避制御(その2)を示すフローチャートである。 本発明の第2の実施形態に係る空気調和機の室外機が防振架台上に施工された施工例を説明する図である。 上記第2の実施形態に係る空気調和機の室外機が降雪地域の型架台に施工された施工例を説明する図である。 本発明の第3の実施形態に係る空気調和機の室内機の施工例を説明する図である。 本発明の第4の実施形態に係る空気調和機の室外機の施工例を説明する図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る空気調和機の室外機1の構成を示す図である。空気調和機は、室外機と図示しない室内機が、冷媒配管により接続されて冷凍サイクルを構成し、空気調和を行うものである。
 図1に示すように、空気調和機の室外機1は、図示しない室外側熱交換器に送風するプロペラファン2と、プロペラファン2を回転駆動するファンモータ3と、ファンモータ3を所望の回転速度となるように回転自在に駆動制御するとともに、共振回避制御を実行する制御部4(制御手段)と、を備える。
 プロペラファン2は、空気調和機の室外機熱交換器へ送風するためのファンである。また、プロペラファン2は、空気調和機の室内機に送風するためのターボファン、シロッコファン、貫流ファンであってもよく、送風機の形態は問わない。
 制御部4は、ファンモータ3の出力電流を電流値として検出する電流検出部5(電流検出手段)と、ファンモータ3の磁極位置を検出する位相検出部6(位相検出手段)と、ファンモータ3の回転速度をファン回転速度として検出するファン回転速度検出部7(回転速度検出手段)と、検出したファンモータ3の電流値および磁極位置に基づいて電流値の脈動を検出する脈動検出部8(脈動検出手段)と、検出した電流値の脈動およびファン回転速度に基づき、ファンモータ3を有する室外機または室内機の筺体の系の共振を判定する共振判定部9(共振判定手段)と、を備える。
 制御部4は、共振判定部9が共振と判定した場合、ファン回転速度を所定回転速度分増加または減少させる共振回避制御(図5および図6参照)を実行する。
 制御部4は、共振判定部9の共振判定結果に基づいて、ファンモータ3の回転速度を調整し、共振状態から回避する。すなわち、制御部4は、共振判定部9が共振と判定すると、ファン1の回転速度を調整して、共振状態から回避できるかを試みる。
 脈動検出部8は、電流検出部4および位相検出部5の検出結果よりファンモータ3の電流値(以下、モータ電流値という)の脈動を検出する。
 共振判定部9は、制御部4によるファン回転速度の増加または減少制御後に、再度、共振判定を試み、共振を判定した場合には異常な共振であると判定する。
 共振判定部9は、制御部4によるファン回転速度の増加または減少制御後に、再度、共振判定を試み、共振を判定しない場合、制御部4は、当該ファン回転速度による運転を継続する。
 以下、上述のように構成された空気調和機の室外機1の動作について説明する。
 まず、プロペラファン2の共振に起因するトルク変動によるモータ電流の脈動の検出方法について述べる。
 図2は、上記脈動検出部8の構成例を示す図である。
 まず、電流検出部5は、ファンモータ3からの三相の出力電流(Iu、Iv、Iw)を検出する。具体的には、ファンモータ3を駆動するインバータ(図示省略)の直流部分に流れる電流をシャント抵抗(図示省略)の両端に発生する電圧から測定する。そして、制御部4内の図示しない電流演算部によって、モータ電流(Iu、Iv、Iw)を導出する。なお、モータ電流(Iu、Iv、Iw)の検出方法には、モータ電流の出力部に抵抗値の小さい抵抗を接続し、その抵抗にかかる電圧からの検出や、電流センサによる検出等様々な方法がある。
 検出したモータ電流(Iu、Iv、Iw)を、次式(1)に従って、αβ変換、dq変換の順に変換し、その結果を1次遅れフィルタ処理することで、脈動検出部8の入力値となる、q軸電流フィードバック値を算出する。
 
Figure JPOXMLDOC01-appb-M000001
 
 式(1)において、dq変換時のθdcは、d軸位相であり、ファンモータの磁極位置を示す。脈動検出部8の二つ目の入力値である機械角位相θrは、θdcをから算出する。次式(2)に示す。
 
 Δθr=Δθdc/極対数 …(2)
 
