WO2016121182A1 - 水晶振動板、及び水晶振動デバイス - Google Patents

水晶振動板、及び水晶振動デバイス Download PDF

Info

Publication number
WO2016121182A1
WO2016121182A1 PCT/JP2015/080667 JP2015080667W WO2016121182A1 WO 2016121182 A1 WO2016121182 A1 WO 2016121182A1 JP 2015080667 W JP2015080667 W JP 2015080667W WO 2016121182 A1 WO2016121182 A1 WO 2016121182A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
outer frame
holding
quartz
crystal
Prior art date
Application number
PCT/JP2015/080667
Other languages
English (en)
French (fr)
Inventor
琢也 古城
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to US15/546,004 priority Critical patent/US10601393B2/en
Priority to EP15880074.8A priority patent/EP3252950B1/en
Priority to JP2016571677A priority patent/JP6500915B2/ja
Priority to CN201580074899.4A priority patent/CN107210723B/zh
Priority to KR1020177023793A priority patent/KR101966126B1/ko
Publication of WO2016121182A1 publication Critical patent/WO2016121182A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to an AT-cut type crystal diaphragm including a first excitation electrode formed on one main surface and a second excitation electrode formed on another main surface, and a crystal including the crystal vibration plate.
  • the present invention relates to a vibration device.
  • Patent Document 1 discloses a piezoelectric vibrator including a piezoelectric vibrating piece provided with an excitation electrode, a support frame disposed around the piezoelectric vibrating piece, and a connecting portion that connects the support frame and the piezoelectric vibrating piece.
  • the connecting part is composed of a first connecting part and a second connecting part, which are connected to the corner of the vibrating part from two corners on the ⁇ X direction side of the support frame, respectively, and one end in the ⁇ X direction is cantilevered.
  • Patent Documents 2 and 3 are known as AT-cut type crystal resonators in which the vibration mode of the main vibration is thickness-shear vibration, suitable for miniaturization and higher frequency, and excellent in frequency temperature characteristics.
  • the AT-cut type crystal resonator is obtained by rotating the artificial quartz crystal by 35 ° 15 ′ around the X axis when the X axis, the Y axis, and the Z axis are used.
  • the axis rotated 35 ° 15 ′ from the Y axis is defined as the Y ′ axis
  • the axis rotated 35 ° 15 ′ from the Z axis is defined as the Z ′ axis.
  • Patent Document 2 discloses a crystal resonator including a vibration unit 300 provided with an excitation electrode 200, a frame unit 500 that surrounds the periphery of the vibration unit 300, and a connection unit 400 that connects the frame unit 500 and the vibration unit 300.
  • the connecting portion 400 is connected to the frame portion 500 at three corners and six central portions (6 on both sides) on one side of the vibrating portion 300 along the X-axis direction in the crystal axis of the crystal.
  • a quartz resonator 100 is disclosed (see FIG. 15).
  • a vibration part having an excitation electrode formed on the main surface, a frame part disposed on the outer peripheral side of the vibration part via a through groove, and the vibration part and the frame part are connected.
  • a piezoelectric vibrating piece having a supporting portion that is provided with sawtooth notches on the front and back surfaces along the width direction of the supporting portion.
  • JP 2011-91173 A Japanese Patent Publication No. 6-83011 JP 2007-214942 A
  • FIG. 15 is a plan view of a conventional quartz diaphragm
  • FIG. 16A is an explanatory diagram for explaining the vibration excursion of the quartz diaphragm
  • FIG. 15B shows a charge distribution in the X-axis direction of the quartz diaphragm
  • the graph (c) is a graph showing the charge distribution in the Z′-axis direction of the crystal diaphragm.
  • the horizontal axis indicates the position of the crystal diaphragm
  • the vertical axis indicates the amount of charge at the position.
  • the electric charge distribution in the X-axis direction of the crystal diaphragm is distributed in the center position of the crystal diaphragm.
  • FIG. 16C it can be seen that in the Z′-axis direction of the quartz diaphragm, the charge distribution tends to decrease slightly toward both ends of the quartz diaphragm, but is substantially constant. From this result, it can be seen that when a voltage is applied to the crystal diaphragm to cause piezoelectric vibration, the displacement of the piezoelectric vibration in the central portion where more charges are distributed is large in the X-axis direction. On the other hand, since the electric charge is distributed substantially in the Z′-axis direction, it can be seen that the displacement of the piezoelectric vibration is constant.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an AT-cut type crystal diaphragm having high piezoelectric vibration efficiency and capable of efficiently performing piezoelectric vibration, and the crystal diaphragm.
  • An object of the present invention is to provide a crystal vibration device having the above-described structure.
  • the present invention is configured as follows.
  • a quartz crystal plate according to the present invention is an AT-cut type crystal plate provided with a first excitation electrode formed on one main surface and a second excitation electrode formed on another main surface, A substantially rectangular vibration part provided with the first excitation electrode and the second excitation electrode, a holding part protruding from the corner part of the vibration part in the Z′-axis direction of the AT cut, and the vibration part And an outer frame portion that surrounds the outer periphery and holds the holding portion.
  • the quartz crystal diaphragm of this invention is the conventional quartz crystal diaphragm Unlike the above, the vibrating part is not held at the center position of the side along the X-axis direction. Therefore, when the quartz diaphragm is vibrated piezoelectrically, it can be vibrated efficiently.
  • the first excitation electrode and the second excitation electrode are formed at a position away from a region on an extension line extending the holding portion in the Z′-axis direction toward the center direction of the vibration portion.
  • the configuration is as follows.
  • the piezoelectric vibration of the quartz crystal plate is transmitted to the outer frame through the holding portion. It is possible to prevent leakage to the part and confine the piezoelectric vibration of the crystal diaphragm in the vibration part.
  • the above-described quartz diaphragm may be configured such that the holding portion protrudes from the two corners of the vibrating portion on the Z ′ axis toward the outer frame portion.
  • the vibration part of the crystal diaphragm is held by the outer frame part via the holding part from the two corners on the Z ′ axis, the vibration part can be reliably held. Furthermore, since the wiring patterns of the first excitation electrode and the second excitation electrode formed on each main surface of the crystal diaphragm can be independently arranged by the holding portions protruding from the two corners, Parasitic capacitance can be suppressed, and the frequency variable amount can be prevented from being reduced.
  • the holding portion may be configured to protrude from only one corner portion of the vibrating portion toward the outer frame portion.
  • the vibration part of the crystal diaphragm is held by the outer frame part via the holding part protruding toward the outer frame part from only one corner part, the number of holding parts can be reduced. Furthermore, vibration leakage to the outer frame portion can be prevented. In addition, since the degree of stress can be reduced as compared with the case where the number of the holding parts is two, the frequency shift due to the stress can be reduced, and the crystal diaphragm can be stably piezoelectrically vibrated.
  • the outer frame portion is thicker than the holding portion.
  • the natural frequency of the piezoelectric vibration of the outer frame part and the holding part differs depending on the thickness of the outer frame part and the thickness of the holding part.
  • the outer frame portion is less likely to resonate with vibration.
  • the thickness of the central region of the vibration part is made thicker than the surrounding area at the position where the first excitation electrode and the second excitation electrode are formed in the vibration part. It is good also as a structure in which the mesa structure is formed.
  • the mesa structure is formed at the position where the first excitation electrode and the second excitation electrode are formed in the vibration part, and the thickness of the portion to be subjected to piezoelectric vibration is different, so the frequency of piezoelectric vibration is different. Therefore, since boundaries having different frequencies can be formed, the effect of confining piezoelectric vibration is enhanced, and leakage of piezoelectric vibration can be prevented by confining piezoelectric vibration.
  • At least one of the vibrating part and the holding part is provided with a groove, and the groove is inclined toward the center part side of the vibrating part with respect to the X axis of the AT cut. It is good also as the structure currently made.
  • the piezoelectric vibration can be confined in the vibration part.
  • the groove includes one or a plurality of first grooves formed on one main surface side of the vibration unit, and one or a plurality of first grooves formed on the other main surface side of the vibration unit.
  • the first groove and the second groove may be alternately arranged from the vibration part side to the outer frame part of the vibration part.
  • the first groove and the second groove are alternately arranged from the vibrating portion side of the holding portion to the outer frame portion, the confinement effect of piezoelectric vibration can be improved.
  • a quartz crystal vibrating device includes the above quartz crystal plate, a first sealing member that covers the one main surface of the crystal plate, and a second sealing member that covers the other main surface of the crystal plate. And is provided.
  • the outer frame portion has a recess at a position connected to the holding portion on at least one of the one main surface side and the other main surface side, and the outer frame
  • the thickness of the portion, the thickness of the concave portion, and the thickness of the holding portion may satisfy the relationship of (thickness of the outer frame portion)> (thickness of the concave portion) ⁇ (thickness of the holding portion).
  • the quartz vibrating device when an impact or the like is applied to the quartz vibrating device, stress concentration at the connection portion between the outer frame portion and the holding portion can be avoided or alleviated by the recess, and the impact resistance of the quartz vibrating device is improved. be able to. Furthermore, vibration leakage from the vibrating portion to the outer frame portion can be suppressed by the concave portion.
  • the vibration leaking from the vibration part can be considered as a route that leaks to the outer frame part through the holding part, but if there is a concave part where it passes from the holding part to the outer frame part, it will not resonate with the outer frame part there. Can be adjusted to be difficult to be transmitted to the outer frame.
  • the recess may be formed on both the one main surface and the other main surface.
  • the impact resistance of the quartz crystal vibrating device can be further improved by forming the concave portions on both main surfaces.
  • the above-described quartz diaphragm may be configured such that the bottom surface of the recess is formed to be flush with the surface of the holding portion.
  • the above-described quartz diaphragm may be configured such that the bottom surface of the recess is formed with a step between the surface of the holding portion.
  • a step remains at the connection portion between the outer frame portion and the holding portion, but a step also occurs at the boundary between the recess forming region and the other region in the outer frame portion.
  • the width direction is a direction perpendicular to the protruding direction of the holding portion from the outer frame portion when viewed from the direction perpendicular to the main surface of the outer frame portion,
  • the width may be wider than the width of the holding portion.
  • the inner wall surface of the recess may have a shape having a curvature when viewed from a direction perpendicular to the main surface of the outer frame portion.
  • the inner wall surface of the recess can have a shape with no apex, and stress concentration at the apex can be avoided.
  • an AT-cut type crystal vibrating plate that has high piezoelectric vibration efficiency and can efficiently perform piezoelectric vibration, and a crystal vibrating device including the crystal vibrating plate.
  • FIG. 1 is a schematic configuration diagram showing each configuration of an embodiment of a crystal resonator according to the present invention.
  • FIG. 2 is a schematic plan view of the first sealing member of the crystal resonator according to the present embodiment.
  • FIG. 3 is a schematic bottom view of the first sealing member of the crystal resonator according to the present embodiment.
  • FIG. 4A is a schematic plan view of the first embodiment of the crystal diaphragm according to the present invention.
  • FIG. 4B is a schematic plan view of another example of the first embodiment of the crystal diaphragm according to the present invention.
  • FIG. 5 is a schematic bottom view of the first embodiment of the crystal diaphragm according to the present invention.
  • 6A is a cross-sectional view taken along line AA shown in FIG. 4A.
  • FIG. 6B is a cross-sectional view taken along the line BB shown in FIG. 4B.
  • FIG. 6C is a cross-sectional view of another example of the quartz crystal diaphragm according to the present invention.
  • FIG. 7 is a schematic plan view of the second sealing member of the crystal resonator according to the present embodiment.
  • FIG. 8 is a schematic bottom view of the second sealing member of the crystal resonator according to the present embodiment.
  • FIG. 9 is a schematic plan view of a first modification of the first embodiment of the crystal diaphragm according to the present invention.
  • FIG. 10 is a schematic plan view of a second modification of the first embodiment of the crystal diaphragm according to the present invention.
  • FIG. 11 is a schematic plan view of a third modification of the first embodiment of the crystal diaphragm according to the present invention.
  • FIG. 12 is a schematic plan view of a fourth modification of the first embodiment of the crystal diaphragm according to the present invention.
  • 13 is a cross-sectional view taken along the line cc shown in FIG.
  • FIG. 14 is a schematic plan view of the second embodiment of the crystal diaphragm according to the present invention.
  • FIG. 15 is a plan view of a conventional quartz diaphragm.
  • FIG. 16A is an explanatory diagram for explaining the vibration displacement of the crystal diaphragm
  • FIG. 16B is a graph showing the charge distribution in the X-axis direction on the crystal axis of the crystal diaphragm
  • FIG. 16A is an explanatory diagram for explaining the vibration displacement of the crystal diaphragm
  • FIG. 16B is a graph showing the charge distribution in the X-axis direction on the crystal axis of the
  • FIG. 4 is a graph showing the charge distribution in the Z-axis direction on the crystal axis of the crystal diaphragm.
  • FIG. 17 is a schematic plan view of a crystal diaphragm according to a third embodiment of the present invention.
  • FIG. 18A is a perspective view showing a connection structure between the holding part and the outer frame part when the outer frame part is not provided with a concave part, and
  • FIG. 18B shows the bottom surface of the concave part and the surface of the holding part.
  • FIG. 19A is a plan view showing a modification of the recess shape
  • FIG. 19B is a plan view showing another modification of the recess shape.
