WO2018042994A1 - 水晶振動板、及び水晶振動デバイス - Google Patents

水晶振動板、及び水晶振動デバイス Download PDF

Info

Publication number
WO2018042994A1
WO2018042994A1 PCT/JP2017/027665 JP2017027665W WO2018042994A1 WO 2018042994 A1 WO2018042994 A1 WO 2018042994A1 JP 2017027665 W JP2017027665 W JP 2017027665W WO 2018042994 A1 WO2018042994 A1 WO 2018042994A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer frame
vibration
wide
crystal
vibrating
Prior art date
Application number
PCT/JP2017/027665
Other languages
English (en)
French (fr)
Inventor
賢周 森本
良太 山内
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to US16/327,293 priority Critical patent/US11342901B2/en
Priority to CN201780052650.2A priority patent/CN109643983B/zh
Priority to JP2018537050A priority patent/JP6769487B2/ja
Publication of WO2018042994A1 publication Critical patent/WO2018042994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02149Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type

Definitions

  • the present invention relates to an AT-cut quartz crystal plate provided with a first excitation electrode formed on one main surface and a second excitation electrode formed on another main surface, and a crystal vibration provided with the crystal plate. Regarding devices.
  • the quartz resonator device corresponding to the miniaturization includes a first sealing member and a second sealing member whose casing is configured by a rectangular parallelepiped package and made of a brittle material such as glass or quartz.
  • Some of the plate excitation electrodes are hermetically sealed (see, for example, Patent Document 1 below).
  • Such a laminated crystal vibration device is generally called a sandwich structure.
  • a vibration region for exciting as a crystal resonator, a crystal resonator plate, and a sealing member are bonded to the functional region of the crystal resonator plate to vibrate.
  • a region as an outer frame part for hermetically sealing the part, and a region as a cutout part for isolating the outer frame part and the vibration part so that the excitation of the vibration part is not hindered by the outer frame part A region as a connecting portion for connecting the vibrating portion and the outer frame portion, and a wiring portion for electrically connecting the wiring of the crystal diaphragm and the wiring of the sealing member (a wiring pattern or a through hole for wiring) Etc.).
  • an object of the present invention is to provide a quartz diaphragm and a quartz vibrating device with higher reliability in which deterioration of electrical characteristics is suppressed while improving impact resistance.
  • the present invention is an AT-cut quartz crystal vibrating plate having a rectangular shape in plan view having one main surface and another main surface, and is formed on one main surface at a central portion of the crystal vibrating plate.
  • the cutout portion formed on the outer periphery of the rectangular portion in plan view in which the first excitation electrode is formed and the second excitation electrode is formed on the other main surface In addition, the outer peripheral portion whose inner peripheral end is rectangular in plan view, the vibrating portion and the outer frame portion are connected to each other, and from one end of the side along the X-axis direction of the vibrating portion, Z of the vibrating portion And one connecting portion that extends along the axial direction and is connected only to the inner peripheral end along the X-axis direction of the outer frame portion, on the side surface on the + X-axis side of the connecting portion A wide part is formed, and the wide part gradually becomes wider only from the vibrating
  • connection between the vibration part and the outer frame part is extended from one end of the side along the X-axis direction of the vibration part along the Z′-axis direction of the vibration part, and the X-axis direction of the outer frame part
  • This is realized by only one connecting portion connected only to the inner peripheral edge along the connecting portion, and the connecting portion extended along the X-axis, which is the axial direction having a higher vibration displacement distribution, among the AT-cut vibrating portions. Is never constructed.
  • the vibration part having a rectangular shape in plan view is a region where the vibration displacement at the corner part (the end part of the side in the X-axis direction) is the lowest.
  • the connecting portion is connected to only one side that is the inner peripheral end along the X-axis direction of the outer frame portion, a plurality of portions other than the inner peripheral end along the X-axis direction (multiple directions) ) Vibrations are not transmitted and leaks.
  • the influence of vibration leakage from the vibrating portion to the outer frame portion is reduced, and the vibrating portion of the crystal diaphragm can be more efficiently piezoelectrically vibrated.
  • the degree of stress applied to the vibrating part is reduced compared to the case where the vibrating part and the outer frame part are connected by a plurality of connecting parts. it can. For this reason, the stress applied from the outer frame part suppresses the frequency shift caused by the stress applied to the vibration part, and therefore the vibration part of the crystal diaphragm can be more stably piezoelectrically vibrated.
  • the vibration part of the quartz plate is most easily displaced with respect to the corner of the vibrating part to which the connecting part is connected. It becomes the free end of the vibration part which is a corner
  • the connecting portion on the side close to the corner portion of the inner peripheral end of the outer frame portion farthest from the free end of the vibrating portion becomes the maximum stress concentration point. . Therefore, at least a wide portion is formed on the side surface on the + X axis side of the connecting portion adjacent to the corner portion of the inner peripheral end of the outer frame portion, and the wide portion is formed from the vibrating portion to the outer frame portion. It is formed so as to gradually increase in width only toward.
  • the rigidity of the maximum stress concentration point of the connection part with the outer frame part on the fixed end side of the connection part is increased, and the strain stress applied to the connection part by the displacement of the vibration part of the crystal diaphragm by an external impact. Can be dispersed so as to spread in the outer frame portion.
  • the above-described influence of vibration leakage from the vibrating portion to the outer frame portion is also caused. It can be drastically suppressed.
  • the second wide portion is also formed on the side surface on the ⁇ X axis side of the connecting portion, and the wide portion on the side surface on the + X axis side of the connecting portion is the first wide portion.
  • the first wide portion and the second wide portion may be formed in an asymmetric shape.
  • the rigidity of the connecting portion with the outer frame portion on the fixed end side of the connecting portion where strain stress tends to concentrate is further increased, and the stress between the ⁇ X-axis side surface and the + X-axis side surface of the connecting portion.
  • the first wide portion and the second wide portion may be provided in a portion on the ⁇ Z′-axis side of the connecting portion.
  • a third wide portion is formed on the side of the connecting portion on the + Z′-axis side on the ⁇ X-axis side of the connecting portion, and the third wide portion is connected to the vibrating portion from the vibrating portion.
  • the connecting portion is provided with the third wide portion in addition to the first wide portion and the second wide portion, so the first wide portion and the second wide portion are connected to the outer frame portion of the connecting portion. While increasing the rigidity of a part, the rigidity of a connection part with the vibration part of a connection part can also be improved by a 3rd wide part.
  • the third wide portion may be formed smaller than the first wide portion and the second wide portion in plan view.
  • the protruding portion that protrudes from the inner peripheral end of the outer frame portion to the cutout portion side is located at a diagonal position of the connecting portion in plan view across the center of the vibrating portion. May be formed.
  • the end part near the free end of the vibration part comes into contact with and is supported by the protruding part of the outer frame part. For this reason, when an external impact is applied to the quartz plate due to dropping or processing, the vibrating portion of the quartz plate will not be greatly bent in the direction of the plate surface, preventing damage to the connecting portion. it can.
  • the projecting portion is formed on the outer frame portion without forming the projecting portion on the vibrating portion, the piezoelectric vibration characteristics such as the change of the vibration displacement region and the occurrence of spurious due to the formation of the projecting portion on the vibrating portion. The risk of adverse effects is eliminated, and the impact resistance can be improved by increasing the rigidity of the outer frame.
  • the quartz crystal vibration having a sandwich structure in which the first sealing member that covers one main surface of the crystal diaphragm and the second sealing member that covers the other main surface of the crystal diaphragm is provided. Desirable to apply to devices.
  • FIG. 1 is a schematic configuration diagram showing each configuration of a crystal resonator according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the first sealing member of the crystal resonator.
  • FIG. 3 is a schematic back view of the first sealing member of the crystal resonator.
  • FIG. 4 is a schematic plan view of a crystal diaphragm of a crystal resonator.
  • FIG. 5 is a schematic back view of the crystal diaphragm of the crystal resonator.
  • FIG. 6 is a schematic plan view of the second sealing member of the crystal resonator.
  • FIG. 7 is a schematic back view of the second sealing member of the crystal resonator.
  • FIG. 8 is a plan view relating to another embodiment 1 of the present invention.
  • FIG. 8 is a plan view relating to another embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 10 is a plan view relating to other embodiments 2 and 3 of the present invention.
  • FIG. 11 is a top view regarding other Embodiment 4 of this invention.
  • FIG. 12 is a plan view relating to another embodiment 5 of the present invention.
  • FIG. 13 is a top view regarding other Embodiment 6 of this invention, Comprising: It is a figure which expands and shows the principal part of a crystal diaphragm.
  • the crystal vibrating plate 2 and the first excitation electrode 221 (see FIG. 4) of the crystal vibrating plate 2 are covered, and one main surface 211 of the crystal vibrating plate 2.
  • a second sealing member 4 that covers and seals the second excitation electrode 222 formed in a pair with the first excitation electrode 221 is provided.
  • the crystal diaphragm 2 and the first sealing member 3 are joined, and the crystal diaphragm 2 and the second sealing member 4 are joined to form a sandwich-structured package 12.
  • the vibration part 22 including the first excitation electrode 221 and the second excitation electrode 222 formed on both main surfaces 211 and 212 of the diaphragm 2 is hermetically sealed.
  • the crystal resonator 101 according to this embodiment has a package size of, for example, 1.0 ⁇ 0.8 mm, and is intended to be downsized and low-profile. Further, with the miniaturization, the package 12 uses the through holes (first to third through holes) to conduct the electrodes without forming a castellation.
  • each configuration of the above-described crystal resonator 101 will be described with reference to FIGS.
  • each member configured as a single unit in which the crystal diaphragm 2, the first sealing member 3, and the second sealing member 4 are not joined will be described.
  • the quartz diaphragm 2 is made of quartz as a piezoelectric material, and both main surfaces (one main surface 211 and the other main surface 212) are formed as flat smooth surfaces (mirror finish). Yes. These one main surface 211 and the other main surface 212 are parallel surfaces.
  • an AT-cut quartz plate that performs rectangular thickness-shear vibration in a plan view is used as the quartz plate 2.
  • both main surfaces 211 and 212 of the crystal diaphragm 2 are XZ ′ planes.
  • the direction parallel to the short direction (short side direction) of the crystal diaphragm 2 is the X axis direction
  • the direction parallel to the long direction (long side direction) of the crystal diaphragm 2 is the Z ′ axis. It is considered to be a direction.
  • the AT cut is an angle of 35 ° around the X axis with respect to the Z axis among the electric axis (X axis), the mechanical axis (Y axis), and the optical axis (Z axis), which are the three crystal axes of artificial quartz. This is a processing method of cutting at an angle inclined by 15 '.
  • the X axis coincides with the crystal axis of the quartz crystal.
  • the Y′-axis and the Z′-axis coincide with the axes tilted by 35 ° 15 ′ from the Y-axis and the Z-axis of the crystal axis of the crystal.
  • the Y′-axis direction and the Z′-axis direction correspond to the cutting direction when cutting the AT-cut quartz plate.
  • the center portion of the quartz crystal plate 2 has a vibrating portion 22 formed in a rectangular shape in plan view, and a pair of excitation electrodes (first excitation surface) on both main surfaces (one main surface 211 and another main surface 212).
  • An electrode 221 and a second excitation electrode 222) are formed.
  • the first excitation electrode 221 and the second excitation electrode 222 include extraction electrodes (first extraction electrode 223 and second extraction electrode) for connection to external electrode terminals (one external electrode terminal 431 and another external electrode terminal 432) described later. 224) is connected.
  • the first excitation electrode 221 is formed on one main surface side of the vibration part 22, and the second excitation electrode 222 is formed on the other main surface side of the vibration part 22 while facing the first excitation electrode 221. Further, the first excitation electrode 221 is formed with a first extraction electrode 223 that extends to the outer frame portion 23 via a connecting portion 24 described later and is finally connected to one external electrode terminal 431. The second excitation electrode 222 is formed with a second extraction electrode 224 that extends to the outer frame portion 23 via a connecting portion 24 described later and is finally connected to the other external electrode terminal 432.
  • the outer peripheral end and the inner peripheral end that are formed on the outer periphery of the vibrating portion 22 of the crystal vibrating plate 2 and penetrate in the thickness direction of the crystal vibrating plate 2 (through between one main surface 211 and the other main surface 212) are flat.
  • the crystal diaphragm 2 has a configuration in which a vibrating part 22, a connecting part 24, and an outer frame part 23 are integrally provided. Both main surfaces (one main surface and the other main surface) of the vibrating portion 22, the connecting portion 24, and the outer frame portion 23 are formed as the same surfaces or parallel surfaces having different thicknesses.
  • both main surfaces of the vibration part 22 and the connection part 24 are the same surface, and both main surfaces (one main surface, one main surface, and other main surfaces) of the vibrating portion 22 and the connecting portion 24 with respect to both main surfaces (one main surface and other main surfaces).
  • the other principal surface is a parallel surface.