 θrは、Δθrを積算し算出する。上記の2つの入力q軸電流フィードバック値、機械角位相θrから脈動成分を抽出する。
 図2に示すように、機械角位相θrからsin、cos演算71によりsinθr、cosθrを算出し、q軸電流フィードバック値とかけ合わせ、1次遅れフィルタ処理72を行うことで、高周波成分を除去する。
 ここで、1次遅れフィルタ処理の時定数の設定値の設定には、実機による試験を基に、トルク脈動の周期を抽出できるようにシミュレーションにより設定する。すなわち、フィルタ時定数の設定には脈動成分を抽出するためにフィルタ時定数を脈動周期より大きくする必要があるため、トルク脈動が発生するプロペラファン2の回転周期に対しそれよりも大きい時定数を設定する。1次遅れフィルタ処理72後、再度sinθr、cosθrをかけ、足し合わせ、調整ゲインKにより脈動成分の調整を行うことで、機械角位相θrの周期で脈動する成分のみを抽出することができる。サンプリング周期、フィルタ時定数の設定値の一例を図2に示す。
 次に、検出された電流値から共振を判断する手順について説明する。
 図3は、空気調和機の共振時における電流の脈動を示す波形図である。図3に示す曲線50aは、非共振状態の電流値波形を示し、曲線50bは、共振状態のときの電流値波形を示している。
 図1に示す電流検出部5は、時々刻々ファンモータ電流を検出している。
 空気調和機の室外機1または室内機が共振状態にある場合、ファンモータ3のトルク変動が非共振時と比較して大きくなり、それがファンモータ3の印加電流にも発生する。このため、図3の曲線50bに示すように、電流平均値Imに対する脈動(もしくは振幅)Iaが大きくなる。ファンモータ3の回転速度が増大するにつれ、印加電流も大きくなるため、電流平均値Imも増加する。電流脈動値Iaによって、共振判定が可能になる。
 図4は、空気調和機の筐体が共振した場合のファン回転速度と電流脈動値の関係を示す図である。
 図4に示す曲線51bは共振がある場合、曲線51aは共振がない場合の関係を示す。
 図4に示す曲線51aは、非共振状態の電流値波形を示し、曲線51bは共振状態のときの電流値波形を示している。本発明者らは、図4の曲線51bに示すように、共振状態にある場合、あるファン回転速度[Hz]において、ファンモータ3の電流脈動値が増大することを見出した。この点、プロペラファン2が万が一損傷した場合に生じる電流脈動値とは異なる。すなわち、プロペラファン2が損傷した場合には、プロペラファン2自身のアンバランスにより、回転速度によらずに電流脈動値が増大する。したがって、電流脈動値の増大を検出した場合に、回転速度を変えてみて、その結果、当該電流脈動値が減少するのであれば、プロペラファン2の損傷によるような室外機1の共振状態ではないと判定できる。ちなみに、回転速度を変えてみて室外機1の共振状態が解消した場合、当該共振状態が解消したときの回転速度を用いて、当該回転速度で室外機1を回転させるようにすれば、室外機1を停止させずに、振動や騒音、異音を少なくして運転することが可能になる。
 例えば、電流脈動値Iaの増大を検出した場合には、プロペラファン2の回転速度を増加ないし減少させる。このファン回転速度の変更後、再度、ファンモータ3の電流脈動値Iaの減少を検出した場合には、変更前の回転速度が共振状態であったと判定することができる。共振と判定した場合には、プロペラファン2の回転速度を増加または減少させて共振しない状態で空気調和機を運転することが望ましい。
 次に、施工状態まで考慮した空気調和機の室外機の共振の判定および回避の制御例について説明する。なお、回避制御(その1)および回避制御(その2)は、適宜いずれかの制御方法が採用される。
 <回避制御(その1)>
 図5は、空気調和機の運転中に共振を検知した場合の回避制御(その1)を示すフローチャートである。図中、Sはフローの各ステップを示す。本フローは、図1のマイクロコンピュータ等からなる制御部4において実行される。
 空気調和機の運転中において、ステップS1で制御部4は、空気調和機の室外機1のファンモータ3の電流脈動(モータ電流の脈動)を計測する。すなわち、具体的には、電流検出部5は、ファンモータ3からの出力電流を検出するとともに、位相検出部6はファンモータ3の磁極位置を検出する。そして、脈動検出部8は、検出したファンモータ3の出力電流と機械角位相を用いてトルク変動によるモータ電流の脈動を抽出する。
 ステップS2では、制御部4は、モータ電流の脈動と空気調和機の室外機1のプロペラファン2の回転速度(以下、ファン回転速度という)に基づいて空気調和機の室外機1の共振を判定する。空気調和機の室外機1が共振していないと判定した場合は、本フローを終了する。
 空気調和機の室外機1が共振していると判定した場合、ステップS3で制御部4は、ファン回転速度を所定回転速度だけ変える。ファン回転速度の変更は、ファン回転速度の増加または減少である。例えば、制御部4は、空気調和機の共振を検知した場合には、空気調和機のファン回転速度を所定回転速度(例えば5rpm)増加させる。
 ファン回転速度の変更を所定回転速度とする理由は、下記の通りである。すなわち、空気調和機のファン回転速度が大きく変動すると、室外機1の風量の変化量が大きくなる。このため、熱交換器での熱交換量が大きくなり、冷凍サイクルの冷媒圧力の変動が大きくなる。すると、空気調和機の冷凍サイクルの安定制御を乱してしまう。ここで、共振点は、空気調和機が設置される系の固有振動数近傍である。したがって、冷凍サイクルへの影響と共振現象の特徴から、ファン回転速度の変更(ここでは増加)は、1回(1ステップ)で多くとも5rpm程度が望ましい。
 また、ファン回転速度の変更を増加とするか減少とするかどちらを選択するかは、下記の通りである。すなわち、外気低温時の暖房運転中の空気調和機の室外機1のように、冷凍サイクルの熱交換器が蒸発器として動作中に、ファン回転速度を増加させ風量が増加させると、冷媒圧力が低下し蒸発温度が低くなり着霜が増加する。このような空気調和機運転上問題がある場合には、ファン回転速度の変更を増加ではなく減少させる。ファン回転速度を減少させることで共振を回避する。
 ステップS4では、制御部4は、ファン回転速度を所定回転速度だけ変えてから、所定時間が経過したか否かを判別し、所定時間(系が安定するまでの実測データから定められ、これが短いと系が安定後の有効なデータが得られず、また長いと共振回避制御が遅れる)が経過すると系が安定したと判断してステップS5に進む。
 ステップS5では、制御部4は、ファン回転速度変更(増加または減少)後における、モータ電流の脈動とファン回転速度に基づいて空気調和機の室外機1の共振を判定する。
 ファン回転速度変更後においても空気調和機の室外機1が共振していると判定した場合、ステップS6で制御部4は、この共振が異常な状態による共振であると判定(「異常判定」)して本フローを終了する。なお、この異常判定の場合、制御部4は図示しない故障報知制御によって、ユーザにその旨を報知する、また異常を検出したとしてファンモータ3を停止する制御を行う。