  • FIG. 20 is a plan view showing the quartz plate after the outer shape forming etching is performed on the upper portion of the drawing, and the AA sectional view of the lower portion thereof.
  • FIG. 21A is a plan view showing the quartz plate after the mesa formation etching is performed on the upper part of the drawing, and the lower part is a cross-sectional view taken along the line AA.
  • FIG. 21B is a plan view showing the quartz plate after the mesa formation etching is performed on the upper part thereof, and the lower part thereof is a cross-sectional view taken along the line AA.
  • FIG. 22A is a plan view showing the quartz plate after the frequency adjustment etching is performed in the upper part of the figure, and the lower part is a cross-sectional view taken along the line AA.
  • FIG. 22B is a plan view showing the quartz plate after the frequency adjustment etching is performed on the upper part of the figure, and the AA sectional view thereof is shown on the lower part.
  • FIG. 23 is a plan view showing the crystal plate after the frequency adjustment etching is performed on the upper part of the drawing, and the lower part is a cross-sectional view taken along the line AA.
  • FIG. 1 is a schematic configuration diagram illustrating each configuration of an embodiment of a crystal resonator.
  • the portions corresponding to the electrodes are hatched. Further, in the cross-sectional views described later, from the viewpoint of easy viewing of the drawings, the portions corresponding to the electrodes are hatched and the other portions are not hatched.
  • the crystal resonator device 1 is, for example, a crystal resonator, and includes a crystal resonator plate 2, a first sealing member 3 that hermetically seals the main surface 2a of the crystal resonator plate 2, and a crystal And a second sealing member 4 that covers the other main surface 2b of the diaphragm 2 and hermetically seals.
  • the crystal vibrating plate 2 and the first sealing member 3 are joined, and the crystal vibrating plate 2 and the second sealing member 4 are joined.
  • the internal space 13 between the first sealing member 3 and the crystal vibrating plate 2 and the internal space 13 between the crystal vibrating plate 2 and the second sealing member 4 are hermetically sealed.
  • the sandwiched package 12 is formed (see FIG. 1).
  • the package size of the quartz crystal vibrating device 1 is 1.0 ⁇ 0.8 mm, which is intended to reduce size and height.
  • the package 12 does not form a castellation and uses the through-holes (first through-hole h1, second through-hole h2, and third through-hole h3) described later to conduct the electrodes. I am trying.
  • the internal space 13 is biased toward one end side (left side in plan view) of the package 12 in plan view.
  • FIG. 2 is a schematic plan view of the first sealing member
  • FIG. 3 is a schematic bottom view of the first sealing member.
  • the first sealing member 3 is made of a material having a bending rigidity (secondary moment of section ⁇ Young's modulus) of 1000 [N ⁇ mm 2 ] or less. Specifically, as shown in FIGS. 2 and 3, the first sealing member 3 is a rectangular parallelepiped substrate formed from one glass wafer or quartz wafer, with one main surface 3 a side as the upper surface, and the other The main surface 3b (surface joined to the crystal diaphragm 2) is formed as a flat smooth surface (mirror finish).
  • the other main surface 3 b of the first sealing member 3 is provided with a sealing-side first bonding pattern 31 for bonding to the quartz crystal plate 2 so as to surround the internal space 13.
  • the sealing-side first bonding pattern 31 is biased to the left of the other main surface 3 b of the first sealing member 3 in plan view.
  • the line width of the sealing-side first bonding pattern 31 is the same at all positions.
  • the sealing-side first bonding pattern 31 was formed by stacking a base PVD film formed by physical vapor deposition on the first sealing member 3 and a physical vapor deposition on the base PVD film. It consists of an electrode PVD film. In this embodiment, Ti (or Cr) is used for the base PVD film, and Au is used for the electrode PVD film. Moreover, the sealing side 1st joining pattern 31 is a non-Sn pattern.
  • FIGS. 4A is a schematic plan view of the first embodiment of the crystal diaphragm
  • FIG. 4B is a schematic plan view of another example of the first embodiment of the crystal diaphragm
  • FIG. 5 is a first embodiment of the crystal diaphragm
  • 6A is a cross-sectional view taken along the line AA shown in FIG. 4A
  • FIG. 6B is a cross-sectional view taken along the line BB shown in FIG. 4B
  • FIG. 6C is another example of the crystal diaphragm.
  • the crystal diaphragm 2 is an AT-cut type crystal that is processed by rotating a rectangular crystal plate by 35 ° 15 ′ around the X axis that is the crystal axis of the crystal.
  • the holding part 22 and the outer frame part 23 are provided (see FIGS. 4A and 5).
  • the crystal axes of the artificial quartz are the X axis, the Y axis, and the Z axis, and the Y axis and the Z axis of the AT cut type crystal rotated by 35 ° 15 ′ around the X axis, The Y ′ axis and the Z ′ axis are assumed.
  • a cut-out portion formed by cutting out a rectangular crystal plate is provided, and the cut-out portion is constituted by a plan view reverse concave body k1 and a plan view rectangular body k2.
  • the quartz diaphragm 2 is made of quartz which is a piezoelectric material, and both principal surfaces (one principal surface 2a and the other principal surface 2b) are flat and smooth surfaces (mirror finish).
  • the vibrating unit 21 is a substantially rectangular shape that piezoelectrically vibrates when a voltage is applied.
  • the shape of the vibration part 21 may not be a right angle by chamfering a corner
  • a first excitation electrode 211 and a second excitation electrode 212 for applying a voltage to the vibration part 21 are formed on one main surface 2a and the other main surface 2b of the vibration part 21, respectively.
  • a mesa structure 213 is formed in which the thickness of the central area of the vibration part 21 is thicker than the surrounding area. (See FIG. 6A). In this case, in the mesa structure 213, since the thickness of the crystal diaphragm 2 at the center is thick, the confinement effect of piezoelectric vibration can be improved.
  • the first excitation electrode 211 and the second excitation electrode 212 are formed at positions away from the region on the extension line obtained by extending the holding portion 22 described later in the Z′-axis direction toward the center direction of the vibration portion 21. Thereby, since the first excitation electrode 211 and the second excitation electrode 212 are not formed on the line extending the holding portion 22 in the Z′-axis direction, the region where the crystal vibrating plate 2 vibrates piezoelectrically and the holding portion 22 The distance between them can be relatively long. Thereby, it is possible to prevent the piezoelectric vibration of the crystal vibrating plate 2 from leaking to the outer frame portion 23 through the holding portion 22, and to confine the piezoelectric vibration of the crystal vibrating plate 2 in the vibrating portion 21.
  • the first excitation electrode 211 and the second excitation electrode 212 are formed by physical vapor deposition on the underlying PVD film (Ti or Cr) formed by physical vapor deposition on the vibrating portion 21 and the underlying PVD film.
  • the electrode PVD film (Au) is formed by lamination.
  • the first excitation electrode 211 and the second excitation electrode 212 are drawn out of the vibrating portion 21 by the holding portions 22 and 22 in which the first extraction electrode 214 or the second extraction electrode 215 from which the electrodes are extracted are formed.
  • the first lead electrode 214 is drawn from the corner portion of the first excitation electrode 211 on the one main surface 2a side, and the first lead electrode on the one main surface 2a side is on the other main surface 2b side.
  • the second extraction electrode 215 is extracted from the corner portion of the second excitation electrode 212 so as to be opposite to the direction in which 214 is extracted (see FIG. 6A).
  • the holding portions 22 and 22 protrude from the corner portion of the rectangular vibration portion 21 in the Z′-axis direction of AT cut.
  • the holding portions 22 and 22 protrude from the two corner portions 21a on the Z ′ axis in the vibrating portion 21 toward the outer frame portion 23 (see FIGS. 4A and 5).
  • the first excitation electrode 211 is drawn out by the holding part 22 on the left side ( ⁇ Z ′ axis direction side) in plan view
  • the second excitation electrode 212 is drawn out by the holding part 22 on the right side (+ Z ′ axis direction side) in plan view. It is.
  • the outer frame portion 23 surrounds the outer periphery of the vibration portion 21 and holds the holding portion 22.
  • a vibration-side first bonding pattern 216 for bonding to the first sealing member 3 is formed on the one main surface 2a, and a vibration-side second bonding for bonding to the second sealing member 4 is bonded to the other main surface 2b.
  • a pattern 217 is formed. As shown in FIG. 1, the vibration-side first bonding pattern 216 and the vibration-side second bonding pattern 217 are arranged so as to be biased to the left in plan view of both the main surfaces 2a and 2b.
  • the vibration side first bonding pattern 216 and the vibration side second bonding pattern 217 are physically formed on the base PVD film (Ti or Cr) formed by physical vapor deposition on the outer frame portion 23 and on the base PVD film. It consists of an electrode PVD film (Au) formed by vapor deposition and has a non-Sn pattern. That is, the same material as the first excitation electrode 211 and the second excitation electrode 212 is used.
  • the vibration side first bonding pattern 216 and the vibration side second bonding pattern 217 may be made of an electrode material different from the first excitation electrode 211 and the second excitation electrode 212.
  • a first through hole h1 is formed for drawing out the vibration side first bonding pattern 216 connected to the first excitation electrode 211 to the other main surface 2b side.
  • the first through-hole h1 is disposed outside the internal space 13, and is located on the other end side in plan view (right side in plan view) of both the main surfaces 2a and 2b as shown in FIG. h ⁇ b> 1 is not formed inside the internal space 13.
  • the inside of the internal space 13 means strictly the inside of the inner peripheral surface of the bonding material 11 without including the bonding material 11 (vibration side first bonding pattern 216).
  • the thickness of the outer frame portion 23 is thicker than the thickness of the holding portion 22 (see FIG. 6A).
  • the natural frequency of the piezoelectric vibration of the outer frame portion 23 and the holding portion 22 differs depending on the thickness of the outer frame portion 23 and the thickness of the holding portion 22. Is less likely to resonate.
  • the space between the piezoelectric diaphragm 2 and the first sealing member 3 and the space between the piezoelectric diaphragm 2 and the second sealing member 4 can be widened, and the vibration portion 21 of the piezoelectric diaphragm 2 can be widened. And the contact between the first sealing member 3 and the second sealing member 4 can be prevented.
  • piezoelectric vibration hardly propagates from a thick part to a thin part, and has an effect of blocking the piezoelectric vibration.
  • the thickness of the holding portion 22 may be thicker than the thickness of the vibrating portion 21.
  • unnecessary vibration including the holding unit 22 may not be considered in the piezoelectric vibration of the vibrating unit 21.
  • the thickness of the holding portion 22 may be made thinner than the thickness of the mesa structure 213 of the vibrating portion 21.
  • the vibration of the holding portion 22 and the vibration of the vibrating portion 21 are difficult to resonate, and the vibration energy of the vibrating portion 21 is transmitted to the holding portion. Loss can be effectively prevented.
  • FIG. 7 is a schematic plan view of the second sealing member of the crystal resonator
  • FIG. 8 is a schematic bottom view of the second sealing member of the crystal resonator.
  • the second sealing member 4 a material having a bending rigidity (secondary moment of section ⁇ Young's modulus) of 1000 [N ⁇ mm 2 ] or less is used.
  • the second sealing member 4 is a rectangular parallelepiped substrate formed from one glass wafer or quartz wafer, and one main surface 4 a of the second sealing member 4. (Surface bonded to the quartz diaphragm 2) is formed as a flat smooth surface (mirror finish).
  • a sealing-side second bonding pattern 41 for bonding to the crystal diaphragm 2 is provided so as to surround the internal space 13. As shown in FIGS. 1 and 7, the sealing-side second bonding pattern 41 is located on the left side in plan view of the one main surface 4 a of the second sealing member 4. The line width of the sealing-side second bonding pattern 41 is the same at all positions.
  • the sealing-side second bonding pattern 41 includes a base PVD film formed by physical vapor deposition on the second sealing member 4 and an electrode formed by stacking by physical vapor deposition on the base PVD film. It consists of a PVD film.
  • the sealing-side second bonding pattern 41 is a non-Sn pattern.
  • the other main surface 4b of the second sealing member 4 is provided with a pair of external electrode terminals (one external electrode terminal 42a and another external electrode terminal 42b) that are electrically connected to the outside (see FIG. 8).
  • the number of external electrode terminals is not limited to two, and may be three or more.
  • One external electrode terminal 42 a is electrically connected directly to the first excitation electrode 211 via the vibration side first bonding pattern 216, and the other external electrode terminal 42 b is connected to the second excitation via the vibration side second bonding pattern 217. It is electrically connected directly to the electrode 222.
  • the one external electrode terminal 42a and the other external electrode terminal 42b are respectively positioned at both ends in the longitudinal direction of the second main surface 4b of the second sealing member 4 as shown in FIG.
  • the pair of external electrode terminals are a base PVD film formed by physical vapor deposition on the other main surface 4b and a physical gas on the base PVD film. It consists of an electrode PVD film formed by phase growth.
  • the thickness of the underlying PVD film of the external electrode terminals is the vibration side first bonding pattern 216, vibration side second bonding pattern 217, and sealing side first bonding. It is thick with respect to the thickness of each base PVD film of the pattern 31 and the sealing side second bonding pattern 41. Further, the one external electrode terminal 42 a and the other external electrode terminal 42 b occupy a region of 1/3 or more of the other main surface 4 b of the second sealing member 4.
  • the second sealing member 4 is formed with two through holes (second through hole h2 and third through hole h3) as shown in FIGS.
  • the second through hole h2 and the third through hole h3 are arranged outside the internal space 13, and as shown in FIG. 7, the second through hole h2 has both main surfaces (one main surface 4a and another main surface 4b).
  • the third through hole h3 is located on the upper left side in plan view. That is, the second through hole h ⁇ b> 2 and the third through hole h ⁇ b> 3 are not formed inside the internal space 13.
  • the inner side of the inner space 13 means strictly inside the inner peripheral surface of the bonding material 11 without including the bonding material 11 (sealing side second bonding pattern 41).
  • the first sealing member 3 and the crystal diaphragm 2 are joined in a state where the vibration-side first joint pattern 216 of the crystal diaphragm 2 and the seal-side first joint pattern 31 of the first sealing member 3 are overlapped. To do.
  • the bonding of the second sealing member 4 and the crystal diaphragm 2 is performed by overlapping the vibration-side second bonding pattern 217 of the crystal diaphragm 2 and the sealing-side second bonding pattern 41 of the second sealing member 4. In the state.
