WO2016129467A1 - 芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法 - Google Patents

芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法 Download PDF

Info

Publication number
WO2016129467A1
WO2016129467A1 PCT/JP2016/053169 JP2016053169W WO2016129467A1 WO 2016129467 A1 WO2016129467 A1 WO 2016129467A1 JP 2016053169 W JP2016053169 W JP 2016053169W WO 2016129467 A1 WO2016129467 A1 WO 2016129467A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
slit
sheath
component
Prior art date
Application number
PCT/JP2016/053169
Other languages
English (en)
French (fr)
Inventor
正人 増田
知彦 松浦
康宜 兼森
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177014905A priority Critical patent/KR102575874B1/ko
Priority to CN201680005475.7A priority patent/CN107208322A/zh
Priority to JP2016511458A priority patent/JP6729367B2/ja
Priority to EP16749111.7A priority patent/EP3257976B1/en
Priority to US15/549,890 priority patent/US10745829B2/en
Publication of WO2016129467A1 publication Critical patent/WO2016129467A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics

Definitions

  • the present invention relates to a core-sheath composite fiber composed of two types of polymers, and the core component has a special cross-sectional shape, but is excellent in process passability and wear resistance in high-order processing, and appeals for wearing comfort.
  • the present invention relates to fibers suitable for clothing textiles.
  • thermoplastic polymers such as polyester and polyamide are excellent in mechanical properties and dimensional stability. For this reason, it is widely used not only for clothing but also for interiors, vehicle interiors, industrial applications, etc., and has an extremely high industrial value.
  • the core-sheath composite fiber characterized in that the core component is covered with the sheath component. Sensitive effects such as texture and bulkiness that cannot be achieved with a single fiber, as well as strength, elastic modulus, wear resistance, etc. It is often used to appeal for the addition of mechanical properties. Moreover, if this core-sheath composite fiber is applied, it is also possible to obtain a fiber having a special cross-sectional form that is difficult to obtain with a single fiber base. Usually, when polymer such as polyester or polyamide is melt-spun, the polymer discharged from the spinneret exerts a strong surface tension during the cooling process, and the fiber cross section approaches a more stable round cross section.
  • the core-sheath composite fiber is one of the development directions of the fiber.
  • Patent Document 1 and Patent Document 2 propose a technique related to a fiber in which a core-sheath composite fiber is applied to form a slit-like groove continuous in the fiber axis direction.
  • Patent Document 1 by forming slits in the fiber surface layer, the contact area with air is increased as compared with a fiber having a normal round cross section, and this is a polymer such as phosphate having a deodorizing function. There is a proposal regarding a fiber having an excellent deodorizing function.
  • Patent Document 1 in addition to using a thermoplastic polymer having a deodorizing function, 20 or more slits having a depth of twice or more of the groove width are arranged on the fiber surface layer, so that per fiber weight. The effect of increasing the surface area (specific surface area) and enhancing the deodorizing function is expected.
  • Patent Document 1 focuses on increasing the specific surface area, a large number of deep groove slits reaching the inner fiber layer are formed. For this reason, the initial performance capable of maintaining the slit may be excellent. However, when it is used as a textile for clothing that undergoes rubbing and repeated complicated deformation, it becomes a problem to provide a large number of slits in this deep groove. That is, in Patent Document 1, since the slit shape is a deep groove, and further, it is not considered that the protruding portion has a shape that is durable against abrasion or the like, the protruding portion formed on the fiber surface layer is abraded. For example, when the peeled protrusions are finely fluffed to deteriorate the tactile sensation and color developability, or above all, the deodorizing function expressed by the slits may be greatly reduced over time.
  • Patent Document 2 proposes a fiber that has formed a large number of fine slits on the fiber surface layer in order to express excellent wiping performance and polishing performance, and promoted a sharp multi-shaving effect and an inner wrapping effect.
  • Patent Document 2 shows that a large number of fine slits are formed in a fiber having a fiber diameter equivalent to that of a normal fiber, and the mechanical properties such as fiber strength have the same or better performance than a conventional wiping cloth using ultrafine fibers. There is a possibility that it can be expressed while guaranteeing.
  • Patent Document 2 as in Patent Document 1, wedge-shaped slits are arranged very deeply into the fiber inner layer. For this reason, when repeated rubbing is applied, the slit is easily peeled off, and although there is a possibility that it can be applied to a wiping cloth etc. on the premise of disposable, fluff due to peeling of the protrusions is still used in repeated use. There is a tendency that the wiping performance also decreases due to the occurrence and dropout of the water. In addition, it is very difficult to apply to clothing textiles that are often subject to abrasion and repeated deformation in actual use.
  • Patent Document 3 and Patent Document 4 disclose fibers having a slit shape for clothing textiles, with the texture and color developability woven by the slit shape as appeal points.
  • Patent Document 3 and Patent Document 4 there are many slits having a depth of 2 ⁇ m or more on the fiber surface layer as fibers capable of expressing a deep color tone and having the same texture as natural silk fibers. The technology to make it is proposed.
  • Patent Document 3 and Patent Document 4 provide a slit having a depth of twice or more the groove width, so that the slit can be moved by deformation in the stagnation or compression direction, and the friction between fibers is increased. May develop. Moreover, it is described that the fine slit of the fiber surface layer can suppress the diffusion of light on the fiber surface layer and can express a deep color tone.
  • JP 2004-339616 A (Claims, page 4) JP 2008-7902 A (Claims, pages 5, 6) JP-A-2004-52161 (Claims, pages 1 to 4) JP 2004-308021 A (Claims, pages 1 to 4)
  • the present invention relates to a slit fiber that solves the problems of the prior art and a core-sheath composite fiber for producing the fiber.
  • the fiber of the present invention has a special texture and color tone as a textile for clothing, and can control the characteristics of the fiber surface, so that it becomes a highly functional textile with high demand in recent years when texture and comfort are required.
  • it has a special cross section with many slits on the fiber surface layer, it has excellent mechanical properties such as wear resistance and durability, so there are no restrictions on the use conditions and applications, and it is used as a textile for clothing. Can be expected to play an active role in a wide range of fields, from inner to outer.
  • the core component has a protrusion shape having protrusions and grooves alternately in a cross section perpendicular to the fiber axis, and the protrusion shape is a fiber axis
  • a core sheath characterized in that the height (H) of the projection, the width (WA) of the tip of the projection, and the width (WB) of the bottom satisfy the following formulas simultaneously: Composite fiber.
  • the core component is composed of a hardly-eluting component and the sheath component is composed of an easily-eluting component, and the elution rate ratio (sheath / core) of the core component polymer and the sheath component polymer is 100 or more (1
  • a slit fiber characterized by having a continuous slit in the fiber axis direction from which the sheath component is removed from the core-sheath composite fiber described in (3).
  • a protrusion shape having protrusions and grooves alternately in a cross section perpendicular to the fiber axis, the protrusion shape being formed continuously in the fiber axis direction, and the height of the protrusion (HT ),
  • a slit fiber characterized in that the width of the tip (WAT) and the width of the bottom (WBT) satisfy the following formulas at the same time.
  • the variation (CV%) in the distance (slit width (WC)) between adjacent tip ends in the cross section perpendicular to the fiber axis is 1.0% or more and 20.0% or less.
  • a composite base for discharging a composite polymer composed of at least two or more components wherein the composite base has a plurality of measurement holes for measuring each polymer component, and a discharge polymer from the measurement holes (1) to (5), characterized in that spinning is performed using a composite die composed of a distribution plate and a discharge plate in which a plurality of distribution holes are formed in a confluence groove for joining The manufacturing method of the core-sheath composite fiber of description.
  • the core-sheath conjugate fiber of the present invention has a special shape having alternately formed protrusions and grooves in the cross-sectional shape of the core perpendicular to the fiber axis, and the shape of the protrusions. Has a composite cross section that is not present.
  • the core component protrudes toward the sheath component side even when it is put into high-order processing or the like, so the area of the interface with the sheath component increases, and it is a combination of polymers with poor affinity.
  • peeling can be suppressed. For this reason, even in a high-order processing step in which weaving knitting is repeatedly abraded with a yarn guide or a scissors, and a high-order processing step in which rubbing or the like is applied under heating, it has high processability under a wide range of conditions.
  • the sheath component made of an easily eluting polymer is eluted with a solvent, it becomes possible to produce a slit fiber having a continuous slit shape on the fiber surface layer. Since the slit shape of the slit fiber is designed based on a mechanical point of view, the protruding portion is self-supported even after the sheath component is eluted, and the collapse of the slit shape is greatly suppressed. For this reason, it is resistant to abrasion and deformation in the compression direction, and also has durability against wear, which has been a conventional problem.
  • the core-sheath composite fiber of the present invention and the slit fiber using the composite fiber as a starting material exhibit various characteristics with high durability due to the slit of the fiber surface layer, it can be used in a wide range of applications that were difficult to apply with the prior art. Is possible.
  • FIG. 3 is an enlarged schematic view of a part of the core component for explaining the protrusion of the core component of the present invention. It is a schematic diagram for demonstrating the protrusion part of the core component of this invention. It is a cross-sectional photograph of the slit fiber of this invention. (A) is a cross-sectional photograph of the slit fiber of the present invention, and (b) is a side photograph of the slit fiber of the present invention.
  • It is explanatory drawing for demonstrating the manufacturing method of the core sheath composite fiber of this invention is an example of the form of a composite nozzle
  • the core-sheath composite fiber referred to in the present invention is composed of two types of polymers, and has a cross-sectional configuration in which a sheath component is installed so as to cover the core component in a cross section perpendicular to the fiber axis.
  • Examples of the core component and the sheath component constituting the core-sheath conjugate fiber of the present invention include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polypropylene, polyolefin, polycarbonate, polyacrylate, polyamide, polylactic acid, Examples thereof include melt-moldable polymers such as thermoplastic polyurethane and polyphenylene sulfide, and copolymers thereof.
  • the melting point of the polymer is preferably 165 ° C. or more, since the heat resistance is good.
  • the polymer contains various additives such as inorganic materials such as titanium oxide, silica and barium oxide, colorants such as carbon black, dyes and pigments, flame retardants, optical brighteners, antioxidants, and UV absorbers. You may go out.
  • inorganic materials such as titanium oxide, silica and barium oxide
  • colorants such as carbon black, dyes and pigments, flame retardants, optical brighteners, antioxidants, and UV absorbers.
  • inorganic particles are polymerized unnecessarily. It was necessary to use what was contained in. In this case, the color developability may be greatly reduced, and it may be difficult to apply to high color textiles.
  • the core-sheath composite fiber of the present invention it is not necessary to contain excessive inorganic particles in the core component polymer, and when the sheath component is not eluted, excellent color developability by making the sheath component an easily dyeable polymer It is possible to make the fiber compatible with the contradictory characteristics that have not been achieved in the past, such as anti-penetration property.
  • the core component polymer contains 0.1 to 10.0% by weight of inorganic particles. If it is the range which concerns, in addition to expressing the outstanding light reflectivity, the fiber of this invention can be manufactured stably. From the viewpoint of high color development, it is preferable to produce the inorganic particles in a balanced manner in relation to the sheath component ratio (thickness). A more preferable range is from 1.0% by weight to 7.0% by weight from the viewpoint of light reflection and color developability.
  • the term “inorganic particles” as used herein refers to particles in which inorganic substances such as titanium oxide, silica, and barium oxide are formed into particles.
  • titanium oxide is preferably used from the viewpoint of handleability and the like, and the anatase type in which the maximum particle size is 5.0 ⁇ m and the proportion of the particle size is 1.0 ⁇ m or less is 50% by weight or less. Is preferably used.
  • the sheath component after performing high-order processing such as weaving and knitting, the sheath component can be eluted to obtain a slit fiber composed of the core component.
  • the core component is difficult to elute and the sheath component is easy to elute with respect to the solvent used for elution of the sheath component, and the core component is selected according to the use, and the solvent can be used therefrom.
  • the larger the elution rate ratio of the hard-to-elute component (core component) and the easy-to-elute component (sheath component) to the solvent, the more suitable combination, and the elution rate ratio (sheath / core) is preferably 100 or more.
  • the higher the elution rate ratio the more preferable the sheath elution is completed without unnecessarily degrading the core component, and the elution rate ratio in the present invention is more preferably 1000 or more, and preferably 10,000 or more. Particularly preferred.
  • the elution rate ratio (sheath / core) mentioned here is the ratio of the elution rate of the core polymer and the sheath polymer to the elution conditions (solvent and temperature) used for sheath elution, and this elution rate is a unit time in the elution conditions. It means the rate constant calculated from the amount of elution per hit.
  • the elution rate ratio in the present invention is determined by dividing the elution rate of the sheath polymer by the elution rate of the core polymer and rounding off the decimals. Specifically, the chips are treated for 5 hours in a hot air dryer set to the glass transition temperature of each polymer + 100 ° C. or lower.
  • a heat treatment chip is inserted into the solvent maintained at the elution temperature so as to have a bath ratio of 20, and the elution rate of each polymer is calculated from the elution amount of the heat treatment chip per unit time in the elution process.
  • the sheath component for example, from a polymer that can be melt-molded such as polyester and its copolymer, polylactic acid, polyamide, polystyrene and its copolymer, polyethylene, polyvinyl alcohol, etc., and more easily eluted than other components It is preferable to select.
  • the sheath component is preferably a copolyester, polylactic acid, polyvinyl alcohol, or the like, which is easily soluble in an aqueous solvent or hot water, particularly polyethylene glycol, sodium. It is preferable to use polyester or polylactic acid copolymerized with sulfoisophthalic acid alone or in combination from the viewpoint of handleability and easy elution into a low concentration aqueous solvent.
  • polylactic acid and 5-sodium sulfoisophthalic acid are copolymerized.
  • Particularly preferred is a polyester in which polyethylene glycol having a weight average molecular weight of 500 to 3000 is copolymerized in the range of 5 wt% to 15 wt% in addition to the prepared polyester and the aforementioned 5-sodium sulfoisophthalic acid.
  • polyesters in which polyethylene glycol is copolymerized in addition to 5-sodium sulfoisophthalic acid alone and 5-sodium sulfoisophthalic acid described above are easily eluted in aqueous solvents such as alkaline aqueous solution while maintaining crystallinity. Therefore, even in false twisting or the like in which scratching is imparted under heating, fusion between composite fibers does not occur, which is preferable from the viewpoint of high-order processing passability.
  • the core component is preferably a polyamide having excellent alkali resistance.
  • Polyamide as used herein is preferably polycaproamide (nylon 6) or polyhexamethylene adipamide (nylon 66), which has excellent mechanical properties and can be easily developed as a textile, and is less likely to cause gelation during the yarn production process.
  • Polycaproamide (nylon 6) is more preferable from the viewpoint of excellent yarn production.
  • Examples of other components include polydodecanoamide, polyhexamethylene adipamide, polyhexamethylene azelamide, polyhexamethylene sebamide, polyhexamethylene dodecanoamide, polymetaxylylene adipamide, polyhexamethylene Examples include terephthalamide and polyhexamethylene isophthalamide.
  • Polyamide is known to exhibit relatively high flexibility and excellent wear resistance.
  • the self-supporting slit shape is highly durable against wear in the first place, and furthermore, by using polyamide, extremely excellent wear resistance is expressed.
  • polyamide is excellent in hydrophilicity, when the slit fiber of the present invention is used as a water-absorbing fiber, the water-absorbing effect by the capillary phenomenon due to the slit is promoted, and it can be used as a super-water-absorbing fiber that has not existed before.
  • the core-sheath conjugate fiber of the present invention is a protrusion in which the core component alternately has protrusions and grooves formed continuously in the fiber cross section exemplified in FIG. 1 by the core component and the sheath component made of the polymer described above. It must have a shape.
  • the protrusions and grooves in the core component are alternately arranged in the circumferential direction of the core component cross section, and the height (H), tip width (WA), and bottom surface width (WB) of the protrusions are as follows. It is necessary to satisfy the equation simultaneously, and these ratios are obtained as follows.
  • a multifilament made of a core-sheath composite fiber is embedded with an embedding agent such as an epoxy resin, and this cross section is formed by a scanning electron microscope (SEM) so that the core component protrudes toward the sheath component side.
  • SEM scanning electron microscope
  • a two-dimensional image is taken as a magnification at which 10 or more parts can be observed.
  • metal dyeing is performed, the contrast between the core component and the sheath component can be clarified using the dyeing difference due to the polymer.
  • the relationship between the height (H) of the protrusion and the width (WA) of the tip is important and is the first requirement.
  • the height (H) of the protrusion is obtained as follows.
  • the height of the protrusion is the intersection of the center line (5 in FIG. 2) and the circumscribed circle of the protrusion (6 in FIG. 2) and the groove in the cross section of the core-sheath composite fiber. It means the distance between the intersection (9 in FIG. 2) between the tangent circle and the center line of the side surface of the protrusion.
  • the width (WA) of the tip of the protrusion is the intersection of the extension line (4-1 and 4-2 in FIG. 2) and the circumscribed circle (7-- in FIG. 2) in the cross section of the core-sheath composite fiber. It means the distance between 1 and 7-2).
  • the circumscribed circle referred to here is a perfect circle (3 in FIG.
  • the ratio of the square root of the height (H) of the protrusion and the width (WA) of the tip indicates the mechanical durability of the slit. In the present invention, this value is 1.0 or more and 3.0 or less. Need to be.
  • the sheath component may be eluted and used as a slit fiber having a slit shape composed of the core component.
  • elution of the sheath component is generally performed by using a liquid dyeing machine or the like, and the fiber is repeatedly subjected to complicated deformation in the processing step.
  • the slit formed in the outermost layer of the fiber can be repeatedly subjected to complicated deformation, and if the mechanical durability is low, the protrusion may be easily peeled off.
  • the texture due to the fluffing of the fibers but also the function expression due to the slit shape is greatly reduced. For this reason, the expected effect may not be obtained.
  • H / (WA) 1/2 is 1.0 or more. It is important that it is 3.0 or less. If it is in such a range, since the slit after elution is self-supporting in addition to the durability during the elution treatment described above, it worked very effectively on the function expression depending on the slit shape, and was formed on the fiber surface layer Various characteristics can be expressed by the slit.
  • H / (WA) 1/2 is more preferably 1.0 or more and 2.4 or less.
  • H / (WA) 1/2 is 1.0 or more and 1.8 or less. It is particularly preferable that the performance due to the slit is maintained with high durability within such a range.
  • the peeling of the slits generated by the external force becomes fuzzy, leading to deterioration of the texture due to the generation of fine fluff and a decrease in color development, making it difficult to apply.
  • the characteristics of these slit fibers depend on the presence of the slits, so that the expected performance is greatly deteriorated and cannot endure long-term use.
  • the width (WA) of the tip of the protrusion and the bottom of the protrusion The width (WB) ratio (WB / WA) needs to be 0.7 or more and 3.0 or less.
  • WB means the distance between the intersection (10-1 and 10-2 in FIG. 3) of the extension line on the side surface of the protrusion and the inscribed circle of the groove.