  • the thickness of the vibration part 22 and the connection part 24 may be changed without being limited to the present embodiment.
  • the outer frame part 23 is formed to be the thickest and the vibration part 22 is formed to be the next thickest. You may form so that the part 24 may become the thinnest.
  • a region having a different thickness may be formed in a part of the vibrating portion 22 to have a mesa shape or an inverted mesa shape. Due to the difference in thickness between the outer frame portion 23 and the connecting portion 24, the natural frequency of the piezoelectric vibration between the outer frame portion 23 and the connecting portion 24 or between the connecting portion 24 and the vibrating portion 22 is different. It becomes difficult to resonate.
  • the connecting portion 24 and the outer frame portion 23 may have the same thickness and only the vibrating portion 22 may be formed thin.
  • the natural frequencies of the piezoelectric vibrations of the vibration part 22 and the connection part 24 are different, and the connection part 24 is less likely to resonate with the piezoelectric vibration of the vibration part 22.
  • the rigidity of the connection portion with the outer frame portion 23 can be increased, and the concentration of strain stress applied to the connecting portion 24 can be reduced by the vibration portion 22 being displaced by an external impact.
  • the connecting portion 24 is provided at only one position in the Z′-axis direction between the vibrating portion 22 and the outer frame portion 23, and is positioned in the + X direction and the ⁇ Z ′ direction of the vibrating portion 22. Extends from only one corner portion 22a (one end portion of the vibrating portion 22 along the X-axis direction) to the outer frame portion 23 in the -Z 'direction (extends along the Z'-axis direction). Have been). A portion where the connecting portion 24 is not provided is a space (gap) as the cutout portion 21.
  • the Z′-axis is provided only at one position of the corner portion 22a where the displacement of the piezoelectric vibration is relatively small (one end portion of the side along the X-axis direction of the vibration portion 22) in the outer peripheral end portion of the vibration portion 22.
  • One connecting portion 24 extending in the direction is provided.
  • the connecting portion 24 extending along the X-axis which is the axial direction of the vibration displacement distribution of the AT-cut vibrating portion 22, is not configured.
  • the vibration displacement at the corner (the end of the side in the X-axis direction) is the lowest region. For this reason, the influence of the leakage of the piezoelectric vibration from the vibration part 22 to the outer frame part 23 via the connecting part 24 is reduced, and the vibration part 22 of the crystal diaphragm 2 can be more efficiently piezoelectrically vibrated.
  • the stress acting on the vibration portion 22 can be reduced, and the frequency shift of the piezoelectric vibration caused by such stress can be reduced to stabilize the piezoelectric vibration. Can be improved. Moreover, it can be set as the crystal diaphragm 2 with the outer frame part advantageous for size reduction.
  • the present invention is characterized by having only one connecting portion 24 extending along the Z′-axis direction from the end portion of the vibrating portion 22 in the X-axis direction.
  • at the inner peripheral end of the outer frame portion 23 in the Z′-axis direction at least the corner portion of the vibrating portion 22 to which the connecting portion 24 is connected is close to the corner portion of the diagonal portion (the free end of the vibrating portion 22). It is also characterized by forming convex portions (protruding portions).
  • a semicircular convex portion 23c adjacent to the corner portion 22c at the diagonal position of the corner portion 22a of the vibration portion 22 to which the connecting portion 24 is connected is formed on the inner peripheral end 231 of the outer frame portion 23 in the Z′-axis direction.
  • the same shape is formed at the inner peripheral end 232 facing the inner peripheral end 231 of the outer frame portion 23 in the X-axis direction, close to the corner portion 22b of the vibrating portion 22 and facing the convex portion 23c.
  • the convex portion 23b is formed. That is, the two inner peripheral ends 231 and 232 in the Z′-axis direction of the outer frame portion 23 have two semicircular convex portions 23b that are close to the corner portions 22c and 22b of the vibration portion 22.
  • the convex portion 23 c are formed symmetrically with respect to the center line along the Z ′ axis while passing through the center of the outer frame portion 23 in the X-axis direction.
  • the convex part 23c of the inner peripheral end 231 of the outer frame part 23 in the Z′-axis direction The end portion near the corner portion 22c abuts and is supported, and the end portion near the corner portion 22b of the vibrating portion 22 abuts and is supported by the convex portion 23b of the inner peripheral end 232 of the outer frame portion 23 in the Z′-axis direction.
  • the vibration part 22 of the crystal diaphragm 2 does not bend greatly in the plate surface direction, and damage to the connecting part 24 can be prevented.
  • the convex portions 23b and 23c are provided only at a part of the inner peripheral end of the outer frame portion 23 in the Z′-axis direction, the effective area of the vibration portion 22 is not reduced, and the crystal vibration is prevented. It is also possible to eliminate the deterioration of the electrical characteristics due to the reduction of the vibration region due to the downsizing of the plate 2.
  • the number of convex portions is not limited to the present embodiment, and as in the other embodiment 2 shown in FIG. 10A, the corner is a diagonal position of the corner portion 22a of the vibrating portion 22 to which the connecting portion 24 is connected.
  • a semicircular convex portion 23c may be formed only at one position of the inner peripheral end 231 in the Z′-axis direction of the outer frame portion 23 adjacent to the portion 22c.
  • semicircular convex portions 23b, convex portions 23c, and convex portions 23d may be formed at three locations of the inner peripheral end 231 and the inner peripheral end 232 in the Z′-axis direction.
  • the convex portion is not limited to a semicircular shape in plan view, and may be a curved shape such as an elliptical shape or a polygonal shape such as a triangle or a rectangle.
  • the thickness of each convex portion is desirably the same as the thickness of the outer frame portion 23, the vibration portion 22 and the like when formed in accordance with the processing step, but is not particularly limited.
  • a protruding portion is formed at the corner portion of the inner peripheral end of the outer frame portion 23 as in the other embodiment 4 shown in FIG. May be formed.
  • a cutout portion is formed at a corner portion 235c where an inner peripheral end 231 along the Z′-axis direction of the outer frame portion 23 and an inner peripheral end 234 along the X-axis direction are connected at a substantially right angle.
  • a protruding portion 235f protruding to the 21 side is formed.
  • the protruding portion 235f protrudes toward the corner portion 22c of the vibrating portion 22, and is provided at a diagonal position of the connecting portion 24 in plan view across the center of the vibrating portion 22.
  • the protruding portion 235f is formed in a substantially triangular shape, and is formed in a shape (R shape) whose side surface is curved in a concave shape.
  • a corner portion 235 b where an inner peripheral end 232 along the Z′-axis direction of the outer frame portion 23 and an inner peripheral end 234 along the X-axis direction are connected at a substantially right angle, A projecting portion 235e projecting toward the cutout portion 21 is formed.
  • the projecting portion 235e has a substantially triangular shape and is formed in a shape (R shape) whose side surface is curved in a concave shape, and projects toward the corner portion 22b of the vibrating portion 22.
  • the outer peripheral portion 23 protrudes toward the cutout portion 21 at a corner portion 235d where the inner peripheral end 231 along the Z′-axis direction and the inner peripheral end 233 along the X-axis direction are connected at a substantially right angle.
  • a protruding portion 235g is formed.
  • the protruding portion 235g has a substantially triangular shape and is formed in a shape (R shape) whose side surface is curved in a concave shape, and protrudes toward the corner portion 22d of the vibrating portion 22.
  • the protruding portion 235g is provided at a diagonal position of the protruding portion 235e in plan view across the center of the vibrating portion 22.
  • the protruding portions 235e, 235f, and 235g are formed at the corner portions 235b, 235c, and 235d of the inner peripheral end of the outer frame portion 23.
  • the protrusions 235e, 235f, and 235g provide the same effects as the above-described protrusions 23b, 23c, and 23d. That is, the width of the cutout 21 is reduced by the amount of the protrusions 235e, 235f, and 235g, and the distance between the protrusions 235e, 235f, and 235g and the vibration part 22 is reduced. Can be prevented from being greatly bent in the plate surface direction, and damage to the connecting portion 24 can be prevented.
  • the protruding portions 235e, 235f, and 235g are provided only at a part of the inner peripheral end of the outer frame portion 23, the effective area of the vibrating portion 22 is not reduced, and the quartz vibrating plate 2 is reduced in size. It is also possible to eliminate the deterioration of the electrical characteristics due to the reduction of the vibration region due to.
  • the protruding portions 235 f provided at the diagonal positions of the connecting portion 24 are formed larger than the protruding portions 235 e and 235 g that are not provided at the diagonal positions of the connecting portion 24. For this reason, the distance between the protruding portion 235f provided at the diagonal position of the connecting portion 24 and the vibrating portion 22 is the distance between the protruding portions 235e and 235g that are not provided at the diagonal position of the connecting portion 24 and the vibrating portion 22. Is smaller than.
  • the vibration part 22 of the crystal diaphragm 2 is most easily displaced by the vibration part 22 to which the connecting part 24 is connected. It becomes the free end of the vibration part which is the corner
  • a protruding portion 235f that protrudes from the inner peripheral end of the outer frame portion 23 to the cutout portion 21 side is formed at a diagonal position of the connecting portion 24 in plan view across the center of the vibration portion 22.
  • the protruding portion 235f is formed larger than the protruding portions 235e and 235g that are not provided at the diagonal positions of the connecting portion 24.
  • the vibration part 22 of the crystal diaphragm 2 does not bend greatly in the plate surface direction, and damage to the connecting part 24 can be prevented.
  • the protruding portion 235f is formed on the outer frame portion 23 without forming the protruding portion on the vibrating portion 22, the piezoelectric elements such as the change of the vibration displacement region and the occurrence of spurious due to the forming of the protruding portion on the vibrating portion 22 are formed. The risk of adversely affecting the vibration characteristics is eliminated, and the impact resistance can be improved by increasing the rigidity of the outer frame portion 23.
  • the corners 22b, 22c, and 22d of the vibrating part 22 may be formed in a convexly curved shape (R shape) instead of a right angle. That is, the apexes of the corners 22b, 22c, and 22d of the vibration part 22 are formed by cutting out into a curved shape, and the width of the cutout part 21 is increased.
  • the notch of the corner portion 22 c provided at the diagonal position of the connecting portion 24 is replaced with the notch of the corner portions 22 b and 22 d not provided at the diagonal position of the connecting portion 24. It is preferable to form a small layer.
  • the distance between the corner portion 22c provided at the diagonal position of the connecting portion 24 and the outer frame portion 23 is set such that the corner portions 22b and 22d and the outer frame portion 23 that are not provided at the diagonal position of the connecting portion 24
  • the same effect as that obtained when the outer frame portion 23 is provided with the convex portion 23c (see FIG. 4) and the protruding portion 235f (see FIG. 11) as described above can be obtained.
  • the connecting portion 24 is formed with a wide portion 24b (first wide portion in the present invention) on the side surface on the + X-axis side of the connecting portion 24, and the wide portion 24b is only directed from the vibrating portion 22 toward the outer frame portion 23.
  • the width width in the X-axis direction
  • FIGS. 4 and 5 details of additional feature points according to the present embodiment will be described.
  • the connecting portion 24 of this embodiment includes a wide portion 24a (second wide portion in the present invention) and a wide portion 24b (in the present invention) on both the ⁇ X-axis side surface and the + X-axis side surface of the connecting portion 24. 1st wide part) is formed.
  • Each wide portion is formed in a substantially square shape in a plan view that is linearly wide only in one direction from the end portion 241 in contact with the vibration portion 22 to the entire end portion 242 in contact with the outer frame portion 23.
  • the wide portion 24b is formed to have a larger spread angle with respect to the Z ′ axis and a larger area than the wide portion 24a. That is, the wide portion 24a and the wide portion 24b are formed in an asymmetric shape.
  • the rigidity of the connecting portion with the outer frame portion 23 on the fixed end side of the connecting portion 24 is increased, and the strain stress applied to the connecting portion 24 due to the displacement of the vibrating portion 22 of the crystal diaphragm 2 due to an external impact. Can be dispersed so as to spread in the outer frame portion 23.
  • the influence of vibration leakage from the vibrating portion 22 to the outer frame portion 23 can be suppressed as compared with the case where the entire connecting portion 24 is configured to be wide.
  • the wide portion 24a and the wide portion 24b are formed in an asymmetric shape, the outer frame portion 23 is changed by changing the stress balance between the ⁇ X-axis side surface and the + X-axis side surface of the connecting portion 24. And the concentration of strain stress applied to the connecting portion of the connecting portion 24 can be relaxed.
  • the shape of these wide parts is not restricted to this form, and the wide part 24a1 is connected to the end part 241 in contact with the vibrating part 22 from the center of the connecting part 24 as in the second embodiment shown in FIG. And the end 242, which is in contact with the outer frame 23, is formed so as to be curved in one direction, and the wide portion 24b1 extends from the end 241 in contact with the vibrating portion 22 to the outer frame 23. It may be formed so as to be wide in a curved shape only in one direction over the entire end portion 242 in contact therewith. Further, as in the third embodiment shown in FIG.
  • the wide portion 24b2 is only the side surface on the + X-axis side of the connecting portion 24, and the end contacting the outer frame portion 23 from the end portion 241 contacting the vibration portion 22.
  • the entire portion 242 may be formed so as to be linearly wide only in one direction.