  • the bonding between the first sealing member 3 and the crystal diaphragm 2 and the bonding between the first sealing member 3 and the crystal diaphragm 2 are performed by diffusion bonding by overlapping each bonding pattern.
  • diffusion bonding as a bonding method, generation of gas generated when bonding using an adhesive or the like can be prevented, but a known bonding-only material such as an adhesive may be used.
  • the first sealing member 3 and the crystal diaphragm 2 have a gap of 1.00 ⁇ m or less
  • the second sealing member 4 and the crystal diaphragm 2 Has a gap of 1.00 ⁇ m or less. That is, the thickness of the bonding material 11 between the first sealing member 3 and the crystal vibrating plate 2 is 1.00 ⁇ m or less, and the bonding material 11 between the second sealing member 4 and the crystal vibrating plate 2 The thickness is 1.00 ⁇ m or less (specifically, 0.15 ⁇ m to 1.00 ⁇ m in the Au—Au bonding of this embodiment).
  • a conventional metal paste sealing material using Sn has a thickness of 5 ⁇ m to 20 ⁇ m.
  • the quartz diaphragm 2 has the holding portion 22 protruding from the corner portion 21a of the vibrating portion 21 in the Z-axis direction of the AT cut and is held by the outer frame portion 23.
  • the vibration part 21 is not held at the center position of the vibration part 21 along the X-axis direction where the displacement of the piezoelectric vibration is large. Therefore, when the crystal diaphragm 2 is vibrated piezoelectrically, the vibration efficiency is high and the piezoelectric vibration can be efficiently performed.
  • the vibration part 21 of the crystal diaphragm 2 is held by the outer frame part 23 via the holding part 22 from the two corners 21a on the Z ′ axis, the vibration part 21 is securely held. be able to. Furthermore, the wiring patterns of the first excitation electrode 211 and the second excitation electrode 212 formed on each main surface of the crystal diaphragm 2 can be independently arranged by the holding portions 22 protruding from the two corner portions 21a. Therefore, the parasitic capacitance between the wiring patterns can be suppressed, and the frequency variable amount can be prevented from being reduced.
  • Quartz diaphragm 2 is provided with a groove m in at least one of the vibrating section 21 and the holding section 22, and the groove m is a vibrating section with respect to the X axis of the AT cut. 21 (see the center C side in plan view of the first excitation electrode 211 and the second excitation electrode 212) (see FIGS. 9 to 13).
  • a groove m is formed from the bottom corner of the mesa structure 213 toward the holding portion 22.
  • the groove m since the groove m is provided so as to contact the corner portion 21a, leakage of piezoelectric vibration can be effectively suppressed, but the groove m may not be in contact with the corner portion 21a. Good.
  • the groove m may be formed from the vibrating part 21 to the holding part 22.
  • the groove m is formed from the side along the Z ′ axis in the mesa structure 213 toward the outer peripheral end of the vibration part 21.
  • the groove m is formed from the side along the X axis in the mesa structure 213 toward the outer peripheral end of the vibration part 21.
  • the groove m has one or a plurality of first grooves m1 formed on one main surface side of the vibration part 21 and one or a plurality of first grooves m1 formed on the other main surface side of the vibration part 21.
  • the first groove m1 and the second groove m2 are alternately arranged from the vibrating part 21 side of the holding part 22 to the outer frame part 23.
  • two first grooves m ⁇ b> 1 are formed, one on the vibrating portion 21 and the other on the holding portion 22.
  • two second grooves m ⁇ b> 2 are formed, one of which is formed on the vibrating portion 21 and the other is formed on the holding portion 22.
  • the first groove m1 and the second groove m2 are alternately arranged from the vibration part 21 side of the holding part 22 to the outer frame part 23 (see FIG. 13).
  • the confinement effect can be improved.
  • the first groove m1 is provided so as to be in contact with the corner portion 21a, so that leakage of piezoelectric vibration can be effectively suppressed.
  • the first groove m1 is connected to the corner portion 21a. It may not be in contact.
  • the holding part 22 of the quartz diaphragm 2 of this embodiment protrudes toward the outer frame part 23 only from one corner
  • the vibration part 21 of the crystal diaphragm is held by the outer frame part 23 via the holding part 22 protruding toward the outer frame part 23 from only one corner 21a.
  • the vibration part 21 can be efficiently held by reducing the number.
  • the crystal oscillating device has a recess 23 a having a reduced thickness around the boundary with the holding portion 22 in the outer frame portion 23 of the crystal oscillating plate 2.
  • FIG. 18A is a perspective view showing a connection structure between the holding portion 22 and the outer frame portion 23 when the outer frame portion 23 is not provided with the concave portion 23a.
  • FIGS. 18B and 18C are perspective views illustrating a connection structure between the holding portion 22 and the outer frame portion 23 when the outer frame portion 23 is provided with a recess 23a.
  • the bottom surface of the recess 23a is formed to be flush with the surface of the holding portion 22 (that is, no step is formed between the recess 23a and the holding portion 22). May be.
  • a step may be formed between the bottom surface of the recess 23 a and the surface of the holding unit 22.
  • the bottom surface of the recess 23a and the surface of the holding portion 22 are surfaces parallel to the one main surface 2a and the other main surface 2b of the quartz crystal diaphragm 2.
  • the recesses 23a are provided on both main surfaces of the crystal diaphragm 2, the recesses 23a are formed on at least one main surface of the crystal diaphragm 2. It only has to be provided. Thereby, the thickness of the outer frame part 23, the recessed part 23a, and the holding
  • maintenance part 22 becomes the relationship of (thickness of the outer frame part 23)> (thickness of the recessed part 23a)> (thickness of the holding part 22).
  • the shape of the recess 23a in plan view is a fan shape, and the boundary line between the region other than the recess 23a and the region of the recess 23a in the outer frame portion 23 has a curvature.
  • the shape of the recess 23a in plan view is not particularly limited, and the shape of the recess 23a may be a rectangular shape as shown in FIG. 19A or a trapezoid as shown in FIG. It may be a shape or the like.
  • the etching process is the same as that of the first embodiment except for the etching process for forming the vibrating part 21, the holding part 22 and the outer frame part 23 on the crystal plate. Will be explained. In the following description, it is assumed that the mesa structure 213 is formed in the center of the vibration part 21 (see FIG. 6A).
  • the crystal diaphragm 2 is subjected to three etching steps of outer shape formation etching, mesa formation etching, and frequency adjustment etching with respect to a rectangular crystal plate, and the vibration portion 21, the holding portion 22, and the outer frame portion 23 is formed.
  • FIG. 20 is a plan view showing the quartz plate after the outer shape forming etching is performed on the upper part of the drawing, and the AA sectional view thereof is shown on the lower part.
  • a cutout portion k3 is formed in a rectangular crystal plate, and outer shapes of the vibrating portion 21, the holding portion 22, and the outer frame portion 23 are formed.
  • 21A and 21B are plan views showing the crystal plate after the mesa formation etching is performed on the crystal plate shown in FIG. 20 in the upper part of the drawing, and the AA sectional view of the lower part. 21A and 21B, the masks used for etching are different, that is, there are differences in the etching regions.
  • the mesa formation etching is an etching process for forming the outer shape of the mesa structure 213 at the center of the vibration part 21.
  • the mesa formation etching at least a region other than the mesa structure 213 in the vibration unit 21 and a region of the holding unit 22 are etched.
  • the quartz plate shown in FIG. 21A only the region of the vibrating portion 21 (other than the mesa structure 213) and the holding portion 22 are etched, whereas in the quartz plate shown in FIG. 21B, the region of the recess 23a is added to this. Etching.
  • FIG. 23 are plan views showing the quartz plate after the frequency adjustment etching is performed on the upper part of the figure, and the AA sectional view of the lower part thereof. 22A to 22C, the state of the crystal plate before the frequency adjustment etching or the mask used for the etching is different.
  • the frequency adjustment etching is an etching process for adjusting the thicknesses of the vibrating part 21 and the holding part 22 in order to set the oscillation frequency of the crystal vibrating device to a predetermined value.
  • the frequency adjustment etching at least the region of the vibrating portion 21 (the entire region including the mesa structure 213) and the region of the holding portion 22 are etched.
  • the crystal plate shown in FIG. 22A is obtained by etching the region of the vibration unit 21, the holding unit 22 and the recess 23a with respect to the crystal plate shown in FIG. 21A, or the vibration unit 21 and the holding unit 22 with respect to the crystal plate shown in FIG. This region is formed by etching. That is, in the quartz plate shown in FIG. 22A, the holding portion 22 is subjected to two etchings of mesa formation etching and frequency adjustment etching, but the recess 23a is subjected to either mesa formation etching or frequency adjustment etching. Etching is performed once. Thereby, as shown in FIG. 18C, the crystal diaphragm 2 in which a step is formed between the bottom surface of the recess 23 a and the surface of the holding portion 22 is formed.
  • the etching depth by the mesa formation etching and the etching depth by the frequency adjustment etching are described to approximately the same level. However, when the etching depths in these etchings are different, the depth of the recesses 23a can be adjusted by selecting an etching step for forming the recesses 23a.
  • the crystal plate shown in FIG. 22B is formed by etching the region of the vibrating portion 21, the holding portion 22, and the recess 23a with respect to the crystal plate shown in FIG. 21B. That is, the crystal plate shown in FIG. 22B is subjected to two etchings of mesa formation etching and frequency adjustment etching on both the holding part 22 and the concave part 23a. Thereby, as shown in FIG. 18B, the crystal diaphragm 2 is formed in which the bottom surface of the recess 23a and the surface of the holding portion 22 are in the same plane.
  • the quartz plate shown in FIG. 23 is formed by etching the region of the vibrating portion 21 and the holding portion 22 with respect to the quartz plate shown in FIG. 21A, and the quartz plate does not have a recess 23a. That is, when the recess 23a is formed and when the recess 23a is not formed, only the mask used for etching is changed, and there is no difference in the number of etchings. Therefore, in the quartz crystal vibrating device according to the present embodiment, it is possible to produce the quartz crystal plate 2 in which the recess 23a is formed without adding a manufacturing process.
  • the recess 23a is provided in the outer frame portion 23 to eliminate a step at the connection portion between the outer frame portion 23 and the holding portion 22, and the stress concentration at the connection portion.
  • the impact resistance of the quartz crystal vibration device can be improved.
  • a step remains at the connection portion between the outer frame portion 23 and the holding portion 22, but the concave portion in the outer frame portion 23 is provided by providing the outer frame portion 23 with the concave portion 23 a.
  • a step also occurs at the boundary between the 23a formation region and the other region (hereinafter referred to as a recess edge).
  • the structure in which the concave portion 23a is provided in the outer frame portion 23 can be expected not only to improve the impact resistance in the crystal vibrating device but also to suppress the vibration leakage from the vibrating portion 21 to the outer frame portion 23.
  • the piezoelectric vibration is confined in the vibration part 21, but complete confinement of vibration is difficult, and actually some leakage to the outer frame part 23 occurs.
  • the vibration part 21, the holding part 22, and the outer frame part 23 are integrally formed of a quartz plate, so that the influence of vibration leakage is noticeable.
  • the vibration leaking from the vibration part 21 can be considered as a path that leaks to the outer frame part 23 through the holding part 22, but when there is a concave part 23a where it is transmitted from the holding part 22 to the outer frame part 23, Therefore, it can be adjusted so as not to resonate with the frame body, and is difficult to be transmitted to the outer frame portion 23.
  • the protruding direction of the holding portion 22 from the vibrating portion 21 is the Z′-axis direction.
  • This is a configuration for preventing vibration leakage by projecting the holding portion 22 in a direction orthogonal to the displacement direction of AT vibration.
  • the AT vibration is confined in the vibration part 21, but in reality, some vibration leaks as a secondary vibration which is another vibration mode.
  • the holding portion 22 protruding in the Z′-axis direction easily transmits this vibration leak to the outer frame portion 23, and causes CI fluctuations and frequency fluctuations. Therefore, by providing the recess 23a, vibration leakage to the outer frame portion 23 can be suppressed, and more stable characteristics can be obtained.
  • the width D1 of the recess 23a is preferably wider than the width D2 of the holding portion 22 (see FIG. 17).
  • the width direction here refers to the direction orthogonal to the protrusion direction of the holding
  • the concave part edge becomes a stress concentration part. If the recess edge is farther than the vibration part 21, it is considered that the piezoelectric vibration is less likely to be affected, and the longer the recess edge, the higher the stress dispersion effect. That is, the configuration in which the width D1 of the concave portion 23a is wider than the width D2 of the holding portion 22 leads to a longer concave portion edge, and improves the stress dispersion effect by the concave portion 23a.
  • the larger the recess 23a the higher the vibration damping effect, so that the vibration leakage to the outer frame portion 23 can be further suppressed, and the effect of reducing CI and suppressing fluctuation can be expected.
  • the shape of the concave edge of the concave portion 23a is preferably an arc shape as shown in FIG. 17 as compared with the rectangle or trapezoidal shape shown in FIGS. 19 (a) and 19 (b).
  • the shape of the recess edge is preferably a shape having a curvature.
  • the vibration part 21 of the crystal diaphragm is held by one holding part 22, that is, the case where the recess 23a is provided in the structure of the second embodiment is illustrated.
  • the present invention is not limited to this, and the concave portion 23a may be provided in the configuration in which the vibrating portion 21 of the crystal diaphragm is held by the two holding portions 22, that is, the configuration of the first embodiment.
  • the configuration of the second embodiment has a lower impact resistance because the number of holding portions 22 is smaller than that of the configuration of the first embodiment. For this reason, it is preferable to apply the configuration of the third embodiment in which the recess 23a is provided to improve the impact resistance.
  • the crystal resonator device is a crystal resonator, but the present invention can also be applied to a crystal resonator device (for example, a crystal oscillator) other than the crystal resonator.
  • a crystal resonator device for example, a crystal oscillator