  • WB / WA it is possible to adjust according to desired characteristics and applications. However, when used for an outer or the like, it is necessary to consider the durability of the slit, for example, in a relatively harsh environment. In the sports apparel used in the above, it is preferable to increase the durability against abrasion and the like, and WB / WA is more preferably 1.0 or more and 3.0 or less.
  • the core-sheath composite fiber of the present invention is intended to finally obtain a fiber having a slit shape on the fiber surface layer by eluting the sheath component in a high-order processing. For this reason, it is preferable that elution of the sheath component proceeds efficiently, and this is related to the width (WA) of the tip of the protrusion and the distance (PA) between the tips of the protrusion.
  • the distance between the projection tips (PA) means the distance between the center line of two adjacent projections (5 in FIG. 2) and the intersection of circumscribed circles (6 in FIG. 2). It means the distance between 1 and 6-2 or 6-1 and 6-3.
  • the ratio (WA / PA) of the width (WA) of the protrusion tip to the distance (PA) between the protrusion tip is preferably 0.1 or more and 0.9 or less.
  • WA / PA as used herein represents the ratio of the width of the protrusion tip to the distance between the two adjacent protrusion tips in the protrusion, which greatly affects the elution efficiency of the sheath component. That is, the solvent for eluting the sheath component starts eluting from the outermost layer of the core-sheath composite fiber, and the treatment gradually proceeds into the fiber.
  • the sheath component present in the outermost layer of the core-sheath composite fiber is eluted immediately after the start of the elution step, and the elution process proceeds efficiently until the sheath component is present in the groove of the core component.
  • the sheath component present in the groove is in a state surrounded by the core component which is a hardly-eluting component except for the outermost layer portion. For this reason, when the shape of the protrusion and the groove is not taken into account, the elution efficiency is greatly reduced. When the elution efficiency is reduced, it is necessary to increase the processing time and temperature of the elution step, or in some cases, it is necessary to process with a stronger solvent.
  • the sheath component that cannot be completely eluted and the residue thereof are also present in the final product, which may have adverse effects such as powder blowing and dyeing spots.
  • WA / PA is 0.1 or more and 0.5 or less in order to discharge the residue of the sheath component existing in the inner layer of the groove part and complete the elution process in a shorter time. .
  • the elution process can be simplified, elution of the sheath component can be completed without unnecessarily deteriorating the protrusion of the core component, which is also preferable from the viewpoint of fabric quality and durability.
  • the width of the groove is moderate, and WA / PA is 0.2 or more and 0.5 or less including the durability after elution. Even more preferred.
  • the circumscribed circle diameter at the tip of the protrusion of the core component It is preferable that the ratio (DA / PA) between (DA) and the distance (PA) between the protrusion tips is in a specified range.
  • the circumscribed circle diameter (DA) at the tip of the projection referred to here means the diameter of a perfect circle (3 in FIG. 2) circumscribing most at two or more points on the tip of the projection in the cross section of the core-sheath composite fiber. The ratio with the distance (PA) between the tips of the protrusions is obtained.
  • DA / PA means that protrusions and grooves existing in the surface layer of the core component are repeatedly present at intervals corresponding to the diameter of the core component. That is, when the core component has a protrusion protruding to the sheath component side, the area of the interface per weight increases. For this reason, it can be said that durability against peeling is improved.
  • the anchor effect it is difficult to obtain the effect if there are too few protrusions, but even if there are excessive protrusions, an unnecessarily complicated shape causes concentration of force acting on the interface, causing peeling. May be the base point.
  • a composite form is often formed by polymers having different compositions, densities, and softening temperatures, such as a difference in elution rate as described above, and the core component and the sheath component are separated.
  • the anchor effect is significant. Based on the above findings, it was found that when DA / PA is 3.5 or more and 15.0 or less, the anchor effect and stress concentration on the interface are suppressed, and an excellent peeling suppression effect is obtained. That is, when DA / PA is 3.5 or more, peeling due to rubbing with a yarn guide or a heel during generally weaving is greatly suppressed.
  • DA / PA is more preferably 7.0 or more.
  • DA / PA is 15.0 or less.
  • the core-sheath composite fiber of the present invention is a variety of intermediates such as fiber winding packages, tows, cut fibers, cotton, fiber balls, cords, piles, knitted fabrics, and non-woven fabrics. It is possible to generate various textile products. Moreover, the core-sheath conjugate fiber of the present invention can be made into a fiber product by elution of the sheath component partially or elution of the core component without treatment. Textile products here include general clothing such as jackets, skirts, pants and underwear, sports clothing, clothing materials, interior products such as carpets, sofas and curtains, vehicle interiors such as car seats, cosmetics, cosmetic masks, and wiping. Used for daily use such as cloth and health supplies, environment and industrial materials such as abrasive cloth, filters, hazardous substance removal products, battery separators, and medical applications such as sutures, scaffolds, artificial blood vessels, and blood filters be able to.
  • the sheath component When assuming application to such textile products, the sheath component is basically eluted.
  • the area ratio of a core component shall be 70 to 90% in the cross section of this fiber.
  • the gap between the slit fibers becomes appropriate, and it can be used without having to be mixed with other fibers.
  • the ratio of the core component is more preferably 80% to 90%.
  • the area ratio of the core component can exceed 90%.
  • the core component can be substantially covered with the core component in a stable range.
  • the upper limit of the ratio was 90%.
  • the slit fiber is obtained by eluting the sheath component after making the intermediate once as described above.
  • the slit fibers can control water characteristics such as water absorption and water repellency in addition to the deep color effect due to the optical effect of the slit.
  • the control of water characteristics and the deep color effect as described above are due to slits formed in the fiber surface layer. For this reason, it is important that the slit shape exists in a stable state, and the point is that the slit shape is maintained even after the sheath component is eluted from the core-sheath composite fiber. For this reason, in the slit fiber of the present invention, the height (HT) of the protruding portion formed continuously in the fiber axis direction, the width (WAT) of the tip of the protruding portion, and the width (WBT) of the bottom surface are expressed by the following equations. It is necessary to be satisfied at the same time.
  • the height of the protrusion (HT), the width of the tip of the protrusion (WAT), and the width of the bottom surface (WBT) are the same as in the cross-sectional evaluation of the core-sheath composite fiber. It is embedded with an embedding agent such as an epoxy resin, and a two-dimensional image is taken at a magnification at which ten or more protrusions can be observed with a scanning electron microscope (SEM). Measure the height (HT), tip width (WAT), and bottom width (WBT) of the projections in ⁇ m units for 10 projections randomly extracted from the captured images in the same image. Round off to the second decimal place. With respect to 10 images taken by repeating the above operation 10 times, each value is obtained by rounding off the second decimal place.
  • SEM scanning electron microscope
  • the slit width variation (CV%) ) Is preferably 1.0% to 20.0%.
  • the slit width referred to here is obtained by taking an image as a magnification at which 10 or more slits can be observed with a scanning electron microscope (SEM) as shown in FIG. From the 10 slits randomly extracted from the captured images in the same image, [distance between protrusion tips (for example, PA in FIG. 3) ⁇ width of protrusion tips (for example, WA in FIG. 2 or FIG. 10) The value obtained by measuring (WAT)] is the slit width (WC) referred to in the present invention.
  • WC slit width
  • the variation in the slit width guarantees the variation in performance due to the special slit shape of the present invention.
  • the variation range is preferably 1.0% to 20.0%, and the function can be stably expressed within the range.
  • the variation is more preferably 1.0% to 15.0%.
  • the slit fiber of the present invention has a ratio (WC / DC) of the slit width (WC) and the fiber diameter (DC) corresponding to the circumscribed circle diameter of the slit to 0.02 or more and 0.10 or less. Expresses unique functions.
  • the fiber diameter (DC) of the slit fiber referred to here is a cross section perpendicular to the fiber axis from a two-dimensionally photographed image as illustrated in FIG. It is the diameter of the perfect circle that circumscribes most points.
  • the fiber diameter (DC) is obtained by embedding the slit fiber bundle with an embedding agent such as an epoxy resin, and taking an image at a magnification at which 10 or more fibers can be observed with a stereomicroscope in the cross section (FIG. 4). .
  • the circumscribed circle diameter of 10 fibers randomly extracted from the images in which the fiber cross-sections are photographed in the same image is measured.
  • the fiber diameter is measured in ⁇ m and rounded to the first decimal place. For 10 images obtained by photographing the above operations, a simple number average value of the values measured in each image and the ratio (WC / DC) is obtained.
  • the water-absorbing material such as cotton applied to the inner has the property of retaining the absorbed water in the fiber or between the fibers, so that the fabric itself becomes wet when sweating in the late stage of exercise, etc. There was a case of discomfort.
  • WC / DC is more preferably 0.04 or more and 0.08.
  • the water repellent treatment can be performed without any spots, which may be a highly functional material.
  • the cross-sectional shape of the slit fiber of the present invention includes not only a round cross section, but also a flat cross section having a ratio of the short axis to the long axis (flatness) of more than 1.0, as well as a triangle, a quadrangle, a hexagon, an octagon, etc. It can take various cross-sectional shapes such as polygonal cross-sections, dharma cross-sections with some irregularities, Y-shaped cross-sections, star-shaped cross-sections, etc. These cross-sectional shapes can control the surface and mechanical properties of the fabric. It becomes possible.
  • the degree of irregularity of the slit fibers is more preferably 1.0 to 2.0.
  • the degree of irregularity referred to here is obtained as follows. That is, as in the method for measuring the fiber diameter (DC) of the slit fiber, an image is taken at a magnification at which the slit fiber can observe 10 or more fibers (FIG. 5B).
  • the inscribed circle diameter referred to here is a diameter of a perfect circle that is most inscribed at two or more points on a cross section perpendicular to the fiber axis from a two-dimensionally photographed image. Means that.
  • a simple number average value of the values measured in the image was determined and used as the degree of irregularity of the slit fiber.
  • 1.0 corresponds to a perfect circle, and an increase in the numerical value means that the cross section of the fiber is more deformed.
  • the gap between the slit fibers can be expected to have the effect of sucking up the moisture sucked up by the slit shape formed in the fiber surface layer as the priming water. From this point of view, it is more preferable that the degree of irregularity of the slit fiber is 1.0 to 1.5, and within this range, the gap between the fibers and the slit shape formed in the fiber surface layer have a synergistic effect. , Expresses very good water absorption.
  • the core-sheath composite fiber and the slit fiber in the present invention preferably have a certain level of toughness in consideration of process passability and substantial use in high-order processing, and the strength and elongation of the fiber are used as indices. be able to.
  • the strength is a value obtained by obtaining a load-elongation curve of the fiber under the conditions shown in JIS L1013 (1999), and dividing the load value at break by the initial fineness, and the elongation is at break Is the value obtained by dividing the elongation of the initial value by the initial trial length.
  • the initial fineness means a value (dtex) obtained by calculating a weight (g) per 10,000 m from a simple average value obtained by measuring the weight of the unit length of the fiber a plurality of times.
  • the strength of the fiber of the present invention is preferably 0.5 to 10.0 cN / dtex, and the elongation is preferably 5 to 700%.
  • the upper limit value at which the strength can be performed is 10.0 cN / dtex, and the upper limit value at which the elongation can be performed is 700%.
  • the strength is 1.0 to 4.0 cN / dtex and the elongation is 20 to 40%. In sports apparel applications where the usage environment is harsh, it is more preferable to set the strength to 3.0 to 6.0 cN / dtex and the elongation to 10 to 40%.
  • the fiber of the present invention is adjusted by controlling the conditions of the production process in accordance with the intended use of the strength and elongation.
  • the core-sheath composite fiber of the present invention can be manufactured by using two types of polymers and spinning the core-sheath composite fiber arranged so that the core component is covered with the sheath component.
  • a method for producing the core-sheath composite fiber of the present invention composite spinning by melt spinning is preferable from the viewpoint of improving productivity.
  • the core-sheath conjugate fiber of the present invention can be obtained by solution spinning or the like.
  • the manufacturing method of the core-sheath composite fiber and the slit fiber of the present invention has been intensively studied, and the method using the composite base illustrated in FIG. 6 achieves the object of the present invention. It was found to be suitable for.
  • the composite base shown in FIG. 6 is assembled into a spinning pack in a state where three kinds of members, that is, a metering plate 11, a distribution plate 12, and a discharge plate 13 are stacked from above, and is used for spinning.
  • FIG. 6 uses two types of polymers such as polymer A (core component) and polymer B (sheath component), and is an illustration of the embodiment.
  • the core component may be a hardly-eluting component and the sheath component may be an easily-eluting component.
  • the base shown in FIG. 6 is excellent in controlling the fiber cross-sectional shape, and can be produced without any restriction on the difference in melt viscosity between the polymer A and the polymer B, and is preferable for producing the fiber of the present invention.
  • the measuring plate 11 measures the amount of the polymer per each distribution hole and the distribution holes of both the core and the sheath, and the distribution plate 12 is made of a single (core-sheath composite) fiber. Controls the cross-sectional shape of the core component in the cross-section.
  • the composite polymer flow formed on the distribution plate 12 is compressed and discharged by the discharge plate 13.
  • a member having a flow path may be used in accordance with the spinning machine and the spinning pack. Incidentally, by designing the measuring plate 11 according to the existing flow path member, the existing spinning pack and its members can be utilized as they are. For this reason, it is not necessary to occupy a spinning machine especially for the composite die.
  • a plurality of flow path plates may be stacked between the flow path and the measurement plate or between the measurement plate 11 and the distribution plate 12.
  • the purpose of this is to provide a flow path through which the polymer is transferred efficiently and introduced into the distribution plate 12 in the cross-sectional direction of the die and the cross-sectional direction of the single fiber.
  • the composite polymer flow discharged from the discharge plate 13 is cooled and solidified in accordance with a conventional melt spinning method, and then an oil agent is applied and taken up by a roller having a specified peripheral speed, thereby forming the core-sheath composite fiber of the present invention.
  • the composite polymer flow passes through the measuring plate 11 and the distribution plate 12, and this composite polymer flow is discharged from the discharge hole of the discharge plate 13 from the upstream to the downstream of the composite base.
  • the process will be described in order along the flow of the polymer.
  • each polymer is weighed by a pressure loss caused by a restriction provided in each metering hole.
  • a guideline for the design of this diaphragm is that the pressure loss is 0.1 MPa or more.
  • the design be 30.0 MPa or less. This pressure loss is determined by the polymer flow rate and viscosity per metering hole.
  • a polymer having a viscosity of 100 to 200 Pa ⁇ s at a temperature of 280 ° C. and a strain rate of 1000 s ⁇ 1 is used, a spinning temperature of 280 to 290 ° C., and a discharge amount per metering hole of 0.1 to 5.0 g / min.
  • L / D discharge hole length / discharge hole diameter
  • the pore diameter is reduced so as to approach the lower limit of the above range and / or the pore length is approached to the upper limit of the above range. You can extend it. Conversely, when the viscosity is high or the discharge rate increases, the hole diameter and the hole length may be reversed.
  • measuring plates 11 It is preferable to stack a plurality of measuring plates 11 and measure the polymer amount in stages, and more preferably to provide measuring holes in two steps to ten steps. Dividing the measuring plate or measuring hole into a plurality of times is suitable for obtaining the core-sheath conjugate fiber of the present invention that requires fine polymer flow control of the order of 10 ⁇ 5 g / min / hole per measuring hole. is there.
  • a distribution groove 15 for collecting the polymer flowing in from each metering hole 14, and a distribution hole 16 (FIG. 7) for flowing the polymer downstream are formed in the lower surface of the distribution groove.
  • the distribution groove 15 is preferably provided with a plurality of distribution holes 16 of two or more holes, and the cross-sectional shape of the composite fiber is controlled by the arrangement of the distribution holes 16 in the final distribution plate immediately above the discharge plate 13. be able to.
  • FIG. 9 shows an example of the arrangement of the distribution holes.
  • the cores are arranged.
  • the sheath component is installed so as to be sandwiched between the core components discharged from the component distribution holes, and a polymer flow is formed that is combined into a core-sheath shape in which the slit shape required in the present invention is controlled.
  • the slit groove is formed by the sheath component distribution hole, the slit shape can be arbitrarily controlled by the amount of polymer discharged therefrom and the arrangement of the distribution holes.
  • the composite die having such a mechanism always stabilizes the flow of the polymer as described above, and makes it possible to produce a composite fiber with a controlled cross section that is necessary for achieving the present invention.
  • the melt viscosity ⁇ A of the core polymer (polymer A) and The melt viscosity ratio ( ⁇ B / ⁇ A) to the sheath polymer (polymer B) melt viscosity ⁇ B is preferably 0.1 to 2.0.
  • the melt viscosity here refers to a melt viscosity that can be measured with a capillary rheometer with a moisture content of 200 ppm or less using a vacuum dryer, and means a melt viscosity at the same shear rate at the spinning temperature. To do.
  • the shape of the composite cross section is basically controlled by the arrangement of the distribution holes.
  • the reduction hole 18 (FIG. 8) significantly reduces the cross-sectional direction. It is necessary to take into account changes over time such as changes in viscosity due to the above, and if the melt viscosity ratio is within the range, there is little possibility that these changes will have an effect, and stable production will be possible. From this viewpoint, ⁇ B / ⁇ A is 0.1 to 1.0 as a more preferable range. Note that the melt viscosity of the above polymers can be controlled relatively freely by adjusting the molecular weight and copolymerization component even in the case of the same type of polymer. Therefore, in the present invention, the melt viscosity is determined by polymer combination or spinning. It is an index for setting conditions.
  • the composite polymer flow discharged from the distribution plate 12 flows into the discharge plate 13.
  • the discharge introduction hole 17 is preferably provided in the discharge plate 13.
  • the discharge introduction hole 17 is for allowing the composite polymer flow discharged from the distribution plate 12 to flow perpendicularly to the discharge surface for a certain distance. This is intended to alleviate the flow rate difference between the polymer A and the polymer B and reduce the flow rate distribution in the cross-sectional direction of the composite polymer flow.
  • it is important to control the slit shape of the outermost layer of the core component. In order to reduce the polymer flow rate of the outermost layer that is relatively susceptible to distortion when the composite polymer stream is compressed, this discharge introduction is used. It is preferable to provide the holes 17.
  • the composite polymer flow is discharged from the discharge holes 19 (FIG. 8) onto the spinning line while maintaining the cross-sectional shape as the arrangement of the distribution holes 16 (FIG. 7) through the discharge introduction holes 17 and the reduction holes 18.
  • the hole diameter and hole length of the discharge hole 19 are preferably determined in consideration of the viscosity of the polymer and the discharge amount.
  • the discharge hole diameter D is selected in the range of 0.1 to 2.0 mm, and L / D (discharge hole length / discharge hole diameter) is selected in the range of 0.1 to 5.0. Is preferred.
  • melt spinning as island component and sea component, for example, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polypropylene, polyolefin, polycarbonate, polyacrylate, polyamide, polylactic acid, thermoplastic polyurethane,
  • melt moldable polymers such as polyphenylene sulfide and copolymers thereof.
  • the melting point of the polymer is preferably 165 ° C. or more, since the heat resistance is good.
  • the polymer contains various additives such as inorganic materials such as titanium oxide, silica and barium oxide, colorants such as carbon black, dyes and pigments, flame retardants, optical brighteners, antioxidants, and UV absorbers. You may go out.