 上記ステップS5で空気調和機の室外機1が共振していないと判定した場合、ステップS7で制御部4は、空気調和機の共振点から抜けたと判断してそのファン回転速度(変更したファン回転速度)を維持して本フローを終了する。以降、空気調和機は、変更したファン回転速度で運転を継続する。
 <回避制御(その2)>
 図6は、空気調和機の運転中に共振を検知した場合の回避制御(その2)を示すフローチャートである。本回避制御は、図1のマイクロコンピュータ等からなる制御部4において実行される。
 空気調和機の運転中において、ステップS11で制御部4は、ファン回転速度変化幅ΔFを計算する。冷凍サイクルの冷媒圧力や各温度によって回転速度変化幅ΔFは変化するので、制御部4は、ファン回転速度変化幅ΔFを逐次計算する。
 ステップS12で制御部4は、ファン回転速度変化幅ΔFが0か(ΔF=0か)否かを判別し、ΔF=0の場合は、回転速度変化幅ΔFは変化ないと判断して本フローを終了する。
 ΔF≠0の場合は、ステップS13で制御部4は、現在のファン回転速度FをΔFだけ変更してステップS14に進む。
 ステップS14で制御部4は、ファン回転速度が変更となった時の空気調和機の室外機1の共振を判定する。具体的には、ファン回転速度変化幅ΔF後における、モータ電流の脈動とファン回転速度に基づいて空気調和機の室外機1の共振を判定する。
 空気調和機の室外機1が共振していると判定した場合、ステップS15で制御部4は、現在のファン回転速度Fがファン仕様最小回転速度Fminとなったか(F=Fminか)否かを判別する。
 F=Fminの場合(ステップS15→YES)は、ステップS16で制御部4は、ファン回転速度を所定回転速度(例えば10rpm)増加(上昇)させてステップS14に戻る。ここで、共振回避制御時の回転速度の増減は10rpm程度以内が望ましい。ファン回転速度の増減幅を所定回転速度内に制限している理由は、風量の増減により熱交換量が増減し、空気調和機の能力に影響が出ないようにするためである。
 上記ステップS15でF≠Fminの場合は、ステップS17に進む。
 ステップS17で制御部4は、現在のファン回転速度Fがファン仕様最大回転速度Fmaxとなったか(F=Fmaxか)否かを判別する。
 F=Fmaxの場合(ステップS17→YES)は、ステップS18で制御部4は、ファン回転速度を所定回転速度(例えば10rpm)減少(下降)させてステップS14に戻る。
 このように、ファン回転速度が変更となった時に共振を判定し(ステップS14)、ファン回転速度が仕様の範囲最小の場合(ステップS15→YES)には回転速度を増加させ(ステップS16)、ファン回転速度が仕様の範囲最大の場合(ステップS17→YES)には回転速度を減少させる(ステップS18)。
 上記ステップS17でF≠Fmaxの場合は、ステップS19に進む。
 ステップS19で制御部4は、ファン回転速度変化幅ΔFが0より大きいか(ΔF>0か)否かを判別する。
 ファン回転速度変化幅ΔFが0より大きい(ΔF>0)場合(ステップS19→YES)は、ステップS20で制御部4は、ファン回転速度を所定回転速度(例えば10rpm)増加させてステップS14に戻る。また、ファン回転速度変化幅ΔFが0以下(ΔF≦0)場合は、ステップS21制御部4は、ファン回転速度を所定回転速度(例えば10rpm)減少させてステップS14に戻る。
 なお、上記ステップS14~ステップS21が共振回避制御の各ステップに相当する。
 一方、上記ステップS14でファン回転速度変更後においても空気調和機の室外機1が共振していないと判定した場合、本フローを終了する。
 以上説明したように、本実施形態に係る空気調和機の室外機1は、熱交換器に送風するプロペラファン2と、プロペラファン2を駆動するファンモータ3と、ファンモータ3の電流値を検出する電流検出部5と、ファンモータ3の磁極位置を検出する位相検出部6と、ファンモータ3の回転速度を検出するファン回転速度検出部7と、検出したファンモータ3の電流値および磁極位置に基づいて電流値の脈動を検出する脈動検出部8と、検出した電流値の脈動およびファン回転速度に基づき、ファンモータ3を有する室外機または室内機の筺体の系の共振を判定する共振判定部9と、を備える。制御部4は、共振判定部9が共振と判定した場合、ファン回転速度を所定回転速度分増加または減少させる共振回避制御を実行する。
 この構成により、高度な高い処理能力のマイクロコンピュータや振動センサを必要としないので、空気調和機の室外機1の筺体の共振を安価に精度よく検出することができる。
 また、本実施の形態では、共振を判定した場合であっても、制御部4がファン回転速度の増加または減少を指示し、再度、共振を判定するので、共振が空気調和機の運転を停止する程の異常な共振とそうではない共振とを識別することができる。換言すれば、共振の誤判定を防止することができ、共振の検出精度を向上させることができる。また、空気調和機の運転を停止する程の共振ではない場合、変更したファン回転速度を維持することで、空気調和機の運転を継続することができる。
 また、本実施の形態では、空気調和機の室外機1の筺体の系の共振を判定するので、現地施工状態を考慮した共振の回避が可能になる。
 このように、安価に空気調和機の室外機もしくは室内機の共振を精度よく検出することができ、より振動や騒音、異音の少なくかつ安定して運転できる空気調和機を実現することができる。
(第2の実施形態)
 図7および図8は、本発明の第2の実施形態に係る空気調和機の施工例を説明する図である。図7は、空気調和機の室外機100が防振架台上に施工された例を、図8は、空気調和機の室外機100が降雪地域の型架台に施工された例を示す。
 図7に示すように、本実施形態の空気調和機の室外機100は、筺体の上に送風機101を備え、底部に脚部102を備える。また、この筺体の前面には、正面カバー100aおよびサービスカバー100bを備え、左右の側面100c、および左右側面から背面にかけての熱交換器100dにより構成されている。
 また、室外機100は、防振架台103,104に設置される。防振架台103と104には、防振ゴム105が挟まれている。
 空気調和機の室外機100は、建物屋上に設置されることが多い。また、送風機のファンや圧縮機等はモータを有するので、運転時には振動が発生する。室外機100の主な振動限度としては、下記がある。空気調和機の室外機100は、建物に直接室外機100を固定した場合には、室外機100の振動が建物の躯体に伝わり、建物の居住空間にも振動が伝わり、振動の強さによっては建物居住者の快適性を損なってしまう。
 そこで、図7に示すように、防振架台103,104を建物に設置し、防振架台103,104上に空気調和機の室外機100を載置する。防振架台103,104には、防振ゴム105が備えられている。このため、室外機100および防振架台103,104を含めた系での固有振動数は、防振架台103,104の高さや、1つの防振架台103,104に乗せる室外機100の台数等、空気調和機の施工状況によってまちまちである。さらに、防振架台103,104の防振ゴム105のばね定数は、温度によって変化するため、季節によっても室外機100と防振架台103,104を含めた系での固有振動数が異なる。