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 一主面(2a)に形成された第1励振電極(211)と、他主面(2b)に形成された第2励振電極(212)とが備えられたATカット型の水晶振動板(2)であって、第1励振電極(211)及び第2励振電極(212)に電圧を印加することによって圧電振動させる略矩形状の振動部(21)と、振動部(21)の角部(21a)から、ATカットのZ´軸方向に突出された保持部(22)と、振動部(21)の外周を取り囲むとともに、保持部(22)を保持する外枠部(23)と、を有する。

Description

水晶振動板、及び水晶振動デバイス
 本発明は、一主面に形成された第1励振電極と、他主面に形成された第2励振電極とが備えられたATカット型の水晶振動板及びこの水晶振動板が備えられた水晶振動デバイスに関する。
 特許文献1には、励振電極を設けた圧電振動片と、圧電振動片の周囲に配置された支持枠と、支持枠と圧電振動片とを連結する連結部と、からなる圧電振動子において、連結部が、支持枠の-X方向側の2つのコーナーからそれぞれ振動部のコーナーに接続する第1連結部、及び第2連結部から構成されており、-X方向の一端を片持ち支持状態で支持枠に支持された圧電振動子が開示されている。
 ところで、主振動の振動モードが厚み滑り振動であり、小型化、高周波数化に適し、且つ周波数温度特性が優れたATカット型の水晶振動子として特許文献2及び3が知られている。
 なお、ATカット型の水晶振動子とは、人工水晶の結晶軸を、X軸、Y軸、Z軸としたときに、X軸の周りに35°15´回転させたものである。なお、本明細書では、Y軸から35°15´回転させた軸をY´軸、Z軸から35°15´回転させた軸をZ´軸とする。
 特許文献2には、励振電極200を設けた振動部300と、振動部300の周辺を囲う枠部500と、枠部500と振動部300とを接続する接続部400と、からなる水晶振動子100において、接続部400は、水晶の結晶軸におけるX軸方向に沿って、振動部300の片側につき、各角部及び中央部の3個所(両側では6か所)で枠部500と接続された水晶振動子100が開示されている(図15参照)。
 また、特許文献3には、主面に励振電極を形成した振動部と、当該振動部の外周側に、貫通溝を介して配置される枠部と、前記振動部と前記枠部とを接続する支持部とを有する圧電振動片であって、前記支持部の幅方向に沿って表裏面に、鋸歯状の切欠きを設けた圧電振動片が開示されている。
特開2011-91173号公報 特公平6-83011号公報 特開2007-214942号公報
 特許文献1~3に係る発明の課題を、図15及び図16を参照しながら説明する。図15は、従来の水晶振動板の平面図、図16(a)は、水晶振動板の振動偏位を説明する説明図、(b)は、水晶振動板のX軸方向の電荷分布を表すグラフ、(c)は、水晶振動板のZ´軸方向の電荷分布を表すグラフである。なお、図16(b)及び(c)のグラフにおいて、横軸は、水晶振動板の位置を示しており、縦軸は、当該位置における電荷量を示している。
 図16(a)の水晶振動板の振動偏位を説明する説明図によれば、水晶振動板に電圧を印加すると、厚みすべり振動が生じ、その水晶振動板の振動方向は、X軸方向が支配的であり、その圧電振動の変位がZ´軸に比較して大きいことが一般的に知られている。
 これにより、特許文献1のとおり、圧電振動片を圧電振動の変位の大きなX軸方向で保持(すなわち-X方向の一端を片持ち支持状態で保持)すると、第1連結部及び第2連結部によって圧電振動片における振動漏れが生じやすくなり、圧電振動効率が悪くなる。すなわち、圧電振動が支配的であるX軸方向に沿って連結部を設け、当該連結部によって圧電振動片を保持することは好ましくない。
 また、図16(b)のグラフによれば、水晶振動板のX軸方向の電荷分布は、水晶振動板の中央位置に多く分布していることがわかる。一方、図16(c)によれば、水晶振動板のZ´軸方向については、水晶振動板の両端に向かって電荷分布が若干少なくなる傾向にあるが略一定であることがわかる。この結果から、上記水晶振動板に電圧を印加して圧電振動させると、X軸方向については、電荷がより多く分布している中央部の圧電振動の変位が大きいことがわかる。一方で、Z´軸方向については電荷が略一定に分布しているので、圧電振動の変位は一定であることがわかる。
 これにより、図16(b)及び(c)のグラフから、圧電振動している水晶振動板において、圧電振動の変位が大きいX軸方向の中央部で水晶振動板を保持すると、圧電振動の妨げとなるため、圧電振動効率が悪くなることがわかる。
 上記説明より、例えば、特許文献2のようなATカット型の水晶振動子において、X軸方向に沿った振動部300の中央位置で枠部500と接続すると、当該位置は圧電振動の変位が大きい位置であるため角部と比較して振動漏れが生じやすく、振動部300の圧電振動の妨げとなり、圧電振動効率が悪いものであった。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、圧電振動効率が高くて効率的に圧電振動させることができるATカット型の水晶振動板及びこの水晶振動板を備えた水晶振動デバイスを提供することにある。
 上記目的を達するために、本発明は次のとおりの構成としている。
 本発明に係る水晶振動板は、一主面に形成された第1励振電極と、他主面に形成された第2励振電極とが備えられたATカット型の水晶振動板であって、前記第1励振電極と前記第2励振電極とが備えられた略矩形状の振動部と、前記振動部の角部から、ATカットのZ´軸方向に突出された保持部と、前記振動部の外周を取り囲むとともに、前記保持部を保持する外枠部と、を有することを特徴とする。
 このような構成であるから、本発明の水晶振動板は、保持部が振動部の角部からATカットのZ´軸方向に突出し、外枠部で保持されているので、従来の水晶振動板と異なり、振動部がX軸方向に沿う辺の中央位置で保持されていない。従って、水晶振動板を圧電振動させた場合、効率的に圧電振動させることができる。
 上記の水晶振動板であって、前記保持部をZ´軸方向に延長した延長線上の領域から前記振動部の中心方向側に離れた位置に、前記第1励振電極及び第2励振電極が形成されている構成とする。
 このような構成によると、保持部をZ´軸方向に延長した線上に、第1励振電極及び第2励振電極が形成されていないので、水晶振動板の圧電振動が保持部を伝って外枠部に漏れることを防ぎ、水晶振動板の圧電振動を振動部に閉じ込めることができる。
 上記の水晶振動板であって、前記保持部は、前記振動部において前記Z´軸上に有する2つの角部からそれぞれ前記外枠部に向けて突出されている構成としてもよい。
 この場合、水晶振動板の振動部が、Z´軸上に有する2つの角部からそれぞれ保持部を介して外枠部に保持されているので、振動部を確実に保持することができる。さらに、水晶振動板の各主面に形成された第1励振電極と、第2励振電極の配線パターンを、2つの角部から突出された保持部によってそれぞれ独立して配置できるため、配線パターン間の寄生容量を抑えることができ、周波数可変量低減を防ぐことができる。
 上記の水晶振動板であって、前記保持部は、前記振動部における1つの角部のみから前記外枠部に向けて突出されている構成としてもよい。
 この場合、水晶振動板の振動部が、1つの角部のみから外枠部に向けて突出された保持部を介して外枠部に保持されているので、保持部の数を少なくしてより一層、外枠部への振動漏れを防ぐことができる。また、保持部を2つとした場合と比較して、応力のかかり具合を低減できるので、応力による周波数シフトを低減して安定して水晶振動板を圧電振動させることができる。
 上記の水晶振動板であって、前記外枠部の厚みは、前記保持部の厚みよりも厚い構成とする。
 このような構成によると、外枠部の厚みと保持部の厚みの違いにより、外枠部と保持部の圧電振動の固有振動数が異なるため、振動部を圧電振動させても保持部の圧電振動に外枠部が共鳴しにくくなる。
 上記の水晶振動板であって、前記振動部における第1励振電極及び第2励振電極が形成された位置には、前記振動部の中央の領域の厚みがその周囲の領域に比べて厚くされたメサ構造が形成されている構成としてもよい。
 この場合、振動部における第1励振電極及び第2励振電極が形成された位置には、メサ構造が形成されており、圧電振動させる部分の厚みが異なるので、圧電振動させる振動数が異なる。したがって、振動数が異なる境界を形成できるので、圧電振動の閉じ込めの効果が高まり、圧電振動を閉じ込めることで圧電振動の漏れを防ぐことができる。
 上記の水晶振動板であって、前記振動部及び前記保持部の少なくとも一方には、溝が設けられており、前記溝は、ATカットのX軸に対して前記振動部の中心部側に傾斜されている構成としてもよい。
 この場合、水晶振動板を圧電振動させても、振動部に形成された溝によって、圧電振動が振動部の外方に漏れることを防止することができる。すなわち、圧電振動を振動部に閉じ込めることができる。
 上記の水晶振動板であって、前記溝は、前記振動部の一主面側に形成された一又は複数の第1溝と、前記振動部の他主面側に形成された一又は複数の第2溝とから構成されており、前記第1溝と前記第2溝は、前記振動部の前記振動部側から前記外枠部にかけて交互に配置されている構成であってもよい。
 この場合、第1溝と第2溝が、保持部の振動部側から外枠部にかけて交互に配置されているため、圧電振動の閉じ込め効果を向上させることができる。
 本発明に係る水晶振動デバイスは、上記の水晶振動板と、前記水晶振動板の前記一主面を覆う第1封止部材と、前記水晶振動板の前記他主面を覆う第2封止部材と、が備えられたことを特徴とする。
 このような構成によると、水晶振動板を第1封止部材と第2封止部材とで挟まれた構造であるので、比較的に小型の水晶振動デバイスとすることができるとともに、上述した水晶振動板が備えられているので、振動漏れを防止するとともに、圧電振動効率が高くて効率的に圧電振動させることができる水晶振動デバイスとすることができる。
 上記の水晶振動板であって、前記外枠部は、前記一主面側および前記他主面側の少なくとも一方で、前記保持部と連結される箇所に凹部を有しており、前記外枠部の厚み、前記凹部の厚み、および前記保持部の厚みは、(外枠部の厚み)>(凹部の厚み)≧(保持部の厚み)の関係を満たす構成であってもよい。
 この場合、水晶振動デバイスに衝撃等が作用した時に、外枠部と保持部との接続箇所への応力集中を、凹部によって回避もしくは緩和することができ、水晶振動デバイスにおける耐衝撃性を向上させることができる。さらに、凹部によって振動部から外枠部の振動漏れを抑制することもできる。振動部から漏れてきた振動は、保持部を伝って外枠部へと漏れる経路が考えられるが、保持部から外枠部へと伝わるところで凹部部があると、そこで外枠部と共鳴しないように調整することができ、外枠部に伝わりにくくなる。
 上記の水晶振動板であって、前記凹部は、前記一主面および前記他主面の両方に形成されている構成であってもよい。
 この場合、両主面に凹部を形成することで水晶振動デバイスにおける耐衝撃性をより向上させることができる。
 上記の水晶振動板であって、前記凹部の底面は、前記保持部の表面と同一平面となるように形成されている構成であってもよい。
 この場合、凹部の底面と保持部の表面との段差を無くすことで、枠部と保持部との接続箇所への応力集中を回避し、水晶振動デバイスにおける耐衝撃性を向上させることができる。
 上記の水晶振動板であって、前記凹部の底面は、前記保持部の表面との間に段差が生じるように形成されている構成であってもよい。
 この場合、外枠部と保持部との接続箇所に段差は残るが、外枠部における凹部形成領域とそれ以外との領域の境界にも段差が生じる。その結果、水晶振動デバイスに衝撃等が作用した場合の応力は、上記2箇所の段差部分に分散され、外枠部と保持部との接続箇所における応力集中を緩和して、水晶振動デバイスにおける耐衝撃性を向上させることができる。
 上記の水晶振動板であって、前記外枠部の主面に垂直な方向から見て、前記外枠部からの前記保持部の突出方向と直交する方向を幅方向とするとき、前記凹部の幅は前記保持部の幅よりも広くされている構成であってもよい。
 この場合、凹部の幅を保持部の幅よりも広くすることで、凹部による応力分散効果を向上させたり、振動減衰の効果を向上させたりすることができる。
 上記の水晶振動板であって、前記凹部の内壁面は、前記外枠部の主面に垂直な方向から見て曲率を有する形状となっている構成であってもよい。
 この場合、凹部の内壁面において頂点の無い形状とすることができ、頂点での応力集中を回避することができる。
 本発明によれば、圧電振動効率が高くて効率的に圧電振動させることができるATカット型の水晶振動板及びこの水晶振動板を備えた水晶振動デバイスを提供できる。
図1は、本発明に係る水晶振動子の一実施形態の各構成を示した概略構成図である。 図2は、本実施形態に係る水晶振動子の第1封止部材の概略平面図である。 図3は、本実施形態に係る水晶振動子の第1封止部材の概略底面図である。 図4Aは、本発明に係る水晶振動板の第1実施形態の概略平面図である。 図4Bは、本発明に係る水晶振動板の第1実施形態の他の例の概略平面図である。 図5は、本発明に係る水晶振動板の第1実施形態の概略底面図である。 図6Aは、図4Aに示すA-A線に沿う断面図である。 図6Bは、図4Bに示すB-B線に沿う断面図である。 図6Cは、本発明に係る水晶振動板の別の例の断面図である。 図7は、本実施形態に係る水晶振動子の第2封止部材の概略平面図である。 図8は、本実施形態に係る水晶振動子の第2封止部材の概略底面図である。 図9は、本発明に係る水晶振動板の第1実施形態の第1変形例の概略平面図である。 図10は、本発明に係る水晶振動板の第1実施形態の第2変形例の概略平面図である。 図11は、本発明に係る水晶振動板の第1実施形態の第3変形例の概略平面図である。 図12は、本発明に係る水晶振動板の第1実施形態の第4変形例の概略平面図である。 図13は、図12に示すc-c線に沿う断面図である。 図14は、本発明に係る水晶振動板の第2実施形態の概略平面図である。 図15は、従来の水晶振動板の平面図である。 図16(a)は、水晶振動板の振動偏位を説明する説明図、同図(b)は、水晶振動板の結晶軸におけるX軸方向の電荷分布を示すグラフ、同図(c)は、水晶振動板の結晶軸におけるZ軸方向の電荷分布を示すグラフである。 図17は、本発明の第3実施形態に係る水晶振動板の概略平面図である。 図18(a)は、外枠部に凹部を設けていない場合の保持部と外枠部との接続構造を示す斜視図、同図(b)は、凹部の底面と保持部の表面とが同一平面となるように形成されている場合の保持部と外枠部との接続構造を示す斜視図、同図(c)は、凹部の底面と保持部の表面との間に段差が生じるように形成されている場合の保持部と外枠部との接続構造を示す斜視図である。 図19(a)は、凹部形状の一変形例を示す平面図、同図(b)は、凹部形状の他の変形例を示す平面図である。 図20は、図の上部が外形形成エッチングを施した後の水晶板を示す平面図、下部がそのA-A断面図である。 図21Aは、図の上部がメサ形成エッチングを施した後の水晶板を示す平面図、下部がそのA-A断面図である。 図21Bは、図の上部がメサ形成エッチングを施した後の水晶板を示す平面図、下部がそのA-A断面図である。 図22Aは、図の上部が周波数調整エッチングを施した後の水晶板を示す平面図、下部がそのA-A断面図である。 図22Bは、図の上部が周波数調整エッチングを施した後の水晶板を示す平面図、下部がそのA-A断面図である。 図23は、図の上部が周波数調整エッチングを施した後の水晶板を示す平面図、下部がそのA-A断面図である。