  • the wide portion of the present embodiment is formed on the entire connecting portion 24 (the entire portion from the end portion 241 that is the connection point to the vibration portion 22 to the end portion 242 that is the connection point to the outer frame portion 23).
  • it may be formed only on a part of the connecting portion 24.
  • the shape thereof may be a curved shape, a linear shape, or a combination thereof.
  • the first wide portion 24d provided on the side surface on the + X axis side of the connecting portion 24 and the second wide portion 24e provided on the side surface on the ⁇ X axis side of the connecting portion 24. Are formed only on a part of the connecting part 24 and are not formed on the entire connecting part 24.
  • the first excitation electrode 221 and the first extraction electrode 223 are not shown.
  • the first wide portion 24d and the second wide portion 24e are provided in a portion on the outer frame portion 23 side (a portion on the ⁇ Z ′ axis side) of the connecting portion 24.
  • the connecting portion 24 is not provided in the portion on the vibrating portion 22 side (the portion on the + Z ′ axis side).
  • the first wide portion 24d and the second wide portion 24e are formed in a substantially triangular shape, and are formed in a shape (R shape) whose side surface is curved in a concave shape.
  • a third wide portion 24f is formed on the portion of the connecting portion 24 on the vibrating portion 22 side (the portion on the + Z ′ axis side). Unlike the first wide portion 24d and the second wide portion 24e, the third wide portion 24f is formed so that the width gradually decreases from the vibrating portion 22 toward the outer frame portion 23.
  • the third wide portion 24f is formed in a substantially triangular shape, and is formed in a shape (R shape) whose side surface is curved in a concave shape.
  • the third wide portion 24f is provided on the side surface of the connecting portion 24 on the ⁇ X axis side. That is, the second wide portion 24e and the third wide portion 24f are provided on the side surface of the connecting portion 24 on the ⁇ X axis side. In the example of FIG. 13, a portion 24h extending in parallel with the Z′-axis direction is provided between the second wide portion 24e and the third wide portion 24f.
  • the first wide portion 24d is provided on the side surface of the connecting portion 24 on the ⁇ X axis side, and the portion on the vibrating portion 22 side (the portion on the + Z ′ axis side) 24g of the connecting portion 24 is Z ′. It is formed parallel to the axial direction.
  • the side surface of the portion 24g on the + X-axis side extends in a straight line from the side 225 along the Z′-axis direction of the vibration unit 22.
  • the first wide portion 24d and the second wide portion 24e are provided on the ⁇ Z ′ axis side of the central position in the Z′-axis direction of the connecting portion 24, and + Z ′ from the central position.
  • a third wide portion 24f is provided on the shaft side.
  • the present invention is not limited to this, and the first wide portion 24d and the second wide portion 24e may be formed up to a position exceeding the center position of the connecting portion 24 in the Z′-axis direction.
  • the connecting portion 24 with the third wide portion 24f in addition to the first wide portion 24d and the second wide portion 24e, the first wide portion 24d and the second wide portion 24e allow the connecting portion 24 to
  • the rigidity of the connection part (end part 242) with the outer frame part 23 can be increased, and the rigidity of the connection part (end part 241) of the coupling part 24 with the vibration part 22 can be increased by the third wide part 24f.
  • the third wide portion 24 f is formed smaller than the first wide portion 24 d and the second wide portion 24 e in plan view, and thus from the vibrating portion 22 via the connecting portion 24. While suppressing the influence of vibration leakage on the outer frame portion 23, it is also possible to suppress adverse effects on the piezoelectric vibration characteristics such as the occurrence of spurious.
  • the first extraction electrode 223 is extracted from the first excitation electrode 221, and is connected to the connection joint pattern 27 formed on the outer frame portion 23 via the connecting portion 24.
  • the second extraction electrode 224 is extracted from the second excitation electrode 222 and connected to the connection joint pattern 28 formed on the outer frame portion 23 via the connection portion 24.
  • the first excitation electrode 221 is a base PVD film formed by physical vapor deposition on one main surface 2201 of the vibration part 22 and an electrode formed by stacking the base PVD film by physical vapor deposition. It consists of a PVD film.
  • the first extraction electrode 223 includes a base PVD film formed by physical vapor deposition on a part of one main surface 2401 and a part of one side surface of the connecting portion 24, and a physical layer on the base PVD film.
  • the electrode PVD film is formed by vapor deposition.
  • the second excitation electrode 222 is a base PVD film formed by physical vapor deposition on the other main surface 2202 of the vibration part 22 and an electrode formed by stacking the base PVD film by physical vapor deposition. It consists of a PVD film.
  • the second extraction electrode 224 includes a base PVD film formed by physical vapor deposition on a part of the other main surface 2402 and a part of the other side surface of the connecting portion 24, and a physical layer on the base PVD film.
  • the electrode PVD film is formed by vapor deposition.
  • vibration-side sealing portions 25 for joining the crystal diaphragm 2 to the first sealing member 3 and the second sealing member 4 are provided.
  • a vibration side first bonding pattern 251 for bonding to the first sealing member 3 is formed on the vibration side sealing portion 25 of the one main surface 211 of the crystal diaphragm 2.
  • a vibration-side second bonding pattern 252 for bonding to the second sealing member 4 is formed on the vibration-side sealing portion 25 of the other main surface 212 of the crystal diaphragm 2.
  • the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252 are provided on the outer frame portion 23 described above, and are formed in an annular shape in plan view.
  • the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252 are provided so as to be close to the outer peripheral edges of both the main surfaces 211 and 212 of the quartz crystal vibrating plate 2.
  • the pair of first excitation electrode 221 and second excitation electrode 222 of the crystal diaphragm 2 are not electrically connected to the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252.
  • the vibration-side first bonding pattern 251 includes a base PVD film 2511 formed by physical vapor deposition on one main surface 211 and an electrode PVD formed by physical vapor deposition on the base PVD film 2511 and stacked.
  • the vibration-side second bonding pattern 252 includes a base PVD film 2521 formed by physical vapor deposition on the other main surface 212 and an electrode PVD formed by physical vapor deposition on the base PVD film 2521 and stacked.
  • a film 2522 is a film 2521 formed by physical vapor deposition on the other main surface 212 and an electrode PVD formed by physical vapor deposition on the base PVD film 2521 and stacked.
  • the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252 have the same configuration, and a plurality of layers are stacked on the vibration side sealing portion 25 of both main surfaces 211 and 212, A Ti layer (or Cr layer) and an Au layer are formed by vapor deposition from the lowermost layer side.
  • the underlying PVD films 2511 and 2521 are made of a single material (Ti (or Cr)), and the electrode PVD films 2512 and 2522 are formed.
  • the electrode PVD films 2512 and 2522 are made of a single material (Au) and are thicker than the underlying PVD films 2511 and 2521.
  • first excitation electrode 221 and the vibration-side first bonding pattern 251 formed on the one main surface 211 of the crystal diaphragm 2 have the same thickness, and the first excitation electrode 221 and the vibration-side first bonding pattern 251 have the same thickness.
  • the second excitation electrode 222 and the vibration side second bonding pattern 252 formed on the other main surface 212 of the quartz crystal plate 2 have the same thickness, and the second excitation electrode 222 and the vibration side are made of the same metal.
  • the surface of the second bonding pattern 252 is made of the same metal.
  • the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252 are non-Sn patterns.
  • the first excitation electrode 221, the first extraction electrode 223, and the vibration-side first bonding pattern 251 can have the same configuration, and in this case, the first excitation electrode 221 and the first extraction electrode 223 are the same process. And the vibration side 1st joining pattern 251 can be formed in a lump.
  • the second excitation electrode 222, the second extraction electrode 224, and the vibration-side second bonding pattern 252 can have the same configuration. In this case, the second excitation electrode 222, the second extraction electrode 224 are performed in the same process. And the vibration side 2nd joining pattern 252 can be formed collectively.
  • the underlying PVD film or the electrode PVD film is formed by a PVD method such as vacuum deposition, sputtering, ion plating, MBE, or laser ablation (for example, a film forming method for patterning in processing such as photolithography).
  • a PVD method such as vacuum deposition, sputtering, ion plating, MBE, or laser ablation (for example, a film forming method for patterning in processing such as photolithography).
  • a PVD method such as vacuum deposition, sputtering, ion plating, MBE, or laser ablation (for example, a film forming method for patterning in processing such as photolithography).
  • one through hole (first through hole 26) penetrating between the one main surface 211 and the other main surface 212 is formed in the crystal diaphragm 2.
  • the first through hole 26 is provided in the outer frame portion 23 of the crystal diaphragm 2.
  • the 1st through-hole 26 is connected with the joining pattern 453 for a connection of the 2nd sealing member 4 mentioned later.
  • the first through hole 26 has a through electrode 261 for conducting the electrodes formed on the one main surface 211 and the other main surface 212. It is formed along the inner wall surface. The central portion of the first through hole 26 becomes a hollow through portion 262 that penetrates between the one main surface 211 and the other main surface 212. Connection joint patterns 264 and 265 are formed on the outer periphery of the first through hole 26. The connection bonding patterns 264 and 265 are provided on both main surfaces 211 and 212 of the crystal diaphragm 2.
  • the connecting joint pattern 264 of the first through hole 26 formed on the one main surface 211 of the crystal diaphragm 2 extends along the X-axis direction in the outer frame portion 23.
  • a connection bonding pattern 27 connected to the first extraction electrode 223 is formed on one main surface 211 of the crystal diaphragm 2, and this connection bonding pattern 27 is also formed in the X direction in the outer frame portion 23. Extending along.
  • the connecting joint pattern 27 is provided on the opposite side of the connecting joint pattern 264 with respect to the Z′-axis direction, with the vibrating portion 22 (first excitation electrode 221) interposed therebetween. That is, the connecting joint patterns 27 and 264 are provided on both sides of the vibrating portion 22 in the Z′-axis direction.
  • connection bonding pattern 28 of the first through hole 26 formed on the other main surface 212 of the crystal diaphragm 2 extends along the X-axis direction in the outer frame portion 23.
  • a connection bonding pattern 28 connected to the second extraction electrode 224 is formed on the other main surface 212 of the crystal diaphragm 2, and this connection bonding pattern 28 is also formed in the outer frame portion 23 in the X-axis direction. Extending along.
  • the connection bonding pattern 28 is provided on the opposite side of the connection bonding pattern 265 with respect to the Z′-axis direction, with the vibrating portion 22 (second excitation electrode 222) interposed therebetween. That is, the connecting joint patterns 28 and 265 are provided on both sides of the vibrating portion 22 in the Z′-axis direction.
  • connection bonding patterns 27, 28, 264, and 265 have the same configuration as the vibration-side first bonding pattern 251 and the vibration-side second bonding pattern 252, and the vibration-side first bonding pattern 251 and the vibration-side second bonding pattern 252 are the same. Can be formed by the same process.
  • the connection bonding patterns 27, 28, 264, and 265 are formed of a base PVD film formed by physical vapor deposition on both main surfaces 211 and 212 of the crystal diaphragm 2, and the base PVD film. It consists of an electrode PVD film formed by physical vapor deposition thereon.
  • the first through hole 26 and the connecting bonding patterns 27, 28, 264, and 265 are formed inside the inner space 13 (inside the inner peripheral surface of the bonding material 11) in a plan view.
  • the internal space 13 is formed inward (inner side) of the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252 in plan view.
  • the inside of the internal space 13 means strictly the inside of the inner peripheral surface of the bonding material 11 without including the bonding material 11 described later.
  • the first through hole 26 and the connecting bonding patterns 27, 28, 264, 265 are not electrically connected to the vibration side first bonding pattern 251 and the vibration side second bonding pattern 252.
  • the first sealing member 3 is made of a material having a bending rigidity (secondary moment of section ⁇ Young's modulus) of 1000 [N ⁇ mm 2 ] or less. Specifically, as shown in FIGS. 2 and 3, the first sealing member 3 is a rectangular parallelepiped substrate formed from a single glass wafer, and the other main surface 312 ( The surface to be bonded to the quartz diaphragm 2 is formed as a flat smooth surface (mirror finish).
  • the other main surface 312 of the first sealing member 3 is provided with a sealing-side first sealing portion 32 for joining to the crystal diaphragm 2.
  • the sealing side first sealing portion 32 is formed with a sealing side first bonding pattern 321 for bonding to the crystal vibrating plate 2.
  • the sealing side first bonding pattern 321 is formed in an annular shape in plan view.
  • the sealing-side first bonding pattern 321 is provided so as to be close to the outer peripheral edge of the other main surface 312 of the first sealing member 3.
  • the sealing side first bonding pattern 321 has the same width at all positions on the sealing side first sealing portion 32 of the first sealing member 3.
  • the sealing-side first bonding pattern 321 is formed by stacking a base PVD film 3211 formed by physical vapor deposition on the first sealing member 3 and a physical vapor deposition on the base PVD film 3211. Electrode PVD film 3212 formed. Note that in this embodiment, Ti (or Cr) is used for the base PVD film 3211 and Au is used for the electrode PVD film 3212. Moreover, the sealing side 1st joining pattern 321 is a non-Sn pattern. Specifically, the sealing side first bonding pattern 321 is configured by laminating a plurality of layers on the sealing side first sealing portion 32 of the other main surface 312, and the Ti layer (or from the lowermost layer side). Cr layer) and Au layer are formed by vapor deposition.
  • connection joint patterns 35 and 36 to be joined to the connection joint patterns 264 and 27 of the crystal diaphragm 2 are formed on the other main surface 312 of the first sealing member 3, that is, on the surface facing the crystal diaphragm 2, connection joint patterns 35 and 36 to be joined to the connection joint patterns 264 and 27 of the crystal diaphragm 2 are formed.