  • inorganic materials such as titanium oxide, silica and barium oxide
  • colorants such as carbon black, dyes and pigments, flame retardants, optical brighteners, antioxidants, and UV absorbers. You may go out.
  • Preferred polymer combinations for spinning the core-sheath composite fiber of the present invention include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, polylactic acid, thermoplastic polyurethane, and polyphenylene sulfide. From the viewpoint of suppressing peeling, it is preferable to use a polymer B with a different molecular weight, or to use one as a homopolymer and the other as a copolymer. Also, from the viewpoint of improving the bulkiness due to the spiral structure, combinations having different polymer compositions are preferable. Polyurethane and polybutylene terephthalate / polytrimethylene terephthalate are preferred.
  • the spinning temperature in the present invention is preferably set to a temperature at which a high melting point or high viscosity polymer exhibits fluidity among the used polymers determined from the aforementioned viewpoint.
  • the temperature indicating the fluidity varies depending on the polymer characteristics and the molecular weight, but the melting point of the polymer serves as a guideline and may be set at a melting point of + 60 ° C. or lower. If the temperature is lower than this, the polymer is not thermally decomposed in the spinning head or the spinning pack, the molecular weight reduction is suppressed, and the core-sheath composite fiber of the present invention can be produced satisfactorily.
  • the discharge amount of the polymer in the present invention may be from 0.1 g / min / hole to 20.0 g / min / hole per discharge hole as a range in which the melt can be discharged while maintaining stability. At this time, it is preferable to consider the pressure loss in the discharge hole that can ensure the stability of the discharge.
  • the pressure loss mentioned here is preferably determined from the range of the discharge amount based on the relationship between the melt viscosity of the polymer, the discharge hole diameter, and the discharge hole length with 0.1 MPa to 40 MPa as a guide.
  • the ratio of the core component (Polymer A) to the sheath component (Polymer B) in spinning the core-sheath composite fiber used in the present invention is 50/50 to 90/10 in terms of weight / core ratio based on the discharge amount.
  • the range can be selected.
  • increasing the core ratio is preferable from the viewpoint of productivity of slit fibers.
  • the core / sheath ratio is more preferably 70/30 to 90/10 as long-term stability of the core / sheath composite cross section and the range in which slit fibers can be produced efficiently and in good balance while maintaining stability. Further, when considering the point that the elution process is completed quickly, 80/20 to 90/10 is particularly preferable.
  • the yarn melted and discharged from the discharge hole is cooled and solidified, converged by applying an oil or the like, and taken up by a roller having a specified peripheral speed.
  • the take-off speed is determined from the discharge amount and the target fiber diameter.
  • 100 to 7000 m / min is preferable. Can be listed as a range.
  • the spun core-sheath composite fiber is preferably stretched from the viewpoint of improving thermal stability and mechanical properties, and may be stretched after winding the spun core-sheath composite fiber once. It is also possible to perform stretching after spinning, without winding once.
  • the drawing conditions for example, in a drawing machine composed of a pair of rollers or more, if the fiber is made of a polymer showing thermoplasticity that can generally be melt-spun, the first roller set to a temperature not lower than the glass transition temperature and not higher than the melting point; By the peripheral speed ratio of the second roller corresponding to the crystallization temperature, the second roller is stretched in the fiber axis direction without difficulty, and is heat set and wound.
  • dynamic viscoelasticity measurement (tan ⁇ ) of the composite fiber is performed, and a temperature equal to or higher than the peak temperature on the high temperature side of the obtained tan ⁇ may be selected as the preheating temperature.
  • the sheath component may be removed by immersing the composite fiber in a solvent or the like in which the easily eluted component can be eluted.
  • the easily eluting component is a copolymerized polyethylene terephthalate or polylactic acid in which 5-sodium sulfoisophthalic acid or polyethylene glycol is copolymerized
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution can be used.
  • the composite fiber may be immersed in an alkaline aqueous solution.
  • a fluid dyeing machine etc. are utilized, since it can process in large quantities at once, productivity is good and it is preferable from an industrial viewpoint.
  • the production method of the core-sheath composite fiber and the slit fiber according to the present invention has been described based on the melt spinning method for the purpose of producing the long fiber, but the melt blow method and span suitable for obtaining a sheet-like material are described. Needless to say, it can also be manufactured by a bond method, and it can also be manufactured by a solution spinning method such as wet and dry wet.
  • the chip-like polymer was adjusted to a moisture content of 200 ppm or less with a vacuum dryer, and the melt viscosity was measured by changing the strain rate stepwise with a Capillograph 1B manufactured by Toyo Seiki.
  • the measurement temperature is the same as the spinning temperature, and the melt viscosity of 1216 s -1 is described in the examples or comparative examples. By the way, it took 5 minutes from putting the sample into the heating furnace to starting the measurement, and the measurement was performed in a nitrogen atmosphere.
  • the distance between the ten protrusions (PA), the protrusion tip width (WA), the protrusion height (H), and the protrusion bottom surface width (WB) was measured. The same operation was performed on 10 images, and the average value of the 10 images was used as each value. These values are obtained in ⁇ m to the second decimal place and rounded to the first decimal place.
  • the fiber diameter of the slit fiber The slit fiber obtained by eluting 99% or more of the sheath component from the core-sheath composite fiber was embedded and cut with an epoxy resin in the same manner as in the case of the core-sheath composite fiber. Images were taken at a magnification at which 10 or more slit fibers could be observed with a microscope VHX-2000 manufactured by Keyence Corporation. Ten randomly selected slit fibers were extracted from this image, and the fiber diameter (DC) was measured using image processing software (WINROOF). The measurement was performed up to the second decimal place in ⁇ m units, and the same operation was performed on 10 images, and these simple number average values were rounded off to the second decimal place.
  • DC image processing software
  • Slit width and slit width variation were affixed to the observation table in the horizontal direction, and photographed at a magnification at which 10 or more slits formed on the fiber surface layer could be observed with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation. Ten slits randomly selected from the above were extracted, and the slit width was obtained using image processing software (WINROOF). Note that the slit width is calculated in ⁇ m to the second decimal place and rounded off to the second decimal place. The same operation was performed on 10 images, and the average value and standard deviation of 10 images were obtained. From these results, slit width variation (CV%) was calculated based on the following formula.
  • Slit width variation (CV%) (standard deviation / average value) ⁇ 100 The slit width variation is also calculated to the second decimal place and rounded to the first decimal place.
  • Example 1 Polyethylene terephthalate (PET1 melt viscosity: 140 Pa ⁇ s) as the core component and polyethylene terephthalate (copolymerized PET1 melt) copolymerized with 8.0 mol% of 5-sodium sulfoisophthalic acid and 10 wt% of polyethylene glycol having a molecular weight of 1000 as the sheath component Viscosity: 45 Pa ⁇ s) was melted separately at 290 ° C., weighed, and allowed to flow into a spin pack incorporating the composite die of the present invention shown in FIG. 6, and a composite polymer stream was discharged from the discharge holes.
  • PET1 melt viscosity: 140 Pa ⁇ s polyethylene terephthalate
  • copolymerized PET1 melt copolymerized with 8.0 mol% of 5-sodium sulfoisophthalic acid and 10 wt% of polyethylene glycol having a molecular weight of 1000 as the sheath component Viscosity
  • the portion located at the interface between the core component and the sheath component has the arrangement pattern shown in FIG. 9, and the core component distribution hole group and the sheath component distribution hole group are arranged alternately. 24 slits were formed in one core-sheath composite fiber. Further, the discharge plate having a discharge introduction hole length of 5 mm, a reduction hole angle of 60 °, a discharge hole diameter of 0.3 mm, and a discharge hole length / discharge hole diameter of 1.5 was used.
  • the total discharge amount of the polymer was 31.5 g / min, and the core-sheath composite ratio was adjusted to 80/20 by weight.
  • an oil agent was applied, and the undrawn fiber was obtained by winding at a spinning speed of 1500 m / min. Further, the unstretched fiber was stretched 3.0 times between rollers heated to 90 ° C. and 130 ° C. (stretching speed: 800 m / min) to obtain a core-sheath composite fiber (70 dtex-36 filament).
  • the height (H), the tip width (WA), and the bottom width (WB) of the protrusion of the core component are 1.3 ⁇ m, 0.8 ⁇ m, and 1.2 ⁇ m, respectively, and H / (WA) 1/2 is It was confirmed that the core-sheath conjugate fiber of the present invention was 1.5 and WB / WA was 1.5.
  • the mechanical properties of the core-sheath conjugate fiber obtained in Example 1 have a strength of 3.4 cN / dtex, an elongation of 28%, and sufficient mechanical properties for high-order processing, and were processed into a woven fabric or a knitted fabric. Even in this case, thread breakage or the like did not occur at all.
  • the test piece made of the core-sheath composite fiber of Example 1 was knitted, and the sheath component was desealed by 99% or more with a 1 wt% aqueous sodium hydroxide solution (bath ratio 1: 100) heated to 90 ° C.
  • the sheath component is one in which the sheath component is quickly eluted within 10 minutes after starting the elution treatment, and even when the solvent from which the sheath component is eluted is visually observed, the slit protrusions are not removed. It was.
  • the removal of the sheath component was evaluated using the solvent from which the sheath component was eluted, but the weight change of the filter paper was less than 3 mg, there was no removal (judgment: A), there was no deterioration of the slit, and it was excellent in high-order processability. Met. Incidentally, even when the eluted slit fiber was treated with an alkaline aqueous solution heated to 90 ° C. for an additional 10 minutes, the slits were still not removed.
  • the slit fiber collected by the above-mentioned operation has a protrusion shape having protrusions and grooves alternately in a cross section perpendicular to the fiber axis.
  • the height (HT) of this protrusion, the protrusion As shown in Table 1, the tip width (WAT) and the bottom width (WBT) satisfy the requirements of the slit fiber of the present invention.
  • the slit width variation was 5.3%, and in the observed image, it was possible to confirm a self-standing slit while maintaining a slit width of 0.9 ⁇ m.
  • the wear resistance evaluation was performed, the slit shape with excellent wear resistance derived from the core-sheath composite fiber of the present invention has a slit shape. No peeling was observed, and no fibrillation was observed on the sample surface (abrasion resistance judgment: good (A)).
  • the water absorption performance was evaluated without subjecting the slit fiber having excellent durability to the water repellent treatment, the water absorption performance was excellent (water absorption height 132 mm).
  • the PET single fiber (56 dtex-24 filament) having a round cross section evaluated by the same method has a water absorption height of 32 mm, and the slit fiber obtained in Example 1 has a water absorption performance four times or more that of a normal round cross section fiber. Will have.
  • the static contact angle of water exceeds 130 °, and the dynamic water repellency performance class judgment that is important for actual use is average. It was 5.0 grade and was found to exhibit good water repellency. The results are shown in Table 1.
  • Example 2 All were carried out according to Example 1 except that the composite ratio of the core-sheath was changed to 70/30 (Example 2) and 90/10 (Example 3).
  • Example 2 since the core ratio was reduced, the slits became deeper than in Example 1, but the protrusion had a sufficient thickness, so that both dropout and wear resistance were good. Met. On the other hand, since the slit became a deep groove, the water absorption was improved.
  • Example 3 since the core ratio was increased, the protrusion width was increased, and the durability compared with Example 1 was excellent.
  • Example 3 the water absorption and the like are reduced as compared with Example 1 due to the reduction of the slit depth. However, the water absorption is 3.6 times higher than that of a normal round cross-section fiber. That is sufficient water absorption performance. The results are shown in Table 1.
  • Example 4 The composite ratio of the core-sheath was fixed at 80/20, and everything was carried out in accordance with Example 1, except that the number of core component slits was changed to 10 (Example 4) and 50 (Example 5).
  • the structure in which the core component has a desired protrusion is present stably, and satisfies the requirements of the present invention.
  • the width of the protrusion increased the number of slits.
  • the slit did not fall off even in the elution process, and there was no problem.
  • fibrils were observed in the abrasion resistance evaluation, but they were minor and had no problem in actual use. The results are shown in Table 1.
  • Example 1 As the core component and the sheath component, PET1 and copolymerized PET1 used in Example 1 were used, and pores corresponding to the number of core component protrusions were formed at the interface between the core component and the sheath component described in JP2008-7902A. And a conventionally known spinneret in which a slit portion is formed by a groove installed so that the sheath component flows from the fiber center to the outer periphery between the core component pores. At this time, pores for the core component and grooves for the sheath component were alternately installed so that 200 slits were formed, and other conditions were performed according to Example 1.
  • the weight loss rate as seen from the weight continued to increase even after 40 minutes of elution treatment.
  • the increase in dropout was visually confirmed, and the sample weight decreased to 60 minutes treatment (weight loss rate: 47%). It increased.
  • the slit fiber obtained in Comparative Example 1 had a low resistance in the compression direction of the slit fiber due to the slit entering the inner layer, and the entire slit fiber was distorted (degree of irregularity: 2.6). Moreover, when the fiber side surface was observed in order to evaluate the slit width, none of the protrusions were self-supporting, and the slit wavy, and the slit width was uneven depending on the observation location (slit width variation: 28%). Next, when an abrasion resistance test was performed, the fibrils clearly increased on the surface layer of the sample before and after the abrasion treatment, and the feel of the texture was also rough (abrasion resistance: impossible (C)). The results are shown in Table 2.
  • Comparative Example 2 Based on the result of Comparative Example 1, in order to increase the width of the protrusion, the core-sheath ratio was fixed at 80/20, and everything was carried out according to Comparative Example 1 except that the total discharge amount was increased and spinning was performed.
  • Comparative Example 3 In order to increase the width of the protrusions as in Comparative Example 2, all the procedures were performed in accordance with Comparative Example 1 except that the number of slits was reduced to 8 in addition to the increase in the total discharge amount.
  • the width of the protrusion could be greatly increased by reducing the number of slits
  • the slit shape was controlled because a spinneret with a groove for flowing the sheath component into the fiber inner layer was used.
  • a deep groove equivalent to or greater than that of Comparative Example 2 was formed.
  • the groove portion was expanded toward the inner layer, and the bottom surface of the protrusion portion was a core-sheath composite fiber that did not satisfy the requirements of the present invention (WB / WA: 0.5). .
  • the slit width is wide and the shape expands toward the inner layer of the fiber. Therefore, when scratching is applied, the protrusions easily peel off, and there are many fibrils on the sample surface. It was.
  • the slit width is wide, the effect on specific water characteristics as in the present invention was not observed, and both water absorption and water repellency were far from the slit fiber of the present invention. Incidentally, since these water characteristics are caused by the presence of slits, it is considered that the deterioration of the slits received in the elution treatment or the like is also caused by the deterioration of the functions. The results are shown in Table 2.
  • Example 6 The core component is nylon 6 (N6 melt viscosity: 120 Pa ⁇ s), and the sheath component is copolymerized PET1 (melt viscosity: 55 Pa ⁇ s) used in Example 1, separately melted at 270 ° C., and weighed. Using the distribution pattern of the distribution holes shown, 50 slits were formed in one core-sheath composite fiber, and discharged from 24 holes at a total discharge amount of 50 g / min and a core-sheath ratio of 80/20. All other conditions were carried out according to Example 1.
  • the slit fiber after elution was evenly provided with slits having a width of 1.1 ⁇ m on the fiber surface layer, and exhibited excellent performance in both water absorption and water repellency.
  • the results are shown in Table 3.
  • Example 7 Except that the core component was changed to polybutylene terephthalate (PBT melt viscosity: 160 Pa ⁇ s) and all the spinning was carried out in accordance with Example 6.
  • PBT melt viscosity 160 Pa ⁇ s
  • Example 7 The core-sheath composite fiber and slit fiber obtained in Example 7 also had the same durability and excellent performance as in Example 7. The results are shown in Table 3.
  • Example 8 Except that the core component was changed to polypropylene (PP melt viscosity: 150 Pa ⁇ s) and spinning was carried out, everything was carried out according to Example 6.
  • PP melt viscosity 150 Pa ⁇ s
  • Example 8 The core-sheath composite fiber and slit fiber obtained in Example 8 also had excellent durability similar to that of Example 6.
  • the slit fiber is made of PP exhibiting hydrophobicity, and although it is difficult to exhibit water absorption performance, the water repellency performance is found to exhibit good dynamic water repellency without water repellency treatment. . Since PP has a density of 0.91 g / cm 3 and has light weight, it can be widely applied to textiles for comfortable clothing such as inner and outer. The results are shown in Table 3.
  • Example 9 Spinning with polyphenylene sulfide (PPS melt viscosity: 170 Pa ⁇ s) as the core component and polyethylene terephthalate copolymerized with 5.0 mol% of 5-sodium sulfoisophthalic acid (copolymerized PET2 melt viscosity: 110 Pa ⁇ s) as the sheath component Except for spinning at a temperature of 300 ° C., everything was carried out according to Example 6.
  • the core-sheath composite fiber of Example 9 also has a shape of a protrusion that satisfies the requirements of the present invention, and thus has no problem in high-order processability and durability.
  • the PPS used in Example 9 is known to be a hydrophobic polymer and is a polymer having a poor affinity with water, but by using the slit fiber of the present invention, the water absorption height is as high as 118 mm. It turned out that it becomes the fiber which shows property. Since PPS is a polymer with high chemical resistance, looking at current applications, it is often used in liquids such as battery separators and solution filters. By using the slit fiber of the present invention, these applications are used. It can be used effectively. The results are shown in Table 3.
  • Example 10 and 11 All were performed according to Example 6 except that the composite ratio of the core-sheath was changed to 70/30 (Example 10) and 90/10 (Example 11).
  • Example 10 since the core ratio was decreased, the slit became deeper than in Example 6, and since hydrophilic nylon 6 was used, it exhibited extremely excellent water absorption. Met. Moreover, since nylon 6 was excellent in alkali resistance, the drop-off of the slit portion did not occur at all. Furthermore, despite the fact that the slit is a deep groove due to the use of nylon 6 that is excellent in flexibility, it was also resistant to wear, and the destruction of the slit portion was not confirmed.
  • Example 11 since the core ratio was increased, the protrusion width was increased, and the protrusions that were self-supported were formed after the abrasion treatment, and the durability was excellent.
  • Example 11 due to the reduction of the slit depth, the water absorption and the like are slightly reduced as compared with Example 6, but 4.4 times that of a normal round cross-section PET fiber. Water absorption height and sufficient water absorption performance. The results are shown in Table 4.
  • PET 1 (melt viscosity: 140 Pa ⁇ s) used in Example 1 is 0.3% by weight of titanium oxide having a maximum particle size of 5.0 ⁇ m and a particle size of 1.0 ⁇ m or less of 64.5% by weight as inorganic particles (PET 2). , 3.0 wt% (PET3), 7.0 wt% (PET4) -containing resin was prepared.
  • Example 12 This was carried out in accordance with Example 1 except that the sheath component was PET2, and the core component was PET3 (Example 12) and PET4 (Example 13).
  • Example 12 and Example 13 the effect of containing inorganic particles was not observed, and both had good cross-sectional formability, and a core-sheath composite fiber satisfying the requirements of the present invention similar to Example 1 was obtained. there were.
  • malachite green manufactured by Kanto Chemical Co., Inc.
  • acetic acid 0.5 ml / L, sodium acetate 0.2 g / L, without elution of the sheath component from the core-sheath conjugate fiber of Example 12 and Example 13.
  • the fabric was dyed by the above-described method so that the dye exhaustion rate of the fabric was the same under the conditions of a bath ratio of 1: 100 and a temperature of 120 ° C., and using an SM color computer (manufactured by Suga Test Instruments Co., Ltd.)
  • the L value was measured in a state where the irradiation light was not transmitted.
  • Example 12 determineation: A
  • Example 13 determination: S