 また、図8に示すように、空気調和機の室外機100が降雪地域の型架台に施工された場合、室外機100は、防振架台103に設置される。防振架台103は、高脚の架台106に設置される。架台106は、想定する積雪よりも余裕を持った高さの架台であり、空気調和機の室外機100は、架台106の上の防振架台103に設置される。架台106の高さは、その地域の積雪状況により異なる。架台106の高さが異なると、室外機100と防振架台103および架台106を含めた系での固有振動数が異なることになる。
 従来例では、空気調和機自身の筐体の共振については、設計・開発時に回避が可能であるものの、図7および図8のような現地の施工状態まで考慮した系全体共振の回避は困難であった。
 そこで、本実施形態に係る空気調和機の室外機100は、第1の実施形態で述べた、モータ電流の脈動検出による系全体の共振判定を本実施形態に係る空気調和機の室外機100の制御部(図示省略)に搭載する。すなわち、本実施形態に係る空気調和機の室外機100の制御部として、前記図1に示す空気調和機の室外機1の制御部4を搭載し、前記図5または図6のフローに示す共振回避制御を実行する。
 これにより、本実施形態に係る空気調和機の室外機100において、施工後の系全体の共振を判定する。共振を判定した場合、送風機ファン回転速度を変更し、空気調和機の室外機100および防振架台103,104や架台106を含めた系における固有振動数から回避した運転を、適時行うことができる。
 したがって、本実施形態によれば、様々な施工状態においても共振を回避することができる。
 また、本実施形態では、送風機のファンによる吹き出しが上吹き型の室外機を例として示しているが、横吹き型の室外機であっても、本振動判定方法は同様なため、同様の効果を得ることができる。
(第3の実施形態)
 第1および第2の実施形態では、本発明を本実施形態に係る空気調和機の室外機に適用した例について説明したが、空気調和機の室内機に適用してもよい。
 図9は、本発明の第3の実施形態に係る空気調和機の室内機200の施工例を説明する図である。
 図9に示すように、本実施形態に係る空気調和機の室内機200は、筺体200Aが天井面204に向かうよう吊下げられる懸架タイプである。筺体200Aの天井面204側には、化粧板201が取り付けられる。
 室内機200は、建築物躯体205に設置された吊ボルト203と筺体200A内に備えられた吊金具202によって建築物躯体205に懸架・固定されている。なお、天井内に埋め込まれるタイプの室内機や、店舗等でみられるような室内機をむき出しに設置する場合でも同様の形態である。
 室内機200と建築物躯体205の間隔をとることや、室内機200各々の間隔等は、据付点検要領書により指導されている。しかし、建築物それぞれによって建築物躯体205と天井面204の距離は異なるため、建築物それぞれで吊ボルト203の長さは異なる。したがって、吊ボルト203まで含めた空気調和機の室内機200の固有振動数は異なることになる。
 そこで、本実施形態に係る空気調和機の室内機200は、第1の実施形態で述べた、モータ電流の脈動検出による系全体の共振判定を本実施形態に係る空気調和機の室内機200の制御部(図示省略)に搭載する。すなわち、本実施形態に係る空気調和機の室内機200の制御部として、前記図1に示す空気調和機の室外機1の制御部4を搭載し、前記図5または図6のフローに示す共振回避制御を実行する。
 これにより、本実施形態に係る空気調和機の室内機200において、施工後の系全体の共振を判定することが可能となる。この共振判定を室内機200の送風機回転速度制御に反映することにより、共振を回避し、空気調和機の利用者にとって振動や、騒音等の不快要因を低減することができる。
(第4の実施形態)
 図10は、本発明の第4の実施形態に係る空気調和機の室外機の施工例を説明する図である。
 本実施形態は、本実施形態に係る空気調和機の室外機100に複数の送風機101a,101b,101c,101dが備えられる場合の例である。
 図10に示すように、本実施形態に係る空気調和機の空気調和機100は、複数の送風機101a,101b,101c,101dを備えている。
 複数の送風機101a,101b,101c,101dを備える室外機100において、個々のファンに対し、第1の実施形態で述べた、モータ電流の脈動検出による系全体の共振判定を本実施形態に係る空気調和機の室外機100の制御部(図示省略)に搭載し、前記図5または図6のフローに示す共振回避制御を実行する。
 このように個々のファンに対し、第1の実施形態と同様の共振回避制御を実行してもよいが、複数の送風機101a,101b,101c,101dを備える場合、下記の共振回避制御を行うとよりよい。
 すなわち、複数の送風機101a,101b,101c,101dのファンに対し、同様にファン回転速度を増加させた場合には、送風機の台数が1台の室外機に対して多いほど合計の風量変化が大きくなる。そのため、複数の送風機101a,101b,101c,101dが備えられる場合には、送風機101a,101b,101c,101dのファン回転速度変化幅ΔF(図6参照)が合計で0rpmとなるように、送風機101a,101b,101c,101dのファン回転速度を変化させるのが望ましい。
 図10に示すように、1台の空気調和機の室外機100に対して4台の送風機101a,101b,101c,101dが備えられる場合を例に採る。この場合、例えば、送風機101aは+5rpm、送風機101bは+10rpm、送風機101cは-10rpm、送風機101dは-5rpmというように、ファン回転速度変化幅ΔFが合計で0rpmとなるようにファン回転速度を変化させる。ファン回転速度変化幅ΔFが合計で0rpmとなるようにファン回転速度を変化させることで、空気調和機の室外機100が設置されている系での固有振動数から共振を回避しつつ、風量変化をできるだけ小さくすることが可能になる。
 本発明は上記の実施形態例に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。
 上記した各実施形態例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1,100 室外機
 2 プロペラファン
 3 ファンモータ
 4 制御部(制御手段)
 5 電流検出部(電流検出手段)
 6 位相検出部(位相検出手段)
 7 ファン回転速度検出部(回転速度検出手段)
 8 脈動検出部(脈動検出手段)
 9 共振判定部(共振判定手段)
 101,101a,101b,101c,101d 送風機
 102 脚部
 103,104 防振架台
 105 防振ゴム
 106 架台
 200 室内機
 200A 筺体