  • the connecting bonding patterns 35 and 36 extend along the direction in the short side direction (A1 direction in FIG. 3) of the first sealing member 3.
  • the connecting bonding patterns 35 and 36 are provided at a predetermined interval in the long side direction (A2 direction in FIG. 3) of the first sealing member 3, and the connecting bonding patterns 35 and 36 are spaced in the A2 direction. Is substantially the same as the interval (see FIG. 4) in the Z′-axis direction of the connection pattern 264, 27 for connection of the crystal plate 2.
  • connection bonding patterns 35 and 36 are connected to each other through the wiring pattern 33.
  • the wiring pattern 33 is provided between the connection bonding patterns 35 and 36.
  • the wiring pattern 33 extends along the A2 direction.
  • the wiring pattern 33 is not bonded to the connection bonding patterns 264 and 27 of the crystal diaphragm 2.
  • connection bonding patterns 35 and 36 and the wiring pattern 33 have the same configuration as the sealing-side first bonding pattern 321 and can be formed by the same process as the sealing-side first bonding pattern 321.
  • the connecting bonding patterns 35 and 36 and the wiring pattern 33 include a base PVD film formed by physical vapor deposition on the other main surface 312 of the first sealing member 3, and the base PVD film. It consists of an electrode PVD film formed by physical vapor deposition thereon.
  • connection bonding patterns 35 and 36 and the wiring pattern 33 are formed inside the internal space 13 (inside the inner peripheral surface of the bonding material 11) in plan view.
  • the connection bonding patterns 35 and 36 and the wiring pattern 33 are not electrically connected to the sealing-side first bonding pattern 321.
  • the A1 direction in FIG. 3 coincides with the X-axis direction in FIG. 4, and the A2 direction in FIG. 3 coincides with the Z′-axis direction in FIG.
  • the second sealing member 4 is made of a material having a bending rigidity (secondary moment of section ⁇ Young's modulus) of 1000 [N ⁇ mm 2 ] or less. Specifically, as shown in FIGS. 6 and 7, the second sealing member 4 is a rectangular parallelepiped substrate formed from a single glass wafer, and one main surface 411 of the second sealing member 4 ( The surface to be bonded to the quartz diaphragm 2 is formed as a flat smooth surface (mirror finish).
  • the main surface 411 of the second sealing member 4 is provided with a sealing-side second sealing portion 42 for joining to the crystal diaphragm 2.
  • the sealing-side second sealing part 42 is formed with a sealing-side second bonding pattern 421 for bonding to the crystal vibrating plate 2.
  • the sealing-side second bonding pattern 421 is formed in an annular shape in plan view.
  • the sealing-side second bonding pattern 421 is provided so as to be close to the outer peripheral edge of the one main surface 411 of the second sealing member 4.
  • the sealing side second bonding pattern 421 has the same width at all positions on the sealing side second sealing portion 42 of the second sealing member 4.
  • the sealing-side second bonding pattern 421 is formed by stacking a base PVD film 4211 formed by physical vapor deposition on the second sealing member 4 and a physical vapor deposition on the base PVD film 4211.
  • the electrode PVD film 4212 is formed. Note that in this embodiment, Ti (or Cr) is used for the base PVD film 4211 and Au is used for the electrode PVD film 4212.
  • the sealing-side second bonding pattern 421 is a non-Sn pattern. Specifically, the sealing-side second bonding pattern 421 is configured by laminating a plurality of layers on the sealing-side second sealing portion 42 of the other main surface 412, and Ti layer (or from the lowermost layer side) Cr layer) and Au layer are formed by vapor deposition.
  • a pair of external electrode terminals (one external electrode terminal 431, etc.) electrically connected to the outside are provided on the other main surface 412 of the second sealing member 4 (an outer main surface not facing the crystal diaphragm 2).
  • An external electrode terminal 432) is provided.
  • the one external electrode terminal 431 and the other external electrode terminal 432 are respectively located at both ends in the longitudinal direction of the other main surface 412 of the second sealing member 4 in the plan view.
  • the pair of external electrode terminals are formed of a base PVD film 4311 and 4321 formed by physical vapor deposition on the other main surface 412, and a base PVD film 4311,
  • the electrode PVD films 4312 and 4322 are formed by physical vapor deposition on 4321 and are stacked.
  • the one external electrode terminal 431 and the other external electrode terminal 432 occupy one-third or more of the other main surface 412 of the second sealing member 4.
  • the second sealing member 4 includes two through-holes (second through-hole 45 and third through-hole that penetrate between the one main surface 411 and the other main surface 412. 46) is formed.
  • the second through hole 45 is connected to one external electrode terminal 431 and the connection pattern 265 for connection of the crystal diaphragm 2.
  • the third through hole 46 is connected to the other external electrode terminal 432 and the connection pattern 28 for connection of the crystal diaphragm 2.
  • the second through hole 45 and the third through hole 46 have through electrodes 451 for conducting the electrodes formed on one main surface 411 and the other main surface 412.
  • 461 is formed along the inner wall surfaces of the second through hole 45 and the third through hole 46, respectively.
  • the central portions of the second through hole 45 and the third through hole 46 are hollow through portions 452 and 462 that penetrate between the one main surface 411 and the other main surface 412.
  • Connection joint patterns 453 and 463 are formed on the outer periphery of each of the second through hole 45 and the third through hole 46.
  • connection bonding patterns 453 and 463 are provided on one main surface 411 of the second sealing member 4 and are bonded to the connection bonding patterns 265 and 28 of the crystal diaphragm 2.
  • the joint patterns for connection 453 and 463 extend along the direction in the short side direction (B1 direction in FIG. 6) of the second sealing member 4.
  • the connecting bonding patterns 453 and 463 are provided at a predetermined interval in the long side direction (B2 direction in FIG. 6) of the second sealing member 4, and the connecting bonding patterns 453 and 463 are spaced in the B2 direction. Is substantially the same as the interval (see FIG. 5) in the Z′-axis direction of the connection pattern 265, 28 for connection of the crystal plate 2.
  • connection bonding patterns 453 and 463 have the same configuration as the sealing-side second bonding pattern 421 and can be formed by the same process as the sealing-side second bonding pattern 421. Specifically, the connection bonding patterns 453 and 463 are formed by forming a base PVD film formed by physical vapor deposition on one main surface 411 of the second sealing member 4 and a physical layer on the base PVD film. The electrode PVD film is formed by vapor deposition.
  • the second through hole 45, the third through hole 46, and the connection pattern for connection 453, 463 are formed in the inner space 13 in plan view.
  • the second through hole 45, the third through hole 46, and the connecting joint patterns 453 and 463 are not electrically connected to the sealing-side second joint pattern 421.
  • the one external electrode terminal 431 and the other external electrode terminal 432 are not electrically connected to the sealing-side second bonding pattern 421.
  • the B1 direction in FIG. 6 coincides with the X-axis direction in FIG. 5, and the B2 direction in FIG. 6 coincides with the Z′-axis direction in FIG.
  • the quartz-crystal diaphragm 2 and the first sealing member 3 are connected to the vibration-side first bonding pattern 251 without using a dedicated bonding material such as an adhesive as in the prior art.
  • diffusion bonding is performed in a state where the sealing-side first bonding pattern 321 is overlapped, and the crystal diaphragm 2 and the second sealing member 4 overlap the vibration-side second bonding pattern 252 and the sealing-side second bonding pattern 421.
  • the sandwiched package 12 shown in FIG. 1 is manufactured by diffusion bonding in the combined state. Thereby, the internal space 13 of the package 12, that is, the accommodation space of the vibration part 22 is hermetically sealed.
  • the vibration side first bonding pattern 251 and the sealing side first bonding pattern 321 itself become the bonding material 11 generated after diffusion bonding, and the vibration side second bonding pattern 252 and the sealing side second bonding pattern 421 itself diffuse. It becomes the joining material 11 produced
  • the bonding material 11 is formed in an annular shape in plan view. In this embodiment, all the wirings from the first and second excitation electrodes 221 and 222 of the crystal diaphragm 2 to the one external electrode terminal 431 and the other external electrode terminal 432 are provided inside the bonding material 11 in plan view. ing.
  • the bonding material 11 is formed so as to be close to the outer peripheral edge of the package 12 in plan view. Thereby, the size of the vibration part 22 of the crystal diaphragm 2 can be increased.
  • connection bonding is performed in a state where the above-described bonding patterns for connection are also overlapped.
  • connection bonding pattern 264 of the crystal diaphragm 2 and the connection bonding pattern 35 of the first sealing member 3 are diffusion bonded.
  • connection bonding pattern 27 of the crystal diaphragm 2 and the connection bonding pattern 36 of the first sealing member 3 are diffusion bonded.
  • connection bonding pattern 265 of the crystal diaphragm 2 and the connection bonding pattern 453 of the second sealing member 4 are diffusion bonded.
  • the connection bonding pattern 28 of the crystal diaphragm 2 and the connection bonding pattern 463 of the second sealing member 4 are diffusion bonded. Then, each connection bonding pattern becomes the bonding material 14 generated after diffusion bonding.
  • bonding materials 14 formed by diffusion bonding serve to connect the through electrodes of the through holes and the bonding material 14 and to hermetically seal the bonding portions.
  • bonding material 14 is provided inward of the sealing bonding material 11 in a plan view, the bonding material 14 is indicated by a broken line in FIG.
  • the first through hole 26 and the second through hole 45 are arranged so as not to overlap in a plan view. Specifically, as shown in FIG. 6, when viewed from the front (when viewed from the direction B1 in FIG. 6), the first through hole 26 and the second through hole 45 are arranged in a straight line up and down. . In FIG. 6, for convenience, the first through hole 26 formed in the quartz crystal plate 2 provided above the second sealing member 4 is indicated by a two-dot chain line. On the other hand, when viewed from the side (as viewed from the direction B2 in FIG. 6), the first through hole 26 and the second through hole 45 are offset and arranged so as not to line up and down.
  • the first through hole 26 is connected to one end in the longitudinal direction (B1 direction) of the bonding material 14 (connection bonding patterns 265 and 453), and the second through the other end in the longitudinal direction of the bonding material 14.
  • a through hole 45 is connected.
  • the through electrode 261 of the first through hole 26 and the through electrode 451 of the second through hole 45 are electrically connected via the bonding material 14. In this way, by arranging the first through hole 26 and the second through hole 45 so as not to overlap in plan view, the airtightness of the internal space 13 in which the vibrating portion 22 of the crystal diaphragm 2 is hermetically sealed is ensured. Therefore, a more preferable structure is obtained.
  • the first sealing member 3 and the crystal diaphragm 2 have a gap of 1.00 ⁇ m or less
  • the second sealing member 4 and the crystal diaphragm 2 Has a gap of 1.00 ⁇ m or less. That is, the thickness of the bonding material 11 between the first sealing member 3 and the crystal vibrating plate 2 is 1.00 ⁇ m or less, and the bonding material 11 between the second sealing member 4 and the crystal vibrating plate 2 The thickness is 1.00 ⁇ m or less (specifically, 0.01 ⁇ m to 1.00 ⁇ m in the Au—Au junction of this embodiment).
  • a conventional metal paste sealing material using Sn has a thickness of 5 ⁇ m to 20 ⁇ m.
  • the other main surface 312 of the first sealing member 3, that is, the surface facing the crystal vibrating plate 2 is connected to the first excitation electrode 221 of the crystal vibrating plate 2.
  • a wiring pattern 33 to be connected is provided, and at least a part of the wiring pattern 33 is provided at a position overlapping with the space (cutout part 21) between the vibration part 22 and the outer frame part 23 in plan view.
  • the wiring pattern 33 is more preferably provided at a position that does not overlap the first excitation electrode 221 and the second excitation electrode 222 in plan view.
  • the other main surface 312 of the first sealing member 3 can be effectively used as an arrangement region for the wiring pattern 33, and the crystal unit 101 can be reduced in size while ensuring the size of the vibration unit 22. Can be achieved. That is, it is not necessary to separately secure an area for arranging the wiring pattern 33 on the crystal diaphragm 2, and the size of the vibrating portion 22 can be increased accordingly. Therefore, in order to satisfy the demand for miniaturization of the crystal unit 101, the size of the vibration unit 22 does not need to be reduced more than necessary.
  • the other main surface 312 of the first sealing member 3 is formed as a flat surface, the thickness of the first sealing member 3 can be suppressed, and accordingly, the crystal resonator 101 can be reduced in height. Can contribute. That is, when the other main surface 312 of the first sealing member 3 is provided with a recess, there is a concern that the thickness of the first sealing member 3 increases by an amount corresponding to the depth of the recess. However, by forming the other main surface 312 of the first sealing member 3 as a flat surface, it is possible to suppress an increase in the thickness of the first sealing member 3, and to reduce the height of the crystal unit 101. Can contribute.
  • the vibration part 22 and the connecting part 24 of the crystal diaphragm 2 are formed thinner than the outer frame part 23, the vibration part 22 and the first sealing are achieved while reducing the height of the crystal resonator 101. This is effective in suppressing contact with the member 3 and the second sealing member 4.
  • glass is used for the first sealing member 3 and the second sealing member 4, but the present invention is not limited to this, and quartz may be used.
  • the crystal resonator device is a crystal resonator, but the present invention can also be applied to a crystal resonator device (for example, a crystal oscillator) other than the crystal resonator.
  • the present invention is suitable for a crystal vibration device (a crystal resonator, a crystal oscillator, or the like) using quartz as a material for a substrate of a piezoelectric diaphragm.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】耐衝撃性を高めつつ電気的特性の劣化を抑制したより信頼性の高い水晶振動板、及び水晶振動デバイスを提供する。 【解決手段】ATカットの水晶振動板2であって、中央部分で表裏主面に励振電極が形成された平面視矩形状の振動部22と、振動部の外周に形成された平面視矩形状の切り抜き部21と、上記切り抜き部の外周に形成されるとともに平面視矩形状の外枠部23と、上記振動部と外枠部を接続するとともに、上記振動部のX軸方向に沿った辺の一端部から、上記振動部のZ´軸方向に沿って延出された1つの連結部24とを有している。上記連結部は、外枠部に向かってのみ次第に幅が広くなる幅広部24a,24bが形成されている。