Abstract

 2種類のポリマーからなる芯鞘複合繊維において、該芯成分は繊維軸に対して垂直方向の断面で突起部と溝部を交互に有した突起形状を有し、該突起部は繊維軸方向に連続して形成されており、該突起部の高さ(H)、突起部の先端の幅(WA)および底面の幅(WB)が下記式を同時に満足することを特徴とする芯鞘複合繊維。 1.0≦H/(WA)1/2≦3.0 ・・・(1) 0.7≦WB/WA≦3.0 ・・・(2) 突起部が自立し、スリット形状のつぶれが大幅に抑制された、繊維表層のスリットにより様々な特徴を耐久性高く発現しうるスリット繊維を提供する。

Description

芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法
 本発明は、2種類のポリマーからなる芯鞘複合繊維に関して、芯成分が特殊な断面形態を有していながらも、高次加工の工程通過性や耐磨耗性に優れ、着用快適性を訴求する衣料用テキスタイルに適した繊維に関するものである。
 ポリエステルやポリアミドなどの熱可塑性ポリマーを用いた繊維は力学特性や寸法安定性に優れる。このため、衣料用途のみならずインテリアや車両内装、産業用途等幅広く利用されており、産業上の価値は極めて高い。
 しかしながら、快適性や利便性を求める昨今では、繊維素材の要求特性も多様なものとなり、既存ポリマーからなる単独繊維では対応できない場合がある。この要求に対して、一からポリマーを設計するのでは、コスト的および時間的に課題があり、複数のポリマーの特性を有した複合繊維の活用が選択される場合がある。複合繊維では、主となる成分を他方の成分が被覆するなどして、単独繊維では達成されない特性の付与が可能となる。このため、複合繊維にはその形状も含めて、多種多様なものが存在し、その繊維が使われる用途に合わせて様々な技術が提案されている。
 複合繊維の中でも芯成分を鞘成分が被覆することを特徴とした芯鞘複合繊維では、単独繊維では達成されない風合い、嵩高性などといった感性的効果、また、強度、弾性率、耐摩耗性などといった力学特性の付与を訴求した使われ方が多い。また、この芯鞘複合繊維を応用すれば、単独繊維用口金では得ることが難しい特殊な断面形態を有した繊維を得ることもできる。通常、ポリエステルやポリアミドなどのポリマーを溶融紡糸する場合、紡糸口金から吐出されたポリマーは、その冷却過程で表面張力が強力に作用し、繊維断面はより安定な丸断面に近づくため、高度な異形断面を有した繊維を得ることは困難となる。一方で、特殊な断面を有した繊維では、丸断面の繊維では得られない特徴的な風合いを発現させることや繊維を被覆する他の樹脂との接触面積を増加させるなど同一ポリマーで様々な機能を有した繊維を製造することが可能となるため、芯鞘複合繊維は繊維の開発の方向性のひとつとなっている。
 特殊な断面を有する繊維に関する例としては、芯鞘複合繊維を応用し、繊維軸方向に連続したスリット状の溝を形成させた繊維に関する技術が特許文献1及び特許文献2で提案されている。
 特許文献1においては、繊維表層にスリットを形成させることにより、通常の丸断面を有した繊維と比較して、空気との接触面積を増加させ、これが消臭機能を有するリン酸塩等のポリマーにより形成されることで、消臭機能に優れた繊維に関する提案がある。
 特許文献1は、消臭機能を有した熱可塑性ポリマーを使用することに加え、繊維表層に溝幅の2倍以上の深さを有したスリットを20個以上配置することにより、繊維の重量当たりの表面積(比表面積)を増加させ、消臭機能を高める効果を期待するものである。
 しかしながら、特許文献1では、比表面積を高めることに重点をおいているため、繊維内層にまで到達する深溝のスリットが多数形成されるものである。このため、スリットを維持できる初期の性能は優れたものとなる可能性がある。しかしながら、擦過や繰り返し複雑な変形を受ける衣料用テキスタイルとして使用する場合には、この深溝のスリットを多数設けることが課題となる。すなわち、特許文献1では、スリット形状を深溝にしており、更にその突起部が擦過等に対して耐久性を持った形状とすることが考慮されていないため、繊維表層に形成した突起部が擦過等により根元から剥離し、剥離した突起部が微細な毛羽状態となり、触感や発色性を悪化させる場合、あるいは何よりスリットにより発現させた消臭機能が経時的に大きく低下する可能性がある。
 特許文献2は、優れたワイピング性能や研磨性能を発現させるため、繊維表層に微細なスリットを多数形成させ、シャープ・マルチシェービング効果及びインナーラッピング効果を訴求した繊維を提案するものである。
 特許文献2は、見かけ上は通常繊維と同等の繊維径を有した繊維に微細なスリットを多数形成し、従来の極細繊維を用いたワイピングクロスと同等以上の性能を繊維強度など力学的な特性を担保しつつ発現できる可能性がある。
 しかしながら、特許文献2においても、特許文献1と同様にくさび状のスリットが繊維内層にまで非常に深く配置されるものである。このため、繰り返し擦過を付与した場合には、簡単にスリットが剥離することとなり、使い捨てを前提としたワイピングクロスなどには適用できる可能性はあるものの、繰り返し使用では、やはり突起部の剥離による毛羽の発生や脱落により、払拭性能も低下する傾向にある。また、実使用で擦過や繰り返しの変形を受けることが多い衣料用テキスタイルへの適用は非常に困難なものである。
 特許文献1や特許文献2で提案される技術においては、繊維の比表面積を訴求点とし、限られた用途や使用条件を制約して適用できる可能性はあるものの、衣料や産業資材の一般的な用途に想定している擦過、磨耗や繰り返しの変形を受ける用途には適用が困難であった。特に風合い、触感や発色性に重きが置かれている衣料用テキスタイルには不向きなものとなる場合が多い。
 一方、スリット形状が織り成す風合いや発色性を訴求点とし、衣料用テキスタイルに向けたスリット形状を有した繊維が、特許文献3及び特許文献4に開示されている。
 特許文献3及び特許文献4においては、天然絹繊維と同様のキシミ風合いを有し、かつ深みのある色調の表現が可能な繊維として、繊維表層に2μm以上の深さを有したスリットを多数存在させる技術について提案されている。
 特許文献3及び特許文献4は、溝幅の2倍以上の深さを有したスリットを設けることで、揉みや圧縮方向の変形によりスリットが可動し、繊維間での摩擦が高まることでキシミ感が発現する可能性がある。また、繊維表層の微細なスリットは、繊維表層での光の拡散を抑制し、深みのある色調を発現できると記載されている。
 しかしながら、衣料用テキスタイルを目的としているものの、特許文献3及び特許文献4でも、比較的高い応力が繰り返し付与される高次加工への考慮がなされ、磨耗耐久性ならびに繰り返して使用する際の耐久性を有したスリット形状とした技術であるとは言いがたい。すなわち、特殊断面を有した芯鞘複合繊維においては、糸ガイドや筬との擦過により、鞘成分が剥離する、あるいは鞘成分を溶出する際にも処理浴中で布帛が複雑な変形を受けるため、スリットが破壊され、風合いや発色性の低下に繋がる場合がある。また、このように高次加工にて疲労したスリットの突起部は、実使用時に簡単に剥離し、微細な毛玉が発生する。このため、磨耗の多い部分ではガサガサした触感の悪い肌触りになり、布帛の品位が大きく損なわれることとなる。加えて、特許文献3および特許文献4で訴求している深みのある色調は、毛羽による光の拡散により、部分的に白ボケするなどして大きく損なわれる可能性がある。このように従来提案されているスリット繊維においては、高次加工時や実使用での耐久性が考慮されていないものが多く、実使用には課題の残るものであった。このため、これらの技術課題を解消した表層に複数のスリット形状を有する特殊断面繊維およびこれを生産性高く得るための高次加工通過性などに優れた芯鞘複合繊維が求められていた。
特開2004-339616号公報(特許請求の範囲、第4頁) 特開2008-7902号公報(特許請求の範囲、第5頁,第6頁) 特開2004-52161号公報(特許請求の範囲、第1~4頁) 特開2004-308021号公報(特許請求の範囲、第1~4頁)
 本発明は、従来技術の課題を解消するスリット繊維及び該繊維を製造するための芯鞘複合繊維に関するものである。本発明の繊維は、衣料用テキスタイルとして特殊な風合いや色調が発現されるとともに、繊維表面の特性を制御できるため、風合いや快適性を求められる昨今において、要求の高い高機能テキスタイルとなる。更に、繊維表層に多数のスリットを有した特殊断面でありながらも、耐磨耗性等の力学的な特性や耐久性に優れるため、使用条件や用途に制約がなく、衣料用テキスタイルとした場合には、インナーからアウターまで幅広い分野での活躍が期待できる。
 上記課題は、以下の手段により達成される。
  (1)2種類のポリマーからなる芯鞘複合繊維において、該芯成分は繊維軸に対して垂直方向の断面で突起部と溝部を交互に有した突起形状を有し、該突起形状は繊維軸方向に連続して形成されており、該突起部の高さ(H)、突起部の先端の幅(WA)および底面の幅(WB)が下記式を同時に満足することを特徴とする芯鞘複合繊維。
 1.0≦H/(WA)1/2≦3.0 ・・・(1)
 0.7≦WB/WA≦3.0    ・・・(2)   。
 (2)芯成分の突起部の先端の幅(WA)と隣り合う突起部先端間の距離(PA)が下記式を満足することを特徴とする(1)に記載の芯鞘複合繊維。
0.1≦WA/PA≦0.9    ・・・(3)   。
 (3)芯鞘複合繊維の繊維軸に対して垂直方向の断面において、芯成分の面積比率が70%以上90%以下であることを特徴とする(1)または(2)に記載の芯鞘複合繊維。
 (4)芯成分が難溶出成分、鞘成分が易溶出成分から構成されており、芯成分ポリマーと鞘成分ポリマーの溶出速度比(鞘/芯)が100以上であることを特徴とする(1)から(3)のいずれか1項に記載の芯鞘複合繊維。
 (5)芯成分が無機粒子を0.1重量%から10.0重量%含有するポリマーからなることを特徴とする(1)から(4)のいずれか1項に記載の芯鞘複合繊維。
 (6)(3)に記載の芯鞘複合繊維から鞘成分を除去した繊維軸方向に連続したスリットを有することを特徴とするスリット繊維。
 (7)繊維軸に対して垂直方向の断面で突起部と溝部を交互に有した突起形状を有し、該突起形状は繊維軸方向に連続して形成され、該突起部の高さ(HT)、突起部の先端の幅(WAT)および底面の幅(WBT)が下記式を同時に満足することを特徴とするスリット繊維。
  1.0≦HT/(WAT)1/2≦3.0 ・・・(4)
  0.7≦WBT/WAT≦3.0    ・・・(5)   。
 (8)突起部について、繊維軸に対して垂直方向の断面における隣り合う突起部先端間の距離(スリット幅(WC))のバラツキ(CV%)が1.0%以上20.0%以下であることを特徴とする(7)に記載のスリット繊維。
 (9)スリット繊維の繊維軸に対して垂直方向の断面形状の異形度が1.0から2.0であることを特徴とする(7)または(8)に記載のスリット繊維。
 (10)ポリアミドを主成分とする(7)から(9)のいずれか1項に記載のスリット繊維。
 (11)(1)から(10)のいずれか1項に記載の繊維を少なくとも一部に含んだ繊維製品。
 (12)少なくとも2成分以上のポリマーによって構成される複合ポリマーを吐出するための複合口金であり、該複合口金が各ポリマー成分を計量する複数の計量孔を有する計量プレート、計量孔からの吐出ポリマーを合流する合流溝に複数の分配孔が穿設されている分配プレートおよび吐出プレートとで構成されている複合口金を用いて紡糸することを特徴とする(1)から(5)のいずれかに記載の芯鞘複合繊維の製造方法。
 (13)(1)から(5)のいずれかに記載の芯鞘複合繊維から鞘成分を溶出除去することを特徴とするスリット繊維の製造方法。
 本発明の芯鞘複合繊維は、繊維軸と垂直方向の芯部の断面形状において、連続して形成される突起部と溝部を交互に有した特殊形状を有しており、この突起部の形状が従来にはない複合断面を有している。
 該芯鞘複合繊維では、高次加工等に投入した場合でも芯成分が鞘成分側に突出しているため、鞘成分との界面の面積が増大し、仮に親和性の乏しいポリマー同士の組み合わせであっても剥離を抑制することができる。このため、糸ガイドや筬で繰り返し擦過される織り編みや加熱下で擦過等が加わる高次加工工程でも、幅広い条件で高い工程通過性を有するものとなる。
 また、易溶出ポリマーからなる鞘成分を溶剤にて溶出すると、繊維表層に連続したスリット形状を有したスリット繊維を製造することが可能となる。該スリット繊維のスリット形状は力学的な観点に基づいて設計されているため、鞘成分を溶出した後も突起部が自立し、スリット形状のつぶれが大幅に抑制される。このため、擦過や圧縮方向への変形にも強く従来の課題であった磨耗に対する耐久性も兼ね備える。
 本発明の芯鞘複合繊維及び該複合繊維を出発原料としたスリット繊維は、繊維表層のスリットにより様々な特徴を耐久性高く発現するため、従来技術では適用が困難であった幅広い用途での展開が可能となる。
本発明の芯鞘複合繊維を説明するための概要図である。 本発明の芯成分の突起部を説明するための芯成分の一部の拡大概略図である。 本発明の芯成分の突起部を説明するための概要図である。 本発明のスリット繊維の断面写真である。 (a)は本発明のスリット繊維の断面写真であり、(b)は本発明のスリット繊維の側面写真である。 本発明の芯鞘複合繊維の製造方法を説明するための説明図であり、複合口金の形態の一例であって、複合口金を構成する主要部分の正断面図である。 本発明の芯鞘複合繊維の製造方法を説明するための説明図であり、分配プレートの一部の横断面図である。 本発明の芯鞘複合繊維の製造方法を説明するための説明図であり、吐出プレートの横断面図である。 最終分配プレートにおける分配孔配置の一実施形態の一部拡大図である。 本発明のスリット繊維の突起部を説明するための概要図である。
 以下、本発明について、望ましい実施形態とともに詳述する。
 本発明で言う芯鞘複合繊維とは、2種類のポリマーから構成されており、繊維軸に対して垂直方向の断面において、鞘成分が芯成分を被覆するよう設置されている断面形態を有する繊維を言う。
 本発明の芯鞘複合繊維を構成する芯成分および鞘成分としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリプロピレン、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイドなどの溶融成形可能なポリマーおよびそれらの共重合体が挙げられる。特にポリマーの融点は165℃以上であると耐熱性が良好であり好ましい。また、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。ここで、芯成分ポリマーに無機粒子が含有されている場合には、無機粒子を含有する効果に加え、本発明の繊維の芯成分が形成する特殊なスリット形状との相乗効果により非常に高いレベルで可視光等の拡散、反射が発現する。一般的にも無機粒子を含有したポリマーによる単独繊維や単純な芯鞘複合繊維(芯成分が丸断面)も存在するものの、例えば、防透け効果を狙うためには、不必要に無機粒子をポリマーに含有させたものを使用する必要があった。この場合、発色性が大きく低下する場合があり、高発色テキスタイルには適用が困難な場合がある。一方、本発明の芯鞘複合繊維においては、芯成分ポリマーに無機粒子を過剰に含有させる必要がなく、且つ鞘成分を溶出しない場合には鞘成分を易染色ポリマーとすることで優れた発色性と防透け性という従来では達成されなかった相反する特性を両立した繊維とすることが可能である。これ等の可視光等の拡散、反射を目的とする場合には、芯成分ポリマーに無機粒子が0.1重量%から10.0重量%含有されていることが好ましい。係る範囲であれば、優れた光反射性を発現することに加えて、安定して本発明の繊維を製造することができる。また、高発色という観点で言えば、無機粒子の含有量を鞘成分比率(厚み)との関係でバランスをとって製造することが好適であり、本発明者等の検討の範囲では、無機粒子の含有量が1.0重量%から7.0重量%とすることが光反射と発色性という観点からより好ましい範囲として挙げることができる。ここで言う無機粒子とは、酸化チタン、シリカ、酸化バリウムなどの無機質が粒子状となったもののことを言う。これ等の無機粒子の中では、取扱性等の観点から酸化チタンを使用することが好ましく、最大粒子径が5.0μmで粒径1.0μm以下の占める割合が50重量%以下であるアナターゼ型が好ましく用いられる。
 本発明の芯鞘複合繊維では、織り編み等の高次加工を施した後、鞘成分を溶出して芯成分からなるスリット繊維を得ることもできる。この場合、鞘成分の溶出に用いる溶剤に対して、芯成分が難溶出、鞘成分が易溶出となることが好ましく、用途に応じて芯成分を選定しておき、そこから用いることができる溶剤を鑑みて前述のポリマーの中から鞘成分を選定すると好適である。この際、難溶出成分(芯成分)と易溶出成分(鞘成分)の溶剤に対する溶出速度比が大きいほど好適な組み合わせと言え、溶出速度比(鞘/芯)が100以上であることが好ましい。この観点からすると、溶出速度比は高いほど、芯成分を不要に劣化させることなく、鞘溶出が完了する好適であり、本発明における溶出速度比は1000以上であることがより好ましく、10000以上であると特に好ましい。
 ここで言う溶出速度比(鞘/芯)とは、鞘溶出に用いる溶出条件(溶剤及び温度)に対する芯ポリマー及び鞘ポリマーの溶出速度の比であり、この溶出速度は、該溶出条件における単位時間当たりの溶出量から算出される速度定数を意味する。本発明における溶出速度比は、鞘ポリマーの溶出速度を芯ポリマーの溶出速度によって除し、小数点以下を四捨五入することによって求める。具体的には、それぞれのポリマーのガラス転移温度+100℃以下に設定した熱風乾燥機にてチップを5時間処理する。次に溶出温度に保持した溶剤に熱処理チップを浴比20となるように挿入し、この溶出処理における単位時間当たりの熱処理チップの溶出量から各ポリマー溶出速度を算出するものである。
 鞘成分としては、例えば、ポリエステルおよびその共重合体、ポリ乳酸、ポリアミド、ポリスチレンおよびその共重合体、ポリエチレン、ポリビニールアルコールなどの溶融成形可能で、他の成分よりも易溶出性を示すポリマーから選択することが好適である。特に鞘成分の溶出工程を簡易化するという観点では、鞘成分は、水系溶剤あるいは熱水などに易溶出性を示す共重合ポリエステル、ポリ乳酸、ポリビニールアルコールなどが好ましく、特に、ポリエチレングリコール、ナトリウムスルホイソフタル酸が単独あるいは組み合わされて共重合したポリエステルやポリ乳酸を用いることが取扱性および低濃度の水系溶剤に簡単に溶出するという観点から好ましい。
 また、本発明者らの検討では、水系溶剤に対する溶出性および溶出の際に発生する廃液の処理の簡易化という観点では、ポリ乳酸、5-ナトリウムスルホイソフタル酸が3mol%から20mol%が共重合されたポリエステルおよび前述した5-ナトリウムスルホイソフタル酸に加えて重量平均分子量500から3000のポリエチレングリコールが5wt%から15wt%の範囲で共重合されたポリエステルが特に好ましい。特に、前述した5-ナトリウムスルホイソフタル酸単独および5-ナトリウムスルホイソフタル酸に加えてポリエチレングリコールが共重合されたポリエステルにおいては、結晶性を維持しながらもアルカリ水溶液などの水系溶剤に対して易溶出性を示すため、加熱下で擦過が付与される仮撚り加工等においても、複合繊維間の融着等が起こらず高次加工通過性という観点から好適である。
 これらのアルカリ水溶液での鞘成分溶出の場合には、芯成分は耐アルカリ性に優れるポリアミドとすることが好ましい。ここで言うポリアミドとは、力学特性に優れ、テキスタイルとしての展開が容易なポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)が好ましく、製糸過程でのゲル化を起こしにくく、製糸性も優れるという観点ではポリカプロアミド(ナイロン6)がより好ましい。その他の成分としては、例えば、ポリドデカノアミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド等を挙げることができる。
 ポリアミドは柔軟性が比較的高く、優れた耐摩耗性を発揮することが知られている。本発明のスリット繊維においては、自立したスリット形状がそもそも磨耗に対する耐久性が高く、更にポリアミドを活用することで極めて優れた耐摩耗性を発現することになる。更に、ポリアミドは親水性に優れるため、本発明のスリット繊維を吸水繊維として活用する場合には、スリットによる毛細管現象による吸水効果が助長され、従来にはない超吸水繊維として活用することができる。