 以下、本発明に係る水晶振動デバイスについて、3つの実施形態について説明し、各実施形態の説明は、水晶振動デバイスの構成、水晶振動デバイスの製造方法、水晶振動デバイスの作用効果の順に説明する。
 -第1実施形態の水晶振動デバイスの構成-
 本発明に係る水晶振動デバイス1の構成を、図1を参照しながら説明する。図1は、水晶振動子の一実施形態の各構成を示した概略構成図である。
 なお、図面においては、電極に相当する部分にハッチングを施している。また、後述する断面図においては、図面の見易さの観点から、電極に相当する部分にハッチングを施し、その他の部分のハッチングを省略している。
 本発明に係る水晶振動デバイス1は、例えば、水晶振動子であって、水晶振動板2と、水晶振動板2の一主面2aを覆って気密封止する第1封止部材3と、水晶振動板2の他主面2bを覆って気密封止する第2封止部材4と、を備えている。水晶振動デバイス1において、水晶振動板2と第1封止部材3とが接合されており、水晶振動板2と第2封止部材4とが接合されている。
 すなわち、水晶振動デバイス1は、第1封止部材3と水晶振動板2との間の内部空間13、及び水晶振動板2と第2封止部材4との間の内部空間13が気密封止されたサンドイッチ構造のパッケージ12とされている(図1参照)。
 水晶振動デバイス1のパッケージサイズは、1.0×0.8mmであり、小型化と低背化とを図ったものである。また、小型化に伴い、本パッケージ12では、キャスタレーションを形成せずに、後述する貫通孔(第1貫通孔h1、第2貫通孔h2、第3貫通孔h3)を用いて電極の導通を図っている。
 なお、内部空間13は、図1に示すようにパッケージ12の平面視一端側(平面視左側)に偏って位置する。
 以下、各構成について詳述する。
 ・第1封止部材
 本発明に係る水晶振動デバイス1の第1封止部材3について図2及び3を参照しながら説明する。図2は、第1封止部材の概略平面図、図3は、第1封止部材の概略底面図である。
 第1封止部材3には、曲げ剛性(断面二次モーメント×ヤング率)が1000[N・mm2]以下の材料が用いられている。具体的には、第1封止部材3は、図2、3に示すように、1枚のガラスウエハ又は水晶ウエハから形成された直方体の基板であり、一主面3a側を上面とし、他主面3b(水晶振動板2に接合する面)は平坦平滑面(鏡面加工)として成形されている。
 この第1封止部材3の他主面3bには、水晶振動板2に接合するための封止側第1接合パターン31が内部空間13を囲うように設けられている。封止側第1接合パターン31は、図3に示すように第1封止部材3の他主面3bの平面視左側に偏って位置する。封止側第1接合パターン31の線幅は、全ての位置において同一幅とされる。
 この封止側第1接合パターン31は、第1封止部材3上に物理的気相成長させて形成された下地PVD膜と、下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。なお、本実施形態では、下地PVD膜には、Ti(若しくはCr)が用いられ、電極PVD膜にはAuが用いられている。また、封止側第1接合パターン31は、非Snパターンである。
 ・水晶振動板
 本発明に係る水晶振動板2の実施形態について図4~6を参照しながら説明する。 図4Aは、水晶振動板の第1実施形態の概略平面図、図4Bは、水晶振動板の第1実施形態の他の例の概略平面図、図5は、水晶振動板の第1実施形態の概略底面図、図6Aは、図4Aに示すA-A線に沿う断面図、図6Bは、図4Bに示すB-B線に沿う断面図、図6Cは、水晶振動板の別の例の断面図である。
 本実施形態に係る水晶振動板2は、矩形状の水晶板を水晶の結晶軸であるX軸の周りに35°15´回転させて加工したATカット型の水晶であって、振動部21と、保持部22と、外枠部23と、を備えている(図4A及び5参照)。なお、本明細書において、人工水晶の結晶軸を、X軸、Y軸、Z軸とし、X軸の周りに35°15´回転させたATカット型の水晶のY軸及びZ軸をそれぞれ、Y´軸、Z´軸とする。
 図示例では、矩形状の水晶板を切り抜いて形成した切り抜き部を有しており、当該切り抜き部は、平面視逆凹形状体k1と、平面視長方形状体k2とから構成されている。水晶振動板2は、圧電材料である水晶からなり、その両主面(一主面2a、他主面2b)が平坦平滑面(鏡面加工)とされている。
 振動部21は、電圧の印加により圧電振動する略矩形状のものである。なお、振動部21の形状は、ウェットエッチングによって形成された場合は、角部が面取りされて、直角でなくてもよい。振動部21の一主面2a及び他主面2bに、それぞれ振動部21に電圧を印加するための第1励振電極211及び第2励振電極212が形成されている。振動部21における第1励振電極211及び第2励振電極212が形成された位置には、振動部21の中央の領域の厚みがその周囲の領域に比べて厚くされたメサ構造213が形成されていてもよい(図6A参照)。この場合、メサ構造213において中央部の水晶振動板2の厚みが厚いため、圧電振動の閉じ込め効果を向上させることができる。
 第1励振電極211及び第2励振電極212は、後述する保持部22をZ´軸方向に延長した延長線上の領域から、振動部21の中心方向側に離れた位置に形成されている。これにより、保持部22をZ´軸方向に延長した線上に、第1励振電極211及び第2励振電極212が形成されていないので、水晶振動板2が圧電振動する領域と保持部22との間の距離を比較的長くとることができる。これにより、水晶振動板2の圧電振動が保持部22を伝って外枠部23に漏れることを防止し、水晶振動板2の圧電振動を振動部21に閉じ込めることができる。
 第1励振電極211及び第2励振電極212は、振動部21上に物理的気相成長させて形成された下地PVD膜(Ti若しくはCr)と、下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜(Au)とからなる。
 第1励振電極211及び第2励振電極212は、当該各電極を引き出す第1引出電極214又は第2引出電極215が形成された各保持部22、22によって振動部21の外に引き出されている。図示例では、一主面2a側は、第1励振電極211の角部から第1引出電極214が引き出されており、他主面2b側は、上述した一主面2a側において第1引出電極214が引き出された方向と逆側となるように、第2励振電極212の角部から第2引出電極215が引き出されている(図6A参照)。
 保持部22、22は、矩形状の振動部21の角部から、ATカットのZ´軸方向に突出されている。本実施形態では、保持部22、22は、振動部21においてZ´軸上に有する2つの角部21aからそれぞれ外枠部23に向けて突出されており(図4A及び5参照)、図示例では、平面視左側(-Z´軸方向側)の保持部22によって、第1励振電極211が引き出され、底面視右側(+Z´軸方向側)の保持部22によって第2励振電極212が引き出されている。
 外枠部23は、振動部21の外周を取り囲むとともに保持部22を保持するものである。一主面2aには、第1封止部材3と接合するための振動側第1接合パターン216が、他主面2bには、第2封止部材4と接合するための振動側第2接合パターン217が形成されている。振動側第1接合パターン216及び振動側第2接合パターン217は、図1に示すように、両主面2a、2bの平面視左側に偏って配置されている。
 振動側第1接合パターン216及び振動側第2接合パターン217は、外枠部23上に物理的気相成長させて形成された下地PVD膜(Ti若しくはCr)と、下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜(Au)とからなり、非Snパターンである。つまり、第1励振電極211及び第2励振電極212と同一の材料を用いている。なお、振動側第1接合パターン216及び振動側第2接合パターン217は、第1励振電極211及び第2励振電極212と異なる電極材料であっても良い。
 外枠部23には、第1励振電極211に繋がった振動側第1接合パターン216を他主面2b側に引き出すための第1貫通孔h1が形成されている。第1貫通孔h1は、内部空間13の外方に配され、図1に示すように両主面2a、2bの平面視他端側(平面視右側)に偏って位置し、第1貫通孔h1は内部空間13の内方に形成されていない。ここでいう内部空間13の内方とは、接合材11(振動側第1接合パターン216)上を含まずに厳密に接合材11の内周面の内側のことをいう。
 なお、外枠部23の厚みは、保持部22の厚みよりも厚いことが好ましい(図6A参照)。この場合は、外枠部23の厚みと保持部22の厚みの違いにより、外枠部23と保持部22の圧電振動の固有振動数が異なるため、保持部22の圧電振動に外枠部23が共鳴しにくくなる。また、圧電振動板2と第1封止部材3との間の空間及び圧電振動板2と第2封止部材4との間の空間を広くすることができ、圧電振動板2の振動部21と第1封止部材3及び第2封止部材4との接触を防ぐことができる。
 なお、一般的に、圧電振動は、厚みが厚い部分から厚みが薄い部分へは伝搬しにくく、圧電振動を遮断する効果を奏する。
 そこで、本実施形態の水晶振動板2の他の例として、図4B及び図6Bに示すとおり、保持部22の厚みを振動部21の厚みより厚くしてもよい。この場合、保持部22と振動部21の厚みが異なる位置に境界が形成されるため、振動部21の圧電振動において、保持部22を含んだ不要な振動を考慮しなくてもよい。
 また、本実施形態の水晶振動板2の別の例として、図6Cに示すとおり、保持部22の厚みを振動部21のメサ構造213の厚みより薄くしてもよい。この場合は、保持部22の厚みがメサ構造213の厚みよりも薄いので、保持部22の振動と振動部21との振動とが共鳴し難く、振動部21の振動エネルギーが保持部へ伝達して損失することを効率的に防ぐことができる。
 ・第2封止部材
 本発明に係る水晶振動デバイスの第2封止部材について図7及び8を参照しながら説明する。図7は、水晶振動子の第2封止部材の概略平面図、図8は、水晶振動子の第2封止部材の概略底面図である。
 第2封止部材4には、曲げ剛性(断面二次モーメント×ヤング率)が1000[N・mm2]以下の材料が用いられている。具体的には、第2封止部材4は、図7に示すように、1枚のガラスウエハ又は水晶ウエハから形成された直方体の基板であり、この第2封止部材4の一主面4a(水晶振動板2に接合する面)は平坦平滑面(鏡面加工)として成形されている。
 第2封止部材4の一主面4aには、水晶振動板2に接合するための封止側第2接合パターン41が内部空間13を囲うように設けられている。封止側第2接合パターン41は、図1、図7に示すように第2封止部材4の一主面4aの平面視左側に偏って位置する。封止側第2接合パターン41の線幅は、全ての位置において同一幅とされる。
 封止側第2接合パターン41は、第2封止部材4上に物理的気相成長させて形成された下地PVD膜と、下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。
 なお、本実施形態では、下地PVD膜には、Ti(若しくはCr)が用いられ、電極PVD膜にはAuが用いられている。また、封止側第2接合パターン41は、非Snパターンである。
 第2封止部材4の他主面4bには、外部に電気的に接続する一対の外部電極端子(一外部電極端子42a、他外部電極端子42b)が設けられている(図8参照)。なお、外部電極端子は2つに限定されるものではなく、3つ以上であっても良い。
 一外部電極端子42aは、振動側第1接合パターン216を介して第1励振電極211に電気的に直接接続され、他外部電極端子42bは、振動側第2接合パターン217を介して第2励振電極222に電気的に直接接続される。
 一外部電極端子42a、他外部電極端子42bは、図8に示すように第2封止部材4の他主面4bの平面視長手方向両端にそれぞれ位置する。これら一対の外部電極端子(一外部電極端子42a、他外部電極端子42b)は、他主面4b上に物理的気相成長させて形成された下地PVD膜と、下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。
 なお、外部電極端子(一外部電極端子42a、他外部電極端子42b)の下地PVD膜の厚みは、上記の振動側第1接合パターン216、振動側第2接合パターン217、封止側第1接合パターン31、封止側第2接合パターン41、の各下地PVD膜の厚みに対して厚い。また、一外部電極端子42a及び他外部電極端子42bは、第2封止部材4の他主面4bのうち1/3以上の領域をそれぞれ占めている。
 また、第2封止部材4には、図1,7,8に示すように、2つの貫通孔(第2貫通孔h2と第3貫通孔h3)が形成されている。第2貫通孔h2及び第3貫通孔h3は、内部空間13の外方に配され、図7に示すように、第2貫通孔h2は、両主面(一主面4a,他主面4b)の平面視右側に位置し、第3貫通孔h3は、平面視左上側に位置する。すなわち、第2貫通孔h2及び第3貫通孔h3は、内部空間13の内方に形成されていない。
 ここでいう内部空間13の内方とは、接合材11(封止側第2接合パターン41)上を含まずに厳密に接合材11の内周面の内側のことをいう。
 -第1実施形態の水晶振動デバイスの製造方法-
 次に、上述した水晶振動板2、第1封止部材3、第2封止部材4を用いて水晶振動デバイス1を製造する方法について説明する。
 第1封止部材3と水晶振動板2との接合は、水晶振動板2の振動側第1接合パターン216と第1封止部材3の封止側第1接合パターン31とを重ね合わせた状態で行う。
 第2封止部材4と水晶振動板2との接合も同様に、水晶振動板2の振動側第2接合パターン217と第2封止部材4の封止側第2接合パターン41とを重ね合わせた状態で行う。
 第1封止部材3と水晶振動板2との接合及び第1封止部材3と水晶振動板2との接合は、各接合パターンを重ね合わせることにより拡散接合されて接合される。接合方法に拡散接合を用いることによって、接着剤等を用いて接合する際に生じるガスの発生等を防止することができるが、接着剤などの公知の接合専用材を用いてもよい。
 このようにして製造された製造されたパッケージ12では、第1封止部材3と水晶振動板2とは、1.00μm以下のギャップを有し、第2封止部材4と水晶振動板2とは、1.00μm以下のギャップを有する。つまり、第1封止部材3と水晶振動板2との間の接合材11の厚みが、1.00μm以下であり、第2封止部材4と水晶振動板2との間の接合材11の厚みが、1.00μm以下(具体的には、本実施形態のAu-Au接合では0.15μm~1.00μm)である。なお、比較として、Snを用いた従来の金属ペースト封止材では、5μm~20μmとなる。
 -第1実施形態の水晶振動デバイスの作用効果-
 以上、説明したとおり、本実施形態に係る水晶振動板2は、保持部22が振動部21の角部21aからATカットのZ´軸方向に突出し、外枠部23で保持されているので、従来の水晶振動板と異なり、圧電振動の変位が大きいX軸方向に沿った振動部21の中央位置で振動部21が保持されていない。従って、水晶振動板2を圧電振動させた場合、振動効率が高くて効率的に圧電振動させることができる。
 また、水晶振動板2の振動部21が、Z´軸上に有する2つの角部21aからそれぞれ保持部22を介して外枠部23に保持されているので、振動部21を確実に保持することができる。さらに、水晶振動板2の各主面に形成された第1励振電極211と、第2励振電極212の配線パターンを、2つの角部21aから突出された保持部22によってそれぞれ独立して配置できるため、配線パターン間の寄生容量を抑えることができ、周波数可変量低減を防ぐことができる。
 -第1実施形態の水晶振動デバイスの変形例の構成-
 次に、第1実施形態の水晶振動デバイスの4つの変形例の構成について、図9~図13を参照しながら説明する。なお、本変形例は、上述した水晶振動板2に溝mが形成されている点が上記実施形態とは異なるだけであるので、以下、その相違点についてのみ説明し、同一の構成要素については、同一符号を付してその説明を省略する。
 なお、変形例1から変形例4の構成を組み合わせた構造としてもよいものとする。
 ・水晶振動板
 本変形例に係る水晶振動板2は、振動部21及び保持部22の少なくとも一方には、溝mが設けられており、溝mは、ATカットのX軸に対して振動部21の中心部側(第1励振電極211及び第2励振電極212の平面視での中心C側)に傾斜されている(図9~図13参照)。
 <第1変形例>
 図9における変形例では、メサ構造213における底の角部から、保持部22に向けて溝mが形成されている。本変形例では、溝mは角部21aと接触するように設けられているので、圧電振動の漏れを効果的に抑制することができるが、溝mは角部21aと接触していなくてもよい。なお、溝mは、振動部21から保持部22に亘って形成されていてもよい。
 <第2変形例>
 図10における変形例では、メサ構造213におけるZ´軸に沿う辺から振動部21の外周端に向けて溝mが形成されている。
 これら図9及び図10の変形例の場合は、Z´軸方向に伝搬する圧電振動の漏れを効果的に抑制することができる。
 <第3変形例>
 図11における変形例では、メサ構造213におけるX軸に沿う辺から振動部21の外周端に向けて溝mが形成されている。
 図11の変形例の場合は、X軸方向に伝搬する圧電振動の漏れを効果的に抑制することができる。
 <第4変形例>
 図12及び13における変形例では、溝mは、振動部21の一主面側に形成された一又は複数の第1溝m1と、振動部21の他主面側に形成された一又は複数の第2溝m2とから構成されており、第1溝m1と第2溝m2は、保持部22の振動部21側から外枠部23にかけて交互に配置されている。
 図示例では、第1溝m1は2つ形成されており、一方は振動部21に、他方は保持部22に形成されている。同様に第2溝m2(図13参照)は2つ形成されており、一方は振動部21に、他方は保持部22に形成されている。
 図12の変形例の場合は、第1溝m1と第2溝m2が、保持部22の振動部21側から外枠部23にかけて交互に配置されているため(図13参照)、圧電振動の閉じ込め効果を向上させることができる。
 なお、本変形例では、第1溝m1は角部21aと接触するように設けられているので、圧電振動の漏れを効果的に抑制することができるが、第1溝m1は角部21aと接触していなくてもよい。
 -第2実施形態の水晶振動デバイスの構成-
 次に、第2実施形態の水晶振動デバイスの構成について、図14を参照しながら説明する。なお、本実施形態は、水晶振動板2における保持部22の位置及び数が異なるだけであるので、以下、その相違点についてのみ説明し、同一の構成要素については、同一符号を付してその説明を省略する。
 ・水晶振動板
 本実施形態の水晶振動板2の保持部22は、振動部21における1つの角部21aのみから外枠部23に向けて突出されている。
 この場合、水晶振動板の振動部21が、1つの角部21aのみから外枠部23に向けて突出された保持部22を介して外枠部23に保持されているので、保持部22の数を少なくして効率的に振動部21を保持することができる。
 -第3実施形態の水晶振動デバイスの構成-
 次に、第3実施形態の水晶振動デバイスの構成について、図17および図18を参照しながら説明する。なお、本実施形態は、水晶振動板2における保持部22と外枠部23との接続構造が異なるだけであるので、以下、その相違点についてのみ説明し、同一の構成要素については、同一符号を付してその説明を省略する。
 本実施形態に係る水晶振動デバイスは、図17に示すように、水晶振動板2の外枠部23において、保持部22との境界の周囲に厚みを小さくした凹部23aを有している。図18(a)は、外枠部23に凹部23aを設けていない場合の保持部22と外枠部23との接続構造を示す斜視図である。図18(b)および(c)は、外枠部23に凹部23aを設けている場合の保持部22と外枠部23との接続構造を示す斜視図である。
 図18(b)に示すように、凹部23aの底面は保持部22の表面と同一平面となるように(すなわち、凹部23aと保持部22との間に段差が生じないように)形成されていてもよい。あるいは、図18(c)に示すように、凹部23aの底面と保持部22の表面との間に段差が生じるように形成されていてもよい。尚、凹部23aの底面および保持部22の表面とは、水晶振動板2の一主面2aおよび他主面2bと平行な面である。また、図18(b)および(c)では、凹部23aが水晶振動板2の両主面に設けられた構成を例示しているが、凹部23aは水晶振動板2の少なくとも一方の主面に設けられていれば良い。これにより、外枠部23、凹部23a、および保持部22の厚みは、(外枠部23の厚み)>(凹部23aの厚み)≧(保持部22の厚み)の関係となる。
 また、図17および図18では、凹部23aの平面視形状は扇形状となっており、外枠部23における凹部23a以外の領域と凹部23aの領域との境界線は曲率を有している。しかしながら、本発明において、凹部23aの平面視形状は特に限定されるものではなく、凹部23aの形状は、図19(a)に示すような矩形形状や、図19(b)に示すような台形形状などであってもよい。
 -第3実施形態の水晶振動デバイスの製造方法-
 次に、本実施形態に係る水晶振動デバイスにおいて、水晶振動板2の製造方法について説明する。尚、水晶振動デバイスの製造方法において、水晶板に振動部21、保持部22および外枠部23を形成するためのエッチング工程以外は第1実施形態と同じであるため、ここでは上記エッチング工程のみを説明する。また、以下の説明では、振動部21の中央にメサ構造213が形成されている構造(図6A参照)を前提としている。
 本実施形態における水晶振動板2は、矩形状の水晶板に対し、外形形成エッチング、メサ形成エッチング、および周波数調整エッチングの3回のエッチング工程を経て、振動部21、保持部22および外枠部23が形成される。
 図20は、図の上部が外形形成エッチングを施した後の水晶板を示す平面図であり、下部がそのA-A断面図である。外形形成エッチングでは、矩形状の水晶板に切り抜き部k3を形成し、振動部21、保持部22および外枠部23の外形形状を形成する。
 図21Aおよび図21Bは、図の上部が図20に示す水晶板に対してメサ形成エッチングを施した後の水晶板を示す平面図であり、下部がそのA-A断面図である。図21Aおよび図21Bでは、エッチングに用いるマスクが異なっており、すなわち、エッチング領域に相違がある。
 メサ形成エッチングは、振動部21の中央にメサ構造213の外形形状を形成するためのエッチング工程である。メサ形成エッチングでは、少なくとも、振動部21におけるメサ構造213以外の領域と保持部22の領域とをエッチングする。図21Aに示す水晶板では、振動部21(メサ構造213以外)および保持部22の領域のみをエッチングしているのに対し、図21Bに示す水晶板では、これに加えて凹部23aの領域をエッチングしている。
 図22A~図22Cおよび図23は、図の上部が周波数調整エッチングを施した後の水晶板を示す平面図であり、下部がそのA-A断面図である。図22A~図22Cでは、周波数調整エッチングを施す前の水晶板の状態、もしくは、エッチングに用いるマスクが異なっている。
 周波数調整エッチングは、水晶振動デバイスの発振振動数を所定の値とするために、振動部21および保持部22の厚みを調整するエッチング工程である。周波数調整エッチングでは、少なくとも、振動部21の領域(メサ構造213含む全領域)と保持部22の領域とをエッチングする。
 図22Aに示す水晶板は、図21Aに示す水晶板に対し振動部21、保持部22および凹部23aの領域をエッチングするか、あるいは、図21Bに示す水晶板に対し振動部21および保持部22の領域をエッチングすることで形成される。すなわち、図22Aに示す水晶板は、保持部22に対してはメサ形成エッチングおよび周波数調整エッチングの2回のエッチングが施されるが、凹部23aに対してはメサ形成エッチングおよび周波数調整エッチングの何れか1回のエッチングが施される。これにより、図18(c)に示すような、凹部23aの底面と保持部22の表面との間に段差が生じる水晶振動板2が形成される。
 尚、図21A、図21B、図22A~図22Cでは、メサ形成エッチングによるエッチング深さと周波数調整エッチングによるエッチング深さとをほぼ同程度に記載している。しかしながら、これらのエッチングにおけるエッチング深さが異なる場合には、凹部23aを形成するエッチング工程を選択することで凹部23aの深さを調整可能である。
 図22Bに示す水晶板は、図21Bに示す水晶板に対し振動部21、保持部22および凹部23aの領域をエッチングすることで形成される。すなわち、図22Bに示す水晶板は、保持部22および凹部23aの両方に対し、メサ形成エッチングおよび周波数調整エッチングの2回のエッチングが施される。これにより、図18(b)に示すような、凹部23aの底面と保持部22の表面とが同一平面となる水晶振動板2が形成される。
 尚、図23に示す水晶板は、図21Aに示す水晶板に対し振動部21および保持部22の領域をエッチングすることで形成されるものであり、この水晶板には凹部23aは存在しない。すなわち、凹部23aを形成する場合と、凹部23aを形成しない場合とは、エッチングに用いるマスクを変えるだけであって、エッチング回数に違いは無い。したがって、本実施形態に係る水晶振動デバイスにおいて、凹部23aが形成された水晶振動板2を製造工程の追加なく作製することが可能である。
 -第3実施形態の水晶振動デバイスの作用効果-
 本発明が適用される水晶振動デバイスにおいて、図18(a)に示すように、外枠部23に凹部23aを設けていない構造では、水晶振動デバイスに衝撃等が作用した場合に、外枠部23と保持部22との接続箇所の段差エッジに応力が集中し、折れが生じてしまう虞がある。
 これに対し、図18(b)に示す構造では、外枠部23に凹部23aを設けることで外枠部23と保持部22との接続箇所に段差を無くしており、該接続箇所における応力集中を回避して、水晶振動デバイスにおける耐衝撃性を向上させることができる。
 また、図18(c)に示す構造では、外枠部23と保持部22との接続箇所に段差は残っているが、外枠部23に凹部23aを設けることで、外枠部23における凹部23a形成領域とそれ以外との領域の境界(以下、凹部エッジ)にも段差が生じる。これにより、水晶振動デバイスに衝撃等が作用した場合の応力は、上記2箇所の段差部分に分散され、その結果、外枠部23と保持部22との接続箇所における応力集中を緩和して、水晶振動デバイスにおける耐衝撃性を向上させることができる。
 また、外枠部23に凹部23aを設ける構造は、水晶振動デバイスにおける耐衝撃性を向上させるだけでなく、振動部21から外枠部23への振動漏れを抑制する効果も期待できる。圧電振動は振動部21に閉じ込められている状態が理想であるが、振動の完全な閉じ込めは困難であり、実際は外枠部23へのいくらかの漏れが生じる。特に、本実施形態で説明した構成では、振動部21、保持部22および外枠部23を水晶板で一体形成しているため、振動漏れの影響は顕著に表れる。すなわち、振動部21から漏れてきた振動は、保持部22を伝って外枠部23へと漏れる経路が考えられるが、保持部22から外枠部23へと伝わるところで凹部部23aがあると、そこで枠体と共鳴しないように調整することができ、外枠部23に伝わりにくくなる。
 特に、本発明の構成では、第1実施形態に述べているように、振動部21からの保持部22の突出方向をZ´軸方向としている。これは、AT振動の変位方向と直交する方向に保持部22を突出させることで振動もれを防ごうとする構成である。理想的にはAT振動は振動部21に閉じ込められるが、実際は別の振動モードである副振動となっていくらかの振動が漏れる。Z´軸方向に突出した保持部22は、この振動もれを外枠部23へ伝えやすく、CI変動や周波数変動の原因となる。そこで、凹部23aを設けることで外枠部23への振動漏れを抑え、より安定した特性を得ることができる。
 その他、本実施形態に係る水晶振動デバイスの好適例を説明する。例えば、凹部23aの幅D1は、保持部22の幅D2よりも広くされていることが好ましい(図17参照)。尚、ここでの幅方向とは、平面視において、外枠部23からの保持部22の突出方向と直交する方向を指す。該構成が好適な理由は以下の通りである。
 まず、応力緩和の観点からは、水晶振動デバイスへの衝撃などで振動部21が振られて保持部22が屈曲する場合、凹部23aがあるとその凹部エッジが応力集中箇所となる。この凹部エッジが振動部21よりも遠いと圧電振動に影響しにくくなると考えられ、また凹部エッジが長くなるほど応力分散効果は高くなる。すなわち、凹部23aの幅D1を、保持部22の幅D2よりも広くする構成は、凹部エッジを長くなることにつながり、凹部23aによる応力分散効果を向上させる。また、振動漏れ抑制の観点からは、凹部23aが大きい方が振動減衰の効果が高くなり、より外枠部23への振動漏れを抑え、CI低減の効果や変動を抑制する効果が期待できる。
 また、凹部23aの凹部エッジの形状は、図19(a),(b)に示す矩形や台形形状に比べ、図17に示すような円弧形状の方が好ましい。言い換えれば、凹部エッジの形状は、曲率を有する形状であることが好ましい。凹部エッジの形状を曲率を有する形状とすることで、凹部エッジの平面視形状において頂点の無い形状とすることができ、頂点での応力集中を回避することができる。
 また、上記説明では、水晶振動板の振動部21が1つの保持部22によって保持されている構成、すなわち第2実施形態の構成において凹部23aを設けた場合を例示している。しかしながら、本発明はこれに限定されるものではなく、水晶振動板の振動部21が2つの保持部22によって保持されている構成、すなわち第1実施形態の構成において凹部23aを設けてもよい。但し、第2実施形態の構成は、第1実施形態の構成に比べて保持部22の数が少ない分、耐衝撃性が低くなる。このため、凹部23aを設けて耐衝撃性を向上させる第3実施形態の構成の適用が好適となる。
 なお、上記に示した本発明の実施形態及び実施例はいずれも本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。
 上記各実施形態では、水晶振動デバイスを水晶振動子としたが、水晶振動子以外の水晶振動デバイス(例えば、水晶発振器)にも本発明を適用することが可能である。
1      水晶振動デバイス
11    接合材
12    パッケージ
13    内部空間
2      水晶振動板
2a    一主面
2b    他主面
21    振動部
21a 角部
22    保持部
23    外枠部
23a 凹部
211  第1励振電極
212  第2励振電極
213  メサ構造
214  第1引出電極
215  第2引出電極
216  振動側第1接合パターン
217  振動側第2接合パターン
k1    平面視逆凹形状体
k2    平面視長方形状体
3      第1封止部材
3a  第1封止部材の一主面
3b    第1封止部材の他主面
31    封止側第1接合パターン
4      第2封止部材
41    封止側第2接合パターン
42a  一外部電極端子
42b  他外部電極端子
h1    第1貫通孔
h2    第2貫通孔
h3    第3貫通孔
C   中心部
m      溝
m1    第1溝
m2    第2溝