Description

水晶振動板、及び水晶振動デバイス
 本発明は、一主面に形成された第1励振電極と、他主面に形成された第2励振電極とが備えられたATカットの水晶振動板及びこの水晶振動板が備えられた水晶振動デバイスに関する。
 近年、各種電子機器の動作周波数の高周波化や、パッケージの小型化(特に低背化)が進んでいる。そのため、高周波化やパッケージの小型化にともなって、水晶振動デバイスも高周波化やパッケージの小型化への対応が求められている。
 特に、水晶振動デバイスのうち小型化に対応したものとしては、その筐体が直方体のパッケージで構成され、ガラスや水晶など脆性材料からなる第1封止部材及び第2封止部材と、両主面に励振電極が形成された水晶振動板とから構成され、第1封止部材と第2封止部材とが水晶振動板を介して積層して接合され、パッケージの内部に配された水晶振動板の励振電極が気密封止されている(例えば、下記する特許文献1ご参照)ものがある。このような積層形態の水晶振動デバイスでは一般的にサンドイッチ構造と称している。
特開2015-122652号公報
 ところで、上述のようなサンドイッチ構造の水晶振動デバイスでは、水晶振動板の機能領域に、水晶振動子として励振するための振動部としての領域と、水晶振動板と封止部材とを接合して振動部を気密封止するための外枠部としての領域と、外枠部によって上記振動部の励振が妨げられないように、外枠部と振動部とを隔離するための切り抜き部としての領域と、振動部と外枠部とを接続するため連結部としての領域と、水晶振動板の配線と封止部材の配線とを電気的に接続するための配線部(配線パターンや配線用のスルーホール等)としての領域とがある。
 このような水晶振動デバイスでは、連結部の構成によって、振動部から外枠部へと振動変位の伝わりが大きくなると振動漏れが生じて圧電振動効率が悪くなることがあったり、落下などの外的衝撃に対して振動部が大きく撓むことで連結部の破損を招いたりするなどの問題点があった。特に、サンドイッチ構造の水晶振動デバイスでは、連結部の設計だけで振動漏れの悪影響をなくすとともに耐衝撃性を高めることを同時に実現することは困難であるのが現状であった。
 そこで、上記課題を解決するために、本発明は、耐衝撃性を高めつつ電気的特性の劣化を抑制したより信頼性の高い水晶振動板、及び水晶振動デバイスを提供することを目的とする。
 本発明では、上記目的を達成するために、一主面と他主面とを有する平面視矩形状のATカットの水晶振動板であって、上記水晶振動板の中央部分で、一主面に第1励振電極が形成され、他主面に第2励振電極が形成された平面視矩形状の振動部と、上記振動部の外周に形成された切り抜き部と、上記切り抜き部の外周に形成されるとともに内周端が平面視矩形状の外枠部と、上記振動部と上記外枠部を接続するとともに、上記振動部のX軸方向に沿った辺の一端部から、上記振動部のZ´軸方向に沿って延出され、上記外枠部のX軸方向に沿った内周端にのみ接続された1つの連結部とを有しており、上記連結部の+X軸側の側面に幅広部が形成されており、上記幅広部は上記振動部から上記外枠部に向かってのみ次第に幅が広くなるように形成されている。
 上記構成により、振動部と外枠部との接続を、振動部のX軸方向に沿った辺の一端部から振動部のZ´軸方向に沿って延出され、外枠部のX軸方向に沿った内周端にのみ接続された1つの連結部のみで実現することで、ATカットの振動部のうち振動変位分布のより高い軸方向であるX軸に沿って延出された連結部が構成されることはない。また、平面視矩形状の振動部では角部(X軸方向の辺の端部)における振動変位が最も低い領域となる。加えて、外枠部のX軸方向に沿った内周端となる1辺のみに連結部が接続されているため、このX軸方向に沿った内周端以外の複数の部分(複数の方向)に対して振動が伝達して漏れることがなくなる。以上により、振動部から外枠部への振動漏れの影響が少なくなり、より効率的に水晶振動板の振動部を圧電振動させることができる。また、1つの連結部のみで振動部と外枠部を接続することで、複数の連結部により振動部と外枠部を接続した場合と比較して、振動部への応力のかかり具合を低減できる。このため、外枠部から加わる応力によって、振動部に応力が加わることで周波数シフトすることが抑制されるので、より安定して水晶振動板の振動部を圧電振動させることができる。
 また、落下や加工工程における外的な衝撃が水晶振動板に加わった場合に、水晶振動板の振動部のうち最も変位しやすいのは、連結部が接続された振動部の角部に対して対角位置の振動部の角部である振動部の自由端となる。そして、水晶振動板の振動部が変位することで連結部に歪応力が最も集中するのは、連結部の自由端側の振動部との接続部分ではなく、連結部の固定端側の外枠部との接続部分となる。特に、連結部の外枠部との接続部分のうち、振動部の自由端から最も距離の離れた外枠部の内周端の角部に近接する側の接続部分が最大応力集中点となる。そこで、上記連結部は、外枠部の内周端の角部に近接する上記連結部の+X軸側の側面には少なくとも幅広部が形成されており、上記幅広部は振動部から外枠部に向かってのみ次第に幅が広くなるように形成されている。このため、連結部の固定端側の外枠部との接続部分の最大応力集中点の剛性を高めるとともに、外的な衝撃により水晶振動板の振動部が変位することで連結部に加わる歪応力を外枠部に広がるように分散させることができる。しかも、連結部全体を幅広に構成する場合や外枠部から振動部に向かって幅が広くなる幅広部を構成する場合に比べて、上述した振動部から外枠部への振動漏れの影響も飛躍的に抑制することができる。
 以上により、本発明では、耐衝撃性を高めつつ電気的特性の劣化を抑制したより信頼性の高い水晶振動板を提供することができる。
 本発明では、上記構成に加えて、上記連結部の-X軸側の側面にも第2幅広部が形成され、上記連結部の+X軸側の側面の幅広部を第1幅広部とした場合に、上記第1幅広部と上記第2幅広部とは非対称形状に形成されてもよい。
 上記構成により、歪応力が集中しやすい連結部の固定端側の外枠部との接続部分の剛性をさらに高めるとともに、上記連結部の-X軸側の側面と+X軸側の側面との応力バランスを変えることで、外枠部と連結部の接続部分に加わる歪応力の集中を緩和させることができる。
 本発明では、上記構成に加えて、上記第1幅広部及び上記第2幅広部は、上記連結部の-Z´軸側の部分に設けられていてもよい。この場合、上記連結部の+Z´軸側の部分であって、当該連結部の-X軸側の側面に第3幅広部が形成されており、上記第3幅広部は、上記振動部から上記外枠部に向かって次第に幅が狭くなるように形成されていてもよい。
 上記構成により、連結部に、第1幅広部及び第2幅広部に加え、第3幅広部が設けられているので、第1幅広部及び第2幅広部により連結部の外枠部との接続部分の剛性を高めるとともに、第3幅広部により連結部の振動部との接続部分の剛性も高めることができる。
 本発明では、上記構成に加えて、上記第3幅広部は、平面視で、上記第1幅広部及び上記第2幅広部よりも小さく形成されていてもよい。
 上記構成により、連結部を介して振動部から外枠部への振動漏れの影響を抑制しながら、スプリアスの発生などの圧電振動特性への悪影響も抑制することができる。
 本発明では、上記構成に加えて、上記振動部の中心を挟んで、平面視で上記連結部の対角位置には、上記外枠部の内周端から上記切り抜き部側へ突出する突出部が形成されていてもよい。
 上記構成により、振動部の自由端がX軸方向に過度な変位が起こる前に、外枠部の突出部に振動部の自由端近傍の端部が当接し支持される。このため、落下や加工工程における外的な衝撃が水晶振動板に加わった場合に、水晶振動板の振動部が板面方向に大きく撓むことがなくなり、連結部の破損などを防止することができる。また、振動部に突出部を形成しないで外枠部に突出部を形成しているので、振動部に突出部を形成することによる振動変位領域の変化やスプリアスの発生などの圧電振動特性への悪影響を及ぼすリスクがなくなり、外枠部の剛性を高めることによる耐衝撃性の向上にも貢献できる。
 本発明では、上記水晶振動板の一主面を覆う第1封止部材と、上記水晶振動板の他主面を覆う第2封止部材とが備えられた積層形態であるサンドイッチ構造の水晶振動デバイスに適用するのに望ましい。
 このような構成によると、水晶振動板を第1封止部材と第2封止部材とで挟まれた構造であるので、比較的に小型の水晶振動デバイスとすることができる。また、上述した水晶振動板が備えられているので、水晶振動デバイスとしての小型化を実現しながら耐衝撃性を高めつつ電気的特性の劣化を抑制することができる。
 以上により、本発明では、耐衝撃性を高めつつ電気的特性の劣化を抑制したより信頼性の高い水晶振動板を提供することができる。
図1は、本発明の実施形態にかかる水晶振動子の各構成を示した概略構成図である。 図2は、水晶振動子の第1封止部材の概略平面図である。 図3は、水晶振動子の第1封止部材の概略裏面図である。 図4は、水晶振動子の水晶振動板の概略平面図である。 図5は、水晶振動子の水晶振動板の概略裏面図である。 図6は、水晶振動子の第2封止部材の概略平面図である。 図7は、水晶振動子の第2封止部材の概略裏面図である。 図8は、本発明の他の実施形態1に関する平面図である。 図9は、図8のC-C線に沿った断面図である。 図10は、本発明の他の実施形態2、3に関する平面図である。 図11は、本発明の他の実施形態4に関する平面図である。 図12は、本発明の他の実施形態5に関する平面図である。 図13は、本発明の他の実施形態6に関する平面図であって、水晶振動板の要部を拡大して示す図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の実施の形態では、水晶振動デバイスとして水晶振動子に本発明を適用した場合について説明する。
 本形態にかかる水晶振動子101では、図1に示すように、水晶振動板2と、水晶振動板2の第1励振電極221(図4参照)を覆い、水晶振動板2の一主面211に形成された第1励振電極221を気密封止する第1封止部材3と、この水晶振動板2の他主面212に、水晶振動板2の第2励振電極222(図5参照)を覆い、第1励振電極221と対になって形成された第2励振電極222を気密封止する第2封止部材4が設けられている。この水晶振動子101では、水晶振動板2と第1封止部材3とが接合され、水晶振動板2と第2封止部材4とが接合されてサンドイッチ構造のパッケージ12が構成される。
 そして、水晶振動板2を介して第1封止部材3と第2封止部材4とが接合されることで、パッケージ12の内部空間13が形成され、このパッケージ12の内部空間13に、水晶振動板2の両主面211,212に形成された第1励振電極221及び第2励振電極222を含む振動部22が気密封止されている。本形態にかかる水晶振動子101は、例えば、1.0×0.8mmのパッケージサイズであり、小型化と低背化とを図ったものである。また、小型化に伴い、パッケージ12では、キャスタレーションを形成せずに、貫通孔(第1~第3貫通孔)を用いて電極の導通を図っている。
 次に、上記した水晶振動子101の各構成について、図1~図7を用いて説明する。なお、ここでは、水晶振動板2と第1封止部材3と第2封止部材4が接合されていない夫々単体として構成されている各部材について説明を行う。
 水晶振動板2は、図4,5に示すように、圧電材料である水晶からなり、その両主面(一主面211,他主面212)が平坦平滑面(鏡面加工)として形成されている。これらの一主面211と他主面212とは平行面である。本形態では、水晶振動板2として、平面視矩形状の厚みすべり振動を行うATカット水晶板が用いられている。図4,5に示す水晶振動板2では、水晶振動板2の両主面211,212が、XZ´平面とされている。このXZ´平面において、水晶振動板2の短手方向(短辺方向)に平行な方向がX軸方向とされ、水晶振動板2の長手方向(長辺方向)に平行な方向がZ´軸方向とされている。なお、ATカットは、人工水晶の3つの結晶軸である電気軸(X軸)、機械軸(Y軸)、及び光学軸(Z軸)のうち、Z軸に対してX軸周りに35°15′だけ傾いた角度で切り出す加工手法である。ATカット水晶板では、X軸は水晶の結晶軸に一致する。Y´軸及びZ´軸は、水晶の結晶軸のY軸及びZ軸からそれぞれ35°15′傾いた軸に一致する。Y´軸方向及びZ´軸方向は、ATカット水晶板を切り出すときの切り出し方向に相当する。
 水晶振動板2の中央部分には平面視矩形状に形成された振動部22を有しており、その両主面(一主面211,他主面212)に一対の励振電極(第1励振電極221,第2励振電極222)が形成されている。第1励振電極221,第2励振電極222には、後述する外部電極端子(一外部電極端子431,他外部電極端子432)に接続するための引出電極(第1引出電極223,第2引出電極224)が接続されている。
 つまり、振動部22の一主面側に第1励振電極221が形成され、当該第1励振電極221に対向するとともに振動部22の他主面側に第2励振電極222が形成されている。また、第1励振電極221には、後述する連結部24を経由して外枠部23へと延出され、最終的に一外部電極端子431に接続される第1引出電極223が形成され、第2励振電極222には、後述する連結部24を経由して外枠部23へと延出され、最終的に他外部電極端子432に接続される第2引出電極224が形成されている。
 また、水晶振動板2の振動部22の外周に形成され水晶振動板2の厚み方向に貫通(一主面211と他主面212との間を貫通)する外周端と内周端とが平面視矩形状の切り抜き部21と、振動部22と切り抜き部21との外周を取り囲んだ状態で形成された外周端と内周端とが平面視矩形状の外枠部23と、振動部22と外枠部23を接続するとともに水晶振動板2のZ´軸方向に延出され、外枠部23のX軸方向に沿った内周端233となる1辺のみに接続された1つの連結部(保持部)24とを有しており、水晶振動板2は振動部22と連結部24と外枠部23とが一体的に設けられた構成となっている。これら振動部22と連結部24と外枠部23の両主面(一主面,他主面)は、お互いに同じ面もしくは厚みが異なる平行面として形成されている。本形態では、振動部22と連結部24の厚みが同じ厚みで、これらの厚みより外枠部23の厚みが厚く形成されているため、振動部22と連結部24との両主面(一主面,他主面)がそれぞれ同じ面となり、振動部22と連結部24との両主面(一主面,他主面)に対して外枠部23の両主面(一主面,他主面)は平行な面となる。
 なお、本形態に限らず、振動部22と連結部24の厚みを変更してもよく、例えば、外枠部23が最も厚く形成し、振動部22が次に厚くなるように形成し、連結部24が最も薄くなるように形成してもよい。また、振動部22の一部に厚みの異なる領域を形成しメサ形状あるいは逆メサ形状としてもよい。このような外枠部23と連結部24との厚みの違いにより、外枠部23と連結部24、あるいは連結部24と振動部22との圧電振動の固有振動数が異なることになり、お互いに共鳴しにくくなる。
 また、図8,図9に示す他の実施形態1のように、連結部24と外枠部23とが同じ厚みで、振動部22のみが薄く形成してもよい。このような構成では、振動部22と連結部24の圧電振動の固有振動数が異なることになり、振動部22の圧電振動に連結部24が共鳴しにくくなることに加えて、連結部24の外枠部23との接続部分の剛性を高めるとともに、外部衝撃により振動部22が変位することで連結部24に加わる歪応力の集中を緩和させることができる。
 つまり、本形態では、連結部24は、振動部22と外枠部23との間のZ´軸方向に1箇所のみに設けられており、振動部22の+X方向かつ-Z´方向に位置する1つの角部22aのみ(振動部22のX軸方向に沿った辺の一端部)から、-Z´方向に向けて外枠部23まで延びている(Z´軸方向に沿って延出されている)。連結部24が設けられていない箇所が切り抜き部21としての空間(隙間)になっている。このように、振動部22の外周端部のうち、圧電振動の変位が比較的小さい角部22aの1カ所にのみ(振動部22のX軸方向に沿った辺の一端部)にZ´軸方向に延出された1つの連結部24が設けられている。
 このため、ATカットの振動部22のうち振動変位分布のより高い軸方向であるX軸に沿って延出された連結部24が構成されることはない。加えて、平面視矩形状の振動部22では角部(X軸方向の辺の端部)における振動変位が最も低い領域となる。このため、連結部24を介して振動部22から外枠部23への圧電振動の漏れの影響が少なくなり、より効率的に水晶振動板2の振動部22を圧電振動させることができる。また、連結部24を2つ以上設けた場合に比べて、振動部22に作用する応力を低減することができ、そのような応力に起因する圧電振動の周波数シフトを低減して圧電振動の安定性を向上させることができる。また、小型化に有利な外枠部付きの水晶振動板2とすることができる。
 本発明では、上述のように、振動部22のX軸方向の端部からZ´軸方向に沿って延出する1つだけの連結部24を有することに特徴があり、この特徴に加えて、外枠部23のZ´軸方向の内周端には、少なくとも連結部24が接続された振動部22の角部に対して対角(振動部22の自由端)の角部に近接する凸部(突出部)を形成していることにも特徴がある。以下、図4,図5に示すように、本実施形態による追加の特徴点の詳細について説明する。
 外枠部23のZ´軸方向の内周端231には、連結部24が接続された振動部22の角部22aの対角位置の角部22cに近接する半円形状の凸部23cを形成しており、外枠部23の内周端231にX軸方向に対向する内周端232で、振動部22の角部22bに近接するとともに凸部23cに対向する位置にも、同じ形状の凸部23bが形成されている。つまり、外枠部23のZ´軸方向の2つの内周端231と内周端232には、振動部22の角部22cと角部22bとに近接する半円形状の2つの凸部23bと凸部23cとが、外枠部23のX軸方向の中心を通るとともにZ´軸に沿った中心線に線対称に形成されている。
 このため、振動部22の自由端である角部22cがX軸方向に過度な変位が起こる前に、外枠部23のZ´軸方向の内周端231の凸部23cに振動部22の角部22c近傍の端部が当接し支持されるとともに、外枠部23のZ´軸方向の内周端232の凸部23bに振動部22の角部22b近傍の端部が当接し支持される。このため、水晶振動板2の振動部22が板面方向に大きく撓むことがなくなり、連結部24の破損などを防止することができる。また、これらの凸部23b,23cは、外枠部23のZ´軸方向の内周端の一部にのみ設けられていることで、振動部22の有効面積を狭めることもなくなり、水晶振動板2の小型化による振動領域の縮小による電気的特性の低下をなくすこともできる。
 なお、凸部の数は本形態に限らず、図10(a)に示す他の実施形態2のように、連結部24が接続された振動部22の角部22aの対角位置となる角部22cに近接する外枠部23のZ´軸方向の内周端231の1カ所のみに半円形状の凸部23cを形成したものであってもよい。さらに、図10(b)に示す他の実施形態3のように、連結部24が接続された振動部22の角部22a以外である全ての角部22b,22c,22dに近接する外枠部23のZ´軸方向の内周端231および内周端232の3カ所に半円形状の凸部23bと凸部23cと凸部23dとを形成したものであってもよい。
 なお、上記凸部は、平面視形状は半円形状のもの限るものでなく、楕円形状などの曲率形状のものであってもよいし、三角形や矩形などの多角形状のものであってもよい。加えて、各凸部の厚みは、加工工程に合わせて形成する場合、外枠部23や振動部22等の厚みと同じにすることが望ましいが、特に制限されるものではない。
 ここで、外枠部23の内周端に半円形状の凸部を設ける代わりに、図11に示す他の実施形態4のように、外枠部23の内周端の角部に突出部を形成してもよい。
 図11に示すように、外枠部23のZ´軸方向に沿った内周端231と、X軸方向に沿った内周端234とが略直角に接続される角部235cに、切り抜き部21側へ突出する突出部235fが形成されている。この突出部235fは、振動部22の角部22cへ向けて突出されており、振動部22の中心を挟んで、平面視で連結部24の対角位置に設けられている。突出部235fは、略三角形状に形成されており、側面が凹状に湾曲された形状(R形状)に形成されている。
 また、図11に示すように、外枠部23のZ´軸方向に沿った内周端232と、X軸方向に沿った内周端234とが略直角に接続される角部235bに、切り抜き部21側へ突出する突出部235eが形成されている。この突出部235eは、略三角形状で、側面が凹状に湾曲された形状(R形状)に形成されており、振動部22の角部22bへ向けて突出されている。同様に、外枠部23のZ´軸方向に沿った内周端231と、X軸方向に沿った内周端233とが略直角に接続される角部235dに、切り抜き部21側へ突出する突出部235gが形成されている。この突出部235gは、略三角形状で、側面が凹状に湾曲された形状(R形状)に形成されており、振動部22の角部22dへ向けて突出されている。突出部235gは、振動部22の中心を挟んで、平面視で突出部235eの対角位置に設けられている。
 このように、外枠部23の内周端の角部235b,235c,235dに、突出部235e,235f,235gが形成されている。突出部235e,235f,235gによって、上述した凸部23b,23c,23dと同様の効果が得られる。すなわち、突出部235e,235f,235gの分だけ、切り抜き部21の幅が狭くなり、突出部235e,235f,235gと、振動部22との距離が小さくなるので、水晶振動板2の振動部22が板面方向に大きく撓むことがなくなり、連結部24の破損などを防止することができる。また、突出部235e,235f,235gは、外枠部23の内周端の一部にのみ設けられていることで、振動部22の有効面積を狭めることもなくなり、水晶振動板2の小型化による振動領域の縮小による電気的特性の低下をなくすこともできる。
 また、図11に示すように、連結部24の対角位置に設けられた突出部235fが、連結部24の対角位置に設けられていない突出部235e,235gよりも大きく形成されている。このため、連結部24の対角位置に設けられた突出部235fと振動部22との距離が、連結部24の対角位置に設けられていない突出部235e,235gと振動部22との距離よりも、小さくなっている。
 ここで、落下や加工工程における外的な衝撃が水晶振動板2に加わった場合に、水晶振動板2の振動部22うち最も変位しやすいのは、連結部24が接続された振動部22の角部22aに対して対角位置の振動部22の角部22cである振動部の自由端となる。連結部24はZ´軸方向に沿って延出されているので、振動部22の自由端は、特に板面方向(X軸とZ´軸)のうちX軸方向に過度な変位が生じやすい。この構成では、振動部22の中心を挟んで、平面視で連結部24の対角位置に、外枠部23の内周端から切り抜き部21側へ突出する突出部235fが形成されており、この突出部235fが、連結部24の対角位置に設けられていない突出部235e,235gよりも大きく形成されている。これにより、振動部22の自由端がX軸方向に過度な変位が起こる前に、外枠部23の突出部235fに振動部22の自由端近傍の端部が当接し支持される。このため、水晶振動板2の振動部22が板面方向に大きく撓むことがなくなり、連結部24の破損などを防止することができる。また、振動部22に突出部を形成しないで外枠部23に突出部235fを形成しているので、振動部22に突出部を形成することによる振動変位領域の変化やスプリアスの発生などの圧電振動特性への悪影響を及ぼすリスクがなくなり、外枠部23の剛性を高めることによる耐衝撃性の向上にも貢献できる。
 なお、図12に示す他の実施形態5のように、振動部22の角部22b,22c,22dが直角ではなく、凸状に湾曲した形状(R形状)に形成される場合がある。つまり、振動部22の角部22b,22c,22dの頂点が、湾曲した形状に切り欠いて形成されており、切り抜き部21の幅が大きくなっている。この場合、図12に示すように、連結部24の対角位置に設けられた角部22cの切り欠きを、連結部24の対角位置に設けられていない角部22b,22dの切り欠きよりも小さく形成することが好ましい。これにより、連結部24の対角位置に設けられた角部22cと外枠部23との距離を、連結部24の対角位置に設けられていない角部22b,22dと外枠部23との距離よりも、小さくすることができ、外枠部23に、上述したような凸部23c(図4参照)や突出部235f(図11参照)を設けた場合と同様の効果が得られる。
 次に、本発明では、上述の特徴のうち、特に、振動部22のX軸方向の端部からZ´軸方向に沿って延出する1つだけの連結部24を有することに加えて、連結部24は、連結部24の+X軸側の側面に幅広部24b(本発明でいう第1幅広部)が形成されており、幅広部24bは振動部22から外枠部23に向かってのみ次第に幅(X軸方向の幅)が広くなるように形成されていることにも特徴がある。以下、図4,図5に示すように、本実施形態による追加の特徴点の詳細について説明する。
 本形態の連結部24には、連結部24の-X軸側の側面と+X軸側の側面の両方に、幅広部24a(本発明でいう第2幅広部)と幅広部24b(本発明でいう第1幅広部)を形成している。各幅広部は振動部22に接する端部241から外枠部23に接する端部242の全体にわたり、1方向のみに直線的に幅広になる平面視略ハの字形状として形成されている。また、幅広部24aに対して幅広部24bの方は、Z´軸に対する広がり角度が大きく形成されており、その面積も大きく形成されている。すなわち、幅広部24aと幅広部24bとは非対称形状に形成されている。
 このため、連結部24の固定端側の外枠部23との接続部分の剛性を高めるとともに、外的な衝撃により水晶振動板2の振動部22が変位することで連結部24に加わる歪応力を外枠部23に広がるように分散させることができる。しかも、連結部24全体を幅広に構成する場合に比べて、上述したように振動部22から外枠部23への振動漏れの影響も抑制することができる。さらに、幅広部24aと幅広部24bとは非対称形状に形成されていることで、連結部24の-X軸側の側面と+X軸側の側面との応力バランスを変えることで、外枠部23と連結部24の接続部分に加わる歪応力の集中を緩和させることができる。
 なお、これらの幅広部の形状は本形態に限らず、図10(a)に示す他の実施形態2のように、幅広部24a1は連結部24の中央から振動部22に接する端部241との接続点と外枠部23に接する端部242との接続点の1方向に曲率状に幅広になるように形成し、幅広部24b1は振動部22に接する端部241から外枠部23に接する端部242の全体にわたり、1方向のみに曲率状に幅広になるように形成したものであってもよい。さらに、図10(b)に示す他の実施形態3のように、幅広部24b2は連結部24の+X軸側の側面のみで、振動部22に接する端部241から外枠部23に接する端部242の全体にわたり、1方向のみに直線的に幅広になるように形成したものであってもよい。このように本形態の幅広部は、連結部24の全体(振動部22との接続点である端部241から、外枠部23との接続点である端部242までの全体)に形成されてもよく、図13に示す他の実施形態6のように、連結部24の一部だけに形成されてもよい。また、その形状も曲率状でもよく、直線状でもよくこれらを組み合わせたものでもよい。
 図13に示す他の実施形態6では、連結部24の+X軸側の側面に設けられた第1幅広部24dと、連結部24の-X軸側の側面に設けられた第2幅広部24eとが、連結部24の一部だけに形成されており、連結部24の全体には形成されていない。なお、図13では、第1励振電極221や、第1引出電極223等の図示を省略している。
 具体的には、図13に示すように、第1幅広部24d及び第2幅広部24eは、連結部24の外枠部23側の部分(-Z´軸側の部分)に設けられており、連結部24の振動部22側の部分(+Z´軸側の部分)には設けられていない。第1幅広部24d及び第2幅広部24eは、略三角形状に形成されており、側面が凹状に湾曲された形状(R形状)に形成されている。
 これら第1幅広部24d及び第2幅広部24eに加えて、連結部24の振動部22側の部分(+Z´軸側の部分)には、第3幅広部24fが形成されている。第3幅広部24fは、第1幅広部24d及び第2幅広部24eとは異なり、振動部22から外枠部23に向かって次第に幅が狭くなるように形成されている。第3幅広部24fは、略三角形状に形成されており、側面が凹状に湾曲された形状(R形状)に形成されている。
 第3幅広部24fは、連結部24の-X軸側の側面に設けられている。つまり、連結部24の-X軸側の側面には、第2幅広部24e及び第3幅広部24fが設けられている。図13の例では、第2幅広部24eと第3幅広部24fとの間には、Z´軸方向に平行に延びる部分24hが設けられている。一方、連結部24の-X軸側の側面には、第1幅広部24dのみが設けられており、連結部24の振動部22側の部分(+Z´軸側の部分)24gは、Z´軸方向に平行に形成されている。この部分24gの+X軸側の側面は、振動部22のZ´軸方向に沿った辺225から一直線状に延びている。なお、図13の例では、連結部24のZ´軸方向の中央位置よりも-Z´軸側に、第1幅広部24d及び第2幅広部24eが設けられ、その中央位置よりも+Z´軸側に第3幅広部24fが設けられている。しかし、これに限らず、第1幅広部24d及び第2幅広部24eを、連結部24のZ´軸方向の中央位置を越える位置まで形成してもよい。
 上述したように、連結部24に、第1幅広部24d及び第2幅広部24eに加え、第3幅広部24fを設けることによって、第1幅広部24d及び第2幅広部24eにより連結部24の外枠部23との接続部分(端部242)の剛性を高めるとともに、第3幅広部24fにより連結部24の振動部22との接続部分(端部241)の剛性も高めることができる。
 また、図13に示すように、第3幅広部24fは、平面視で、第1幅広部24d及び第2幅広部24eよりも小さく形成されているので、連結部24を介して振動部22から外枠部23への振動漏れの影響を抑制しながら、スプリアスの発生などの圧電振動特性への悪影響も抑制することができる。
 そして、水晶振動板2において、第1引出電極223は、第1励振電極221から引き出され、連結部24を経由して、外枠部23に形成された接続用接合パターン27に繋がっている。第2引出電極224は、第2励振電極222から引き出され、連結部24を経由して、外枠部23に形成された接続用接合パターン28に繋がっている。
 第1励振電極221は、振動部22の一主面2201上に物理的気相成長させて形成された下地PVD膜と、この下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。第1引出電極223は、連結部24の一主面2401の一部と一側面の一部の上に物理的気相成長させて形成された下地PVD膜と、この下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。第2励振電極222は、振動部22の他主面2202上に物理的気相成長させて形成された下地PVD膜と、この下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。第2引出電極224は、連結部24の他主面2402の一部と他側面の一部の上に物理的気相成長させて形成された下地PVD膜と、この下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。
 水晶振動板2の両主面211,212には、水晶振動板2を第1封止部材3及び第2封止部材4に接合するための振動側封止部25が夫々設けられている。水晶振動板2の一主面211の振動側封止部25に、第1封止部材3に接合するための振動側第1接合パターン251が形成されている。また、水晶振動板2の他主面212の振動側封止部25に、第2封止部材4に接合するための振動側第2接合パターン252が形成されている。振動側第1接合パターン251及び振動側第2接合パターン252は、上述した外枠部23に設けられており、平面視で環状に形成されている。振動側第1接合パターン251及び振動側第2接合パターン252は、水晶振動板2の両主面211,212の外周縁に近接するように設けられている。水晶振動板2の一対の第1励振電極221,第2励振電極222は、振動側第1接合パターン251及び振動側第2接合パターン252とは電気的に接続されていない。
 振動側第1接合パターン251は、一主面211上に物理的気相成長させて形成された下地PVD膜2511と、下地PVD膜2511上に物理的気相成長させて積層形成された電極PVD膜2512とからなる。振動側第2接合パターン252は、他主面212上に物理的気相成長させて形成された下地PVD膜2521と、下地PVD膜2521上に物理的気相成長させて積層形成された電極PVD膜2522とからなる。つまり、振動側第1接合パターン251と振動側第2接合パターン252とは、同一構成からなり、複数の層が両主面211,212の振動側封止部25上に積層して構成され、その最下層側からTi層(もしくはCr層)とAu層とが蒸着形成されている。このように、振動側第1接合パターン251と振動側第2接合パターン252とでは、下地PVD膜2511,2521が単一の材料(Ti(もしくはCr))からなり、電極PVD膜2512,2522が単一の材料(Au)からなり、下地PVD膜2511,2521よりも電極PVD膜2512,2522の方が厚い。また、水晶振動板2の一主面211に形成された第1励振電極221と振動側第1接合パターン251とは同一厚みを有し、第1励振電極221と振動側第1接合パターン251との表面が同一金属からなり、水晶振動板2の他主面212に形成された第2励振電極222と振動側第2接合パターン252とは同一厚みを有し、第2励振電極222と振動側第2接合パターン252との表面が同一金属からなる。また、振動側第1接合パターン251と振動側第2接合パターン252は、非Snパターンである。
 ここで、第1励振電極221、第1引出電極223及び振動側第1接合パターン251を同一の構成とすることができ、この場合、同一のプロセスで第1励振電極221、第1引出電極223及び振動側第1接合パターン251を一括して形成することができる。同様に、第2励振電極222、第2引出電極224及び振動側第2接合パターン252を同一の構成とすることができ、この場合、同一のプロセスで第2励振電極222、第2引出電極224及び振動側第2接合パターン252を一括して形成することができる。詳細には、真空蒸着やスパッタリング、イオンプレーティング、MBE、レーザーアブレーションなどのPVD法(例えば、フォトリソグラフィ等の加工におけるパターンニング用の膜形成法)により下地PVD膜や電極PVD膜を形成することで、一括して膜形成を行い、製造工数を減らすことができ、コスト低減に寄与することができる。
 また、水晶振動板2には、図4,5に示すように、一主面211と他主面212との間を貫通する1つの貫通孔(第1貫通孔26)が形成されている。第1貫通孔26は、水晶振動板2の外枠部23に設けられている。第1貫通孔26は、後述する第2封止部材4の接続用接合パターン453に繋がるものである。
 第1貫通孔26には、図1,4,5に示すように、一主面211と他主面212とに形成された電極の導通を図るための貫通電極261が、第1貫通孔26の内壁面に沿って形成されている。そして、第1貫通孔26の中央部分は、一主面211と他主面212との間を貫通した中空状態の貫通部分262となる。第1貫通孔26の外周囲には、接続用接合パターン264,265が形成されている。接続用接合パターン264,265は、水晶振動板2の両主面211,212に設けられている。
 水晶振動板2の一主面211に形成された第1貫通孔26の接続用接合パターン264は、外枠部23において、X軸方向に沿って延びている。また、水晶振動板2の一主面211には、第1引出電極223に繋がる接続用接合パターン27が形成されており、この接続用接合パターン27も、外枠部23において、X軸方向に沿って延びている。接続用接合パターン27は、振動部22(第1励振電極221)を挟んで、接続用接合パターン264とはZ´軸方向の反対側に設けられている。つまり、振動部22のZ´軸方向の両側に、接続用接合パターン27,264が設けられている。
 同様に、水晶振動板2の他主面212に形成された第1貫通孔26の接続用接合パターン265は、外枠部23において、X軸方向に沿って延びている。また、水晶振動板2の他主面212には、第2引出電極224に繋がる接続用接合パターン28が形成されており、この接続用接合パターン28も、外枠部23において、X軸方向に沿って延びている。接続用接合パターン28は、振動部22(第2励振電極222)を挟んで、接続用接合パターン265とはZ´軸方向の反対側に設けられている。つまり、振動部22のZ´軸方向の両側に、接続用接合パターン28,265が設けられている。
 接続用接合パターン27,28,264,265は、振動側第1接合パターン251,振動側第2接合パターン252と同様の構成であり、振動側第1接合パターン251,振動側第2接合パターン252と同一のプロセスで形成することができる。具体的には、接続用接合パターン27,28,264,265は、水晶振動板2の両主面211,212上に物理的気相成長させて形成された下地PVD膜と、当該下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。
 水晶振動子101では、第1貫通孔26及び接続用接合パターン27,28,264,265は、平面視で内部空間13の内方(接合材11の内周面の内側)に形成される。内部空間13は、平面視で振動側第1接合パターン251及び振動側第2接合パターン252の内方(内側)に形成される。内部空間13の内方とは、後述する接合材11上を含まずに厳密に接合材11の内周面の内側のことをいう。第1貫通孔26及び接続用接合パターン27,28,264,265は、振動側第1接合パターン251及び振動側第2接合パターン252とは電気的に接続されていない。
 第1封止部材3には、曲げ剛性(断面二次モーメント×ヤング率)が1000[N・mm]以下の材料が用いられている。具体的には、第1封止部材3は、図2,3に示すように、1枚のガラスウエハから形成された直方体の基板であり、この第1封止部材3の他主面312(水晶振動板2に接合する面)は平坦平滑面(鏡面加工)として形成されている。
 この第1封止部材3の他主面312には、水晶振動板2に接合するための封止側第1封止部32が設けられている。封止側第1封止部32には、水晶振動板2に接合するための封止側第1接合パターン321が形成されている。封止側第1接合パターン321は、平面視で環状に形成されている。封止側第1接合パターン321は、第1封止部材3の他主面312の外周縁に近接するように設けられている。封止側第1接合パターン321は、第1封止部材3の封止側第1封止部32上の全ての位置において同一幅とされる。
 この封止側第1接合パターン321は、第1封止部材3上に物理的気相成長させて形成された下地PVD膜3211と、下地PVD膜3211上に物理的気相成長させて積層形成された電極PVD膜3212とからなる。なお、本形態では、下地PVD膜3211には、Ti(もしくはCr)が用いられ、電極PVD膜3212にはAuが用いられている。また、封止側第1接合パターン321は、非Snパターンである。具体的には、封止側第1接合パターン321は、複数の層が他主面312の封止側第1封止部32上に積層して構成され、その最下層側からTi層(もしくはCr層)とAu層とが蒸着形成されている。
 第1封止部材3の他主面312、つまり、水晶振動板2との対向面には、水晶振動板2の接続用接合パターン264,27と接合される接続用接合パターン35,36が形成されている。接続用接合パターン35,36は、第1封止部材3の短辺方向(図3のA1方向)に方向に沿って延びている。接続用接合パターン35,36は、第1封止部材3の長辺方向(図3のA2方向)に所定の間隔を隔てて設けられており、接続用接合パターン35,36のA2方向の間隔は、水晶振動板2の接続用接合パターン264,27のZ´軸方向の間隔(図4参照)と略同じになっている。接続用接合パターン35,36は、配線パターン33を介して互いに接続されている。配線パターン33は、接続用接合パターン35,36の間に設けられている。配線パターン33は、A2方向に沿って延びている。配線パターン33は、水晶振動板2の接続用接合パターン264,27とは接合されないようになっている。
 接続用接合パターン35,36及び配線パターン33は、封止側第1接合パターン321と同様の構成であり、封止側第1接合パターン321と同一のプロセスで形成することができる。具体的には、接続用接合パターン35,36及び配線パターン33は、第1封止部材3の他主面312上に物理的気相成長させて形成された下地PVD膜と、当該下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。
 水晶振動子101では、接続用接合パターン35,36及び配線パターン33は、平面視で内部空間13の内方(接合材11の内周面の内側)に形成される。接続用接合パターン35,36及び配線パターン33は、封止側第1接合パターン321とは電気的に接続されていない。なお、水晶振動子101では、図3のA1方向は、図4のX軸方向に一致し、図3のA2方向は、図4のZ´軸方向に一致する。
 第2封止部材4には、曲げ剛性(断面二次モーメント×ヤング率)が1000[N・mm]以下の材料が用いられている。具体的には、第2封止部材4は、図6,7に示すように、1枚のガラスウエハから形成された直方体の基板であり、この第2封止部材4の一主面411(水晶振動板2に接合する面)は平坦平滑面(鏡面加工)として形成されている。
 この第2封止部材4の一主面411には、水晶振動板2に接合するための封止側第2封止部42が設けられている。封止側第2封止部42には、水晶振動板2に接合するための封止側第2接合パターン421が形成されている。封止側第2接合パターン421は、平面視で環状に形成されている。封止側第2接合パターン421は、第2封止部材4の一主面411の外周縁に近接するように設けられている。封止側第2接合パターン421は、第2封止部材4の封止側第2封止部42上の全ての位置において同一幅とされる。
 この封止側第2接合パターン421は、第2封止部材4上に物理的気相成長させて形成された下地PVD膜4211と、下地PVD膜4211上に物理的気相成長させて積層形成された電極PVD膜4212とからなる。なお、本形態では、下地PVD膜4211には、Ti(もしくはCr)が用いられ、電極PVD膜4212にはAuが用いられている。また、封止側第2接合パターン421は、非Snパターンである。具体的には、封止側第2接合パターン421は、複数の層が他主面412の封止側第2封止部42上に積層して構成され、その最下層側からTi層(もしくはCr層)とAu層とが蒸着形成されている。
 また、第2封止部材4の他主面412(水晶振動板2に面しない外方の主面)には、外部に電気的に接続する一対の外部電極端子(一外部電極端子431,他外部電極端子432)が設けられている。一外部電極端子431,他外部電極端子432は、図1,7に示すように第2封止部材4の他主面412の平面視長手方向両端に夫々位置する。これら一対の外部電極端子(一外部電極端子431,他外部電極端子432)は、他主面412上に物理的気相成長させて形成された下地PVD膜4311,4321と、下地PVD膜4311,4321上に物理的気相成長させて積層形成された電極PVD膜4312,4322とからなる。一外部電極端子431及び他外部電極端子432は、第2封止部材4の他主面412のうち1/3以上の領域を夫々占めている。
 第2封止部材4には、図1,6,7に示すように、一主面411と他主面412との間を貫通する2つの貫通孔(第2貫通孔45,第3貫通孔46)が形成されている。第2貫通孔45は、一外部電極端子431及び水晶振動板2の接続用接合パターン265に繋がるものである。第3貫通孔46は、他外部電極端子432及び水晶振動板2の接続用接合パターン28に繋がるものである。
 第2貫通孔45,第3貫通孔46には、図1,6,7に示すように、一主面411と他主面412とに形成された電極の導通を図るための貫通電極451,461が、第2貫通孔45,第3貫通孔46の内壁面夫々に沿って形成されている。そして、第2貫通孔45,第3貫通孔46の中央部分は、一主面411と他主面412との間を貫通した中空状態の貫通部分452,462となる。第2貫通孔45,第3貫通孔46夫々の外周囲には、接続用接合パターン453,463が形成されている。
 接続用接合パターン453,463は、第2封止部材4の一主面411に設けられており、水晶振動板2の接続用接合パターン265,28と接合される。接続用接合パターン453,463は、第2封止部材4の短辺方向(図6のB1方向)に方向に沿って延びている。接続用接合パターン453,463は、第2封止部材4の長辺方向(図6のB2方向)に所定の間隔を隔てて設けられており、接続用接合パターン453,463のB2方向の間隔は、水晶振動板2の接続用接合パターン265,28のZ´軸方向の間隔(図5参照)と略同じになっている。
 接続用接合パターン453,463は、封止側第2接合パターン421と同様の構成であり、封止側第2接合パターン421と同一のプロセスで形成することができる。具体的には、接続用接合パターン453,463は、第2封止部材4の一主面411上に物理的気相成長させて形成された下地PVD膜と、当該下地PVD膜上に物理的気相成長させて積層形成された電極PVD膜とからなる。
 水晶振動子101では、第2貫通孔45,第3貫通孔46及び接続用接合パターン453,463は、平面視で内部空間13の内方に形成されている。第2貫通孔45,第3貫通孔46及び接続用接合パターン453,463は、封止側第2接合パターン421とは電気的に接続されていない。また、一外部電極端子431,他外部電極端子432も、封止側第2接合パターン421とは電気的に接続されていない。なお、水晶振動子101では、図6のB1方向は、図5のX軸方向に一致し、図6のB2方向は、図5のZ´軸方向に一致する。
 上記の構成からなる水晶振動子101では、従来の技術のように別途接着剤等の接合専用材を用いずに、水晶振動板2と第1封止部材3とが振動側第1接合パターン251及び封止側第1接合パターン321を重ね合わせた状態で拡散接合され、水晶振動板2と第2封止部材4とが振動側第2接合パターン252及び封止側第2接合パターン421を重ね合わせた状態で拡散接合されて、図1に示すサンドイッチ構造のパッケージ12が製造される。これにより、パッケージ12の内部空間13、つまり、振動部22の収容空間が気密封止される。なお、振動側第1接合パターン251及び封止側第1接合パターン321自身が拡散接合後に生成される接合材11となり、振動側第2接合パターン252及び封止側第2接合パターン421自身が拡散接合後に生成される接合材11となる。接合材11は、平面視で環状に形成される。本形態では、水晶振動板2の第1、第2励振電極221,222から一外部電極端子431,他外部電極端子432までの配線がいずれも、平面視で接合材11の内方に設けられている。接合材11は、平面視で、パッケージ12の外周縁に近接するように形成されている。これにより、水晶振動板2の振動部22のサイズを大きくすることが可能になっている。
 この際、上述した接続用接合パターン同士も重ね合わせられた状態で拡散接合される。具体的には、水晶振動板2の接続用接合パターン264及び第1封止部材3の接続用接合パターン35が拡散接合される。水晶振動板2の接続用接合パターン27及び第1封止部材3の接続用接合パターン36が拡散接合される。また、水晶振動板2の接続用接合パターン265及び第2封止部材4の接続用接合パターン453が拡散接合される。水晶振動板2の接続用接合パターン28及び第2封止部材4の接続用接合パターン463が拡散接合される。そして、夫々の接続用接合パターン同士が拡散接合後に生成される接合材14となる。拡散接合によって形成されたこれらの接合材14は、貫通孔の貫通電極と接合材14とを導通させる役割、及び接合箇所を気密封止する役割を果たす。なお、接合材14は、平面視で封止用の接合材11よりも内方に設けられるため、図1では破線で示している。
 ここで、第1貫通孔26と第2貫通孔45とが平面視で重畳しないように配置されている。具体的には、図6に示すように、正面視では(図6のB1方向から見ると)、第1貫通孔26と第2貫通孔45とは上下に一直線上に並んで配置されている。図6では、便宜上、第2封止部材4の上方に設けられる水晶振動板2に形成された第1貫通孔26を2点鎖線で示している。一方、側面視では(図6のB2方向から見ると)、第1貫通孔26と第2貫通孔45とは上下に一直線上に並ばないようにオフセットされて配置されている。より詳細には、接合材14(接続用接合パターン265,453)の長手方向(B1方向)の一端部に第1貫通孔26が接続され、接合材14の長手方向の他端部に第2貫通孔45が接続されている。そして、第1貫通孔26の貫通電極261と第2貫通孔45の貫通電極451とが接合材14を介して電気的に接続されている。このように、第1貫通孔26と第2貫通孔45とを平面視で重畳しないように配置することによって、水晶振動板2の振動部22を気密封止した内部空間13の気密性を確保するうえでより好ましい構造となる。
 そして、上述のようにして製造されたパッケージ12では、第1封止部材3と水晶振動板2とは、1.00μm以下のギャップを有し、第2封止部材4と水晶振動板2とは、1.00μm以下のギャップを有する。つまり、第1封止部材3と水晶振動板2との間の接合材11の厚みが、1.00μm以下であり、第2封止部材4と水晶振動板2との間の接合材11の厚みが、1.00μm以下(具体的には、本形態のAu-Au接合では0.01μm~1.00μm)である。なお、比較として、Snを用いた従来の金属ペースト封止材では、5μm~20μmとなる。
 なお、本形態では、サンドイッチ構造の水晶振動子101において、第1封止部材3の他主面312、つまり、水晶振動板2との対向面に、水晶振動板2の第1励振電極221に接続される配線パターン33が設けられており、この配線パターン33の少なくとも一部が、平面視で、振動部22と外枠部23との間の空間(切り抜き部21)と重畳する位置に設けられており、配線パターン33は、平面視で、第1励振電極221,第2励振電極222とは重畳しない位置に設けられていることがより好ましい。
 このように構成することで、第1封止部材3の他主面312を配線パターン33の配置領域として有効活用することができ、振動部22のサイズを確保しつつ、水晶振動子101の小型化を図ることができる。つまり、水晶振動板2に配線パターン33の配置領域を別途確保する必要がなくなり、その分だけ振動部22のサイズを大きくすることが可能になる。したがって、水晶振動子101の小型化の要請を満たすために、振動部22のサイズを必要以上に小さくしなくてもよくなる。
 また、第1封止部材3の他主面312が平坦面に形成されているので、第1封止部材3の厚さを抑えることができ、その分、水晶振動子101の低背化に寄与することができる。つまり、第1封止部材3の他主面312に凹部が設けられている場合、凹部の深さに相当する分だけ第1封止部材3の厚さが増加することが懸念される。しかし、第1封止部材3の他主面312を平坦面に形成することによって、第1封止部材3の厚さが増加することを抑制することができ、水晶振動子101の低背化に寄与することができる。この場合、水晶振動板2の振動部22及び連結部24が、外枠部23よりも薄く形成されているので、水晶振動子101の低背化を図りながら、振動部22と第1封止部材3及び第2封止部材4との接触を抑制する点で有効である。
 また、本形態では、第1封止部材3及び第2封止部材4にガラスを用いているが、これに限定されるものではなく、水晶を用いてもよい。
 なお、上記に示した本発明の実施形態及び実施例はいずれも本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。上記各実施形態では、水晶振動デバイスを水晶振動子としたが、水晶振動子以外の水晶振動デバイス(例えば、水晶発振器)にも本発明を適用することが可能である。
 この出願は、2016年8月30日に日本で出願された特願2016-167646号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、圧電振動板の基板の材料に水晶を用いた水晶振動デバイス(水晶振動子や水晶発振器等)に好適である。
 101  水晶振動子
 12  パッケージ
 13  内部空間
 2  水晶振動板
 21  切り抜き部
 22  振動部
 221  第1励振電極
 222  第2励振電極
 223  第1引出電極
 224  第2引出電極
 23  外枠部
 24  連結部
 3  第1封止部材
 4  第2封止部材
 

Claims (8)

  1.  一主面と他主面とを有する平面視矩形状のATカットの水晶振動板であって、
     上記水晶振動板の中央部分で、一主面に第1励振電極が形成され、他主面に第2励振電極が形成された平面視矩形状の振動部と、
     上記振動部の外周に形成された切り抜き部と、
     上記切り抜き部の外周に形成されるとともに内周端が平面視矩形状の外枠部と、
     上記振動部と上記外枠部を接続するとともに、上記振動部のX軸方向に沿った辺の一端部から、上記振動部のZ´軸方向に沿って延出され、上記外枠部のX軸方向に沿った内周端にのみ接続された1つの連結部とを有しており、
     上記連結部の+X軸側の側面に幅広部が形成されており、上記幅広部は上記振動部から上記外枠部に向かってのみ次第に幅が広くなるように形成されていることを特徴とする水晶振動板。
  2.  請求項1に記載の水晶振動板であって、
     上記連結部の-X軸側の側面にも第2幅広部が形成され、上記連結部の+X軸側の側面の幅広部を第1幅広部とした場合に、上記第1幅広部と上記第2幅広部とは非対称形状に形成されてなることを特徴とする水晶振動板。
  3.  請求項1に記載の水晶振動板であって、
     上記連結部の-X軸側の側面にも第2幅広部が形成され、上記連結部の+X軸側の側面の幅広部を第1幅広部とした場合に、上記第1幅広部及び上記第2幅広部は、上記連結部の-Z´軸側の部分に設けられていることを特徴とする水晶振動板。
  4.  請求項2に記載の水晶振動板であって、
     上記第1幅広部及び上記第2幅広部は、上記連結部の-Z´軸側の部分に設けられていることを特徴とする水晶振動板。
  5.  請求項3または4に記載の水晶振動板であって、
     上記連結部の+Z´軸側の部分であって、当該連結部の-X軸側の側面に第3幅広部が形成されており、
     上記第3幅広部は、上記振動部から上記外枠部に向かって次第に幅が狭くなるように形成されていることを特徴とする水晶振動板。
  6.  請求項5に記載の水晶振動板であって、
     上記第3幅広部は、平面視で、上記第1幅広部及び上記第2幅広部よりも小さく形成されていることを特徴とする水晶振動板。
  7.  請求項1~6のいずれか1つに記載の水晶振動板であって、
     上記振動部の中心を挟んで、平面視で上記連結部の対角位置には、上記外枠部の内周端から上記切り抜き部側へ突出する突出部が形成されていることを特徴とする水晶振動板。
  8.  請求項1~7のいずれか1つに記載の水晶振動板と、
     上記水晶振動板の一主面を覆う第1封止部材と、
     上記水晶振動板の他主面を覆う第2封止部材とが備えられたことを特徴とする水晶振動デバイス。
PCT/JP2017/027665 2016-08-30 2017-07-31 水晶振動板、及び水晶振動デバイス WO2018042994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/327,293 US11342901B2 (en) 2016-08-30 2017-07-31 Crystal resonator plate and crystal resonator device
CN201780052650.2A CN109643983B (zh) 2016-08-30 2017-07-31 晶振片及晶体振动器件
JP2018537050A JP6769487B2 (ja) 2016-08-30 2017-07-31 水晶振動板、及び水晶振動デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167646 2016-08-30
JP2016-167646 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018042994A1 true WO2018042994A1 (ja) 2018-03-08

Family

ID=61300762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027665 WO2018042994A1 (ja) 2016-08-30 2017-07-31 水晶振動板、及び水晶振動デバイス

Country Status (5)

Country Link
US (1) US11342901B2 (ja)
JP (1) JP6769487B2 (ja)
CN (1) CN109643983B (ja)
TW (1) TWI639307B (ja)
WO (1) WO2018042994A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241790A1 (ja) * 2019-05-31 2020-12-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140669A (zh) * 2020-01-19 2021-07-20 北京小米移动软件有限公司 压电组件及制作方法、屏幕部件和移动终端
US11598684B1 (en) 2021-05-14 2023-03-07 Precis Llc Thickness-shear mode resonators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087575A (ja) * 2008-09-29 2010-04-15 Nippon Dempa Kogyo Co Ltd 圧電デバイス
JP2013098814A (ja) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd 圧電振動片及び圧電デバイス
JP2015019240A (ja) * 2013-07-11 2015-01-29 日本電波工業株式会社 圧電振動片、圧電振動片の製造方法、圧電デバイス、及び圧電デバイスの製造方法
WO2016121182A1 (ja) * 2015-01-29 2016-08-04 株式会社大真空 水晶振動板、及び水晶振動デバイス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864056B2 (ja) * 2001-03-02 2006-12-27 日本電波工業株式会社 水晶振動子
JP3951058B2 (ja) * 2003-08-19 2007-08-01 セイコーエプソン株式会社 音叉型圧電振動片
JP4707021B2 (ja) * 2005-08-22 2011-06-22 セイコーエプソン株式会社 圧電デバイス
JP4967707B2 (ja) * 2006-05-01 2012-07-04 セイコーエプソン株式会社 圧電振動子およびその製造方法
JP4412506B2 (ja) * 2007-09-07 2010-02-10 エプソントヨコム株式会社 圧電デバイスおよびその製造方法
JP4778548B2 (ja) * 2008-12-17 2011-09-21 日本電波工業株式会社 圧電フレーム、圧電デバイス及び圧電フレームの製造方法
TW201242246A (en) * 2011-02-25 2012-10-16 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic apparatus
CN105706363B (zh) * 2013-11-13 2018-04-10 株式会社大真空 压电晶片、压电振动片及压电振子
CN106416066B (zh) 2013-12-20 2019-04-19 株式会社大真空 压电振动器件
JP5839025B2 (ja) 2013-12-24 2016-01-06 株式会社大真空 圧電振動デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087575A (ja) * 2008-09-29 2010-04-15 Nippon Dempa Kogyo Co Ltd 圧電デバイス
JP2013098814A (ja) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd 圧電振動片及び圧電デバイス
JP2015019240A (ja) * 2013-07-11 2015-01-29 日本電波工業株式会社 圧電振動片、圧電振動片の製造方法、圧電デバイス、及び圧電デバイスの製造方法
WO2016121182A1 (ja) * 2015-01-29 2016-08-04 株式会社大真空 水晶振動板、及び水晶振動デバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241790A1 (ja) * 2019-05-31 2020-12-03
WO2020241790A1 (ja) * 2019-05-31 2020-12-03 株式会社大真空 圧電振動板および圧電振動デバイス
CN113812088A (zh) * 2019-05-31 2021-12-17 株式会社大真空 压电振动板及压电振动器件
JP7283538B2 (ja) 2019-05-31 2023-05-30 株式会社大真空 圧電振動板および圧電振動デバイス

Also Published As

Publication number Publication date
JP6769487B2 (ja) 2020-10-14
CN109643983B (zh) 2023-05-16
TWI639307B (zh) 2018-10-21
US11342901B2 (en) 2022-05-24
JPWO2018042994A1 (ja) 2019-06-24
CN109643983A (zh) 2019-04-16
TW201813296A (zh) 2018-04-01
US20190229704A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
TWI699014B (zh) 壓電振動元件
WO2018092572A1 (ja) 水晶振動デバイス
JP6252209B2 (ja) 圧電振動片および当該圧電振動片を用いた圧電デバイス
WO2018051800A1 (ja) 圧電振動デバイス
TWI668960B (zh) 壓電振動元件以及具備其的系統整合封裝(sip)模組
JP5446941B2 (ja) 圧電振動片
WO2018042994A1 (ja) 水晶振動板、及び水晶振動デバイス
WO2017077972A1 (ja) 圧電振動デバイス
JP2018032944A (ja) 水晶振動板、及び水晶振動デバイス
JP6733492B2 (ja) 圧電振動デバイス
JP2017153033A (ja) 水晶振動板、及び水晶振動デバイス
JP6696378B2 (ja) 圧電振動デバイス
JP6531616B2 (ja) 水晶振動板、及び水晶振動デバイス
CN114208027A (zh) 压电振动板、压电振动器件以及压电振动器件的制造方法
JP6645211B2 (ja) 水晶振動デバイスの製造方法
JP5333806B2 (ja) デバイス
JP6747562B2 (ja) 水晶ウエハ
JP2017118307A (ja) 水晶ウエハ
JP2020141358A (ja) 圧電振動板及び圧電振動デバイス
JP2016181880A (ja) 圧電振動デバイス
TW202230973A (zh) 壓電振動裝置
JP2022184006A (ja) 圧電振動デバイス
JPWO2018051800A1 (ja) 圧電振動デバイス
JP2020120345A (ja) 圧電振動デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846003

Country of ref document: EP

Kind code of ref document: A1