 本発明の芯鞘複合繊維は、前述したポリマーからなる芯成分および鞘成分により図1に例示される繊維断面において、芯成分が、連続して形成される突起部と溝部を交互に有した突起形状を有している必要がある。芯成分にある突起部及び溝部は、芯成分断面の円周方向において交互に配置されており、該突起部の高さ(H)、先端の幅(WA)および底面の幅(WB)が下記式を同時に満足する必要があり、これらの比は以下の通り求めるものである。
 1.0≦H/(WA)1/2≦3.0 ・・・(1)
0.7≦WB/WA≦3.0    ・・・(2)                。
 すなわち、芯鞘複合繊維からなるマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、この横断面を走査型電子顕微鏡(SEM)で芯成分が鞘成分側に突き出すように形成された突起部が10本以上観察できる倍率として2次元的に画像を撮影する。この際、金属染色を施せば、ポリマーによる染め差を利用して、芯成分および鞘成分のコントラストをはっきりさせることができる。撮影された各画像から同一画像内で無作為に抽出した10本の突起部に関して、突起部の高さ(H)、先端の幅(WA)および底面の幅(WB)をμm単位で測定し、小数点第2位以下を四捨五入する。以上の操作を10回繰り返して撮影した10画像について、それぞれの値の単純な数平均値とし、小数点第2位以下を四捨五入することでそれぞれの値を求める。
 ここで高次加工通過性を高め、耐久性の高い突起形状を形成させるためには、前述した突起形状のパラメータの比が重要であり、図2を用いて更に詳細を説明する。
 本発明の芯鞘複合繊維においては、突起部の高さ(H)と先端の幅(WA)の関係が重要であり、第1の要件となる。
 ここで突起部の高さ(H)は以下のように求める。
 すなわち、突起部の高さ(H)とは、芯鞘複合繊維の断面において、突起部側面の中心線(図2の5)と突起の外接円の交点(図2の6)と溝部の内接円と突起部側面の中心線との交点(図2の9)の間の距離を意味する。また、突起部先端の幅(WA)とは、芯鞘複合繊維の断面において、突起部側面の延長線(図2の4-1と4-2)と外接円の交点(図2の7-1と7-2)間の距離を意味する。ここで言う外接円とは、芯鞘複合繊維の断面において突起部の先端に2点以上で最も多く外接する真円(図2の3)であり、内接円とは突起部溝の先端に2点以上で最も多く内接する真円(図2の8)を意味する。
 ここで、突起部の高さ(H)と先端の幅(WA)の平方根の比はスリットの力学的な耐久性を示すものであり、本発明ではこの値が1.0以上3.0以下である必要がある。
 本発明の芯鞘複合繊維では、鞘成分を溶出し、芯成分からなるスリット形状を有したスリット繊維として利用する場合がある。この鞘成分の溶出では、一般に液流染色機等を活用して行われる場合が多く、その処理工程において、繊維は複雑な変形を繰り返し加えられることとなる。この場合、繊維最外層に形成されたスリットは複雑な変形を繰り返し加えられることとなり、この力学的な耐久性が低い場合には、突起部が簡単に剥離してしまう場合がある。このような場合、繊維の毛羽立ちによる風合いの低下はもとより、スリット形状による機能発現は非常に低下したものとなる。このため、期待した効果が得られない場合があった。この耐久性を突き詰めると、突起部先端の幅と突起部の高さとの関係に依存するものであり、本願発明の目的を満足する範囲として、H/(WA)1/2が1.0以上3.0以下であることが重要である。係る範囲であれば、前述した溶出処理中の耐久性はもとより、溶出後のスリットが自立して存在するため、スリット形状に依存した機能発現に非常に有効に働き、その繊維表層に形成されたスリットによって、様々な特性を発現させることが可能となる。このような観点を推し進めると、H/(WA)1/2の値は小さいほど耐久性に優れるものとなり、本発明の芯鞘複合繊維から耐久性に優れたスリット繊維を製造することを考えると、H/(WA)1/2は1.0以上2.4以下であることがより好ましい。また、本発明のスリット繊維を比較的過酷な雰囲気下で使用されるスポーツのアウターや擦過が多いインナーに使用する場合には、H/(WA)1/2は1.0以上1.8以下であることが特に好ましく、係る範囲であればスリットに起因した性能が耐久性高く維持されることとなる。
 また、この自立したスリットは擦過などの応力を付与した場合にも、スリットがほとんど可動することなく存在する。このため、スリットの力学的な劣化が起こりにくく、実使用時の耐久性にも大きく影響する。繊維表層にスリット形状を有したスリット繊維の活用は、確かに特許文献1から特許文献4にて提案がなされている。しかしながら、長期間の使用など実用には課題が見られるものであった。これらの従来技術では、繰り返しの擦過や圧縮変形に対する配慮がなされているとは言いがたく、使い捨てのワイピングクロス等には適用できる可能性があるものの、繰り返し使用する衣料用途等には適用困難であった。つまり、外力により発生したスリットの剥離が毛羽立ちとなって、微細な毛玉の発生による風合いの悪化や発色性の低下に繋がり、適用するのが困難であった。そして、何よりこれ等のスリット繊維の特性は、スリットの存在に依存したものであるため、期待した性能は大きく低下し、長期使用には耐えないものであった。
 この溶出後の耐久性に着目したスリット形状という観点では、突起部の形状が先端に向け細くなった形状が好適であり、この観点を推し進めると、突起部先端の幅(WA)と突起部底面の幅(WB)の比(WB/WA)が0.7以上3.0以下である必要がある。ここで言うWBとは突起部側面の延長線と溝部の内接円の交点(図3の10-1と10-2)間の距離を意味する。WB/WAは3.0を超えたものとすることも可能であるが、本発明においては、実施可能な上限値を3.0としている。
 WB/WAに関しては、所望の特性および用途に応じて調整することが可能であるが、アウターなどに用いる場合には、スリットの耐久性に配慮する必要があり、例えば、比較的過酷な環境下で使用されるスポーツ衣料では、擦過等に対する耐久性を高めた方が好適であり、WB/WAが1.0以上3.0以下であることがより好ましい。
 本発明の芯鞘複合繊維は、鞘成分を高次加工において溶出させることで最終的に繊維表層にスリット形状を有した繊維を得ることを目的としている。このため、鞘成分の溶出は効率良く進行することが好適であり、これには突起の先端の幅(WA)と突起部先端間の距離(PA)が関係する。突起部先端間の距離(PA)とは、隣り合う2つの突起部の中心線(図2の5)と外接円の交点(図2の6)間の距離を意味し、図3の6-1と6-2あるいは6-1と6-3の間の距離を意味する。
 本発明の芯鞘複合繊維は、この突起部先端の幅(WA)と突起部先端間の距離(PA)の比(WA/PA)が0.1以上0.9以下であることが好ましい。ここで言うWA/PAとは突起部において、隣り合う2つの突起部先端間の距離に対する突起部先端の幅が占める比率を表すものであり、これが鞘成分の溶出効率に大きく影響する。すなわち、鞘成分を溶出するための溶剤は、芯鞘複合繊維の最外層から溶出を開始し、徐々に繊維内部に処理が進行していく。このため、芯鞘複合繊維の最外層に存在する鞘成分に関しては、溶出工程開始後速やかに溶出され、芯成分の溝部に鞘成分が存在した状態までは溶出処理が効率良く進行する。しかしながら、溝部に存在する鞘成分に関しては、最外層の部分を除いては難溶出成分である芯成分に囲まれた状態となる。このため、突起部と溝部の形状を考慮しない場合には溶出の効率は大きく低下するのである。この溶出の効率が低下した場合には、溶出工程の処理の時間や温度を増加させる必要が生じたり、場合によってはより強力な溶剤にて処理する必要が生じるものであった。このため、芯成分に形成した突起部までをも劣化させ、後の耐久性の低下を招く場合があった。加えて、布帛の品位という観点からも、溶出し切れない鞘成分やその残渣が最終製品でも存在することとなるため、粉吹きや染色斑など悪影響を与える場合があった。
 繊維表層の突起部を考える場合、一般には溝部の幅がより狭いほど毛細管現象が働き、より親水性が向上し、溶出処理は効率的に進行するものと考えられてきた。しかしながら、実際には処理の進行には前述したような現象が散見されるものであった。この現象について鋭意検討し、下記のような現象に基づくことを見出した。すなわち、突起部と溝部の局所に注目すると、前述の通り溶剤は繊維の外層から内層に向けてその処理を進行させる。ここで、溝部の内層に溶出処理が進行した場合には、先に記載した毛細管現象が働き、鞘成分を溶出して劣化した溶剤が滞留し続ける。このため、処理能力の高い溶剤が鞘成分に接触できなくなり、溶出処理の効率が大きく低下することとなる。この現象が溝部の内層に行くに従い助長されることが従来技術の課題であった。この溶出効率の低下は突起部間の距離に対する突起部先端の占有率に対する依存性が高く、この解消に関して鋭意検討した結果、WA/PAが0.1以上0.9以下が好適であることを見出した。係る範囲であれば、鞘成分の溶出効率の低下を抑制し、終始処理能力の低下を抑制しつつ鞘成分の溶出を完了することができる。この観点を推し進めると、溝部の内層に存在する鞘成分の残渣の排出やより短時間で溶出処理を完了させるためには、WA/PAを0.1以上0.5以下とすることがより好ましい。係る範囲においては、溶出処理を簡潔にできるため、芯成分の突起部を不要に劣化させることなく鞘成分の溶出を完了することができ、布帛の品位や耐久性の観点からも好適である。この突起部の劣化抑制という観点では、溝部の幅は適度に有していることが好適であり、溶出後の耐久性までも含めると、WA/PAが0.2以上0.5以下であることが更により好ましい。
 本発明の芯鞘複合繊維を複合繊維のまま過酷な使用条件で活用したり、他の素材と同時に高次加工を施すなどを可能とするためには、芯成分の突起部先端の外接円径(DA)と突起部先端間の距離(PA)との比(DA/PA)が規定された範囲にあることが好適である。ここで言う突起部先端の外接円径(DA)とは、芯鞘複合繊維の断面において突起部先端に2点以上で最も多く外接する真円(図2の3)の径を意味し、前述した突起部先端間の距離(PA)との比を求めるものである。
 DA/PAは芯成分の表層に存在する突起部と溝部が芯成分の径に応じた間隔で繰り返し存在することを意味する。すなわち、芯成分が鞘成分側に突出した突起部を有した場合、重量当たりの界面の面積が増加することとなる。このため、剥離に対する耐久性は向上すると言える。一方で、アンカー効果に関しては、確かに突起部が少なすぎるとその効果は得にくくなるが、過剰に突起部が存在しても不要に複雑化した形状が界面に働く力の集中を生み、剥離の基点となる場合がある。特に、繊維の変形時に付与される擦過や圧縮方向への変形などにおいては、比較的分子間の結びつきが弱い芯成分と鞘成分の界面に働く傾向にある。このため、実質的にこの変形を担う芯成分の大きさに応じた間隔および後述する形状で存在する必要があることを見出した。
 特に、本発明の目的とするスリット繊維を得るには、前述した通り溶出速度差を付けるなど組成、密度および軟化温度が異なるポリマーによって複合形態を形成させる場合が多く、芯成分と鞘成分の剥離抑制という観点では、アンカー効果によるところが大きい。以上のような発見により、DA/PAが3.5以上15.0以下とした場合に、アンカー効果と界面への応力集中を抑制し、優れた剥離抑制効果が得られることを見出した。すなわち、DA/PAを3.5以上とすれば、一般に見られる織り編み時の糸ガイドや筬との擦過による剥離は大きく抑制される。このアンカー効果による剥離抑制効果は親和性が劣る場合や異なるポリマー種の芯鞘複合繊維で散見される加熱仮撚り時の剥離抑制にも非常に有効である。この観点では、DA/PAが7.0以上であることがより好ましい。一方、本発明においてはDA/PAが15.0以下である。前述した過剰にスリットを形成させることによって生じる剥離を抑制できることに加えて、芯成分の断面形態が過剰に複雑になることはなく、ポリマー選定などの自由度を高く確保して本発明の芯鞘複合繊維を設計することができる。
 本発明の芯鞘複合繊維は、繊維巻き取りパッケージやトウ、カットファイバー、わた、ファイバーボール、コード、パイル、織編、不織布など多様な中間体とし、鞘成分を溶出して繊維表層にスリットを発生させ、様々な繊維製品とすることが可能である。また、本発明の芯鞘複合繊維は、未処理のまま、部分的に鞘成分を溶出させる、あるいは芯成分を溶出するなどして繊維製品とすることも可能である。ここで言う繊維製品は、ジャケット、スカート、パンツ、下着などの一般衣料から、スポーツ衣料、衣料資材、カーペット、ソファー、カーテンなどのインテリア製品、カーシートなどの車輌内装品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途や研磨布、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材用途や、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途にも使用することができる。
 このような繊維製品への活用を想定した場合、基本的には鞘成分を溶出することとなる。このため、本発明の芯鞘複合繊維においては、該繊維の断面において芯成分の面積比率が70%から90%とすることが好ましい。係る範囲であれば、例えば、織り物とした場合でも、スリット繊維間の空隙が適度となり、他の繊維と混繊するなどする必要なく使用することが可能となる。また、溶出処理時間を短縮するという観点では、鞘成分の面積比率を低くすることが好適であり、この観点では、芯成分の比率が80%から90%であることがより好ましい。
 本発明の芯鞘複合繊維においては、芯成分の面積比率が90%を超えたものとすることも可能であるが、実質的に鞘成分が芯成分を安定的に被覆できる範囲として、芯成分の比率の上限値を90%とした。
 本発明の芯鞘複合繊維においては、前述の通り一旦中間体とした後に、鞘成分を溶出することによりスリット繊維を得るものである。該スリット繊維では、スリットの光学的な効果による深色効果に加えて、吸水性や撥水性といった水特性の制御が可能となる。
 以上のような水特性の制御や深色効果等は繊維表層に形成されたスリットによるものである。このため、スリット形状が安定した状態で存在することが重要であり、芯鞘複合繊維から鞘成分を溶出した後においても、スリット形状が維持されていることがポイントとなる。このため、本発明のスリット繊維においては、繊維軸方向に連続して形成された突起部の高さ(HT)、突起部の先端の幅(WAT)および底面の幅(WBT)が下記式を同時に満足する必要がある。
 1.0≦HT/(WAT)1/2≦3.0 ・・・(4)
  0.7≦WBT/WAT≦3.0    ・・・(5)               。
 ここで言う突起部の高さ(HT)、突起部の先端の幅(WAT)および底面の幅(WBT)は、芯鞘複合繊維の断面評価の場合と同様に、スリット繊維からなるマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、この横断面を走査型電子顕微鏡(SEM)で突起部が10本以上観察できる倍率として2次元的に画像を撮影する。撮影された各画像から同一画像内で無作為に抽出した10本の突起部に関して、突起部の高さ(HT)、先端の幅(WAT)および底面の幅(WBT)をμm単位で測定し、小数点第2位以下を四捨五入する。以上の操作を10回繰り返して撮影した10画像について、それぞれの値の単純な数平均値とし、小数点第2位以下を四捨五入することでそれぞれの値を求める。
 また、本発明のスリット繊維がその特徴的なスリットの効果を安定に発現するためには、スリット幅にムラがないことが好適であり、本発明のスリット繊維では、スリット幅のバラツキ(CV%)が1.0%から20.0%であることが好ましい。
 ここで言うスリット幅は、図4に例示されるようにスリット繊維の断面を走査型電子顕微鏡(SEM)でスリットが10本以上観察できる倍率として画像を撮影して求める。撮影された各画像から同一画像内で無作為に抽出した10本のスリットから[突起部先端間の距離(例えば図3のPA)-突起部先端の幅(例えば図2のWAまたは図10のWAT)]を測定した値が本発明で言うスリット幅(WC)である。ここで、1本のスリット繊維で、10本以上のスリットが観察できない場合には、他のスリット繊維を含めて合計で10本以上のスリットを観察すれば良い。これらスリット幅については、単位をμmとして測定し、小数点第2位以下を四捨五入する。以上の操作を撮影した10画像について、それぞれの画像で測定した値の単純な数平均値を求める。このスリット幅のバラツキは、測定した100本のスリットについて測定したスリット幅の値から求めるものであり、スリット幅の平均値および標準偏差から、スリット幅バラツキ(スリット幅CV%)=(スリット幅の標準偏差/スリット幅の平均値)×100(%)として算出される。以上の操作で測定した値をスリット幅バラツキとし、小数点第2位以下を四捨五入する。
 該スリット幅のバラツキは、本発明の特殊なスリット形状を起因とした性能のバラツキを担保するものである。本発明のスリット繊維に関しては、このバラツキの範囲が1.0%から20.0%であることが好ましく、係る範囲であれば安定して機能を発現することができる。特に、スリット形状による吸水性を目的とする場合には、部分的にスリット幅が異なると、吸水性能が変化するため、この吸水性を訴求した快適インナーを目的とする場合には、このスリット幅のバラツキが1.0%から15.0%とすることがより好ましい。
 また、本発明のスリット繊維は、スリット幅(WC)とスリットの外接円径に相当する繊維径(DC)の比(WC/DC)が0.02以上0.10以下とすることで非常にユニークな機能を発現する。
 ここで言うスリット繊維の繊維径(DC)とは、図4に例示されるように2次元的に撮影された画像から繊維軸に対して垂直方向の断面を切断面とし、この切断面に2点以上で最も多く外接する真円の径である。この繊維径(DC)は、スリット繊維束をエポキシ樹脂などの包埋剤にて包埋し、この横断面を実体顕微鏡で10本以上の繊維が観察できる倍率として画像を撮影する(図4)。繊維断面が撮影された各画像から同一画像内で無作為に抽出した10本の繊維の外接円径を測定する。この繊維径は、単位をμmとして測定し、小数点第2位以下を四捨五入する。以上の操作を撮影した10画像について、それぞれの画像で測定した値およびその比(WC/DC)の単純な数平均値を求める。
 該スリット繊維では、未処理のまま活用する場合には、スリット形状に合せて毛細管現象が発現し、スリットに沿って繊維軸方向に水を吸い上げるため、優れた吸水性を発現し、逆に撥水剤などにより撥水処理を施した場合には、スリットから水を排出する現象が発現し、優れた撥水性を発現する。この現象は、スリット表面に存在する材料の接触角により整理することができ、該材料の接触角が90°未満であれば吸水性を発現し、90°より大きければ撥水性を発現する。この発見は非常に重要な意味を持ち、例えば、同じ布帛において、部分的に撥水処理を施すことで吸水性と撥水性の相反する特性を併せ持つ高機能素材となる。
 衣類内の快適性を考えた場合、吸汗速乾が求められる場合が多い。インナーに適用される綿をはじめとする吸水素材においては、吸水した水分を繊維内あるいは繊維間に保持する特性があるため、運動後期などの発汗時には布帛自体が濡れた状態となり、じとっとした不快感となる場合があった。吸汗速乾性を訴求するためには、吸い上げた汗を速やかに外に排出する必要がある。このためには優れた吸水性と撥水性を併せ持つ必要があり、前述したユニークな特性を発現する本発明のスリット繊維は有効に作用し、非常に優れた吸汗速乾素材となる。吸水性と撥水性のバランスという観点では、WC/DCが0.04以上0.08であることがより好ましい。係る範囲であれば、従来対比2倍以上の優れた吸水性を発現することに加えて、撥水剤処理も斑なく処理することが可能となり、高機能素材となる可能性がある。
 本発明のスリット繊維の断面形状は、真円断面に加えて、短軸と長軸の比(扁平率)が1.0より大きい扁平断面はもとより、三角形、四角形、六角形、八角形などの多角形断面、一部に凹凸部を持ったダルマ断面、Y型断面、星型断面等の様々な断面形状をとることができ、これらの断面形状によって、布帛の表面特性や力学特性の制御が可能となる。但し、吸水性を訴求する場合には、繊維間空隙を活用することが好適であり、この観点では、スリット繊維の異形度は1.0から2.0であることがより好ましい。ここで言う異形度とは、以下のように求める。すなわち、スリット繊維の繊維径(DC)を測定する際の方法と同様に、スリット繊維を10本以上の繊維が観察できる倍率として画像を撮影する(図5(b))。ここで言う内接円径とは、2次元的に撮影された画像から繊維軸に対して垂直方向の断面を切断面とし、この切断面に2点以上で最も多く内接する真円の径のことを意味する。異形度とは、異形度=外接円径÷内接円径から、小数点第2位までを求め、小数点第2位以下を四捨五入したものであり、以上の操作を撮影した10画像について、それぞれの画像で測定した値の単純な数平均値を求め、スリット繊維の異形度とした。ちなみに、本発明で言う異形度では、1.0が真円に相当し、その数値の増加はその繊維の断面がより変形していることを意味している。
 スリット繊維間の空隙は、繊維表層に形成されたスリット形状により吸い上げた水分を呼び水として更に吸い上げる効果が期待できる。この観点で言えば、スリット繊維の異形度が1.0から1.5であることがより好ましく、係る範囲であれば、繊維間の空隙と繊維表層に形成されたスリット形状が相乗効果を奏で、非常に優れた吸水性を発現する。
 本発明における芯鞘複合繊維およびスリット繊維は、高次加工における工程通過性や実質的な使用を考えると、一定以上の靭性を持つことが好適であり、繊維の強度と伸度を指標とすることができる。ここで言う、強度とは、JIS L1013(1999年)に示される条件で繊維の荷重-伸長曲線を求め、破断時の荷重値を初期繊度で割った値であり、伸度とは、破断時の伸長を初期試長で割った値である。ここで、初期繊度とは、繊維の単位長さの重量を複数回測定した単純な平均値から、10000m当たりの重量(g)を算出した値(dtex)を意味する。
 本発明の繊維の強度は、0.5~10.0cN/dtex、伸度は5~700%であることが好ましい。本発明の繊維において、強度の実施可能な上限値は10.0cN/dtexであり、伸度の実施可能な上限値は700%である。また、本発明のスリット繊維をインナーやアウターなどの一般衣料用途に用いる場合には、強度を1.0~4.0cN/dtex、伸度を20~40%とすることがより好ましい。また、使用環境が過酷であるスポーツ衣料用途などでは、強度を3.0~6.0cN/dtex、伸度を10~40%とすることが更に好ましい。産業資材用途、例えば、ワイピングクロスや研磨布としての使用を考えた場合には、加重下で引っ張られながら対象物に擦りつけられることになる。このため、強度を1.0cN/dtex以上、伸度を10%以上とすれば、拭き取り中などに繊維が切れて脱落などすることなくなるため、好適である。
 以上のように本発明の繊維では、その強度および伸度を目的とする用途等に応じて、製造工程の条件を制御することにより、調整することが好適である。
 以下に本発明の芯鞘複合繊維の製造方法の一例を詳述する。
 本発明の芯鞘複合繊維は、2種類のポリマーを用い、芯成分を鞘成分により被覆するように配置された芯鞘複合繊維を製糸することにより製造可能である。ここで、本発明の芯鞘複合繊維を製糸する方法としては、溶融紡糸による複合紡糸が生産性を高めるという観点から好適である。当然、溶液紡糸などして、本発明の芯鞘複合繊維を得ることも可能である。ただし、本発明の芯鞘複合紡糸を製糸する場合には、断面形状の制御に優れるという観点で、後述する複合口金を用いる方法とすることが好ましい。
 本発明の芯鞘複合繊維を、従来公知の複合口金を用いて製造することは、芯成分の断面形状、特にスリット部を制御する点で非常に困難である。確かに、従来公知の分割複合繊維用口金を用いることでも原理的には製糸可能であるといえるが、本発明の重要な要件であるスリットの突起部分の間隔やスリット深さを制御することは困難である。すなわち、従来公知の複合口金技術では、従来技術に見られるスリットが繊維内層まで入り込んだ形状となり、高次加工通過性や鞘溶出後の耐久性に優れた本発明のスリット繊維を達成することは難しく、本発明の目的を満足するには至らない場合が多い。
 この点、前述した繊維の達成のため、本発明の芯鞘複合繊維およびスリット繊維の製造方法について鋭意検討し、図6に例示するような複合口金を用いた方法が、本発明の目的を達成するには好適であることを見出した。
 図6に示した複合口金は、上から計量プレート11、分配プレート12および吐出プレート13の大きく3種類の部材が積層された状態で紡糸パック内に組み込まれ、紡糸に供される。なお、図6は、ポリマーA(芯成分)およびポリマーB(鞘成分)といった2種類のポリマーを用いるものであり、実施の形態の例示である。ここで、本発明の芯鞘複合繊維においては、ポリマーBを溶出することによりポリマーAからなるスリット繊維とする場合には、芯成分を難溶出成分、鞘成分を易溶出成分とすれば良い。図6の口金は、繊維断面形態の制御に優れ、特にポリマーAおよびポリマーBの溶融粘度差に制約を設けることなく、製造を可能とし、本発明の繊維を製造するのに好ましい。
 図6に例示した口金部材では、計量プレート11が各吐出孔および芯と鞘の両成分の分配孔当たりのポリマーの量を計量し流入させ、分配プレート12が、単(芯鞘複合)繊維の断面における芯成分の断面形状を制御する。次いで、吐出プレート13によって、分配プレート12で形成された複合ポリマー流が圧縮され、吐出されるという役割を担っている。複合口金の説明が錯綜するのを避けるために、図示されていないが、計量プレートより上に積層する部材に関しては、紡糸機および紡糸パックに合わせて、流路を形成した部材を用いれば良い。ちなみに、計量プレート11を、既存の流路部材に合わせて設計することで、既存の紡糸パックおよびその部材がそのまま活用することができる。このため、特に該複合口金のために紡糸機を専有化する必要はない。
 また、実際には流路-計量プレート間あるいは計量プレート11-分配プレート12間に複数枚の流路プレート(図示せず)を積層すると良い。これは、口金断面方向および単繊維の断面方向に効率よく、ポリマーが移送される流路を設け、分配プレート12に導入される構成とすることが目的である。吐出プレート13より吐出された複合ポリマー流は、従来の溶融紡糸法に従い、冷却固化後、油剤を付与され、規定の周速になったローラで引き取られて、本発明の芯鞘複合繊維となる。
 以下、図6に例示した複合口金において、計量プレート11、分配プレート12を経て、複合ポリマー流となり、本複合ポリマー流が吐出プレート13の吐出孔から吐出されるまでを、複合口金の上流から下流へとポリマーの流れに沿って順次説明する。
 紡糸パック上流からポリマーAおよびポリマーBが、計量プレートのポリマーA用計量孔14-1、およびポリマーB用計量孔14-2に流入し、下端に穿設された孔絞りによって、計量された後、分配プレート12に流入される。ここで、各ポリマーは、各計量孔に具備する絞りによる圧力損失によって計量される。この絞りの設計の目安は、圧力損失が0.1MPa以上となることである。一方、この圧力損失が過剰になって、部材が歪むのを抑制するために、30.0MPa以下となる設計とすることが好ましい。この圧力損失は計量孔毎のポリマーの流入量および粘度によって決定される。例えば、温度280℃、歪速度1000s-1での粘度が、100~200Pa・sのポリマーを用い、紡糸温度280~290℃、計量孔毎の吐出量が0.1~5.0g/minで溶融紡糸する場合には、計量孔の絞りは、孔径0.01~1.00mm、L/D(吐出孔長/吐出孔径)0.1~5.0であれば、計量性よく吐出することが可能である。ポリマーの溶融粘度が上記粘度範囲より小さくなる場合や各孔の吐出量が低下する場合には、孔径を上記範囲の下限に近づくように縮小あるいは/または孔長を上記範囲の上限に近づくように延長すれば良い。逆に高粘度の場合や吐出量が増加する場合には、孔径および孔長をそれぞれ逆の操作を行えばよい。
 また、この計量プレート11を複数枚積層して、段階的にポリマー量を計量することが好ましく、2段階から10段階に分けて計量孔を設けることがより好ましい。この計量プレートあるいは計量孔を複数回に分けることが計量孔あたり、10-5g/min/holeオーダーの微細なポリマー流の制御が必要となる本発明の芯鞘複合繊維を得るには好適である。
 各計量孔14から吐出されたポリマーは、分配プレート12の分配溝15(図7)に別々に流入される。分配プレート12では、各計量孔14から流入したポリマーを溜める分配溝15とこの分配溝の下面にはポリマーを下流に流すための分配孔16(図7)が穿設されている。分配溝15には、2孔以上の複数の分配孔16が穿設されていることが好ましく、複合繊維の断面形態は、吐出プレート13直上の最終分配プレートにおける各分配孔16の配置により制御することができる。図9にこの分配孔の配置を例示しているが、芯成分用分配孔(図9の16-1)の間に鞘成分分配孔(図9の16-2)を配置することにより、芯成分分配孔から吐出された芯成分の間に挟まれるように鞘成分が設置され、本発明で必要となるスリット形状が制御された芯鞘型に複合化されたポリマー流が形成される。この場合、鞘成分分配孔によりスリットの溝部が形成されるため、そこから吐出するポリマー量および分配孔の配置により、スリット形状を任意に制御することができる。
 このような機構を有した複合口金は、前述したようにポリマーの流れを常に安定化させ、本発明の達成に必要となる超精密に断面が制御された複合繊維の製造を可能とする。
 本発明の芯鞘複合繊維を達成するには、前述のような新規な複合口金を採用することに加えて、断面の長時間安定性という観点では、芯ポリマー(ポリマーA)の溶融粘度ηAと鞘ポリマー(ポリマーB)溶融粘度ηBとの溶融粘度比(ηB/ηA)が0.1から2.0であることが好ましい。ここで言う溶融粘度とは、チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、キャピラリーレオメーターによって、測定できる溶融粘度を指し、紡糸温度での同せん断速度の際の溶融粘度を意味する。本発明では複合断面の形態は、基本的に分配孔の配置により制御される。ただし、各ポリマーが合流し、複合ポリマー流を形成した後に縮小孔18(図8)によって断面方向に大幅に縮小されることとなるため、長時間の製造を想定した場合には、ポリマーの吸湿による粘度変化等の経時的な変動を加味する必要があり、溶融粘度比を係る範囲すれば、これ等の変動が影響を与える可能性は小さく、安定に製造が可能となる。このような観点を推し進めると、より好ましい範囲としては、ηB/ηAが0.1から1.0である。なお、以上のポリマーの溶融粘度に関しては、同種のポリマーであっても、分子量や共重合成分を調整することで、比較的自由に制御できるため、本発明においては、溶融粘度をポリマー組み合わせや紡糸条件設定の指標にしている。
 分配プレート12から吐出された複合ポリマー流は、吐出プレート13に流入する。ここで、吐出プレート13には、吐出導入孔17を設けることが好ましい。吐出導入孔17とは、分配プレート12から吐出された複合ポリマー流を一定距離の間、吐出面に対して垂直に流すためのものである。これは、ポリマーAおよびポリマーBの流速差を緩和させるととともに、複合ポリマー流の断面方向での流速分布を低減させることを目的としている。本発明においては、芯成分の最外層のスリット形状の制御が重要であり、この複合ポリマー流の圧縮する場合に比較的歪みを受け易い最外層のポリマー流速の緩和のためには、この吐出導入孔17を設けることが好適である。ポリマーの分子量を考慮する必要はあるものの、流速比の緩和がほぼ完了するという観点から、複合ポリマー流が縮小孔18に導入されるまでに10-1~10秒(=吐出導入孔長/ポリマー流速)を目安として吐出導入孔17を設計することが好ましい。係る範囲であれば、流速の分布は十分に緩和され、断面の安定性向上に効果を発揮する。
 吐出導入孔17および縮小孔18を経て複合ポリマー流は、分配孔16(図7)の配置の通りの断面形態を維持して、吐出孔19(図8)から紡糸線に吐出される。この吐出孔19は、複合ポリマー流の流量、すなわち吐出量を再度計量する点と紡糸線上のドラフト(=引取速度/吐出線速度)を制御する目的がある。吐出孔19の孔経および孔長は、ポリマーの粘度および吐出量を考慮して決定するのが好適である。本発明の芯鞘複合繊維を製造する際には、吐出孔径Dは0.1~2.0mm、L/D(吐出孔長/吐出孔径)は0.1から5.0の範囲で選択することが好適である。
 溶融紡糸を選択する場合、島成分および海成分として、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリプロピレン、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイドなどの溶融成形可能なポリマーおよびそれらの共重合体が挙げられる。特にポリマーの融点は165℃以上であると耐熱性が良好であり好ましい。また、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。
 本発明の芯鞘複合繊維を紡糸するための好適なポリマーの組み合わせとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイドをポリマーAとポリマーBで分子量を変更して使用したり、一方をホモポリマーとして、他方を共重合ポリマーとして使用することが剥離を抑制するという観点から好ましい。また、スパイラル構造による嵩高性を向上させるという観点では、ポリマー組成が異なる組み合わせが好ましく、例えば、ポリマーA/ポリマーBでポリエチレンテレフタレート/ポリブチレンテレフタレート、ポリエチレンテレフタレート/ポリトリメチレンテレフタレート、ポリエチレンテレフタレート/熱可塑性ポリウレタン、ポリブチレンテレフタレート/ポリトリメチレンテレフタレートが好ましい。
 本発明における紡糸温度は、前述した観点から決定した使用ポリマーのうち、主に高融点や高粘度のポリマーが流動性を示す温度とすることが好適である。この流動性を示す温度とは、ポリマー特性やその分子量によっても異なるが、そのポリマーの融点が目安となり、融点+60℃以下で設定すればよい。これ以下の温度であれば、紡糸ヘッドあるいは紡糸パック内でポリマーが熱分解等することなく、分子量低下が抑制され、良好に本発明の芯鞘複合繊維を製造することができる。
 本発明におけるポリマーの吐出量は、安定性を維持しつつ溶融吐出できる範囲として、吐出孔当たり0.1g/min/holeから20.0g/min/holeを挙げることができる。この際、吐出の安定性を確保できる吐出孔における圧力損失を考慮することが好ましい。ここで言う圧力損失は、0.1MPa~40MPaを目安にポリマーの溶融粘度、吐出孔径、吐出孔長との関係から吐出量を係る範囲より決定することが好ましい。
 本発明に用いる芯鞘複合繊維を紡糸する際の芯成分(ポリマーA)と鞘成分(ポリマーB)の比率は、吐出量を基準に重量比で芯/鞘比率で50/50~90/10の範囲で選択することができる。この芯/鞘比率のうち、芯比率を高めるとスリット繊維の生産性という観点からは好適である。但し、芯鞘複合断面の長期安定性およびスリット繊維を効率的に、かつ安定性を維持しつつバランス良く製造できる範囲として、この芯/鞘比率は、70/30~90/10がより好ましい。さらに溶出処理を迅速に完了させ、させるという点までを考慮すると、80/20~90/10が特に好ましい。
 吐出孔から溶融吐出された糸条は、冷却固化され、油剤等を付与することにより集束し、周速が規定されたローラによって引き取られる。ここで、この引取速度は、吐出量および目的とする繊維径から決定するものであるが、本発明では、芯鞘複合繊維を安定に製造するという観点から、100m/minから7000m/minが好ましい範囲として挙げることができる。この紡糸された芯鞘複合繊維は、熱安定性や力学特性を向上させるという観点から、延伸を行うことが好ましく、紡糸した芯鞘複合繊維を一旦巻き取った後で延伸を施すことも良いし、一旦、巻き取ることなく、紡糸に引き続いて延伸を行うことも良い。
 この延伸条件としては、例えば、一対以上のローラからなる延伸機において、一般に溶融紡糸可能な熱可塑性を示すポリマーからなる繊維であれば、ガラス転移温度以上融点以下温度に設定された第1ローラと結晶化温度相当とした第2ローラの周速比によって、繊維軸方向に無理なく引き伸ばされ、且つ熱セットされて巻き取られる。また、ガラス転移を示さないポリマーの場合には、複合繊維の動的粘弾性測定(tanδ)を行い、得られるtanδの高温側のピーク温度以上の温度を予備加熱温度として、選択すればよい。ここで、延伸倍率を高め、力学物性を向上させるという観点から、この延伸工程を多段で施すことも好適な手段である。
 本発明の芯鞘複合繊維からスリット繊維を発生させるためには、易溶出成分が溶出可能な溶剤などに複合繊維を浸漬して鞘成分を除去すればよい。易溶出成分が、5-ナトリウムスルホイソフタル酸やポリエチレングリコールなどが共重合された共重合ポリエチレンテレフタレートやポリ乳酸等の場合には、水酸化ナトリウム水溶液などのアルカリ水溶液を用いることができる。本発明の複合繊維をアルカリ水溶液にて処理する方法としては、例えば、複合繊維あるいはそれからなる繊維構造体とした後で、アルカリ水溶液に浸漬させればよい。この時、アルカリ水溶液は50℃以上に加熱すると、加水分解の進行を早めることができるため、好ましい。また、流体染色機などを利用すれば、一度に大量に処理をすることができるため、生産性もよく、工業的な観点から好ましい。
 以上のように、本発明の芯鞘複合繊維およびスリット繊維の製造方法を長繊維の製造を目的とした溶融紡糸法に基づいて説明したが、シート状物を得るのに適したメルトブロー法およびスパンボンド法でも製造可能であることは言うまでもなく、さらには、湿式および乾湿式などの溶液紡糸法などによって製造することも可能である。
 以下実施例を挙げて、本発明の芯鞘複合繊維およびスリット繊維について具体的に説明する。
 実施例および比較例については、下記の評価を行った。
 A.ポリマーの溶融粘度
 チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s-1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。
 B.繊度
 採取した芯鞘複合繊維およびスリット繊維は、温度25℃湿度55%RHの雰囲気下で単位長さ当たりの重量を測定し、その値から10000mに相当する重量を算出する。これを10回繰り返して測定し、その単純平均値の小数点以下を四捨五入した値を繊度とした。
 C.繊維の力学特性
 芯鞘複合繊維およびスリット繊維をオリエンテック社製引張試験機 テンシロン UCT-100型を用い、試料長20cm、引張速度100%/minの条件で応力-歪曲線を測定する。破断時の荷重を読みとり、その荷重を初期繊度で除することで強度を算出し、破断時の歪を読みとり、試料長で除した値を100倍することで、破断伸度を算出した。いずれの値も、この操作を水準毎に5回繰り返し、得られた結果の単純平均値を求め、強度は小数点第2位、伸度は小数点以下を四捨五入した値である。
 D.芯鞘複合繊維の断面パラメータ
 芯鞘複合繊維をエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した後、その切削面を(株)キーエンス製  VE-7800型走査型電子顕微鏡(SEM)にて芯鞘複合繊維が10本以上観察できる倍率で撮影した。この画像から無作為に選定した10本の芯鞘複合繊維を抽出し、画像処理ソフト(WINROOF)を用いて、芯成分の突起の外接円径(DA)測定した。また、各芯鞘複合繊維の芯成分突起部に関して、10箇所の突起間の距離(PA)、突起部先端の幅(WA)、突起の高さ(H)および突起底面の幅(WB)を測定した。同じ操作を10画像について行い、10画像の平均値をそれぞれの値とした。なお、これらの値はμm単位で小数点第2位まで求め、小数点第2位以下を四捨五入したものである。
 E.鞘成分溶出処理時の脱落評価
 各紡糸条件で採取した芯鞘複合繊維からなる編地を鞘成分が溶出する溶剤で満たされた溶出浴(浴比100)にて鞘成分を99%以上除去した。
 スリットの脱落の有無を確認するため、下記の評価を行った。
 溶出処理に用いた溶剤を100ml採取し、この溶剤を保留粒子径0.5μmのガラス繊維ろ紙に通す。ろ紙の処理前後の乾燥重量差からスリット突起部の脱落の有無を判断した。重量差が10mg以上の場合には、脱落多として「C」、10mg未満5mg以上の場合には、脱落中「B」、5mg未満の場合には、脱落なし「A」とした。
 F.スリット繊維の繊維径
 芯鞘複合繊維から鞘成分を99%以上溶出して得たスリット繊維を芯鞘複合繊維の場合と同様の方法でエポキシ樹脂で包埋して切削した後、その切削面を(株)キーエンス社製マイクロスコープVHX-2000にて10本以上のスリット繊維が観察できる倍率で撮影した。この画像から無作為に選定した10本のスリット繊維を抽出し、画像処理ソフト(WINROOF)を用いて繊維径(DC)を測定した。測定はμm単位で小数点第2位までを測定し、同じ操作を10画像について行い、これらの単純な数平均値の小数点第2位以下を四捨五入した。
 G.スリット幅およびスリット幅バラツキ(CV%)
 スリット繊維を観察台に横方向に貼り付け、(株)キーエンス製  VE-7800型走査型電子顕微鏡(SEM)にて繊維表層に形成されたスリットが10本以上観察できる倍率として撮影し、この画像から無作為に選定した10本のスリットを抽出し、画像処理ソフト(WINROOF)を用いて、スリット幅を求めた。なお、スリット幅はμm単位で小数点第2位まで求め、小数点第2位以下を四捨五入したものである。同じ操作を10画像について行い、10画像の平均値および標準偏差を求めた。これらの結果から下記式に基づきスリット幅バラツキ(CV%)を算出した。
 スリット幅バラツキ(CV%)=(標準偏差/平均値)×100
 スリット幅バラツキも小数点第2位までを計算し、小数点第2位以下を四捨五入したものである。
 H.スリット繊維の耐磨耗性評価
 直径10cmに切った布帛サンプルを10枚準備し、2枚ずつのセットとし、それぞれ評価用ホルダーにセットする。片側のサンプルを蒸留水にて完全に湿潤させた後、2枚サンプルを重ね合わせ押し付け圧7.4Nを掛けながら磨耗させ、単繊維のフィブリル化の様子を(株)キーエンス社製マイクロスコープVHX-2000にて50倍で観察した。この際、磨耗処理前後のサンプル表面変化を確認し、フィブリル化の様子を3段階評価した。処理前後にてサンプル表面全体にフィブリル化が発生した場合は、不可として「C」、一部に発生が認められる場合は可として「B」、発生が認められない場合は良として「A」とした。
 I.吸水性能
 横幅1cmの布帛サンプルを10サンプル用意し、それぞれのサンプルについて下端約2cmを蒸留水に漬浸させ、10分後の吸水高さをJIS L1907「繊維製品の吸水性試験方法」(2010)に従い評価した。吸水高さはmm単位で小数点第1位までを求め、小数点以下を四捨五入し、それぞれ平均値を算出し、吸水性能とした。
 J.撥水性能
 炭化水素系撥水剤にて撥水加工を施した布帛サンプルを20cm×20cmのサンプルサイズになるように10枚切り出し、評価サンプルを準備した。各サンプルについて、中央に直径11.2cmの円を描き、該円の面積が80%拡大されるように伸張し、撥水度試験(JIS L 1092)に使用する試験片保持枠に取り付け、スプレー試験(JIS L 1092(2009))を行い、級判定を行った。撥水性能を5段階評価し、10サンプルの級判定結果の平均値を撥水性能とした。
 K.溶出速度比(鞘/芯)
 芯成分及び鞘成分に用いるチップ状ポリマーを110℃に設定した熱風乾燥機にて5時間処理し、90℃に加熱した1重量%の水酸化ナトリウム水溶液(浴比20)に10g挿入して、初期重量と溶出処理後重量の差から処理時間に対する溶出量を測定した。処理時間1分、5分、10分の測定から単位時間当たりの溶出量の平均値を算出し、各ポリマーの溶出速度を評価した。求めた鞘ポリマーの溶出速度を芯ポリマーの溶出速度で割り返し、小数点以下を四捨五入した値を溶出速度比とした。
 (実施例1)
 芯成分として、ポリエチレンテレフタレート(PET1 溶融粘度:140Pa・s)、鞘成分として、5-ナトリウムスルホイソフタル酸8.0モル%および分子量1000のポリエチレングリコール10wt%が共重合したポリエチレンテレフタレート(共重合PET1 溶融粘度:45Pa・s)を290℃で別々に溶融後、計量し、図6に示した本発明の複合口金が組み込まれた紡糸パックに流入させ、吐出孔から複合ポリマー流を吐出した。なお、吐出プレート直上の分配プレートは、芯成分と鞘成分の界面に位置する部分が図9に示す配列パターンとし、芯成分用分配孔群と鞘成分用分配孔群が交互に配置することで、1本の芯鞘複合繊維に24箇所のスリットが形成されるようにした。また、吐出プレートは、吐出導入孔長5mm、縮小孔の角度60°、吐出孔径0.3mm、吐出孔長/吐出孔径1.5のものを用いた。
 ポリマーの総吐出量は31.5g/minとし、芯鞘複合比は、重量比で80/20となるように調整した。溶融吐出した糸条を冷却固化した後油剤付与し、紡糸速度1500m/minで巻き取ることで未延伸繊維を得た。更に、未延伸繊維を90℃と130℃に加熱したローラ間で3.0倍延伸を行い(延伸速度800m/min)、芯鞘複合繊維を得た(70dtex-36フィラメント)。
 芯成分の突起部に関する高さ(H)、先端の幅(WA)および底面の幅(WB)はそれぞれ1.3μm、0.8μm、1.2μmであり、H/(WA)1/2が1.5、WB/WAが1.5と本発明の芯鞘複合繊維であることが確認できた。
 実施例1で得た芯鞘複合繊維の力学特性は、強度3.4cN/dtex、伸度28%と高次加工を行うのに十分な力学特性を有しており、織物や編物に加工した場合でも、糸切れ等が全く発生しないものであった。
 実施例1の芯鞘複合繊維を編物とした試験片を90℃に加熱した1重量%の水酸化ナトリウム水溶液(浴比1:100)にて、鞘成分を99%以上脱海した。この際、鞘成分は溶出処理を開始して10分間以内に鞘成分が速やかに溶出されるものであり、鞘成分を溶出した溶剤を目視観察しても、スリット突起部の脱落は認められなかった。この鞘成分が溶出した溶剤を利用して脱落評価したが、ろ紙の重量変化が3mg未満であり、脱落なし(判定:A)であり、スリットの劣化がなく、高次加工通過性に優れるものであった。ちなみに、溶出後のスリット繊維を追加で10分間90℃に加熱したアルカリ水溶液で処理しても、依然スリットの脱落は認められないものであった。
 前述した操作にて採取したスリット繊維には繊維軸に対して垂直方向の断面で突起部と溝部を交互に有した突起形状を有しており、この突起部の高さ(HT)、突起部の先端の幅(WAT)および底面の幅(WBT)は表1に示したとおり本発明のスリット繊維の要件を満たすものであった。また、スリット幅バラツキは、5.3%であり、観察画像内ではいずれも0.9μmのスリット幅を維持しながら自立しているスリットを確認することができた。次いで、耐磨耗性評価を実施したところ、本発明の芯鞘複合繊維に由来する耐磨耗性に優れたスリット形状を有しているため、強制的な磨耗を加えた場合でも、スリットの剥離は認められず、サンプル表面にフィブリル化の発生は認められなかった(耐磨耗性判定:良(A))。
 この耐久性に優れるスリット繊維を撥水処理することなく吸水性能を評価したところ、優れた吸水性能を発現した(吸水高さ132mm)。ちなみに、同様の方法で評価した丸断面のPET単独繊維(56dtex-24フィラメント)は吸水高さ32mmであり、実施例1で得たスリット繊維は通常の丸断面繊維の4倍以上の吸水性能を有することになる。また、ユニークなことに同じスリット繊維に撥水加工を施すと、水の静的接触角が130°を超え、実使用に用いる際に重要となる動的な撥水性能の級判定が平均で5.0級であり、良好な撥水性能を発現することがわかった。結果を表1に示す。
 (実施例2、3)
 芯鞘の複合比を70/30(実施例2)、90/10(実施例3)に変更したこと以外は、全て実施例1に従い実施した。
 実施例2においては、芯比率を減少させたため、実施例1と比較してスリットが深くなったものの、突起の幅が十分な厚みを持っているため、脱落及び耐磨耗性ともに良好なものであった。一方、スリットが深溝になったため、吸水性は向上するものであった。
 実施例3においては、芯比率を増加させたため、突起幅が増加し、実施例1対比耐久性が優れるものであった。なお、実施例3では、スリット深さが減少したことにより、吸水性等が実施例1と比較すると低下するものであるが、通常の丸断面の繊維と比較して3.6倍の吸水高さであり、十分な吸水性能である。結果を表1に示す。
 (実施例4、5)
 芯鞘の複合比は80/20に固定し、芯成分のスリットの本数を10箇所(実施例4)、50箇所(実施例5)と変更したこと以外は、全て実施例1に従い実施した。
 いずれも芯成分が所望の突起部を有した構造が安定して存在するものであり、本発明の要件を満足しており、実施例5においては、突起の幅がスリット数を増加させた影響で薄くなったが、それに伴い突起高さが減少したために、溶出工程でもスリットが脱落することなく、問題のないものであった。ただ、耐磨耗性評価において、フィブリルが観察されたが、軽微なものであり実使用に問題のないものであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 芯成分および鞘成分として、実施例1で用いたPET1と共重合PET1を用い、特開2008-7902号公報で記載される芯成分と鞘成分の界面において、芯成分突起部の数だけ細孔が穿設され、この芯成分用細孔の間に鞘成分を繊維中心から外周にかけて流れ込むよう設置した溝によってスリット部を形成する従来公知の紡糸口金にて紡糸を行った。この際、スリットが200箇所形成されるように芯成分の細孔、鞘成分用の溝を交互に設置しており、その他の条件は実施例1に従い実施した。
 比較例1で採取した芯鞘複合繊維の断面では、原理的に芯成分の突起部を被覆するように溝にて鞘成分を繊維断面方向に流しこむため、スリット形状を制御することは困難であり、突起部の高さは不揃いで、繊維内層にまで達するものであった(芯成分の外接円径:15.8μm 突起部高さ:平均3.3μm)。また、多数のスリットを設けているため、突起部の幅は0.2μmと非常に薄く、突起部の底面部が細ったものであった(WB/WA:0.8)。このような芯鞘複合繊維を実施例1に記載の方法で鞘成分の溶出を実施したところ、溝形成部分に配置された鞘成分が非常に薄いため、繊維内層まで溶剤が到達するのには非常に時間がかかり、重量変化による減量率により完全溶出までの時間を検討したところ、40分間を要するものであり、実施例1の4倍以上の処理が必要であった。比較例1では長時間加熱されたアルカリ水溶液に曝されたことで溶出処理中突起部が劣化し、そもそも突起部の幅も非常に薄いため、繊維同士の擦れなどで突起部が多く剥離するものであった(脱落判定:脱落多(C))。ちなみに、溶出処理40分以上でも重量から見る減量率が増加し続けたため、溶出処理を続けたところ、脱落の増加が目視確認でき、サンプル重量の減少は60分処理(減量率:47%)まで増加していった。
 比較例1で得られたスリット繊維は、スリットが内層まで入ることでスリット繊維の圧縮方向の耐性は低く、スリット繊維全体が歪んだものであった(異形度:2.6)。また、スリット幅を評価するため、繊維側面を観察したところ、突起部はいずれも自立したものではなく、スリットが波打つことで観察箇所によりスリット幅に斑があるものであった(スリット幅バラツキ:28%)。次いで、耐磨耗性試験を行ったところ、磨耗処理前後でサンプル表層にフィブリルが明らかに増加するものであり、触感もガサガサした風合いになった(耐磨耗性:不可(C))。結果を表2に示す。
 (比較例2)
 比較例1の結果を踏まえ、突起部の幅を増加させるため、芯鞘比率は80/20のまま固定し、総吐出量を増量して紡糸したこと以外は全て比較例1に従い実施した。
 総吐出量を増量することで、突起部の幅を多少厚くすることはできたものの、それに伴いスリットが深溝となり、本発明の芯鞘複合繊維の要件を満足しない結果となった。このため、突起部の脱落の抑制には多少効果があったものの、スリット繊維の耐磨耗性を改善するには至らなかった。このスリットの劣化により、撥水加工を施しても撥水性を発現するには至らなかった。結果を表2に示す。
 (比較例3)
 比較例2と同様に突起部の幅を増加させるため、総吐出量の増量に加えて、スリット数を8箇所に減少させたこと以外は、全て比較例1に従い実施した。
 スリット数を減少させることで突起部の幅を大幅に増加させることができたものの、鞘成分を繊維内層に流し込む溝が穿設された紡糸口金を活用しているため、スリット形状を制御することは困難となり、比較例2同等以上の深溝が形成された。また、スリット形状を観察すると、内層に向け溝部が拡張したものであり、突起部の底面が先細りした本発明の要件を満たさない芯鞘複合繊維となっていた(WB/WA:0.5)。
 比較例3で得た芯鞘複合繊維を溶出処理したところ、溶出処理時に加えられる変形に突起部が耐えることができず、比較例2と同等以上に突起部の脱落が見られるものであった(脱落判定:脱落中(B))。
 溶出後にはスリット幅は広く、かつ繊維内層に向け拡張された形状となるため、擦過を加えられた場合には突起部が簡単に剥離し、サンプル表面には多くのフィブリルが存在するものであった。また、スリット幅が広いために、本発明のように特異的な水特性への効果は見られず、吸水性及び撥水性ともに本発明のスリット繊維には遠く及ばないものであった。ちなみに、これらの水特性はスリットの存在に起因しているため、溶出処理等で受けたスリットの劣化も機能の低下に起因しているものと考える。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (実施例6)
 芯成分をナイロン6(N6 溶融粘度:120Pa・s)、鞘成分は実施例1で使用した共重合PET1(溶融粘度:55Pa・s)として270℃で別々に溶融後、計量し、図9に示す分配孔の配置パターンを活用して、1本の芯鞘複合繊維に50箇所のスリットが形成されるようにし、24ホールから総吐出量50g/min、芯鞘比率80/20で吐出した。その他の条件は、全て実施例1に従い実施した。
 実施例6の芯鞘複合繊維では、幅が0.3μm、高さが1.5μmの突起部が24箇所形成された所望の断面を形成しており、突起部が先端から底面に掛けて拡張された形状となった(WB/WA:3.0)。また、突起部の剛性を示すH/(WA)1/2も2.7と本発明の規定の範囲を満たしており、スリット深さが1.5μmとやや深溝ではあるが、外力に対する耐久性を有した形状となった。このため、この芯鞘複合繊維は、鞘成分の溶出処理においても、突起部の脱落は見られず、鞘溶出後の耐磨耗性においても、優れた特性を有したものであった。
 また、溶出後のスリット繊維には、繊維表層に1.1μmの幅を有したスリットが均等に配置されており、吸水性および撥水性共に優れた性能を発現するものであった。結果を表3に示す。
 (実施例7)
 芯成分をポリブチレンテレフタレート(PBT 溶融粘度:160Pa・s)に変更して紡糸したこと以外は全て実施例6に従い実施した。
 実施例7で得られた芯鞘複合繊維およびスリット繊維に関しても、実施例7同様の耐久性及び優れた性能を有したものであった。結果を表3に示す。
 (実施例8)
 芯成分をポリプロピレン(PP 溶融粘度:150Pa・s)に変更して紡糸したこと以外は全て実施例6に従い実施した。
 実施例8で得られた芯鞘複合繊維およびスリット繊維に関しても、実施例6同様の優れた耐久性を有したものであった。実施例8では、スリット繊維が疎水性を示すPPからなっており、吸水性能は発現しにくいものの、撥水性能に関しては、撥水加工なしで良好な動的な撥水性を示すことがわかった。PPは密度が0.91g/cmであり、軽量性も有するため、インナーやアウターなどの快適衣料用のテキスタイルに幅広く適用可能であると考えられる。結果を表3に示す。
 (実施例9)
 芯成分をポリフェニレンサルファイド(PPS 溶融粘度:170Pa・s)とし、鞘成分を5-ナトリウムスルホイソフタル酸が5.0モル%共重合されたポリエチレンテレフタレート(共重合PET2 溶融粘度:110Pa・s)として紡糸温度300℃で紡糸した以外は、全て実施例6に従い実施した。
 実施例9の芯鞘複合繊維においても、本発明の要件を満足する突起部の形状を有しているため、高次加工通過性や耐久性に問題のないものであった。実施例9で使用したPPSは疎水性ポリマーであることが知られており、水との親和性が悪いポリマーではあるが、本発明のスリット繊維とすることで、吸水高さが118mmと高い濡れ性を示す繊維となることがわかった。PPSは高い耐薬品性を有したポリマーであるため、現状の用途を見ると電池セパレーターや溶液のフィルターなど液体中で使用される場合が多く、本発明のスリット繊維を利用することでこれらの用途で有効に活用することができると考えられる。
結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (実施例10、11)
 芯鞘の複合比を70/30(実施例10)、90/10(実施例11)に変更したこと以外は、全て実施例6に従い実施した。
 実施例10においては、芯比率を減少させたため、実施例6と比較してスリットが深くなったことに加え、親水性のナイロン6を使用しているため、極めて優れた吸水性を発現するものであった。また、ナイロン6が耐アルカリ性に優れることで、スリット部の脱落は一切発生しないものであった。更に、柔軟性に優れるナイロン6を使用したことでスリットが深溝になっているにもかかわらず、磨耗に対しても強く、スリット部の破壊も確認されないものであった。
 実施例11においては、芯比率を増加させたため、突起幅が増加し、磨耗処理した後も自立した突起部を形成しているものであり、耐久性が優れるものであった。なお、実施例11では、スリット深さが減少したことにより、吸水性等が実施例6と比較すると若干低下するものであるが、通常の丸断面のPET繊維と比較して4.4倍の吸水高さであり、十分な吸水性能である。結果を表4に示す。
 (実施例12、13)
 実施例1で使用したPET1(溶融粘度:140Pa・s)に無機粒子として最大粒径5.0μmで粒径1.0μm以下が64.5重量%の酸化チタンを0.3重量%(PET2)、3.0重量%(PET3)、7.0重量%(PET4)含有した樹脂を準備した。
 鞘成分をPET2とし、芯成分をPET3(実施例12)およびPET4(実施例13)とした以外は全て実施例1に従い実施した。
 実施例12および実施例13では無機粒子を含有した影響は見られず、いずれも断面形成性が良好であり、実施例1と同様の本発明の要件を満たす芯鞘複合繊維が得られるものであった。ついで、実施例12および実施例13の芯鞘複合繊維から鞘成分を溶出することなく、マラカイトグリーン(関東化学社製)5%owf、酢酸0.5ml/L、酢酸ソーダ0.2g/L、浴比1:100、温度120℃溶媒水なる条件で布帛の染料吸尽率が同一になるように前述方法にて染色し、SMカラーコンピュータ(スガ試験機(株)製)を用いて、布帛を5枚以上重ね、照射光が透過しない状態でL値を測定した。ここで、このL値が小さいほど発色性は良いことを意味するが、同繊度で採取したPET3単独繊維(L値:15.2)であるのに対し、実施例12(L値:13.2)および実施例13(L値:13.4)のいずれもが良好な発色性を有していることがわかった。
 次に、これらの繊維を28ゲージハーフで編成したトリコット編サンプル(5cm×5cm)を5枚準備し、5cm×5cmの正方形で内側を4cm×4cm にくりぬいた黒の台紙に貼り付けた。この貼り付けサンプルをSMカラーコンピュータにて透過率の測定をした。台紙のみ(サンプル無し)の値を100として、5枚のサンプルの平均透過率から、防透け評価を行った(S:透過率5%以下 A:5~10% B:10~15% C:15%以上)。防透け性評価によれば、実施例12(判定:A)および実施例13(判定:S)はいずれも優れた防透け性を有しており、従来にはなかった発色性と防透け性を両立した優れた特性を有していることがわかった。
Figure JPOXMLDOC01-appb-T000004
 1:芯成分
 2:鞘成分
 3:突起外接円
 4:突起部側面の延長線
 5:突起部側面の中心線
 6:外接円と中心線の交点
 7:外接円と延長線の交点
 8:溝内接円
 9:内接円と中心線の交点
10:内接円と延長線の交点
11:計量プレート
12:分配プレート
13:吐出プレート
14:計量孔
 14-1:芯成分用計量孔
 14-2:鞘成分用計量孔
15:分配溝
16:分配孔
 16-1:芯成分用分配孔
 16-2:鞘成分用分配孔
17:吐出導入孔
18:縮小孔
19:吐出孔

Claims (13)

  1.  2種類のポリマーからなる芯鞘複合繊維において、該芯成分は繊維軸に対して垂直方向の断面で突起部と溝部を交互に有した突起形状を有し、該突起形状は繊維軸方向に連続して形成されており、該突起部の高さ(H)、突起部の先端の幅(WA)および底面の幅(WB)が下記式を同時に満足することを特徴とする芯鞘複合繊維。
    1.0≦H/(WA)1/2≦3.0 ・・・(1)
    0.7≦WB/WA≦3.0    ・・・(2)
  2.  芯成分の突起部の先端の幅(WA)と隣り合う突起部先端間の距離(PA)が下記式を満足することを特徴とする請求項1に記載の芯鞘複合繊維。
    0.1≦WA/PA≦0.9    ・・・(3)
  3.  芯鞘複合繊維の繊維軸に対して垂直方向の断面において、芯成分の面積比率が70%以上90%以下であることを特徴とする請求項1または2に記載の芯鞘複合繊維。
  4.  芯成分が難溶出成分、鞘成分が易溶出成分から構成されており、芯成分ポリマーと鞘成分ポリマーの溶出速度比(鞘/芯)が100以上であることを特徴とする請求項1から請求項3のいずれか1項に記載の芯鞘複合繊維。
  5.  芯成分が無機粒子を0.1重量%から10.0重量%含有するポリマーからなることを特徴とする請求項1から請求項4のいずれか1項に記載の芯鞘複合繊維。
  6.  請求項3に記載の芯鞘複合繊維から鞘成分を除去した繊維軸方向に連続したスリットを有することを特徴とするスリット繊維
  7.  繊維軸に対して垂直方向の断面で突起部と溝部を交互に有した突起形状を有し、該突起形状は繊維軸方向に連続して形成され、該突起部の高さ(HT)、突起部の先端の幅(WAT)および底面の幅(WBT)が下記式を同時に満足することを特徴とするスリット繊維。
      1.0≦HT/(WAT)1/2≦3.0 ・・・(4)
      0.7≦WBT/WAT≦3.0    ・・・(5)
  8.  突起部について、繊維軸に対して垂直方向の断面における隣り合う突起部先端間の距離(スリット幅(WC))のバラツキ(CV%)が1.0%以上20.0%以下であることを特徴とする請求項7に記載のスリット繊維。
  9.  スリット繊維の繊維軸に対して垂直方向の断面形状の異形度が1.0から2.0であることを特徴とする請求項7または請求項8に記載のスリット繊維。
  10.  ポリアミドを主成分とする請求項7から請求項9のいずれか1項に記載のスリット繊維。
  11.  請求項1から請求項10のいずれか1項に記載の繊維を少なくとも一部に含んだ繊維製品。
  12.  少なくとも2成分以上のポリマーによって構成される複合ポリマーを吐出するための複合口金であり、該複合口金が各ポリマー成分を計量する複数の計量孔を有する計量プレート、計量孔からの吐出ポリマーを合流する合流溝に複数の分配孔が穿設されている分配プレートおよび吐出プレートとで構成されている複合口金を用いて紡糸することを特徴とする請求項1から請求項5のいずれかに記載の芯鞘複合繊維の製造方法。
  13.  請求項1から請求項5のいずれかに記載の芯鞘複合繊維から鞘成分を溶出除去することを特徴とするスリット繊維の製造方法。
PCT/JP2016/053169 2015-02-13 2016-02-03 芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法 WO2016129467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177014905A KR102575874B1 (ko) 2015-02-13 2016-02-03 심초 복합 섬유, 슬릿 섬유, 및 이들 섬유의 제조 방법
CN201680005475.7A CN107208322A (zh) 2015-02-13 2016-02-03 芯鞘复合纤维和缺口纤维以及这些纤维的制造方法
JP2016511458A JP6729367B2 (ja) 2015-02-13 2016-02-03 芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法
EP16749111.7A EP3257976B1 (en) 2015-02-13 2016-02-03 Core-sheath conjugated fiber, slit fiber, and method for manufacturing these fibers
US15/549,890 US10745829B2 (en) 2015-02-13 2016-02-03 Core-sheath conjugated fiber, slit fiber, and method of manufacturing such fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026481 2015-02-13
JP2015-026481 2015-11-27

Publications (1)

Publication Number Publication Date
WO2016129467A1 true WO2016129467A1 (ja) 2016-08-18

Family

ID=56614708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053169 WO2016129467A1 (ja) 2015-02-13 2016-02-03 芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法

Country Status (7)

Country Link
US (1) US10745829B2 (ja)
EP (1) EP3257976B1 (ja)
JP (1) JP6729367B2 (ja)
KR (1) KR102575874B1 (ja)
CN (1) CN107208322A (ja)
TW (1) TWI709674B (ja)
WO (1) WO2016129467A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180117819A1 (en) * 2016-10-27 2018-05-03 Clemson University Research Foundation Inherently super-omniphobic filaments, fibers, and fabrics and system for manufacture
JP2018090936A (ja) * 2016-12-07 2018-06-14 株式会社クラレ 芯鞘複合繊維
US20180171513A1 (en) * 2016-11-17 2018-06-21 Drexel University Method to Produce Micro and Nanofibers with Controlled Diameter and Large Yield
CN110257935A (zh) * 2019-07-10 2019-09-20 广东工业大学 一种用于离心纺丝的储液与喷液的自动调节装置
US20200308778A1 (en) * 2017-11-03 2020-10-01 Polytex Sportbelage Produktions-Gmbh Production of an artificial turf fiber with a non-circular cladding
JPWO2020158530A1 (ja) * 2019-01-30 2021-12-02 東レ株式会社 撥水性織編物、その製造方法および衣料
JP7415455B2 (ja) 2018-12-25 2024-01-17 東レ株式会社 芯鞘複合繊維

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947918B1 (ko) * 2017-09-11 2019-05-09 재단법인대구경북과학기술원 기계적 발광섬유 및 이의 제조방법
KR102274388B1 (ko) * 2019-08-12 2021-07-07 한국섬유개발연구원 폴리에스테르와 코폴리에스테르가 혼합 방사된 아세테이트조 재생 복합섬유의 제조방법, 재생 복합섬유 및 이를 이용한 섬유제품
US20220064850A1 (en) * 2020-09-03 2022-03-03 Fitesa Simpsonville, Inc. Nonwoven fabric having improved fluid management properties
CN114351268B (zh) * 2022-01-06 2023-02-28 浙江昊能科技有限公司 一种阻燃抗熔滴涤锦复合纤维的制备方法
TWI830258B (zh) * 2022-06-17 2024-01-21 立綺實業有限公司 芯鞘纖維及其織物
DE102023101636B3 (de) 2023-01-24 2024-04-18 Alexandra Plewnia Verfahren zum Herstellen einer hydrophoben Faser, Faser, Garn und textiles Flächengebilde
CN117449023B (zh) * 2023-12-26 2024-03-15 吴江福华织造有限公司 一种功能面料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287613A (ja) * 1992-04-07 1993-11-02 Toray Ind Inc 多溝繊維用芯鞘複合繊維
JPH07102410A (ja) * 1993-09-30 1995-04-18 Nippon Ester Co Ltd 目ずれ防止効果を有する異形断面繊維
JPH07102438A (ja) * 1993-10-01 1995-04-18 Nippon Ester Co Ltd 特殊交絡糸
JPH07102411A (ja) * 1993-09-30 1995-04-18 Nippon Ester Co Ltd 目ずれ防止効果を有する太細糸
JPH07109631A (ja) * 1993-10-05 1995-04-25 Nippon Ester Co Ltd 特殊混繊糸
JPH09195121A (ja) * 1996-01-23 1997-07-29 Nippon Ester Co Ltd 可縫性に優れた織編物用のポリエステル異形断面繊維
JP2007023423A (ja) * 2005-07-15 2007-02-01 Nippon Ester Co Ltd ポリエステル異形断面糸
WO2011093331A1 (ja) * 2010-01-29 2011-08-04 東レ株式会社 海島複合繊維、極細繊維ならびに複合口金
WO2012173116A1 (ja) * 2011-06-15 2012-12-20 東レ株式会社 複合繊維
JP2013204196A (ja) * 2012-03-29 2013-10-07 Unitika Trading Co Ltd ポリエステル潜在捲縮マルチフィラメント糸とその製造方法、および濃染性布帛とその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282071A (ja) * 1986-05-27 1987-12-07 東洋紡績株式会社 ポリエステル系合成繊維およびその製造方法
JPH062234A (ja) * 1992-06-17 1994-01-11 Toray Ind Inc 発色性の良好なポリエステル糸長差混繊糸
WO2001061083A1 (fr) * 2000-02-21 2001-08-23 Kanebo, Limited Fibre a section transversale modifiee et son procede de production
US6620894B2 (en) * 2000-12-18 2003-09-16 Univation Technologies, Llc Start-up procedure for multiple catalyst polymerization systems
JP2002220743A (ja) * 2001-01-24 2002-08-09 Unitica Fibers Ltd シルク調ナイロン布帛に適した複合繊維
JP3764132B2 (ja) 2002-07-22 2006-04-05 株式会社クラレ 特殊断面繊維
JP2004308021A (ja) 2003-04-02 2004-11-04 Kuraray Co Ltd 特殊断面繊維
JP4115880B2 (ja) 2003-05-13 2008-07-09 株式会社クラレ 特殊断面繊維
JP2007046181A (ja) * 2005-08-09 2007-02-22 Unitica Fibers Ltd 遠赤外線遮蔽性布帛およびその製造方法
JP5069431B2 (ja) 2006-06-30 2012-11-07 帝人ファイバー株式会社 複合繊維及び多スリット繊維

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287613A (ja) * 1992-04-07 1993-11-02 Toray Ind Inc 多溝繊維用芯鞘複合繊維
JPH07102410A (ja) * 1993-09-30 1995-04-18 Nippon Ester Co Ltd 目ずれ防止効果を有する異形断面繊維
JPH07102411A (ja) * 1993-09-30 1995-04-18 Nippon Ester Co Ltd 目ずれ防止効果を有する太細糸
JPH07102438A (ja) * 1993-10-01 1995-04-18 Nippon Ester Co Ltd 特殊交絡糸
JPH07109631A (ja) * 1993-10-05 1995-04-25 Nippon Ester Co Ltd 特殊混繊糸
JPH09195121A (ja) * 1996-01-23 1997-07-29 Nippon Ester Co Ltd 可縫性に優れた織編物用のポリエステル異形断面繊維
JP2007023423A (ja) * 2005-07-15 2007-02-01 Nippon Ester Co Ltd ポリエステル異形断面糸
WO2011093331A1 (ja) * 2010-01-29 2011-08-04 東レ株式会社 海島複合繊維、極細繊維ならびに複合口金
WO2012173116A1 (ja) * 2011-06-15 2012-12-20 東レ株式会社 複合繊維
JP2013204196A (ja) * 2012-03-29 2013-10-07 Unitika Trading Co Ltd ポリエステル潜在捲縮マルチフィラメント糸とその製造方法、および濃染性布帛とその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180117819A1 (en) * 2016-10-27 2018-05-03 Clemson University Research Foundation Inherently super-omniphobic filaments, fibers, and fabrics and system for manufacture
US20180171513A1 (en) * 2016-11-17 2018-06-21 Drexel University Method to Produce Micro and Nanofibers with Controlled Diameter and Large Yield
US10837131B2 (en) * 2016-11-17 2020-11-17 Drexel University Method to produce micro and nanofibers with controlled diameter and large yield
US11384456B2 (en) 2016-11-17 2022-07-12 Drexel University Method to produce micro and nanofibers with controlled diameter and large yield
JP2018090936A (ja) * 2016-12-07 2018-06-14 株式会社クラレ 芯鞘複合繊維
US11905666B2 (en) 2017-11-03 2024-02-20 Polytex Sportbeläge Produktions-Gmbh Production of an artificial turf fiber with a non-circular cladding
US20200308778A1 (en) * 2017-11-03 2020-10-01 Polytex Sportbelage Produktions-Gmbh Production of an artificial turf fiber with a non-circular cladding
US11608599B2 (en) * 2017-11-03 2023-03-21 Polytex Sportbelage Produktions-Gmbh Production of an artificial turf fiber with a non-circular cladding
JP7415455B2 (ja) 2018-12-25 2024-01-17 東レ株式会社 芯鞘複合繊維
JP7235050B2 (ja) 2019-01-30 2023-03-08 東レ株式会社 撥水性織編物、その製造方法および衣料
JPWO2020158530A1 (ja) * 2019-01-30 2021-12-02 東レ株式会社 撥水性織編物、その製造方法および衣料
CN110257935B (zh) * 2019-07-10 2022-02-15 广东工业大学 一种用于离心纺丝的储液与喷液的自动调节装置
CN110257935A (zh) * 2019-07-10 2019-09-20 广东工业大学 一种用于离心纺丝的储液与喷液的自动调节装置

Also Published As

Publication number Publication date
CN107208322A (zh) 2017-09-26
TW201634769A (zh) 2016-10-01
US20180030622A1 (en) 2018-02-01
US10745829B2 (en) 2020-08-18
JP6729367B2 (ja) 2020-07-22
KR102575874B1 (ko) 2023-09-07
TWI709674B (zh) 2020-11-11
EP3257976B1 (en) 2020-03-25
EP3257976A1 (en) 2017-12-20
JPWO2016129467A1 (ja) 2017-11-24
KR20170117367A (ko) 2017-10-23
EP3257976A4 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
WO2016129467A1 (ja) 芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法
JP6651849B2 (ja) 海島複合繊維、複合極細繊維および繊維製品
JP5983411B2 (ja) 海島繊維
TWI595128B (zh) 海島纖維、混纖紗及纖維製品
US9428851B2 (en) Composite fiber
KR20190087462A (ko) 편심 심초 복합 섬유 및 혼섬사
JP6946819B2 (ja) 芯鞘複合繊維
JP7415455B2 (ja) 芯鞘複合繊維
JP6303291B2 (ja) 複合繊維
JP5928017B2 (ja) 混繊糸
JP2020076193A (ja) 繊維束および繊維製品
JP2022056855A (ja) 混繊糸

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016511458

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014905

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016749111

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE