WO2016132766A1 - 水晶振動子及び水晶振動デバイス - Google Patents

水晶振動子及び水晶振動デバイス Download PDF

Info

Publication number
WO2016132766A1
WO2016132766A1 PCT/JP2016/050559 JP2016050559W WO2016132766A1 WO 2016132766 A1 WO2016132766 A1 WO 2016132766A1 JP 2016050559 W JP2016050559 W JP 2016050559W WO 2016132766 A1 WO2016132766 A1 WO 2016132766A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
crystal
electrode
short side
peripheral portion
Prior art date
Application number
PCT/JP2016/050559
Other languages
English (en)
French (fr)
Inventor
開田 弘明
上 慶一
和幸 能登
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016526955A priority Critical patent/JP5988125B1/ja
Priority to CN201680009695.7A priority patent/CN107210725B/zh
Publication of WO2016132766A1 publication Critical patent/WO2016132766A1/ja
Priority to US15/659,763 priority patent/US10615331B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0478Resonance frequency in a process for mass production

Definitions

  • the present invention relates to a crystal resonator and a crystal vibration device.
  • a crystal resonator having a thickness shear vibration as a main vibration is widely used.
  • a mesa structure is known in which a vibration part is formed by etching thicker than its peripheral part in order to confine vibration energy of thickness-shear vibration.
  • excitation electrodes are formed on both main surfaces of the vibration part, and an extended electrode electrically connected to the excitation electrode is formed.
  • the extension electrode extends through a step formed by the vibration part and the peripheral part.
  • the cross-sectional shape of the step formed by the vibration part and the peripheral part is usually determined by the orientation of the quartz crystal axis, on the side where the angle between the side surface of the vibration part and the surface of the peripheral part is an acute angle.
  • the electrode is disconnected, and the extending direction of the electrode is restricted, or it is difficult to maintain stable quality from the viewpoint of electrical connection reliability.
  • an electrode electrically connected to the excitation electrode is a side where the angle formed by the side surface of the vibrating portion and the surface of the peripheral portion becomes an obtuse angle (one side in the short direction). It is known to extend to the long side), but in such a configuration, the electrode is extended outward beyond the width direction of the excitation electrode, which prevents miniaturization of the crystal unit. There was a possibility.
  • the present invention has been made in view of such circumstances, and an object thereof is to improve electrical connection reliability without hindering downsizing.
  • the X ′ axis, the Y axis, and the Z axis which are crystal axes of quartz, are rotated about the X axis by a predetermined angle from the Z axis as the Z ′ axis.
  • the AT-cut quartz crystal substrate is cut out with a plane parallel to the plane specified by the X-axis and the Z′-axis as a main surface, the vibration unit having the main surface, and the vibration unit provided so as to surround the vibration unit
  • An AT-cut quartz crystal substrate including a peripheral portion having a smaller thickness, an excitation electrode formed on a main surface, and an extension electrode electrically connected to the excitation electrode.
  • the longitudinal direction is a direction parallel to the Z ′ axis
  • the short direction is a direction parallel to the X axis
  • the vibration part is on one short side in the longitudinal direction.
  • a taper side surface formed by inclining from the X axis in a plan view specified by the axis and the Z ′ axis, and the taper side surface is in contact with the peripheral portion at an angle ⁇ ′ larger than ⁇ 1
  • the extension electrode is formed to extend to one short side in the longitudinal direction through at least a part of the tapered side surface of the vibration part.
  • the extended electrode can be formed to extend at a relatively gentle angle, disconnection of the electrode is prevented without restricting the extending direction of the electrode, and from the viewpoint of electrical connection reliability. Stable quality can be maintained.
  • miniaturization of the quartz resonator is not hindered. Therefore, it is possible to improve electrical connection reliability without hindering downsizing.
  • the vibrating portion has a second short side surface that contacts the peripheral portion on the other short side in the longitudinal direction, and the tapered side surfaces are the first short side surface and the second short side surface. May be formed adjacent to each of the two.
  • the vibrating portion has a first long side surface that contacts the peripheral portion on one long side in the short direction, and the tapered side surfaces are the first short side surface and the first long side. It may be formed adjacent to each of the side surfaces.
  • the extended electrode is formed on the entire surface of the tapered side surface and wider than the tapered side surface so as to reach a part of the first short side surface and a part of the first long side surface. It may be formed.
  • the AT-cut quartz substrate has a front surface and a back surface, and in a plan view specified by the X axis and the Z ′ axis, the outer shape of the surface of the vibration unit is based on the Z ′ axis. It may be line-symmetric with the outer shape of the back surface.
  • a crystal device includes a base member, a lid member connected to the base member so as to constitute a sealed internal space, and the above-described crystal resonator housed in the internal space.
  • the electrical connection reliability can be improved without hindering downsizing.
  • FIG. 1A to 1C are diagrams for explaining a crystal resonator according to this embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic perspective view for explaining the crystal vibrating device according to the present embodiment.
  • FIG. 6 is a cross-sectional view for explaining the crystal vibrating device according to the present embodiment.
  • FIG. 7 is a diagram for explaining a crystal resonator according to a modification of the present embodiment.
  • FIG. 8 is a diagram for explaining a crystal resonator according to another modification of the present embodiment.
  • FIG. 9 is a diagram for explaining a crystal resonator according to another modification of the present embodiment.
  • 10 is a cross-sectional view taken along line XX of FIG.
  • FIGS. 1A and 1B are plan views
  • FIG. 1C is a cross-sectional view taken along the line IC-IC in FIG. 1A. is there.
  • the crystal resonator 100 includes a crystal substrate 10 and excitation electrodes 20 and 30 formed on the crystal substrate 10.
  • the quartz substrate 10 is made of quartz formed by AT cut.
  • the AT-cut quartz substrate 10 rotates the Y-axis and Z-axis among the X-axis, Y-axis, and Z-axis, which are crystal axes of artificial quartz, around the X-axis by 35 degrees 15 minutes in the direction from the Y-axis to the Z-axis.
  • the Y ′ axis and the Z ′ axis are used as the axes
  • the surfaces specified by the X axis and the Z ′ axis hereinafter referred to as “XZ ′ surfaces”.
  • XZ ′ surfaces The same applies to the surfaces specified by other axes. Is cut out with a plane parallel to the main plane.
  • a quartz resonator using an AT-cut quartz substrate has extremely high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost. Further, the AT-cut quartz resonator is often used as a main vibration in a thickness shear vibration mode (Thickness Shear Mode).
  • the quartz substrate 10 has a longitudinal direction parallel to the Z′-axis direction, a short direction parallel to the X-direction, and a thickness direction parallel to the Y′-axis direction. As shown in FIG. 1A, the quartz substrate 10 has a substantially rectangular shape on the XZ ′ plane.
  • 1A is a plan view on the Y′-axis positive direction side (front side of the quartz substrate), and FIG. 1B is a plan view on the Y′-axis negative direction side (back side of the quartz substrate).
  • the quartz crystal substrate 10 has a vibrating part 40 configured to vibrate in thickness and a peripheral part 50 provided so as to surround the entire circumference of the vibrating part 40. As shown in FIG. 1C, the thickness of the vibration part 40 is thinner than the thickness of the peripheral part 50. Further, in the vibrating portion 40, the excitation electrode 20 is formed on the main surface on the Y′-axis positive direction side, and the excitation electrode 30 is formed on the main surface on the Y′-axis negative direction side. As shown in FIGS. 1A and B, each excitation electrode 20, 30 may be formed with an outer shape smaller than the region of the vibration part 40 so as to provide a space from the outer edge of the vibration part 40, or the vibration part 40. It may be formed so as to cover the entire area of each main surface. Each excitation electrode 20 and 30 is disposed as a pair of electrodes so that substantially the whole overlaps on the XZ ′ plane.
  • the quartz substrate 10 is formed with an extension electrode 22 electrically connected to the excitation electrode 20 and an extension electrode 32 electrically connected to the excitation electrode 30.
  • the extending electrode 22 extends toward the short side of the Z′-axis negative direction in the longitudinal direction of the quartz substrate 10 on the Y′-axis positive direction side, and further, the side surface of the peripheral portion 50 is It extends so as to reach the negative direction side through Y ′ (see FIGS. 1B and 1C).
  • the extended electrode 32 extends toward the short side of the longitudinal direction of the quartz substrate 10 on the Z′-axis negative direction side on the Y′-axis negative direction side.
  • Each of the extension electrodes 22 and 32 has a connection electrode along the short side on the negative side of the Z′-axis, and conductive adhesives 340 and 342 are provided on each connection electrode, whereby the excitation electrode 20 and 30 can be electrically connected to the outside on the Y′-axis negative direction side and the Z′-axis negative direction side.
  • Each of the electrodes including the excitation electrodes 20 and 30 may be formed, for example, by forming a base with a chromium (Cr) layer and forming a gold (Au) layer on the surface of the chromium layer. Absent.
  • FIGS. 2 to 4 correspond to the sectional view taken along the line II-II, the sectional view taken along the line III-III, and the sectional view taken along the line IV-IV in FIG. 1B, respectively.
  • the quartz substrate 10 is usually formed by wet etching. Therefore, the quartz substrate 10 is formed so that the planar shape in the XZ ′ plane follows the mask shape, but the cross-sectional shape perpendicular to the XZ ′ plane depends on the etching conditions, the orientation of the crystal axis of the quartz substrate, and the like. Will be formed. That is, the cross-sectional shape of the step formed by the vibrating portion 40 and the peripheral portion 50 is formed in a state that is nearly perpendicular to the main surface in the XY ′ plane among the cross sections perpendicular to the XZ ′ plane. Thus, as shown in FIG. 1C, the Y′Z ′ plane is formed with a relatively large inclination with respect to the main surface.
  • the side surface of the vibrating portion 40 contacts the peripheral portion 50 at a relatively large obtuse angle on the side on the Z′-axis negative direction side on the Y′-axis positive direction side.
  • the side on the negative side of the Z ′ axis on the negative side of the axis is in contact with the peripheral portion 50 at a relatively large acute angle, and the electrode extending from the excitation electrode on the negative side of the Y ′ axis may be disconnected.
  • a taper side surface 42 is formed in the vibrating portion 40, and the extension electrode 32 passes through at least a part of the taper side surface 42 and is short on the Z′-axis negative direction side. It extends toward the side.
  • the vibration unit 40 includes a second short side surface 44 a on the Z′-axis positive direction side and a first side on the Z′-axis negative direction side.
  • the short side surface 44b, the first long side surface 46a on the X axis positive direction side, the second long side surface 46b on the X axis negative direction side, the first short side surface 44b and the first long side side And a tapered side surface 42 formed adjacent to each of the side surfaces 46 a and inclined from the X axis in the XZ ′ plane.
  • each of the plurality of side surfaces of the vibration part 40 is connected to the main surface 41 of the vibration part 40 and the main surface 51 of the peripheral part 50 (see FIGS. 2 to 4).
  • the vibration part 40 of the quartz substrate 10 has a pentagonal planar shape in which one corner part is notched in the XZ ′ plane.
  • the cross-sectional shape is formed depending on the orientation of the crystal axis of the quartz crystal, etc., and as shown in FIG.
  • the short side surface 44b is in contact with the main surface 51 of the peripheral portion 50 at an acute angle ⁇ 1, while the shorter the side surface 44b is, the more the orientation changes from a line parallel to the X axis to a line parallel to the Z ′ axis,
  • the angle formed by the main surface 51 of the peripheral portion 50 is increased, and as shown in FIG. 3, the first long side surface 46a has an angle ⁇ 2 with the main surface 51 of the peripheral portion 50 (where ⁇ 1 ⁇ 2). Will be in contact.
  • the angle ⁇ ′ formed by the tapered side surface 42 and the main surface 51 of the peripheral portion 50 is in the range of ⁇ 1 ⁇ ′ ⁇ 2, and the angle of the tapered surface (XZ ′ The inclination angle of the surface from the X axis), the height of the step (that is, the height from the main surface 51 of the peripheral portion 50 to the main surface 41 of the vibrating portion 40), etching conditions, and the like.
  • the angle ⁇ 1 approximates to an angle 35 ° 15 ′ from the Z ′ axis by the AT cut (that is, the original Z axis), and may be, for example, 33 ° ⁇ 1 ⁇ 38 °.
  • the angle ⁇ 2 approximates to 90 °, and may be, for example, 85 ° ⁇ 2 ⁇ 95 °. ⁇ 2 becomes larger than 90 ° when the etching time is long.
  • the angle ⁇ ′ depends on the inclination angle of the tapered surface, and may be, for example, 50 ° ⁇ ′ ⁇ 80 °. These angles become shallower when the etching time is longer than when the etching time is shorter.
  • angle ⁇ ′ of the tapered side surface 42 can be arbitrarily formed in a range of ⁇ 1 ⁇ ′ ⁇ 2 using an alternative or additional other method.
  • the excitation electrode and the extension electrode may be formed simultaneously or separately by sputtering or the like using a separate metal mask.
  • a mask for wet-etching the quartz substrate may be formed by sputtering, which may be used as an excitation electrode as it is, and an extended electrode may be added by sputtering or the like as necessary.
  • the excitation electrode is formed so as to cover the entire region of the main surface of the vibration part.
  • a conductive film may be additionally formed on a mask formed by sputtering, and this may be used as an excitation electrode.
  • the extension electrode 32 formed on the Y′-axis negative direction side passes through at least a part of the tapered side surface 42 and is on the Z ′ negative direction side. It is formed to extend toward the short side. That is, the extension electrode 32 extends to the main surface 51 of the peripheral portion 50 through ⁇ ′ that is an angle larger than the acute angle ⁇ 1. Therefore, even if a step is formed by the vibrating portion 40 and the peripheral portion 50, the extended electrode 32 is formed to extend at a relatively gentle angle, so that the disconnection of the electrode is prevented. And stable quality can be maintained from the viewpoint of electrical connection reliability.
  • the crystal axis (X, Y ′, Z ′) of the crystal and the positive direction and the negative direction are only examples, and should be understood in a limited manner in understanding the configuration of the crystal unit. is not.
  • a quartz substrate in which crystal axes (X, Y ′, Z ′) of quartz are rotated 180 ° around the X axis (the positive and negative directions of each axis are also reversed) has a similar shape (acute angle on the side surface and The content described in the present embodiment may be applied to such a configuration.
  • FIG. 5 is an exploded perspective view of the crystal resonator device according to the present embodiment
  • FIG. 6 is a VI-VI line of FIG. 5 and 6, the crystal unit 100 is illustrated in a simplified manner, but the details are as described above.
  • the crystal oscillating device 1 includes the crystal resonator 100, a lid member 200, and a base member 300.
  • the lid member 200 and the base member 300 are cases or packages for housing the crystal unit 100.
  • the lid member 200 has a recess 204 that is opened to face the first surface 302 of the base member 300. Further, the lid member 200 has an opening edge 202 of the recess 204.
  • the lid member 200 may be formed of any of a metal material, an insulating material, or a composite material thereof. Further, the outer shape of the lid member 200, the shape of the recess 204, or the mode of the opening edge 202 is not limited.
  • the opening edge may be a flange that protrudes from the opening edge toward the opening edge from the center of the recess opening.
  • the base member 300 has a substantially rectangular outer shape, and the crystal unit 100 is provided on the first surface 302.
  • the base member 300 may be formed of ceramic.
  • the crystal resonator 100 is surrounded by the recess 204 of the lid member 200 and the base member 300. Hermetically sealed. Both the lid member 200 and the base member 300 are joined by a desired adhesive material (for example, low-melting glass or resin adhesive) 210.
  • the crystal unit 100 includes the lid member 200 and the lid member 200 such that one end where the connection electrode (the conductive adhesives 340 and 342 are provided) is a fixed end. Supported by the base member 300, the other end of the crystal unit 100 is a free end.
  • the base member 300 has external electrodes 330, 332, 334, and 336 formed at the respective corners.
  • Each of the external electrodes 330 to 336 passes from the first surface 302 on which the crystal unit 100 is mounted to the second surface 304 (the surface opposite to the first surface 302) of the base member 300 through the side surface of the base member 300. It is formed continuously. More specifically, the base member 300 has a side surface (notch portion) formed by cutting a part of each corner portion into a cylindrical curved surface shape (or a castellation shape). 336 to 336 are continuously formed from the first surface 302 on which the crystal unit 100 is mounted to the second surface 304 of the base member 300 through the side surface formed by cutting into a cylindrical curved surface. ing.
  • the shape of the corner portion of the base member 300 is not limited to the above.
  • any one of the plurality of external electrodes 330 to 336 formed on the base member 300 is electrically connected to the connection electrode 320 formed on the first surface 302 via the extension electrode 320a.
  • the other external electrode 332 connected is electrically connected to the connection electrode 322 formed on the first surface 302 via the extension electrode 322a, and the remaining two external electrodes 334 and 336 are connected to the connection electrode.
  • the connection electrodes 320 and 322 of the base member 300 are electrically connected to the connection electrodes (see FIG. 1B) of the crystal unit 100 via conductive adhesives 340 and 342, respectively.
  • the two external electrodes 330 and 332 that are electrically connected to the crystal unit 100 may be provided at positions facing each other in a plan view of the base member 300.
  • connection electrodes and the external electrodes are not particularly limited, and can be freely designed as appropriate.
  • the electrical connection reliability can be improved without hindering downsizing.
  • the present invention is not limited to the above embodiment and can be applied in various modifications.
  • modifications of the crystal resonator according to the present embodiment will be described. In the following description, differences from the configuration of the above embodiment will be described.
  • FIG. 7 is a plan view of a crystal resonator 101 according to a modification of the present embodiment (a plan view on the back side of the crystal substrate).
  • the configuration of the extension electrode 34 is different. That is, the extension electrode 34 on the Y′-axis negative direction side is formed on the entire taper side surface 42 of the vibration unit 40, and a part of the first short side surface 44 b and the first long side side of the vibration unit 40. It is formed wider than the tapered side surface 42 so as to reach a part of the side surface 46a.
  • a part of the extended electrode 34 passes through the first short side surface 44b through the angle ⁇ 1 to the peripheral portion 50, and the other part passes through the tapered side surface 42 through the angle ⁇ ′ to the peripheral portion. 50, and the remaining part is formed so as to pass through the first long side surface 46a and reach the peripheral portion 50 through an angle ⁇ 2.
  • part of the extended electrode 34 is extended so as to reach the peripheral portion 50 at a relatively gentle angle (that is, the angle ⁇ ′), so that disconnection of the electrode can be prevented. .
  • FIG. 8 is a plan view (a plan view of the back surface side of the crystal substrate) of the crystal resonator 102 according to another modification of the present embodiment.
  • the configurations of the vibrating portion 60 and the extension electrode 36 are different. That is, the vibration unit 60 includes a second short side surface 64a on the Z′-axis positive direction side, a first short side surface 64b on the Z′-axis negative direction side, and a second long side on the X-axis negative direction side.
  • a side surface 66b; and a tapered side surface 62 formed adjacent to each of the first short side surface 64b and the second short side surface 64a and inclined from the X axis in the XZ ′ plane. .
  • the vibration part 60 of the quartz substrate has a rectangular planar shape on the XZ ′ plane.
  • the extension electrode 36 is formed on a part (a part on the Z′-axis negative direction side) of the tapered side surface 62 formed over the second short side surface 64a and the first short side surface 64b. Yes.
  • the extended electrode 36 may be formed on the entire tapered side surface 62. Even in such a configuration, the extension electrode 36 is extended so as to reach the peripheral portion 50 at a relatively gentle angle (that is, the angle ⁇ ′), so that disconnection of the electrode can be prevented.
  • FIG. 9 is a plan view (plan view of the surface side of the crystal substrate) of the crystal resonator 103 according to another modification of the present embodiment
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG.
  • the taper side surface is formed on the vibrating portion also on the front surface side of the quartz crystal substrate.
  • the vibration part 70 has a tapered side surface 74, and extends through at least a part of the tapered side surface 74 toward the short side on the Z′-axis negative direction side.
  • the vibration part 70 has a tapered side surface 72, and passes through at least a part of the tapered side surface 72 toward the short side on the Z′-axis negative direction side.
  • an extended electrode 24 is formed. That is, the outer shape of the surface of the vibration unit 70 is configured to be line-symmetric with the outer shape of the back surface of the vibration unit 70 with respect to the Z ′ axis.
  • the configuration of the taper side surface 74 on the back surface side is the same as the taper side surface 42 already described, and is configured to contact the peripheral portion 50 at the angle ⁇ ′ described above.
  • the taper side surface 72 on the surface side of the quartz substrate has a crystal axis rotated 180 ° around the X axis with respect to the taper side surface 74, and as shown in FIG. 73 is in contact with the peripheral portion 50 at an obtuse angle ⁇ 3 (here, ⁇ 2 ⁇ 3), and the adjacent long side surface 75 shown in FIG. 9 is the same as the peripheral portion 50 and ⁇ 2 shown in FIG. Contact at an angle. That is, assuming that the angle at which the tapered side surface 72 contacts the peripheral portion 50 is ⁇ ′′, the range is ⁇ 2 ⁇ ′′ ⁇ 3.
  • the angle ⁇ 3 approximates to an angle 144 ° 45 ′ from the Z ′ axis by the AT cut (that is, the original Z axis), and may be 142 ° ⁇ 3 ⁇ 147 °, for example.
  • the angle ⁇ ′′ depends on the inclination angle of the tapered surface, and may be 100 ° ⁇ ′′ ⁇ 130 °, for example.
  • the crystal substrate in addition to preventing the disconnection of the electrode, has the same configuration on both the front surface and the back surface, so that the electrode forming process is facilitated.
  • each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 水晶振動子(100)は、主面を有する振動部(40)と、振動部(40)を囲むように設けられ振動部(40)よりも厚さが薄い周辺部(50)とを含む、ATカット水晶基板(10)と、主面に形成された励振電極(30)と、励振電極(30)に電気的に接続された延出電極(32)と、を含み、水晶基板(10)の長手方向はZ´軸と平行な方向であり、短手方向はX軸と平行な方向であり、振動部(40)は、周辺部と鋭角の角度θ1で接する第1短辺側側面(44b)と、第1短辺側側面(44b)に隣接するとともに、XZ´面においてX軸から傾斜して形成されたテーパ側面(42)とを有し、テーパ側面(42)は、角度θ´(θ´>θ1)で周辺部(50)と接しており、延出電極(32)は、励振電極(30)からテーパ側面(42)の少なくとも一部を通って長手方向の一方の短辺側に延出して形成されている。

Description

水晶振動子及び水晶振動デバイス
 本発明は、水晶振動子及び水晶振動デバイスに関する。
 発振装置や帯域フィルタなどに用いられる圧電振動素子として、厚みすべり振動を主振動とする水晶振動子が広く用いられている。また、水晶振動子の一態様として、厚みすべり振動の振動エネルギーを閉じ込めるために、振動部をその周辺部よりも厚くエッチング形成したメサ型構造が知られている。かかるメサ型構造においては、振動部の両主面に励振電極が形成され、励振電極と電気的に接続された延出電極が形成される。この場合、延出電極は、振動部と周辺部とによって形成される段差を通って延出されることになる。
 しかしながら、振動部と周辺部とによって形成される段差の断面形状は、通常、水晶結晶軸の向きによって決定されるため、振動部の側面と周辺部の面とのなす角が鋭角となる側においては電極が断線する可能性があり、電極の延出方向が制約されるか、あるいは、電気的接続信頼性の観点で安定した品質を維持することが難しい場合があった。
 他方、例えば、特許文献1の構成のように、励振電極と電気的に接続される電極を、振動部の側面と周辺部の面とのなす角が鈍角となる側(短手方向における一方の長辺側)へ延出させることが知られているが、かかる構成においては、励振電極の幅方向を越えて外方向へ電極を延出させることになり、水晶振動子の小型化が妨げられる可能性があった。
特開2008-236439号公報
 本発明はこのような事情に鑑みてなされたものであり、小型化を妨げることなく、電気的接続信頼性の向上を図ることを目的とする。
 本発明の一側面に係る水晶振動子は、水晶の結晶軸であるX軸、Y軸、Z軸のうち、X軸の回りにZ軸から所定の角度回転させた軸をZ´軸とした場合、X軸及びZ´軸によって特定される面と平行な面を主面として切り出されたATカット水晶基板であって、主面を有する振動部と、振動部を囲むように設けられ振動部よりも厚さが薄い周辺部とを含む、ATカット水晶基板と、主面に形成された励振電極と、励振電極に電気的に接続された延出電極と、を含み、ATカット水晶基板は、長手方向及び短手方向を有し、長手方向はZ´軸と平行な方向であり、短手方向はX軸と平行な方向であり、振動部は、長手方向における一方の短辺側において周辺部と鋭角の角度θ1で接する第1短辺側側面と、第1短辺側側面に隣接するとともに、X軸及びZ´軸によって特定される平面視においてX軸から傾斜して形成されたテーパ側面とを有し、テーパ側面は、θ1よりも大きい角度θ´で周辺部と接しており、延出電極は、励振電極からテーパ側面の少なくとも一部を通って長手方向の一方の短辺側に延出して形成されたものである。
 上記構成によれば、延出電極が、振動部のテーパ側面の少なくとも一部を通って長手方向の一方の短辺側に延出して形成される。これにより、延出電極が比較的緩やかな角度をもって延出して形成されることができるため、電極の延出方向を制約することなく、電極の断線が防止され、電気的接続信頼性の観点で安定した品質を維持することができる。また、水晶基板の周辺部の領域を特に広く形成する必要もないことから、水晶振動子の小型化を妨げることもない。よって、小型化を妨げることなく、電気的接続信頼性の向上を図ることができる。
 上記水晶振動子において、振動部は、長手方向における他方の短辺側において周辺部と接する第2短辺側側面を有し、テーパ側面は、第1短辺側側面及び第2短辺側側面のそれぞれに隣接して形成されてもよい。
 上記水晶振動子において、振動部は、短手方向における一方の長辺側において周辺部と接する第1長辺側側面を有し、テーパ側面は、第1短辺側側面及び第1長辺側側面のそれぞれに隣接して形成されてもよい。
 上記水晶振動子において、延出電極は、テーパ側面の全面に形成され、かつ、第1短辺側側面の一部及び第1長辺側側面の一部に至るようにテーパ側面よりも幅広に形成されてもよい。
 上記水晶振動子において、ATカット水晶基板は、表面及び裏面を有し、X軸及びZ´軸によって特定される平面視において、振動部の表面の外形は、Z´軸を基準として、振動部の裏面の外形と線対称となっていてもよい。
 本発明の一側面に係る水晶デバイスは、ベース部材と、密封した内部空間を構成するようにベース部材に接続されたリッド部材と、内部空間に収容された、上記水晶振動子と、を備える。
 上記構成によれば、上記水晶振動子を備えるので、小型化を妨げることなく、電気的接続信頼性の向上を図ることができる。
 本発明によれば、小型化を妨げることなく、電気的接続信頼性の向上を図ることができる。
図1A~Cは、本実施形態に係る水晶振動子を説明するための図である。 図2は、図1のII-II線断面図である。 図3は、図1のIII-III線断面図である。 図4は、図1のIV-IV線断面図である。 図5は、本実施形態に係る水晶振動デバイスを説明するための概略斜視図である。 図6は、本実施形態に係る水晶振動デバイスを説明するための断面図である。 図7は、本実施形態の変形例に係る水晶振動子を説明するための図である。 図8は、本実施形態の他の変形例に係る水晶振動子を説明するための図である。 図9は、本実施形態の他の変形例に係る水晶振動子を説明するための図である。 図10は、図9のX-X線断面図である。
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施の形態に限定して解するべきではない。
 図1A~Cは、本実施形態に係る水晶振動子を説明するための図であり、具体的には図1A及びBは平面図であり、図1Cは図1AのIC-IC線断面図である。
 本実施形態に係る水晶振動子100は、水晶基板10と、水晶基板10に形成された励振電極20,30とを備える。
 水晶基板10は、ATカットで形成された水晶からなる。ATカットの水晶基板10は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分回転させた軸をそれぞれY´軸及びZ´軸とした場合、X軸及びZ´軸によって特定される面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)と平行な面を主面として切り出されたものである。ATカット水晶基板を用いた水晶振動子は、広い温度範囲で極めて高い周波数安定性を有し、また、経時変化特性にも優れている上、低コストで製造することが可能である。また、ATカット水晶振動子は、厚みすべり振動モード(Thickness Shear Mode)を主振動として用いられることが多い。
 水晶基板10は、Z´軸方向に平行な長手方向と、X方向に平行な短手方向と、Y´軸方向に平行な厚さ方向を有する。水晶基板10は、図1Aに示すように、XZ´面において略矩形形状をなしている。なお、図1AはY´軸正方向側(水晶基板の表面側)の平面図であり、図1BはY´軸負方向側(水晶基板の裏面側)の平面図である。
 水晶基板10は、厚みすべり振動するように構成された振動部40と、振動部40の全周を囲むように設けられた周辺部50とを有する。図1Cに示すように、振動部40の厚さは、周辺部50の厚さよりも薄い。また、振動部40には、Y´軸正方向側の主面に励振電極20が形成され、Y´軸負方向側の主面に励振電極30が形成されている。図1A及びBに示すように、各励振電極20,30は、振動部40の外縁からスペースを設けるように振動部40の領域よりも小さい外形で形成されていてもよく、あるいは、振動部40の各主面の領域全体を覆うように形成されていてもよい。各励振電極20,30は、一対の電極として、XZ´面において略全体が重なり合うように配置されている。
 水晶基板10には、励振電極20に電気的に接続された延出電極22と、励振電極30に電気的に接続された延出電極32とが形成されている。図1Aに示すように、延出電極22は、Y´軸正方向側において水晶基板10の長手方向のZ´軸負方向側短辺に向かって延出しており、さらに周辺部50の側面を通ってY´負方向側に至るように延出されている(図1B及びC参照)。他方、図1Bに示すように、延出電極32は、Y´軸負方向側において水晶基板10の長手方向のZ´軸負方向側の短辺に向かって延出されている。延出電極22,32はいずれも、Z´軸負方向側の短辺に沿って接続電極を有しており、各接続電極には導電性接着剤340,342が設けられ、これにより励振電極20,30がY´軸負方向側かつZ´軸負方向側において外部と電気的導通を図ることができるようになっている。
 励振電極20,30を含む上記各電極は、例えば、下地をクロム(Cr)層で形成し、クロム層の表面に金(Au)層を形成してもよく、その材料は限定されるものではない。
 次に、図2~4を参照しつつ、水晶基板10の断面形状について説明する。ここで、図2~4は、図1BのII-II線断面図、III-III線断面図及びIV-IV線断面図にそれぞれ対応する。
 水晶基板10は、通常ウェットエッチングによって形成される。したがって、水晶基板10は、XZ´面における平面形状はマスク形状に倣うように形成されるが、XZ´面に垂直な断面形状は、エッチング条件や水晶基板の結晶軸の向きなどに依存して形成されることになる。すなわち、振動部40と周辺部50とによって形成される段差の断面形状は、XZ´面に垂直な断面のうち、XY´面においては、主面に対して垂直に近い状態に形成される一方で、Y´Z´面においては、図1Cに示すように、主面に対して比較的大きく傾斜して形成される。したがって、Y´Z´面においては、振動部40の側面は、Y´軸正方向側のZ´軸負方向側の辺では比較的大きい鈍角で周辺部50と接するが、反対に、Y´軸負方向側のZ´軸負方向側の辺では比較的大きい鋭角で周辺部50と接することになり、Y´軸負方向側において励振電極から延出される電極が断線する可能性がある。
 そこで、本実施形態においては、Y´軸負方向側において、振動部40にテーパ側面42を形成し、延出電極32をテーパ側面42の少なくとも一部を通ってZ´軸負方向側の短辺に向かって延出させている。
 具体的には、図1Bに示すように、水晶基板10の裏面側において、振動部40は、Z´軸正方向側の第2短辺側側面44aと、Z´軸負方向側の第1短辺側側面44bと、X軸正方向側の第1長辺側側面46aと、X軸負方向側の第2長辺側側面46bと、第1短辺側側面44b及び第1長辺側側面46aのそれぞれに隣接して形成されかつXZ´面においてX軸から傾斜して形成されたテーパ側面42とを有している。振動部40の上記複数の側面のそれぞれは、振動部40の主面41と周辺部50の主面51とに接続されている(図2~4参照)。また、図1Bに示す例においては、水晶基板10の振動部40は、XZ´面において一つのコーナー部が切り欠かれた五角形の平面形状を有する。
 水晶基板10をウェットエッチングで形成した場合、上記のとおり、その断面形状は水晶の結晶軸の向きなどに依存して形成されるため、図2に示すようにZ´軸負方向側の第1短辺側側面44bは、周辺部50の主面51と鋭角の角度θ1で接する一方で、X軸に平行な線からZ´軸に平行な線に向きが変わるほど、振動部40の側面と周辺部50の主面51とのなす角度は大きくなり、図3に示すように第1長辺側側面46aは、周辺部50の主面51と角度θ2(ここでθ1<θ2である。)で接することとなる。すなわち、テーパ側面42をウェットエッチングで形成した場合は、テーパ側面42と周辺部50の主面51とのなす角θ´は、θ1<θ´<θ2の範囲で、テーパ面の角度(XZ´面におけるX軸からの傾斜角度)、段差の高さ(すなわち周辺部50の主面51から振動部40の主面41までの高さ)及びエッチング条件などの各要因により決められる。
 具体的には、角度θ1は、ATカットによるZ´軸からの角度35°15′(すなわち元のZ軸)に近似し、例えば、33°<θ1<38°であってもよい。また、角度θ2は、90°に近似し、例えば、85°<θ2<95°であってもよい。θ2はエッチング時間が長いと90°を越えてより大きくなる。また、角度θ´は、テーパ面の傾斜角度に依存し、例えば、50°<θ´<80°であってもよい。これらの角度は、エッチング時間が長いほうが短い場合に比べてより角度が浅くなる。
 なお、テーパ側面42の角度θ´は、代替的又は追加的な他の手法を用いて、θ1<θ´<θ2の範囲に任意に形成することも可能である。
 ここで、ウェットエッチングで用いたマスクを除去した後、別途メタルマスクを用いてスパッタ等で励振電極と延出電極を同時または別々に形成してもよい。あるいは、水晶基板をウェットエッチングするためのマスクをスパッタで形成し、これをそのまま励振電極とし、必要に応じてさらに延出電極をスパッタ等で追加してもよい。この場合、励振電極は振動部の主面の領域全体を覆うように形成される。なお、スパッタで形成したマスクの上にさらに導電膜を追加形成し、これを励振電極としてもよい。
 このように本実施形態においては、延出電極22,32のうち、Y´軸負方向側に形成される延出電極32が、テーパ側面42の少なくとも一部を通ってZ´負方向側の短辺に向かって延出して形成される。すなわち、延出電極32は、鋭角の角度θ1よりも大きい角度であるθ´を経て、周辺部50の主面51へ延出される。したがって、振動部40と周辺部50とによって段差が形成されている場合であっても、延出電極32が、比較的緩やかな角度をもって延出して形成されることになるため、電極の断線が防止され、電気的接続信頼性の観点で安定した品質を維持することができる。また、かかる構成によれば、水晶基板10の周辺部50の領域を特に広く形成する必要もないことから、水晶振動子100の小型化を妨げることもない。したがって、小型化を妨げることなく、電気的接続信頼性の向上を図ることができる。
 なお、上記においては、水晶の結晶軸(X、Y´、Z´)とその正方向及び負方向の特定は一例にすぎず、水晶振動子の構成を理解するにあたり限定して解されるべきではない。例えば、水晶の結晶軸(X、Y´、Z´)がX軸の周りに180°回転させた水晶基板(各軸の正負方向も逆になる。)も、同様な形状(側面の鋭角及び鈍角の形状)を有するところ、かかる構成に本実施形態で説明した内容を適用してもよい。
 次に、図5及び図6を参照して、本実施形態に係る水晶振動デバイスを説明する。ここで、図5は、本実施形態に係る水晶振動デバイスの分解斜視図であり、図6は図5のVI-VI線である。なお、図5及び図6において水晶振動子100は簡略化して図示するがその詳細は、既に説明したとおりである。
 本実施形態に係る水晶振動デバイス1は、上記水晶振動子100と、リッド部材200と、ベース部材300とを備える。リッド部材200及びベース部材300は、水晶振動子100を収容するためのケース又はパッケージである。
 リッド部材200は、ベース部材300の第1面302に対向するように開口された凹部204を有する。また、リッド部材200は、凹部204の開口縁部202を有する。リッド部材200は、金属材料、絶縁材料又はそれらの複合材料のいずれで形成されてもよい。また、リッド部材200の外形形状、凹部204の形状、あるいは開口縁部202の態様はいずれも限定されるものではない。例えば、開口縁部は、凹部開口中心から開口縁に向かって開口縁から突出するフランジ部であってもよい。
 ベース部材300は、略矩形の外形形状を有し、第1面302に水晶振動子100が設けられる。ベース部材300は、セラミックで形成されてもよい。図6に示すように、リッド部材200及びベース部材300の両者が接合されることによって、水晶振動子100が、リッド部材200の凹部204とベース部材300とによって囲まれた内部空間(キャビティ)206に密封封止される。リッド部材200及びベース部材300の両者は、所望の接着材料(例えば低融点ガラスや樹脂接着剤など)210によって接合されている。また、図6に示すように、水晶振動子100は、接続電極(導電性接着剤340,342が設けられている。)が配置された一方端が固定端となるように、リッド部材200及びベース部材300に支持され、水晶振動子100の他方端が自由端となっている。
 図5に示すように、ベース部材300は、各コーナー部にそれぞれ形成された外部電極330,332,334,336を有する。各外部電極330~336は、水晶振動子100が実装される第1面302から、ベース部材300の側面を通って、ベース部材300の第2面304(第1面302と反対の面)にかけて連続して形成されている。より詳細には、ベース部材300は、それぞれのコーナー部の一部が円筒曲面状(又はキャスタレーション形状)に切断して形成された側面(切り欠き部)を有しており、各外部電極330~336は、水晶振動子100が実装される第1面302から、このような円筒曲面状に切断して形成された側面を通って、ベース部材300の第2面304にかけて連続して形成されている。なお、ベース部材300のコーナー部の形状は上記に限定されるものではない。
 また、ベース部材300に形成された複数の外部電極330~336のうち、いずれか一つの外部電極330は、第1面302に形成された接続電極320に延出電極320aを介して電気的に接続され、他の一つの外部電極332は、第1面302に形成された接続電極322に延出電極322aを介して電気的に接続され、残りの2つの外部電極334,336は上記接続電極とは電気的に接続されていないダミー電極として構成されている。また、ベース部材300の接続電極320,322は、それぞれ導電性接着剤340,342を介して、水晶振動子100の接続電極(図1B参照)に電気的に接続されている。水晶振動子100に電気的に接続された2つの外部電極330,332は、ベース部材300の平面視において対向する位置に設けられてもよい。
 なお、接続電極及び外部電極について、それらの電極の個数、電極の配置及びパターン形状は特に限定されるものではなく、適宜自由に設計することができる。
 こうして、ベース部材300に外部電極330~336が形成されることによって、水晶振動子100が設けられた第1面302から、水晶振動デバイス1の実装面側である第2面304へ、電気的導通を図ることができる。このような水晶振動デバイス1においては、外部電極330,332を介して、水晶振動子100における一対の励振電極の間に交流電圧を印加することにより、厚みすべりモードで水晶基板が振動し、該振動に伴う共振特性が得られる。
 本実施形態に係る水晶振動デバイス1によれば、上記した水晶振動子100を備えるので、小型化を妨げることなく、電気的接続信頼性の向上を図ることができる。
 本発明は、上記実施形態に限定されることなく種々に変形して適用することが可能である。以下、図7~9を参照して、本実施形態に係る水晶振動子の各変形例を説明する。なお、以下の説明においては上記実施形態の構成と異なる点を説明する。
 図7は、本実施形態の変形例に係る水晶振動子101の平面図(水晶基板の裏面側の平面図)である。本変形例では延出電極34の構成が異なる。すなわち、Y´軸負方向側の延出電極34は、振動部40のテーパ側面42の全面に形成され、かつ、振動部40の第1短辺側側面44bの一部及び第1長辺側側面46aの一部に至るように、テーパ側面42よりも幅広に形成されている。すなわち、延出電極34は、その一部が第1短辺側側面44bを通って角度θ1を経て周辺部50に至り、他の一部がテーパ側面42を通って角度θ´を経て周辺部50に至り、残りの一部が第1長辺側側面46aを通って角度θ2を経て周辺部50に至るように形成されている。かかる構成においても、延出電極34の一部が、比較的緩やかな角度(すなわち角度θ´)をもって周辺部50に至るように延出されることになるため、電極の断線防止を図ることができる。
 図8は、本実施形態の他の変形例に係る水晶振動子102の平面図(水晶基板の裏面側の平面図)である。本変形例では振動部60及び延出電極36の構成が異なる。すなわち、振動部60は、Z´軸正方向側の第2短辺側側面64aと、Z´軸負方向側の第1短辺側側面64bと、X軸負方向側の第2長辺側側面66bと、第1短辺側側面64b及び第2短辺側側面64aのそれぞれに隣接して形成されかつXZ´面においてX軸から傾斜して形成されたテーパ側面62とを有している。図8に示す例においては、水晶基板の振動部60は、XZ´面において四角形の平面形状を有する。そして、延出電極36は、第2短辺側側面64a及び第1短辺側側面64bに亘って形成されたテーパ側面62の一部(Z´軸負方向側の一部)に形成されている。あるいは、延出電極36は、テーパ側面62の全面に形成されていてもよい。かかる構成においても延出電極36が、比較的緩やかな角度(すなわち角度θ´)をもって周辺部50に至るように延出されることになるため、電極の断線防止を図ることができる。
 図9は、本実施形態の他の変形例に係る水晶振動子103の平面図(水晶基板の表面側の平面図)であり、図10は、図9のX-X線断面図である。本変形例では、これまでに説明した水晶基板の裏面側のテーパ側面の構成に加え、水晶基板の表面側にも、振動部にテーパ側面が形成されている。具体的には、水晶基板の裏面側においては、振動部70はテーパ側面74を有し、かかるテーパ側面74の少なくとも一部を通ってZ´軸負方向側の短辺に向かって延出電極32が形成されており、他方、水晶基板の表面側においても、振動部70はテーパ側面72を有し、かかるテーパ側面72の少なくとも一部を通ってZ´軸負方向側の短辺に向かって延出電極24が形成されている。すなわち、振動部70の表面の外形は、Z´軸を基準として、振動部70の裏面の外形と線対称となるように構成されている。裏面側のテーパ側面74の構成は、既に説明したテーパ側面42と同じであり、周辺部50とは上記した角度θ´で接するように構成される。他方、水晶基板の表面側のテーパ側面72は、テーパ側面74に対して結晶軸がX軸周りに180°回転しており、図10に示すように、テーパ側面72が隣接する短辺側側面73は周辺部50と鈍角の角度θ3(ここでθ2<θ3である。)で接し、また、図9に示される隣接する長辺側側面75は、周辺部50と図3に示すθ2と同じ角度で接する。すなわち、テーパ側面72が周辺部50と接する角度をθ´´とすると、θ2<θ´´<θ3の範囲となる。ここで、角度θ3は、ATカットによるZ´軸からの角度144°45′(すなわち元のZ軸)に近似し、例えば、142°<θ3<147°であってもよい。また、角度θ´´は、テーパ面の傾斜角度に依存し、例えば、100°<θ´´<130°であってもよい。本変形例によれば、上記した電極の断線防止を図ることに加え、水晶基板が表面及び裏面のいずれも同じ構成を有することになるので、電極の形成工程が容易となる。
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
   1 水晶振動子
  10 水晶基板
  30 励振電極
  32 延出電極
  40 振動部
  42 テーパ側面
 44a 第2短辺側側面
 44b 第1短辺側側面
 46a 第1長辺側側面
 46b 第2長辺側側面
  50 周辺部
 100 水晶振動子
 200 リッド部材
 300 ベース部材

Claims (6)

  1.  水晶の結晶軸であるX軸、Y軸、Z軸のうち、前記X軸の回りに前記Z軸から所定の角度回転させた軸をZ´軸とした場合、前記X軸及び前記Z´軸によって特定される面と平行な面を主面として切り出されたATカット水晶基板であって、前記主面を有する振動部と、当該振動部を囲むように設けられ前記振動部よりも厚さが薄い周辺部とを含む、ATカット水晶基板と、
     前記主面に形成された励振電極と、
     前記励振電極に電気的に接続された延出電極と、
    を含み、
     前記ATカット水晶基板は、長手方向及び短手方向を有し、前記長手方向は前記Z´軸と平行な方向であり、前記短手方向は前記X軸と平行な方向であり、
     前記振動部は、前記長手方向における一方の短辺側において前記周辺部と鋭角の角度θ1で接する第1短辺側側面と、前記第1短辺側側面に隣接するとともに、前記X軸及び前記Z´軸によって特定される平面視において前記X軸から傾斜して形成されたテーパ側面とを有し、
     前記テーパ側面は、前記θ1よりも大きい角度θ´で前記周辺部と接しており、
     前記延出電極は、前記励振電極から前記テーパ側面の少なくとも一部を通って前記長手方向の前記一方の短辺側に延出して形成された、水晶振動子。
  2.  前記振動部は、前記長手方向における他方の短辺側において前記周辺部と接する第2短辺側側面を有し、
     前記テーパ側面は、前記第1短辺側側面及び前記第2短辺側側面のそれぞれに隣接して形成された、請求項1記載の水晶振動子。
  3.  前記振動部は、前記短手方向における一方の長辺側において前記周辺部と接する第1長辺側側面を有し、
     前記テーパ側面は、前記第1短辺側側面及び前記第1長辺側側面のそれぞれに隣接して形成された、請求項1記載の水晶振動子。
  4.  前記延出電極は、前記テーパ側面の全面に形成され、かつ、前記第1短辺側側面の一部及び前記第1長辺側側面の一部に至るように前記テーパ側面よりも幅広に形成された、請求項3記載の水晶振動子。
  5.  前記ATカット水晶基板は、表面及び裏面を有し、
     前記X軸及び前記Z´軸によって特定される平面視において、前記振動部の前記表面の外形は、前記Z´軸を基準として、前記振動部の前記裏面の外形と線対称となっている、請求項1から4のいずれか一項に記載の水晶振動子。
  6.  ベース部材と、
     密封した内部空間を構成するようにベース部材に接続されたリッド部材と、
     前記内部空間に収容された、請求項1から5のいずれか一項に記載の水晶振動子と、
    を備える水晶振動デバイス。
PCT/JP2016/050559 2015-02-19 2016-01-08 水晶振動子及び水晶振動デバイス WO2016132766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016526955A JP5988125B1 (ja) 2015-02-19 2016-01-08 水晶振動子及び水晶振動デバイス
CN201680009695.7A CN107210725B (zh) 2015-02-19 2016-01-08 水晶振子以及水晶振动器件
US15/659,763 US10615331B2 (en) 2015-02-19 2017-07-26 Crystal vibrator and crystal vibration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015030702 2015-02-19
JP2015-030702 2015-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/659,763 Continuation US10615331B2 (en) 2015-02-19 2017-07-26 Crystal vibrator and crystal vibration device

Publications (1)

Publication Number Publication Date
WO2016132766A1 true WO2016132766A1 (ja) 2016-08-25

Family

ID=56692404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050559 WO2016132766A1 (ja) 2015-02-19 2016-01-08 水晶振動子及び水晶振動デバイス

Country Status (4)

Country Link
US (1) US10615331B2 (ja)
JP (1) JP5988125B1 (ja)
CN (1) CN107210725B (ja)
WO (1) WO2016132766A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181881A1 (ja) * 2015-05-08 2017-12-28 株式会社村田製作所 水晶振動子及びその製造方法
EP3644504A4 (en) * 2017-06-22 2020-06-10 Daishinku Corporation CRYSTAL OSCILLATION PLATE AND CRYSTAL OSCILLATION DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760430B1 (ja) * 2019-03-27 2020-09-23 株式会社大真空 水晶振動デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067345A (ja) * 2006-08-09 2008-03-21 Epson Toyocom Corp Atカット水晶振動片及びその製造方法
JP2008236439A (ja) * 2007-03-21 2008-10-02 Epson Toyocom Corp 水晶振動片
JP2011166364A (ja) * 2010-02-08 2011-08-25 Daishinku Corp 厚み系水晶振動子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572807B2 (ja) * 2005-10-31 2010-11-04 エプソントヨコム株式会社 メサ型圧電振動片
JP5046012B2 (ja) * 2007-09-04 2012-10-10 セイコーエプソン株式会社 振動片、振動デバイス、発振器及び電子機器
JP5035750B2 (ja) * 2007-11-22 2012-09-26 セイコーエプソン株式会社 水晶振動片、水晶振動子、及び水晶発振器
JP5059897B2 (ja) * 2010-02-24 2012-10-31 日本電波工業株式会社 圧電振動片の製造方法
JP5589167B2 (ja) * 2010-11-19 2014-09-17 セイコーエプソン株式会社 圧電振動片および圧電振動子
JP5943187B2 (ja) * 2012-03-21 2016-06-29 セイコーエプソン株式会社 振動素子、振動子、電子デバイス、および電子機器
TWI578585B (zh) * 2012-03-27 2017-04-11 精工愛普生股份有限公司 振動元件、振動器、電子裝置、電子機器及移動體
JP2014036426A (ja) * 2012-08-10 2014-02-24 Nippon Dempa Kogyo Co Ltd 圧電振動片及び圧電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067345A (ja) * 2006-08-09 2008-03-21 Epson Toyocom Corp Atカット水晶振動片及びその製造方法
JP2008236439A (ja) * 2007-03-21 2008-10-02 Epson Toyocom Corp 水晶振動片
JP2011166364A (ja) * 2010-02-08 2011-08-25 Daishinku Corp 厚み系水晶振動子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181881A1 (ja) * 2015-05-08 2017-12-28 株式会社村田製作所 水晶振動子及びその製造方法
EP3644504A4 (en) * 2017-06-22 2020-06-10 Daishinku Corporation CRYSTAL OSCILLATION PLATE AND CRYSTAL OSCILLATION DEVICE

Also Published As

Publication number Publication date
CN107210725A (zh) 2017-09-26
JP5988125B1 (ja) 2016-09-07
CN107210725B (zh) 2020-06-02
US10615331B2 (en) 2020-04-07
US20170324024A1 (en) 2017-11-09
JPWO2016132766A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
CN109314502B (zh) 水晶振动元件、水晶振子以及水晶振动元件的制造方法
JP6281734B2 (ja) 圧電振動子及びその製造方法
JP5991566B1 (ja) 水晶振動子及びその製造方法並びに水晶振動デバイス
KR100330128B1 (ko) 압전 공진자
JP2018074267A (ja) 圧電振動片及び圧電デバイス
JP5988125B1 (ja) 水晶振動子及び水晶振動デバイス
JP6569874B2 (ja) 水晶振動子及びその製造方法
US10938368B2 (en) Piezoelectric-resonator-mounting substrate, and piezoelectric resonator unit and method of manufacturing the piezoelectric resonator unit
JP6179838B2 (ja) 水晶振動子及び水晶振動デバイス
JP6739759B2 (ja) 圧電振動子
JP2015173366A (ja) 圧電振動片及び圧電デバイス
WO2016181882A1 (ja) 水晶振動素子及び水晶振動子
JP7227571B2 (ja) 振動素子、振動子及び振動素子の製造方法
JP6645211B2 (ja) 水晶振動デバイスの製造方法
JP2019153873A (ja) 圧電振動片及び圧電振動子
JP2015019127A (ja) 水晶振動片及び水晶デバイス
JP2005192088A (ja) 圧電振動片および圧電振動デバイス
JP2023079859A (ja) 水晶振動素子および水晶振動デバイス
WO2017169864A1 (ja) 圧電振動子
JP2019153973A (ja) 音叉型圧電振動片
JP2013027009A (ja) 圧電振動片の製造方法及び圧電振動片
WO2016136010A1 (ja) 水晶振動デバイス
WO2016136009A1 (ja) 水晶振動デバイス
JP2007013570A (ja) 圧電振動子
JP2007180996A (ja) 圧電振動子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016526955

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752155

Country of ref document: EP

Kind code of ref document: A1