Claims (15)

  1.  一主面に形成された第1励振電極と、他主面に形成された第2励振電極とが備えられたATカット型の水晶振動板であって、
     前記第1励振電極と前記第2励振電極とが備えられた略矩形状の振動部と、
     前記振動部の角部から、ATカットのZ´軸方向に突出され、当該振動部を保持する保持部と、
     前記振動部の外周を取り囲むとともに、前記保持部を保持する外枠部と、
     を有することを特徴とする水晶振動板。
  2.  請求項1に記載された水晶振動板であって、
     前記保持部をZ´軸方向に延長した延長線上の領域から前記振動部の中心方向側に離れた位置に、前記第1励振電極及び第2励振電極が形成されていること
     を特徴とする水晶振動板。
  3.  請求項1又は2に記載された水晶振動板であって、
     前記保持部は、前記振動部において前記Z´軸上に有する2つの角部からそれぞれ前記外枠部に向けて突出されていること
     を特徴とする水晶振動板。
  4.  請求項1又は2に記載された水晶振動板であって、
     前記保持部は、前記振動部における1つの角部のみから前記外枠部に向けて突出されていること
     を特徴とする水晶振動板。
  5.  請求項1~4のいずれか1項に記載された水晶振動板であって、
     前記外枠部の厚みは、前記保持部の厚みよりも厚いこと
     を特徴とする水晶振動板。
  6.  請求項1~4のいずれか1項に記載された水晶振動板であって、
     前記振動部における第1励振電極及び第2励振電極が形成された位置には、前記振動部の中央の領域の厚みがその周囲の領域に比べて厚くされたメサ構造が形成されていること
     を特徴とする水晶振動板。
  7.  請求項1~7のいずれか1項に記載された水晶振動板であって、
     前記振動部及び前記保持部の少なくとも一方には、溝が設けられており、
     前記溝は、ATカットのX軸に対して前記振動部の中心部側に傾斜されていること
     を特徴とする水晶振動板。
  8.  請求項7に記載された水晶振動板であって、
     前記溝は、
     前記振動部の一主面側に形成された一又は複数の第1溝と、
     前記振動部の他主面側に形成された一又は複数の第2溝とから構成されており、
     前記第1溝と前記第2溝は、前記振動部の前記振動部側から前記外枠部にかけて交互に配置されていること
     を特徴とする水晶振動板。
  9.  請求項1から8のいずれかに1項に記載された水晶振動板であって、
     前記外枠部は、前記一主面側および前記他主面側の少なくとも一方で、前記保持部と連結される箇所に凹部を有しており、
     前記外枠部の厚み、前記凹部の厚み、および前記保持部の厚みは、
     (外枠部の厚み)>(凹部の厚み)≧(保持部の厚み)
    の関係を満たすこと
     を特徴とする水晶振動板。
  10.  請求項9に記載された水晶振動板であって、
     前記凹部は、前記一主面および前記他主面の両方に形成されていること
     を特徴とする水晶振動板。
  11.  請求項9または10に記載された水晶振動板であって、
     前記凹部の底面は、前記保持部の表面と同一平面となるように形成されていること
     を特徴とする水晶振動板。
  12.  請求項9または10に記載された水晶振動板であって、
     前記凹部の底面は、前記保持部の表面との間に段差が生じるように形成されていること
     を特徴とする水晶振動板。
  13.  請求項9~12の何れか1項に記載された水晶振動板であって、
     前記外枠部の主面に垂直な方向から見て、前記外枠部からの前記保持部の突出方向と直交する方向を幅方向とするとき、前記凹部の幅は前記保持部の幅よりも広くされていること
     を特徴とする水晶振動板。
  14.  請求項9~13の何れか1項に記載された水晶振動板であって、
     前記凹部の内壁面は、前記外枠部の主面に垂直な方向から見て曲率を有する形状となっていること
     を特徴とする水晶振動板。
  15.  請求項1から14のいずれか1項に記載された水晶振動板と、
     前記水晶振動板の前記一主面を覆う第1封止部材と、
     前記水晶振動板の前記他主面を覆う第2封止部材と、
     が備えられた水晶振動デバイス。
PCT/JP2015/080667 2015-01-29 2015-10-30 水晶振動板、及び水晶振動デバイス WO2016121182A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/546,004 US10601393B2 (en) 2015-01-29 2015-10-30 Crystal resonator plate and crystal resonator device
EP15880074.8A EP3252950B1 (en) 2015-01-29 2015-10-30 Crystal oscillation plate, and crystal oscillation device
JP2016571677A JP6500915B2 (ja) 2015-01-29 2015-10-30 水晶振動板、及び水晶振動デバイス
CN201580074899.4A CN107210723B (zh) 2015-01-29 2015-10-30 晶体振动片及晶体振动器件
KR1020177023793A KR101966126B1 (ko) 2015-01-29 2015-10-30 수정 진동판, 및 수정 진동 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015784 2015-01-29
JP2015-015784 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121182A1 true WO2016121182A1 (ja) 2016-08-04

Family

ID=56542820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080667 WO2016121182A1 (ja) 2015-01-29 2015-10-30 水晶振動板、及び水晶振動デバイス

Country Status (6)

Country Link
US (1) US10601393B2 (ja)
EP (1) EP3252950B1 (ja)
JP (1) JP6500915B2 (ja)
KR (1) KR101966126B1 (ja)
CN (1) CN107210723B (ja)
WO (1) WO2016121182A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042994A1 (ja) * 2016-08-30 2018-03-08 株式会社大真空 水晶振動板、及び水晶振動デバイス
WO2018235582A1 (ja) 2017-06-22 2018-12-27 株式会社大真空 水晶振動板および水晶振動デバイス
JP2019009716A (ja) * 2017-06-28 2019-01-17 株式会社大真空 水晶振動板および水晶振動デバイス
JP2019009565A (ja) * 2017-06-22 2019-01-17 株式会社大真空 水晶振動板および水晶振動デバイス
US20190051814A1 (en) * 2017-08-09 2019-02-14 Nihon Dempa Kogyo Co., Ltd. Crystal unit and manufacturing method thereof
JP2020088589A (ja) * 2018-11-26 2020-06-04 株式会社大真空 圧電振動デバイス
JP2020088725A (ja) * 2018-11-29 2020-06-04 株式会社大真空 水晶振動板および水晶振動デバイス
JP2021057914A (ja) * 2016-11-16 2021-04-08 株式会社大真空 水晶振動デバイス
JP7148659B2 (ja) 2019-08-01 2022-10-05 天野エンザイム株式会社 新規リパーゼ及びその用途
JP7344490B2 (ja) 2021-08-31 2023-09-14 國立陽明交通大學 水晶振動子及びその製造方法
WO2024024614A1 (ja) * 2022-07-28 2024-02-01 株式会社大真空 水晶振動板および水晶振動デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998795B2 (ja) * 2018-02-28 2022-01-18 京セラ株式会社 水晶振動素子及び水晶デバイス
WO2019176616A1 (ja) * 2018-03-13 2019-09-19 株式会社大真空 圧電振動デバイス
CN110401429A (zh) * 2018-04-24 2019-11-01 日本电波工业株式会社 晶体振子及其制造方法
JP2019193066A (ja) * 2018-04-24 2019-10-31 日本電波工業株式会社 水晶振動子
JP6760430B1 (ja) * 2019-03-27 2020-09-23 株式会社大真空 水晶振動デバイス
CN113556099B (zh) * 2021-06-11 2022-10-14 成都泰美克晶体技术有限公司 压电石英晶体振荡片、谐振器和振荡器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046366A (ja) * 2001-07-30 2003-02-14 Toyo Commun Equip Co Ltd 圧電振動子及びその製造方法
JP2009105509A (ja) * 2007-10-19 2009-05-14 Epson Toyocom Corp 輪郭水晶振動片の製造方法
JP2012074807A (ja) * 2010-09-28 2012-04-12 Seiko Epson Corp 圧電振動素子、表面実装型圧電振動子及び表面実装型圧電発振器
JP2012156978A (ja) * 2011-01-05 2012-08-16 Nippon Dempa Kogyo Co Ltd Atカットの水晶振動片、水晶デバイス及び水晶振動片の製造方法
JP2013026809A (ja) * 2011-07-21 2013-02-04 Nippon Dempa Kogyo Co Ltd 圧電振動片及び圧電デバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683011B2 (ja) 1989-08-31 1994-10-19 キンセキ株式会社 水晶振動子
JPH0683011A (ja) 1992-08-31 1994-03-25 Fuji Photo Film Co Ltd 処理液用ヒータの安全装置
JP3731348B2 (ja) * 1998-06-09 2006-01-05 松下電器産業株式会社 圧電振動子
JP2005286992A (ja) * 2004-03-02 2005-10-13 Seiko Epson Corp 圧電振動片、圧電振動子および圧電発振器
JP2006238263A (ja) * 2005-02-28 2006-09-07 Seiko Epson Corp 圧電振動片、及び圧電振動子
JP2007214942A (ja) 2006-02-10 2007-08-23 Epson Toyocom Corp 圧電振動片の製造方法、及び圧電振動片並びに圧電デバイス
JP4967707B2 (ja) * 2006-05-01 2012-07-04 セイコーエプソン株式会社 圧電振動子およびその製造方法
US7608986B2 (en) * 2006-10-02 2009-10-27 Seiko Epson Corporation Quartz crystal resonator
WO2009020022A1 (ja) * 2007-08-03 2009-02-12 Daishinku Corporation 圧電振動子
JP4412506B2 (ja) * 2007-09-07 2010-02-10 エプソントヨコム株式会社 圧電デバイスおよびその製造方法
CN102362430B (zh) * 2009-04-03 2016-08-17 株式会社大真空 封装构件组件及其制造方法、封装构件以及使用了封装构件的压电振动器件的制造方法
JP2011091173A (ja) 2009-10-21 2011-05-06 Seiko Epson Corp 電子部品及びその製造方法
US20110221312A1 (en) * 2010-03-12 2011-09-15 Seiko Epson Corporation Vibrator element, vibrator, sensor, and electronic apparatus
JP2012085253A (ja) * 2010-03-25 2012-04-26 Nippon Dempa Kogyo Co Ltd 表面実装型の水晶デバイス及び水晶デバイスの製造方法
JP2012060628A (ja) * 2010-08-07 2012-03-22 Nippon Dempa Kogyo Co Ltd 圧電デバイス及びその製造方法
JP5595218B2 (ja) * 2010-10-20 2014-09-24 日本電波工業株式会社 圧電デバイス及び圧電基板の製造方法
JP5756712B2 (ja) * 2011-08-17 2015-07-29 日本電波工業株式会社 水晶デバイス
JP5929244B2 (ja) * 2012-01-31 2016-06-01 株式会社大真空 厚みすべり振動型水晶片、電極付きの厚みすべり振動型水晶片、水晶振動板、水晶振動子および水晶発振器
JP2013197857A (ja) * 2012-03-19 2013-09-30 Seiko Instruments Inc 圧電振動片、圧電振動子、発振器、電子機器及び電波時計
JP2014175900A (ja) * 2013-03-11 2014-09-22 Nippon Dempa Kogyo Co Ltd 圧電振動片、圧電振動片の製造方法、及び圧電デバイス
JP6052651B1 (ja) * 2015-03-03 2016-12-27 株式会社村田製作所 水晶振動子
JP6641859B2 (ja) * 2015-10-06 2020-02-05 セイコーエプソン株式会社 振動デバイス、発振器、電子機器、および移動体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046366A (ja) * 2001-07-30 2003-02-14 Toyo Commun Equip Co Ltd 圧電振動子及びその製造方法
JP2009105509A (ja) * 2007-10-19 2009-05-14 Epson Toyocom Corp 輪郭水晶振動片の製造方法
JP2012074807A (ja) * 2010-09-28 2012-04-12 Seiko Epson Corp 圧電振動素子、表面実装型圧電振動子及び表面実装型圧電発振器
JP2012156978A (ja) * 2011-01-05 2012-08-16 Nippon Dempa Kogyo Co Ltd Atカットの水晶振動片、水晶デバイス及び水晶振動片の製造方法
JP2013026809A (ja) * 2011-07-21 2013-02-04 Nippon Dempa Kogyo Co Ltd 圧電振動片及び圧電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252950A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342901B2 (en) 2016-08-30 2022-05-24 Daishinku Corporation Crystal resonator plate and crystal resonator device
WO2018042994A1 (ja) * 2016-08-30 2018-03-08 株式会社大真空 水晶振動板、及び水晶振動デバイス
CN109643983A (zh) * 2016-08-30 2019-04-16 株式会社大真空 晶振片及晶体振动器件
JPWO2018042994A1 (ja) * 2016-08-30 2019-06-24 株式会社大真空 水晶振動板、及び水晶振動デバイス
JP2021057914A (ja) * 2016-11-16 2021-04-08 株式会社大真空 水晶振動デバイス
US11342899B2 (en) 2016-11-16 2022-05-24 Daishinku Corporation Crystal resonator device
WO2018235582A1 (ja) 2017-06-22 2018-12-27 株式会社大真空 水晶振動板および水晶振動デバイス
US11411549B2 (en) 2017-06-22 2022-08-09 Daishinku Corporation Crystal resonator plate and crystal resonator device
CN110463037A (zh) * 2017-06-22 2019-11-15 株式会社大真空 晶体振动片及晶体振动器件
JP2019009565A (ja) * 2017-06-22 2019-01-17 株式会社大真空 水晶振動板および水晶振動デバイス
JP2019009716A (ja) * 2017-06-28 2019-01-17 株式会社大真空 水晶振動板および水晶振動デバイス
US20190051814A1 (en) * 2017-08-09 2019-02-14 Nihon Dempa Kogyo Co., Ltd. Crystal unit and manufacturing method thereof
US10819307B2 (en) * 2017-08-09 2020-10-27 Nihon Dempa Kogyo Co., Ltd. Crystal unit and manufacturing method thereof
WO2020110557A1 (ja) * 2018-11-26 2020-06-04 株式会社大真空 圧電振動デバイス
JP2020088589A (ja) * 2018-11-26 2020-06-04 株式会社大真空 圧電振動デバイス
US11411550B2 (en) 2018-11-26 2022-08-09 Daishinku Corporation Piezoelectric resonator device
JP7056531B2 (ja) 2018-11-29 2022-04-19 株式会社大真空 水晶振動板および水晶振動デバイス
JP2020088725A (ja) * 2018-11-29 2020-06-04 株式会社大真空 水晶振動板および水晶振動デバイス
JP7148659B2 (ja) 2019-08-01 2022-10-05 天野エンザイム株式会社 新規リパーゼ及びその用途
JP7344490B2 (ja) 2021-08-31 2023-09-14 國立陽明交通大學 水晶振動子及びその製造方法
WO2024024614A1 (ja) * 2022-07-28 2024-02-01 株式会社大真空 水晶振動板および水晶振動デバイス

Also Published As

Publication number Publication date
KR20170108091A (ko) 2017-09-26
EP3252950B1 (en) 2019-02-20
CN107210723B (zh) 2020-10-20
US10601393B2 (en) 2020-03-24
KR101966126B1 (ko) 2019-04-05
JPWO2016121182A1 (ja) 2017-11-02
JP6500915B2 (ja) 2019-04-17
EP3252950A1 (en) 2017-12-06
EP3252950A4 (en) 2018-01-24
US20180006630A1 (en) 2018-01-04
CN107210723A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2016121182A1 (ja) 水晶振動板、及び水晶振動デバイス
JP5046012B2 (ja) 振動片、振動デバイス、発振器及び電子機器
WO2010035714A1 (ja) 音叉型圧電振動片、および音叉型圧電振動デバイス
JPH11346139A (ja) 圧電共振子
WO2016158010A1 (ja) 圧電振動デバイス
JP6719313B2 (ja) 圧電振動片および圧電振動子
JP6649747B2 (ja) 圧電振動片および圧電振動子
JP2018110292A (ja) 圧電振動子
TWI639307B (zh) 晶振片及晶體振動器件
JP6531616B2 (ja) 水晶振動板、及び水晶振動デバイス
JP2018032944A (ja) 水晶振動板、及び水晶振動デバイス
CN107534431B (zh) 水晶振子及其制造方法
TW201507354A (zh) 音叉型水晶振動片、及水晶振動裝置
JP5413486B2 (ja) 振動片、振動デバイス、発振器、及び電子機器
JP5262548B2 (ja) 振動子
WO2016132766A1 (ja) 水晶振動子及び水晶振動デバイス
JP2016105581A (ja) 圧電振動片および圧電振動子
JP2015019127A (ja) 水晶振動片及び水晶デバイス
JP7491675B2 (ja) 圧電振動片および圧電振動子
TWI784278B (zh) 壓電振動板及壓電振動器件
WO2016136010A1 (ja) 水晶振動デバイス
JP2018110350A (ja) 圧電振動片および圧電振動子
WO2016181882A1 (ja) 水晶振動素子及び水晶振動子
JP2017069931A (ja) 圧電振動子
JP2019087774A (ja) 音叉型水晶振動素子及び圧電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546004

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016571677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015880074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023793

Country of ref document: KR

Kind code of ref document: A