Claims (6)

  1.  熱交換器に送風するファンと、
     前記ファンを駆動するモータと、
     前記モータの回転速度を検出する回転速度検出手段と、
     前記モータの電流値を検出する電流検出手段と、
     前記モータの磁極位置を検出する位相検出手段と、
     検出した前記モータの電流値および磁極位置に基づいて電流値の脈動を検出する脈動検出手段と、
     検出した前記電流値の脈動および前記回転速度に基づき、前記モータを有する室外機または室内機の筺体の共振を判定する共振判定手段と、を備える
    ことを特徴とする空気調和機。
  2.  前記共振判定手段が前記共振と判定した場合、前記回転速度を所定回転速度分増加または減少させる制御手段を備える
    ことを特徴とする請求項1に記載の空気調和機。
  3.  前記共振判定手段は、
     前記制御手段による前記回転速度の増加または減少制御後に、再度、前記共振判定を試み、共振を判定した場合には異常な共振であると判定する
    ことを特徴とする請求項2に記載の空気調和機。
  4.  前記共振判定手段は、
     前記制御手段による前記回転速度の増加または減少制御後に、再度、前記共振判定を試み、
     共振を判定しない場合、前記制御手段は、当該回転速度による運転を継続する
    ことを特徴とする請求項2に記載の空気調和機。
  5.  前記ファンを複数台備え、
     前記制御手段は、
     各ファンが所定の回転速度で運転しているときに、前記共振判定手段が共振と判定した場合、各ファンの平均回転速度が前記所定の回転速度となるように各モータの回転速度を増加または減少させる
    ことを特徴とする請求項2に記載の空気調和機。
  6.  前記共振判定手段は、
     前記室外機または室内機の筺体の施工後の系の共振を判定する
    ことを特徴とする請求項1ないし5のいずれか一項に記載の空気調和機。
PCT/JP2015/060811 2015-04-07 2015-04-07 空気調和機 WO2016162939A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017510824A JP6499752B2 (ja) 2015-04-07 2015-04-07 空気調和機
CN201580078569.2A CN107429931B (zh) 2015-04-07 2015-04-07 空调机
EP15888433.8A EP3282202B1 (en) 2015-04-07 2015-04-07 Air conditioner
PCT/JP2015/060811 WO2016162939A1 (ja) 2015-04-07 2015-04-07 空気調和機
US15/562,514 US10274211B2 (en) 2015-04-07 2015-04-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060811 WO2016162939A1 (ja) 2015-04-07 2015-04-07 空気調和機

Publications (1)

Publication Number Publication Date
WO2016162939A1 true WO2016162939A1 (ja) 2016-10-13

Family

ID=57072200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060811 WO2016162939A1 (ja) 2015-04-07 2015-04-07 空気調和機

Country Status (5)

Country Link
US (1) US10274211B2 (ja)
EP (1) EP3282202B1 (ja)
JP (1) JP6499752B2 (ja)
CN (1) CN107429931B (ja)
WO (1) WO2016162939A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151237A (ja) * 2018-03-05 2019-09-12 株式会社デンソー 車両用シート空調装置
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026014A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置
US10816248B2 (en) * 2016-06-09 2020-10-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR102487185B1 (ko) * 2017-12-04 2023-01-10 현대자동차 주식회사 차량용 쿨링팬 제어방법
JP6705863B2 (ja) * 2018-04-27 2020-06-03 ファナック株式会社 モータ制御装置及び工作機械
DE102018212127A1 (de) * 2018-07-20 2020-01-23 BSH Hausgeräte GmbH Haushaltskältegerät mit einem drehzahlgeregelten Lüfter und Verfahren zum Betreiben eines Haushaltskältegerätes mit einem drehzahlgeregelten Lüfter
CN109405220B (zh) * 2018-11-07 2021-04-09 广东美的暖通设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN109631247A (zh) * 2018-11-13 2019-04-16 青岛海尔空调电子有限公司 空调器及其共振规避设计方法
CN111550899B (zh) * 2020-05-07 2023-08-15 宋彦震 自适应调速消除空调共振的控制方法
CN112128930B (zh) * 2020-08-25 2022-04-15 青岛海尔空调器有限总公司 避免冷媒管路共振的方法、控制装置及计算机存储介质
CN112797597B (zh) * 2021-01-07 2022-05-27 珠海格力电器股份有限公司 空气调节设备控制方法、装置、电子设备及存储介质
CN113310183B (zh) * 2021-04-19 2022-10-28 青岛海尔空调器有限总公司 送风设备共振控制方法、装置、电子设备及存储介质
CN113237196A (zh) * 2021-05-17 2021-08-10 青岛海尔空调电子有限公司 风机降噪方法、装置及空调器
CN114322239B (zh) * 2021-12-27 2023-10-20 青岛海尔空调器有限总公司 空调器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257592A (ja) * 1993-03-05 1994-09-13 Ebara Corp インバータ可変速駆動の送風機の共振防止方法
JP2003111473A (ja) * 2001-09-28 2003-04-11 Toshiba Kyaria Kk 直流モータの制御方法
JP2004198029A (ja) * 2002-12-18 2004-07-15 Hitachi Ltd 空気調和機
JP2013253731A (ja) * 2012-06-06 2013-12-19 Mitsubishi Electric Corp 空気調和装置の室内機

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2290875A (en) * 1939-06-02 1942-07-28 Greibach Emil Henry Measuring differences of potential
US3561261A (en) * 1968-07-16 1971-02-09 Torin Corp Torsional exciter apparatus
JPS5249200B1 (ja) * 1971-04-02 1977-12-15
US4015182A (en) * 1974-06-24 1977-03-29 General Electric Company Refrigeration system and control therefor
JPS5442006A (en) * 1977-09-09 1979-04-03 Hitachi Ltd Operating control device for hydraulic machine
US4349898A (en) * 1978-11-09 1982-09-14 William Drewes Sonic weapon system
US4375224A (en) * 1981-01-21 1983-03-01 Acutherm, Inc. Air conditioning control equipment
JPS5896468U (ja) * 1981-12-21 1983-06-30 サンデン株式会社 空調装置の制御装置
DE3616149A1 (de) * 1985-05-16 1986-11-20 Sawafuji Electric Co., Ltd., Tokio/Tokyo System zur steuerung des betriebs eines vibrationskompressors
US4980617A (en) * 1988-02-24 1990-12-25 Hitachi, Ltd. Speed control apparatus of movable equipment
US5271238A (en) * 1990-09-14 1993-12-21 Nartron Corporation Environmental control system
US5396779A (en) * 1990-09-14 1995-03-14 Nartron Corporation Environmental control system
FR2671929A1 (fr) * 1991-01-18 1992-07-24 Thomson Tubes Electroniques Generateur de chauffage par haute frequence.
KR930010466B1 (ko) * 1991-02-26 1993-10-25 삼성전자 주식회사 냉난방겸용 공조기의 콤프레셔 기동 제어방법
JP2553790B2 (ja) * 1991-10-18 1996-11-13 松下精工株式会社 換気扇の制御装置
KR930010479A (ko) * 1991-11-12 1993-06-22 이헌조 자동환기 기능을 갖는 냉/난방 장치 및 그 제어방법
JP3015587B2 (ja) * 1992-05-11 2000-03-06 三洋電機株式会社 空気調和機の制御装置
US5492273A (en) * 1992-05-27 1996-02-20 General Electric Company Heating ventilating and/or air conditioning system having a variable speed indoor blower motor
US5508574A (en) * 1994-11-23 1996-04-16 Vlock; Alexander Vehicle transmission system with variable speed drive
JP3458523B2 (ja) * 1994-12-07 2003-10-20 三菱電機株式会社 モータ装置・モータの駆動装置及びその制御方法
KR0152113B1 (ko) * 1994-12-16 1998-11-02 윤종용 공기조화기의 운전제어방법
MY122977A (en) * 1995-03-14 2006-05-31 Panasonic Corp Refrigerating apparatus, and refrigerator control and brushless motor starter used in same
JPH08271024A (ja) * 1995-03-31 1996-10-18 Toshiba Ave Corp 空気調和機
JP3700305B2 (ja) * 1996-04-19 2005-09-28 松下電器産業株式会社 ブラシレスモータの駆動装置とモータのロータ位置検出装置
US5823004A (en) * 1996-11-12 1998-10-20 American Standard Inc. Outdoor fan control for part load efficiency
JPH1114124A (ja) * 1997-06-20 1999-01-22 Sharp Corp 空気調和機
US7539549B1 (en) * 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US6147465A (en) * 1999-03-25 2000-11-14 General Electric Company Microprocessor controlled single phase motor with external rotor having integral fan
DE10037972B4 (de) * 1999-08-05 2005-09-15 Sharp K.K. Vorrichtung und Verfahren zur Elektromotorsteuerung
JP4682474B2 (ja) * 2001-07-25 2011-05-11 株式会社デンソー 流体ポンプ
US6877326B2 (en) * 2002-03-20 2005-04-12 Lg Electronics Inc. Operation control apparatus and method of linear compressor
CA2488938A1 (en) * 2002-05-10 2003-11-20 Glocal Co., Ltd. Refrigerating device, refrigerating method, and refrigerated object
US6725132B2 (en) * 2002-06-20 2004-04-20 Minebea Co., Ltd. Intelligent cooling fan
US20030234625A1 (en) * 2002-06-20 2003-12-25 Minebea Co., Ltd. Cooling fan capable of providing cooling fan data
US6859001B2 (en) * 2003-07-24 2005-02-22 General Electric Company Torque ripple and noise reduction by avoiding mechanical resonance for a brushless DC machine
KR100566437B1 (ko) * 2003-11-11 2006-03-31 엘에스산전 주식회사 위상천이를 이용한 인버터 고장 검출 장치 및 방법
US7193377B2 (en) * 2004-03-04 2007-03-20 Hewlett-Packard Development Company, L.P. System and method for controlling motor speed using a biased pulse width modulated drive signal
US20050237717A1 (en) * 2004-04-22 2005-10-27 Babb Samuel M Method and apparatus for reducing acoustic noise from paired cooling fans
DE102005024685A1 (de) * 2004-05-31 2005-12-29 Denso Corp., Kariya Wärmekreis
JP4422567B2 (ja) * 2004-06-30 2010-02-24 株式会社日立製作所 モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置
KR101139887B1 (ko) * 2005-08-29 2012-05-02 가부시키가이샤 고마쓰 세이사쿠쇼 유압식 구동 팬을 위한 제어 장치
TWM285196U (en) * 2005-09-23 2006-01-01 Tze-Chiuan Lin PWM control device of simplified heat dissipating fans
CN1959580A (zh) * 2005-11-03 2007-05-09 富准精密工业(深圳)有限公司 风扇速度控制电路及控制方法
TWI307999B (en) * 2005-11-11 2009-03-21 Delta Electronics Inc Fan system and temperature-sensing starting module
TWI280842B (en) * 2005-11-18 2007-05-01 Delta Electronics Inc Fan system and sequential starting module and delayed starting unit thereof
TWI330449B (en) * 2005-12-23 2010-09-11 Delta Electronics Inc Fan system and low speed detecting device thereof
JP4240040B2 (ja) * 2006-03-08 2009-03-18 ダイキン工業株式会社 冷凍装置用熱交換器の冷媒分流器制御装置
JP4067021B2 (ja) * 2006-07-24 2008-03-26 ダイキン工業株式会社 インバータ装置
JP2008035604A (ja) * 2006-07-27 2008-02-14 Sumitomo Heavy Ind Ltd Gm冷凍機、パルス管冷凍機、クライオポンプ、mri装置、超電導磁石装置、nmr装置および半導体冷却用冷凍機
JP4938436B2 (ja) * 2006-12-15 2012-05-23 カルソニックカンセイ株式会社 車両用冷却ファン制御システム
US20080310967A1 (en) * 2007-06-13 2008-12-18 Franz John P Intelligent air moving apparatus
JP5468215B2 (ja) * 2008-06-09 2014-04-09 ダイキン工業株式会社 空気調和機及び空気調和機の製造方法
JP5089537B2 (ja) 2008-09-10 2012-12-05 三菱電機株式会社 電動送風機の故障診断装置及びそれを搭載した電気機器
US8591206B2 (en) * 2008-12-06 2013-11-26 Thomas R. Krenik Air cycle heat pump techniques and system
JP5195444B2 (ja) * 2009-01-14 2013-05-08 パナソニック株式会社 ブラシレスdcモータの駆動装置並びにこれを用いた冷蔵庫及び空気調和機
JP4931970B2 (ja) * 2009-08-10 2012-05-16 三菱電機株式会社 空気調和機
TWI399030B (zh) * 2009-08-19 2013-06-11 Delta Electronics Inc 馬達控制裝置
TWI399031B (zh) * 2009-08-19 2013-06-11 Delta Electronics Inc 馬達控制裝置及其方法
JP5519324B2 (ja) * 2010-02-24 2014-06-11 株式会社日本自動車部品総合研究所 回転検出装置
US8985068B2 (en) * 2010-07-22 2015-03-24 Robert Bosch Gmbh Systems and methods for avoiding resonances excited by rotating components
IT1401275B1 (it) * 2010-07-30 2013-07-18 Nuova Pignone S R L Metodo e dispositivo per controllare un riavvio a caldo di un compressore centrifugo
AU2010365997B2 (en) * 2010-12-21 2015-03-26 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9192076B2 (en) * 2011-03-05 2015-11-17 Dell Products L.P. Methods for managing fans within information handling systems
JP2012222842A (ja) * 2011-04-04 2012-11-12 Panasonic Corp モータ駆動装置およびにこれを用いた電気機器
JP5861988B2 (ja) * 2011-04-15 2016-02-16 日立工機株式会社 遠心分離機
US20130079933A1 (en) * 2011-09-23 2013-03-28 Apple Inc. Circumventing frequency excitations in a computer system
JP5851335B2 (ja) * 2012-05-09 2016-02-03 日立アプライアンス株式会社 空気調和機
EP2884203B1 (en) * 2012-06-29 2019-11-13 Mitsubishi Electric Corporation Heat pump device
JP2014166081A (ja) * 2013-02-27 2014-09-08 Hitachi Appliances Inc モータ制御装置、およびそれを用いた空気調和機
CN104048458B (zh) * 2013-03-11 2016-08-31 广东美的制冷设备有限公司 制冷设备的风机控制方法及系统
JP6126896B2 (ja) * 2013-04-24 2017-05-10 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257592A (ja) * 1993-03-05 1994-09-13 Ebara Corp インバータ可変速駆動の送風機の共振防止方法
JP2003111473A (ja) * 2001-09-28 2003-04-11 Toshiba Kyaria Kk 直流モータの制御方法
JP2004198029A (ja) * 2002-12-18 2004-07-15 Hitachi Ltd 空気調和機
JP2013253731A (ja) * 2012-06-06 2013-12-19 Mitsubishi Electric Corp 空気調和装置の室内機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282202A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151237A (ja) * 2018-03-05 2019-09-12 株式会社デンソー 車両用シート空調装置
JP7077670B2 (ja) 2018-03-05 2022-05-31 株式会社デンソー 車両用シート空調装置
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control

Also Published As

Publication number Publication date
US10274211B2 (en) 2019-04-30
EP3282202A1 (en) 2018-02-14
EP3282202B1 (en) 2021-09-22
JPWO2016162939A1 (ja) 2018-02-01
CN107429931A (zh) 2017-12-01
US20180094822A1 (en) 2018-04-05
CN107429931B (zh) 2020-03-31
EP3282202A4 (en) 2018-12-05
JP6499752B2 (ja) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6499752B2 (ja) 空気調和機
US9547974B2 (en) Device for detecting blockage of air filter mesh
CN104154627B (zh) 空调器室外风扇电机的控制方法
JP5289109B2 (ja) 空気調和装置
JP5029913B2 (ja) 空調システム及びその制御方法
WO2016065874A1 (zh) 一种具有抽风或者送风功能的电器设备的恒风量控制方法
US20080307803A1 (en) Humidity control and air conditioning
JP6453115B2 (ja) 空気調和装置室内機
CN104776556A (zh) 空调器恒温除湿控制方法和装置
US10277149B2 (en) Air blower equipped with brushless DC motor
JPH10153353A (ja) 空気調和機
JP2003185227A (ja) 天井型空気調和機およびその制御方法
WO2022201322A1 (ja) 空調制御システム
US9823005B2 (en) Methods and systems for detecting and recovering from control instability caused by impeller stall
JP6529747B2 (ja) 空気調和機
JP2016156573A (ja) 給排気型換気装置
WO2016011617A1 (zh) 一种送风设备的滤网堵塞检测方法及其应用的送风设备
JP6692675B2 (ja) 空気調和装置の室外機
US10684054B2 (en) Tension support system for motorized fan
JP2019060590A (ja) 冷凍装置
CN112240625B (zh) 空气调节系统以及异常检测系统
KR101626313B1 (ko) 공기조화기
WO2023165620A1 (zh) 空调器及其控制方法
JPH0526498A (ja) 空気調和装置
JP3167566B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510824

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562514

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015888433

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE