WO2016110134A1 - 一种基于复合正、负极材料的新型电池电容 - Google Patents

一种基于复合正、负极材料的新型电池电容 Download PDF

Info

Publication number
WO2016110134A1
WO2016110134A1 PCT/CN2015/091534 CN2015091534W WO2016110134A1 WO 2016110134 A1 WO2016110134 A1 WO 2016110134A1 CN 2015091534 W CN2015091534 W CN 2015091534W WO 2016110134 A1 WO2016110134 A1 WO 2016110134A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
lithium
activated carbon
battery capacitor
positive
Prior art date
Application number
PCT/CN2015/091534
Other languages
English (en)
French (fr)
Inventor
阮殿波
黄�益
傅冠生
Original Assignee
宁波南车新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波南车新能源科技有限公司 filed Critical 宁波南车新能源科技有限公司
Publication of WO2016110134A1 publication Critical patent/WO2016110134A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation

Definitions

  • the invention relates to the field of new energy storage devices, and particularly relates to a novel battery capacitor based on composite positive and negative materials.
  • Lithium titanate (Li 4 Ti 5 O 12 ) has a lithium-rich spinel structure. Compared with the graphite negative electrode, the theoretical capacity is lower (170 mAh/g) and the voltage is higher (1.5 V vs Li), both of which undoubtedly reduce the specific energy of lithium titanate, but a series of advantages other than this It has become an attractive candidate anode material. Firstly, the shape variable is very small during the cycle, which makes Li 4 Ti 5 O 12 have good cycle stability; in addition, there is no electrolyte decomposition and no SEI film is formed; it has excellent rate performance, low temperature charge and discharge performance and heat. stability.
  • lithium titanate/lithium manganate system Compared with the existing graphite/lithium cobalt oxide system in the market, the advantages of lithium titanate/lithium manganate system include: excellent and nearly perfect safety, excellent cycle life, fast charge and discharge, and lithium manganate. Overall cost advantage, etc.
  • An object of the present invention is to solve the above problems and to provide a novel battery capacitor based on composite positive and negative materials.
  • the capacitor can significantly improve power performance and cycle life while maintaining high specific energy and high safety.
  • the present invention adopts the following technical solutions: a novel battery capacitor based on composite positive and negative materials, wherein the battery capacitor includes a positive electrode, a negative electrode, a conductive agent, a binder, an electrolyte, and a separator. And corroding aluminum foil, the battery capacitor is a composite material of lithium manganate and activated carbon as a positive electrode, and a composite material of lithium titanate and activated carbon is a negative electrode.
  • the lithium manganate is lithium manganate coated or doped with one or more of carbon, metal, metal oxide, and the lithium titanate is doped and coated with carbon or graphene and a ball Lithium titanate treated.
  • the lithium manganate is a nano-composite lithium manganate synthesized by mixing a doping element with a nano metal oxide as a precursor, the lithium titanate being a nano-composite lithium titanate, and the nano-composite lithium manganate and the nano composite
  • the lithium titanate has a particle diameter of less than 500 nm.
  • the activated carbon is activated carbon having a coconut shell or a needle coke as a precursor, and the activated carbon is used after surface modification treatment, and the surface modification treatment method is: a silane coupling agent having a concentration of 5-10 wt%
  • the anhydrous ethanol solution is mixed with activated carbon for 30-50 min, then added with a concentration of 8-15 wt% of the aluminate coupling agent in absolute ethanol solution for 30-50 min, filtered, and the filtrate is dried at 70-80 ° C.
  • the amount of silane coupling agent is 0.5-1% of the weight of activated carbon
  • the amount of aluminate coupling agent is 1-1.5% of the weight of activated carbon.
  • the inventors discovered that the first surface treatment of activated carbon is first carried out by using a silane coupling agent. After the silane coupling agent is mixed into the activated carbon, it can effectively penetrate into the gap between the activated carbon particles, so that the activated carbon particles are relatively isolated. It can effectively improve the dispersibility of activated carbon, and then the second surface treatment of the treated activated carbon by adding an aluminate coupling agent, which can effectively solve the problem of agglomeration of activated carbon and make the aluminate coupling agent effective. The activated carbon is further prevented from agglomeration of the activated carbon. Due to the treatment of the coupling agent, the oleophilic group of the activated carbon is increased, and the components such as the binder are more uniformly mixed, and the obtained positive and negative electrode materials are uniformly distributed and the performance is stable.
  • the conductive agent is conductive carbon black, carbon nanotube or single layer graphene
  • the binder is polyvinylidene fluoride or polytetrafluoroethylene.
  • the solute of the electrolyte is at least one of lithium perchlorate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, and tetraethylammonium tetrafluoroborate.
  • the solvent of the electrolyte is one or more of acetonitrile, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the additive of the electrolyte is tris(pentafluorophenyl) One or more of boron, trimethyl phosphate, triphenyl phosphate, and diazophenone.
  • the membrane is a polypropylene membrane, a polyethylene membrane or a composite membrane based on polypropylene.
  • the polypropylene-based composite separator is prepared from 80-85 wt% of polypropylene, 10-15 wt% of natural cellulose pulp, and 3-5 wt% of halloysite powder. 0.5-1.5 wt% of a silane coupling agent; the above materials are uniformly mixed, and then the polypropylene-based composite separator is obtained by a dry process.
  • the natural cellulose slurry is prepared as follows:
  • the solid filtrate is beaten and concentrated by a beater to obtain a natural cellulose slurry having a solid content of 60 to 70% by weight.
  • the natural cellulose slurry prepared by the above method contains a large amount of natural cellulose, and the natural cellulose has the characteristics of good hygroscopicity and good thermal stability, and a small amount of natural cellulose combined with polypropylene can improve polypropylene. Hygroscopicity and thermal stability enhance the absorption retention of the electrolyte to improve the rate performance and cycle performance of the product.
  • natural cellulose and polypropylene are combined to produce cross-linking, which also enhances the tensile strength and anti-sting strength of the separator to some extent.
  • Eloline powder is a tubular material with a nanometer-sized hollow pipe, which has good adsorption performance, and is compounded in the separator to further enhance the hygroscopicity of the separator, and the halloysite powder can also improve the thermal stability of the separator. And mechanical strength.
  • the silane coupling agent is capable of making the halloysite powder and polypropylene more compatible.
  • the halloysite powder is pretreated:
  • the dried solid powder is calcined, and the pretreatment of the halloysite powder is completed after calcination; wherein the calcination temperature is 500-600 ° C, and the calcination time is 4 hours.
  • the halloysite powder removes the crystal water inside its own structure, and its adsorption performance and high temperature resistance are greatly improved.
  • the manufacturing of the battery capacitor comprises the following steps:
  • the electrode is matched according to the mass ratio of the positive and negative electrode active materials 1-2:1, and the positive and negative electrode sheets and the separator are made of "Z" type laminated sheets, and the product is obtained after drying and packaging. .
  • the invention has the following beneficial effects:
  • the beneficial effect of the composite electrode using lithium manganate and lithium titanate in the invention is that the introduction of activated carbon greatly improves the electrical conductivity of the electrode material and the characteristic of partial energy storage, which significantly improves the rate performance of the product and satisfies the high current. Need for charging and discharging;
  • composite conductive agents can better build a conductive network to further increase power density.
  • Polypropylene-based composite separators have better hygroscopicity, tensile strength, anti-sting strength and high temperature resistance. It is beneficial to improve the rate performance, cycle performance and service life of the product.
  • FIG. 1 is a schematic view showing the structure of an electric cell of the present invention.
  • the materials used in the examples of the present invention are all raw materials commonly used in the art, and the methods used in the examples are all conventional methods in the art.
  • Fig. 1 is a schematic view of a simplified battery core, and only the configuration of the present invention is schematically illustrated.
  • the novel battery capacitor shown in FIG. 1 includes a positive electrode tab 1 and a negative electrode tab 2. Both sides of the positive and negative electrode sheets were uniformly coated with a slurry of lithium manganate (lithium titanate), activated carbon, a binder, and a conductive agent.
  • the separator 3 completely encloses and completely isolates the positive and negative pole pieces in the form of a "Z", and the electrolyte 4 is filled in the structure of the battery capacitor to infiltrate the positive and negative electrodes and the separator.
  • a novel battery capacitor based on composite positive and negative materials is as follows:
  • the electrolyte was made of 1M LiPF 6 and 0.5M SBP as a solute, and EC, DEC, DMC in a volume ratio of 1:1:1 was used as a solvent.
  • the positive and negative electrode pieces with a certain thickness of 1.5:1 are matched with the positive and negative electrode pieces, and the positive and negative electrode pieces are separated into a battery core by a diaphragm, vacuum dried for 24 hours, and the solution is sealed in the glove box.
  • the formation and secondary encapsulation were carried out to obtain a product.
  • both the lithium manganate and the lithium titanate are subjected to an amorphous carbon coating treatment, wherein the coating amount of the amorphous carbon is 3 wt%. And the particle size of lithium manganate and lithium titanate is less than 500 nm.
  • a novel battery capacitor based on composite positive and negative materials is as follows:
  • a composite separator based on polypropylene was used.
  • the electrolyte used 1M LiPF 6 and 0.5 M SBP as the solute, and EC, DEC, and DMC in a volume ratio of 1:1:1 were used as the solvent.
  • a positive and negative electrode piece with a certain thickness of 2:1 is matched with the positive and negative electrode pieces, and the positive and negative electrode pieces are separated into a battery core by a diaphragm, vacuum-dried for 24 hours, and the solution is sealed in the glove box.
  • the formation and secondary encapsulation were carried out to obtain a product.
  • the lithium manganate and lithium titanate are doped with 10 wt% of graphene, and the lithium manganate and lithium titanate have a particle diameter of less than 500 nm.
  • the polypropylene-based composite separator is prepared from 83 wt% of polypropylene, 12 wt% of natural cellulose pulp, 4 wt% of halloysite powder, and 1 wt% of KH560 silane coupling agent; After the materials are uniformly mixed, the polypropylene-based composite separator is obtained by a dry process.
  • a novel battery capacitor based on composite positive and negative materials is as follows:
  • a composite separator based on polypropylene was used, and the electrolyte was made of 1M LiPF 6 and 0.5 M SBP as a solute, and EC, DEC, and DMC in a volume ratio of 1:1:1 was used as a solvent.
  • the positive and negative electrode pieces are matched to a certain thickness by a ratio of 1:1 positive and negative active material ratios, and the positive and negative pole pieces are separated into a battery core by a diaphragm, vacuum dried for 24 hours, and the solution is sealed in a glove box.
  • the formation and secondary encapsulation were carried out to obtain a product.
  • both the lithium manganate and the lithium titanate are doped with 25 wt% of graphene.
  • the particle size of lithium manganate and lithium titanate is less than 500 nm.
  • the polypropylene-based composite separator is prepared from 85 wt% of polypropylene, 10 wt% of natural cellulose pulp, 3.5 wt% of halloysite powder, and 1.5 wt% of KH550 silane coupling agent. The above-mentioned materials are uniformly mixed, and then the polypropylene-based composite separator is obtained by a dry process.
  • Example 2-3 the natural cellulose slurry was prepared as follows:
  • the halloysite powder is pretreated:
  • the dried solid powder is calcined, and the pretreatment of the halloysite powder is completed after calcination; wherein the calcination temperature is 550 ° C, and the calcination time is 4 hours.
  • the activated carbon is activated carbon with a coconut shell as a precursor, and the activated carbon is used after surface modification treatment, and the surface modification treatment method is: the silane coupling agent having a concentration of 7.5 wt% is anhydrous.
  • the ethanol solution was mixed with activated carbon for 40 min, and then an aluminate coupling agent absolute ethanol having a concentration of 12 wt% was added.
  • the solution was mixed for 40 min, filtered, and the filtrate was dried at 75 ° C for 4.5 h and then activated at 102 ° C for 1.5 h.
  • the amount of the silane coupling agent was 0.75% by weight of the activated carbon, and the amount of the aluminate coupling agent was 1.25 by weight of the activated carbon. %.
  • the activated carbon is activated carbon with a needle coke as a precursor, and the activated carbon is used after surface modification treatment, and the surface modification treatment method is: the silane coupling agent having a concentration of 5 wt% is anhydrous.
  • the ethanol solution was mixed with activated carbon for 30 min, then added with a concentration of 8 wt% aluminate coupling agent in absolute ethanol solution for 30 min, filtered, and the filtrate was dried at 80 ° C for 4 h and then activated at 105 ° C for 1 h.
  • the amount of the coupling agent is 0.5% by weight of the activated carbon, and the amount of the aluminate coupling agent is 1% by weight of the activated carbon.
  • the products of Examples 1-3 were subjected to a constant current charge and discharge test at 0.5 C.
  • the specific capacity of the battery capacitor of Example 1 was 60 mAh/g, and the capacity retention rate was 80% after 20,000 cycles;
  • the specific capacity of the battery capacitor was 55 mAh/g, and the capacity retention rate was 83% after 20,000 cycles;
  • the specific capacity of the battery capacitor of Example 3 was 51 mAh/g, and after 20,000 cycles, the capacity retention rate was 82%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及新能源储能器件领域,具体涉及一种基于复合正、负极材料的新型电池电容。所述电池电容包括正极、负极、导电剂、粘结剂、电解液、隔膜和腐蚀铝箔片,所述电池电容以锰酸锂和活性炭的复合材料为正极,以钛酸锂和活性炭的复合材料为负极。本发明采用锰酸锂和钛酸锂的复合电极的有益效果是,通过活性炭的引入大大提升电极材料的导电性能和部分电容储能的特性,显著改善了产品的倍率性能,满足了大电流充放的需要;对锰酸锂和钛酸锂的掺杂包覆处理可以解决产气、溶解等问题,提高了循环寿命;复合导电剂的使用可以更好的构建导电网络,进一步提升功率密度。

Description

一种基于复合正、负极材料的新型电池电容 技术领域
本发明涉及新能源储能器件领域,具体涉及一种基于复合正、负极材料的新型电池电容。
背景技术
钛酸锂(Li4Ti5O12)具有富锂的尖晶石结构。和石墨负极相比,理论容量较低(170mAh/g),电压较高(1.5Vvs Li),这两点无疑都降低了钛酸锂的比能量,但是除此之外的一系列优点使其成为了一种极具吸引力的候选负极材料。首先在循环过程中形变量十分地小,这让Li4Ti5O12有着很好的循环稳定性;此外,没有电解质分解因而没有SEI膜生成;具有优良的倍率性能、低温充放电性能以及热稳定性。
相较于市场现有的石墨/钴酸锂体系,钛酸锂/锰酸锂体系的优势包括:卓越而近乎完美的安全性、优秀的循环寿命、可以实现快速充放电、锰酸锂具备的整体成本优势等。
但是钛酸锂和锰酸锂的电子电导率都比较低,另外在多次充放电循环时,存在有胀气、锰在电解质溶液中溶解等缺陷,因而大大制约了这种体系的功率性能和循环寿命,难以满足电动乘用车等绿色新能源领域快速充放、长期使用的需要。
发明内容
本发明的目的是为了解决上述问题,提供一种基于复合正、负极材料的新型电池电容。该电容器能在保持高比能量、高安全性的基础上显著提升功率性能和循环寿命。
为了达到上述发明目的,本发明采用以下技术方案:一种基于复合正、负极材料的新型电池电容,其特征在于,所述电池电容包括正极、负极、导电剂、粘结剂、电解液、隔膜和腐蚀铝箔片,所述电池电容以锰酸锂和活性炭的复合材料为正极,以钛酸锂和活性炭的复合材料为负极。
作为优选,所述锰酸锂为经过碳、金属、金属氧化物中的一种或几种包覆或掺杂的锰酸锂,钛酸锂为经过碳或者石墨烯掺杂和包覆以及球化处理的钛酸锂。
作为优选,所述锰酸锂为以纳米金属氧化物为前驱体混合掺杂元素合成的纳米复合锰酸锂,所述钛酸锂为纳米复合钛酸锂,且纳米复合锰酸锂和纳米复合钛酸锂的粒径小于500nm。
作为优选,所述活性炭是以椰壳或针状焦为前驱体的活性炭,所述活性炭表面改性处理后使用,表面改性处理的方法为:将浓度为5-10wt%的硅烷偶联剂无水乙醇溶液与活性炭混合30-50min,然后再加入浓度为8-15wt%的铝酸酯偶联剂无水乙醇溶液在混合30-50min,过滤,过滤物在70-80℃下干燥4-5h,再在100℃-105℃下活化1-2h,硅烷偶联剂用量为活性炭重量的0.5-1%,铝酸酯偶联剂用量为活性炭重量的1-1.5%。
以椰壳或针状焦为前驱体的活性炭,孔隙适中,用于正、负极活性物质的性能较佳。
发明人通过长期的实验研究后发现,先通过使用硅烷偶联剂对活性炭进行第一次表面处理,硅烷偶联剂混入活性炭后,能有效渗入活性炭颗粒之间的间隙,使活性炭颗粒间相对隔离,能有效的提高活性炭的分散性,然后再通过添加铝酸酯偶联剂对处理过的活性炭进行第二次表面处理,这样能有效解决活性炭团聚的问题,使铝酸酯偶联剂有效的包裹活性炭,进一步的防止了活性炭的团聚,由于偶联剂的处理,活性炭亲油基团增加,与粘结剂等成分混合的更均匀,所得正、负极材料成分分布均匀,性能稳定。
作为优选,所述导电剂为导电碳黑、碳纳米管或单层石墨烯,所述的粘结剂为聚偏氟乙烯或聚四氟乙烯。
作为优选,所述电解液的溶质为高氯酸锂、六氟砷酸锂、四氟硼酸锂、六氟磷酸锂、三氟甲基磺酸锂、四氟硼酸四乙基铵盐中的至少一种,电解液的溶剂为乙腈、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的一种或者几种,电解液的添加剂为三(五氟化苯基)硼、磷酸三甲酯、磷酸三苯酯、二氮苯基酮中的一种或几种。
作为优选,所述隔膜为聚丙烯隔膜、聚乙烯隔膜或者以聚丙烯为基体的复合材料隔膜。
作为优选,所述以聚丙烯为基体的复合材料隔膜由以下物质制备而成:80-85wt%的聚丙烯,10-15wt%的天然纤维素浆料,3-5wt%的埃洛石粉, 0.5-1.5wt%的硅烷偶联剂;将上述各物质混合均匀后通过干法工艺制得所述以聚丙烯为基体的复合材料隔膜。
所述天然纤维素浆料按以下步骤制得:
(1)以竹纤维为原材料,将所述竹纤维加入到氢氧化钠溶液中,接着对上述氢氧化钠溶液进行抽真空蒸煮,蒸煮温度为300℃,蒸煮时间为2h;其中所述竹纤维与氢氧化钠溶液的质量比为1:4,氢氧化钠溶液的浓度为10wt%。
(2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80-90℃的热水中进行研磨,研磨后进行过滤,取固态过滤物;
(3)用打浆机对固态过滤物进行打浆、浓缩后得到固含量为60-70wt%的天然纤维素浆料。
按上述方法制得的天然纤维素浆料中含有大量的天然纤维素,天然纤维素具有吸湿性好,热稳定性佳的特点,少量的天然纤维素与聚丙烯进行复合后,能够改善聚丙烯吸湿性和热稳定性,使得隔膜对电解液的吸收保持能力加强,从而改善产品的倍率性能和循环性能。此外,天然纤维素和聚丙烯复合后,天然纤维素产生了交联,在一定程度上也增强了隔膜的拉伸强度和抗尖刺强度。埃洛石粉为一种具有纳米尺寸的中空管道的管状材料,具有良好的吸附性能,将其复合在隔膜中,能够进一步增强隔膜的吸湿性,而且埃洛石粉也同时能够提高隔膜的热稳定性能和机械强度。硅烷偶联剂能够使埃洛石粉和聚丙烯更好地相容。
作为优选,所述所述埃洛石粉经过预处理:
(1)称取粒径为300-500nm的埃洛石粉,将其添加到浓度为10wt%的盐酸溶液中并分散均匀,得到悬浊液;其中埃洛石粉与盐酸的质量比为1:10;
(2)将上述悬浊液放于水浴中进行超声波处理,其中水浴温度为60℃,处理时间为15分钟;
(3)将悬浊液取出并经离心分离后取固体粉末,将固体粉末用去离子水洗至中性后进行干燥;
(4)将干燥后的固体粉末进行煅烧,煅烧后埃洛石粉的预处理完毕;其中煅烧温度为500-600℃,煅烧时间为4小时。
经过预处理后的埃洛石粉去除了其自身结构内部的结晶水,其吸附性能和耐高温性能得到大幅提升。
作为优选,所述电池电容的制作包括以下步骤:
(1)以正极材料的总质量为100wt%,将65-91wt%的锰酸锂、2-15wt%活性炭、4-10wt%粘结剂、3-10wt%导电剂混合于氮甲基吡咯烷酮或者去离子水中,高速搅拌形成正极浆料,经涂覆设备均匀使涂层涂覆在腐蚀铝箔的上下两面上,以2.9-3.2g/cm3大小的密度碾压、冲切制成正极极片;
(2)以负极材料的总质量为100wt%,将65-90wt%的钛酸锂、2-15wt%的活性炭、5-10wt%的粘结剂、3-10wt%的导电剂混合于氮甲基吡咯烷酮或者去离子水中,高速搅拌形成负极浆料,经涂覆设备使涂层均匀涂覆在腐蚀铝箔的两面上,以1.8-2.2g/cm3大小的密度碾压、冲切制成负极极片;
(3)按照正、负极电极活性物质1-2:1的质量比进行电极的匹配,对正、负极片和隔膜采用“Z”型叠片的方式制作电芯,经干燥、封装后获得产品。
本发明与现有技术相比,有益效果是:
1本发明采用锰酸锂和钛酸锂的复合电极的有益效果是,通过活性炭的引入大大提升电极材料的导电性能和部分电容储能的特性,显著改善了产品的倍率性能,满足了大电流充放的需要;
2对锰酸锂和钛酸锂的掺杂包覆处理可以解决产气、溶解等问题,提高了循环寿命;
3复合导电剂的使用可以更好的构建导电网络,进一步提升功率密度。
4以聚丙烯为基体的复合材料隔膜具有更好的吸湿性、拉伸强度、抗尖刺强度和耐高温性。有利于提高产品的倍率性能、循环性能和使用寿命。
附图说明
图1是本发明的电芯结构示意图。
图中:1正极极片,2负极极片,3隔膜,4电解液。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明。
如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法,均为本领域的常规方法。
图1为简化的电芯示意图,仅对本发明的构成进行示意说明。图1所示的新型电池电容,包括了正极极片1和负极极片2。正、负极片的两面均均匀涂覆有锰酸锂(钛酸锂)、活性炭、粘结剂、导电剂所混合的浆料。隔膜3以“Z”字的形式将正、负极极片完全包裹并彻底隔离,电解液4充盈于电池电容的结构中,浸润正、负极片和隔膜。
实施例1:
一种基于复合正、负极材料的新型电池电容,制备方法如下:
(1)将88wt%的锰酸锂、5wt%活性炭、4wt%粘结剂(PVDF)、3wt%的导电剂(SuperP+石墨烯)混合于氮甲基吡咯烷酮中,利用高速搅拌设备在真空下搅拌4小时形成均匀正极浆料,经涂覆设备均匀使涂层涂覆在腐蚀铝箔的上下两面上,以2.9g/cm3大小的密度碾压、冲切制成正极极片。
(2)将85wt%的钛酸锂、5wt%的活性炭、5wt%的粘结剂(PVDF)、5wt%的导电剂(SuperP+石墨烯+碳纳米管)混合于氮甲基吡咯烷酮中,利用高速搅拌设备在真空下搅拌4小时形成均匀负极浆料,经涂覆设备使涂层均匀涂覆在腐蚀铝箔的两面上,以2.1g/cm3大小的密度碾压、冲切制成负极极片。
(3)使用美国Celgard公司型号为C480的隔膜,电解液使用1M LiPF6和0.5M SBP为溶质,以体积比1:1:1的EC、DEC、DMC为溶剂。将一定厚度以1.5:1的正、负极活性物质比匹配正、负极极片,使用隔膜将正、负极极片隔开制成电芯,真空干燥24小时,在手套箱中注电解液后封装于铝塑膜中,静置12h后进行化成和二次封装,得到产品。
在本实施例中,所述锰酸锂和钛酸锂均经过了无定型炭包覆处理,其中无定型炭的包覆量为3wt%。且锰酸锂和钛酸锂的粒径小于500nm。
实施例2
一种基于复合正、负极材料的新型电池电容,制备方法如下:
(1)将91wt%的锰酸锂、2wt%活性炭、4wt%粘结剂(PVDF)、3wt%导电剂(SuperP+石墨烯)混合于氮甲基吡咯烷酮中,利用高速搅拌设备在真空下搅拌4小时形成均匀正极浆料,经涂覆设备均匀使涂层涂覆在腐蚀铝箔的上下两面上,以 3.2g/cm3大小的密度碾压、冲切制成正极极片。
(2)将90wt%的钛酸锂、2wt%的活性炭、5-wt%的粘结剂(PVDF)、3wt%的导电剂(SuperP+石墨烯+碳纳米管)混合于氮甲基吡咯烷酮中,利用高速搅拌设备在真空下搅拌4小时形成均匀负极浆料,经涂覆设备使涂层均匀涂覆在腐蚀铝箔的两面上,以2.2g/cm3大小的密度碾压、冲切制成负极极片。
(3)使用以聚丙烯为基材的复合材料隔膜,电解液使用1M LiPF6和0.5M SBP为溶质,以体积比1:1:1的EC、DEC、DMC为溶剂。将一定厚度以2:1的正、负极活性物质比匹配正、负极极片,使用隔膜将正、负极极片隔开制成电芯,真空干燥24小时,在手套箱中注电解液后封装于铝塑膜中,静置12h后进行化成和二次封装,得到产品。
在本实施例中,所述锰酸锂和钛酸锂均掺杂了10wt%的石墨烯,且锰酸锂和钛酸锂的粒径小于500nm。
所述以聚丙烯为基体的复合材料隔膜由以下物质制备而成:83wt%的聚丙烯,12wt%的天然纤维素浆料4wt%的埃洛石粉,1wt%的KH560硅烷偶联剂;将上述各物质混合均匀后通过干法工艺制得所述以聚丙烯为基体的复合材料隔膜。
实施例3
一种基于复合正、负极材料的新型电池电容,制备方法如下:
(1)将65wt%的锰酸锂、15wt%活性炭、10wt%粘结剂(PVDF)、10wt%导电剂(SuperP+石墨烯)混合于去离子水中,利用高速搅拌设备在真空下搅拌4小时形成均匀正极浆料,经涂覆设备均匀使涂层涂覆在腐蚀铝箔的上下两面上,以3.1g/cm3大小的密度碾压、冲切制成正极极片。
(2)将65wt%的钛酸锂、15wt%的活性炭、10wt%的粘结剂(PVDF)、10wt%的导电剂(SuperP+石墨烯+碳纳米管)混合于去离子水中,利用高速搅拌设备在真空下搅拌4小时形成均匀负极浆料,经涂覆设备使涂层均匀涂覆在腐蚀铝箔的两面上,以1.8g/cm3大小的密度碾压、冲切制成负极极片。
(3)使用以聚丙烯为基材的复合材料隔膜,,电解液使用1M LiPF6和0.5M SBP为溶质,以体积比1:1:1的EC、DEC、DMC为溶剂。将一定厚度以1:1的正、 负极活性物质比匹配正、负极极片,使用隔膜将正、负极极片隔开制成电芯,真空干燥24小时,在手套箱中注电解液后封装于铝塑膜中,静置12h后进行化成和二次封装,得到产品。
在本实施例中,所述锰酸锂和钛酸锂均均掺杂25wt%的石墨烯。且锰酸锂和钛酸锂的粒径小于500nm。
所述以聚丙烯为基体的复合材料隔膜由以下物质制备而成:85wt%的聚丙烯,10wt%的天然纤维素浆料,3.5wt%的埃洛石粉,1.5wt%的KH550硅烷偶联剂;将上述各物质混合均匀后通过干法工艺制得所述以聚丙烯为基体的复合材料隔膜。
在实施例2-3中,所述天然纤维素浆料按以下步骤制得:
(1)以竹纤维为原材料,将所述竹纤维加入到氢氧化钠溶液中,接着对上述氢氧化钠溶液进行抽真空蒸煮,蒸煮温度为300℃,蒸煮时间为2h;其中所述竹纤维与氢氧化钠溶液的质量比为1:4,氢氧化钠溶液的浓度为10wt%。
(2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为85℃的热水中进行研磨,研磨后进行过滤,取固态过滤物;
(3)用打浆机对固态过滤物进行打浆、浓缩后得到固含量为65wt%左右的天然纤维素浆料。
所述埃洛石粉经过预处理:
(1)称取粒径为300-500nm的埃洛石粉,将其添加到浓度为10wt%的盐酸溶液中并分散均匀,得到悬浊液;其中埃洛石粉与盐酸的质量比为1:10;
(2)将上述悬浊液放于水浴中进行超声波处理,其中水浴温度为60℃,处理时间为15分钟;
(3)将悬浊液取出并经离心分离后取固体粉末,将固体粉末用去离子水洗至中性后进行干燥;
(4)将干燥后的固体粉末进行煅烧,煅烧后埃洛石粉的预处理完毕;其中煅烧温度为550℃,煅烧时间为4小时。
在实施例2中,所述活性炭是以椰壳为前驱体的活性炭,所述活性炭表面改性处理后使用,表面改性处理的方法为:将浓度为7.5wt%的硅烷偶联剂无水乙醇溶液与活性炭混合40min,然后再加入浓度为12wt%的铝酸酯偶联剂无水乙醇 溶液在混合40min,过滤,过滤物在75℃下干燥4.5h,再在102℃下活化1.5h,硅烷偶联剂用量为活性炭重量的0.75%,铝酸酯偶联剂用量为活性炭重量的1.25%。
在实施例3中,所述活性炭是以针状焦为前驱体的活性炭,所述活性炭表面改性处理后使用,表面改性处理的方法为:将浓度为5wt%的硅烷偶联剂无水乙醇溶液与活性炭混合30min,然后再加入浓度为8wt%的铝酸酯偶联剂无水乙醇溶液在混合30min,过滤,过滤物在80℃下干燥4h,再在105℃下活化1h,硅烷偶联剂用量为活性炭重量的0.5%,铝酸酯偶联剂用量为活性炭重量的1%。
对实施例1-3的产品在0.5C下进行恒流充放测试,实施例1的电池电容的比容量为60mAh/g,经过20000次循环后,容量保持率为80%;实施例2的电池电容的比容量为55mAh/g,经过20000次循环后,容量保持率为83%;实施例3的电池电容的比容量为51mAh/g,经过20000次循环后,容量保持率为82%。
以上述依据发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更和修改。本项发明技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (11)

  1. 一种基于复合正、负极材料的新型电池电容,其特征在于,所述电池电容包括正极、负极、导电剂、粘结剂、电解液、隔膜和腐蚀铝箔片,所述电池电容以锰酸锂和活性炭的复合材料为正极,以钛酸锂和活性炭的复合材料为负极。
  2. 根据权利要求1所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述锰酸锂为经过碳、金属、金属氧化物中的一种或几种包覆或掺杂的锰酸锂,钛酸锂为经过碳或者石墨烯掺杂和包覆以及球化处理的钛酸锂。
  3. 根据权利要求1或2所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述锰酸锂为以纳米金属氧化物为前驱体混合掺杂元素合成的纳米复合锰酸锂,所述钛酸锂为纳米复合钛酸锂,且纳米复合锰酸锂和纳米复合钛酸锂的粒径小于500nm。
  4. 根据权利要求1所述的一种基于复合正、负极材料的新型电池电容,其特征在于:所述活性炭是以椰壳或针状焦为前驱体的活性炭,所述活性炭表面改性处理后使用,表面改性处理的方法为:将浓度为5-10wt%的硅烷偶联剂无水乙醇溶液与活性炭混合30-50min,然后再加入浓度为8-15wt%的铝酸酯偶联剂无水乙醇溶液在混合30-50min,过滤,过滤物在70-80℃下干燥4-5h,再在100℃-105℃下活化1-2h,硅烷偶联剂用量为活性炭重量的0.5-1%,铝酸酯偶联剂用量为活性炭重量的1-1.5%。
  5. 根据权利要求1所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述导电剂为导电碳黑、碳纳米管或单层石墨烯,所述的粘结剂为聚偏氟乙烯或聚四氟乙烯。
  6. 根据权利要求1所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述电解液的溶质为高氯酸锂、六氟砷酸锂、四氟硼酸锂、六氟磷酸锂、三氟甲基磺酸锂、四氟硼酸四乙基铵盐中的至少一种,电解液的溶剂为乙腈、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的一种或者几种,电解液的添加剂为三(五氟化苯基)硼、磷酸三甲酯、磷酸三苯酯、二氮苯基酮中的一种或几种。
  7. 根据权利要求1所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述隔膜为聚丙烯隔膜、聚乙烯隔膜或者以聚丙烯为基体的复合材料隔膜。
  8. 根据权利要求7所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述以聚丙烯为基体的复合材料隔膜由以下物质制备而成:80-85wt%的聚丙烯,10-15wt%的天然纤维素浆料,3-5wt%的埃洛石粉,0.5-1.5wt%的硅烷偶联剂;将上述各物质混合均匀后通过干法工艺制得所述以聚丙烯为基体的复合材料隔膜。
  9. 根据权利要求8所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述天然纤维素浆料按以下步骤制得:
    (1)以竹纤维为原材料,将所述竹纤维加入到氢氧化钠溶液中,接着对上述氢氧化钠溶液进行抽真空蒸煮,蒸煮温度为300℃,蒸煮时间为2h;其中所述竹纤维与氢氧化钠溶液的质量比为1:4,氢氧化钠溶液的浓度为10wt%;
    (2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80-90℃的热水中进行研磨,研磨后进行过滤,取固态过滤物;
    (3)用打浆机对固态过滤物进行打浆、浓缩后得到固含量为60-70wt%的天然纤维素浆料。
  10. 根据权利要求8所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述埃洛石粉经过预处理:
    (1)称取粒径为300-500nm的埃洛石粉,将其添加到浓度为10wt%的盐酸溶液中并分散均匀,得到悬浊液;其中埃洛石粉与盐酸的质量比为1:10;
    (2)将上述悬浊液放于水浴中进行超声波处理,其中水浴温度为60℃,处理时间为15分钟;
    (3)将悬浊液取出并经离心分离后取固体粉末,将固体粉末用去离子水洗至中性后进行干燥;
    (4)将干燥后的固体粉末进行煅烧,煅烧后埃洛石粉的预处理完毕;其中煅烧温度为500-600℃,煅烧时间为4小时。
  11. 根据权利要求1所述的一种基于复合正、负极材料的新型电池电容,其特征在于,所述电池电容的制作包括以下步骤:
    (1)以正极材料的总质量为100wt%,将65-91wt%的锰酸锂、2-15wt%活性炭、4-10wt%粘结剂、3-10wt%导电剂混合于氮甲基吡咯烷酮或者去离子水中,高速搅拌形成正极浆料,经涂覆设备均匀使涂层涂覆在腐蚀铝箔的上下两面上,以2.9-3.2g/cm3大小的密度碾压、冲切制成正极极片;
    (2)以负极材料的总质量为100wt%,将65-90wt%的钛酸锂、2-15wt%的活性炭、5-10wt%的粘结剂、3-10wt%的导电剂混合于氮甲基吡咯烷酮或者去离子水中,高速搅拌形成负极浆料,经涂覆设备使涂层均匀涂覆在腐蚀铝箔的两面上,以1.8-2.2g/cm3大小的密度碾压、冲切制成负极极片;
    (3)按照正、负极电极活性物质1-2:1的质量比进行电极的匹配,对正、负极片和隔膜采用“Z”型叠片的方式制作电芯,经干燥、封装后获得产品。
PCT/CN2015/091534 2015-01-06 2015-10-09 一种基于复合正、负极材料的新型电池电容 WO2016110134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510004218.9A CN104795249B (zh) 2015-01-06 2015-01-06 一种基于复合正、负极材料的新型电池电容
CN2015100042189 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016110134A1 true WO2016110134A1 (zh) 2016-07-14

Family

ID=53559995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091534 WO2016110134A1 (zh) 2015-01-06 2015-10-09 一种基于复合正、负极材料的新型电池电容

Country Status (3)

Country Link
CN (1) CN104795249B (zh)
DE (2) DE202015104569U1 (zh)
WO (1) WO2016110134A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728294A (zh) * 2019-01-30 2019-05-07 桑顿新能源科技有限公司 正极材料及其制备方法、正电极和电池
CN111875797A (zh) * 2020-07-27 2020-11-03 河北金力新能源科技股份有限公司 一种聚酰亚胺隔膜及其制备方法
CN112448017A (zh) * 2020-11-24 2021-03-05 山东交通学院 一种高储能动力电池及制备方法
CN113013416A (zh) * 2021-03-22 2021-06-22 河南省特种设备安全检测研究院 一种防爆叉车锂电池及其制备方法
CN113451054A (zh) * 2021-06-28 2021-09-28 鹏盛国能(深圳)新能源集团有限公司 一种锂离子电容电池及其制备方法
CN114132966A (zh) * 2020-09-03 2022-03-04 星恒电源(滁州)有限公司 一种表面修饰锰酸锂材料及其制备方法
CN114142080A (zh) * 2021-11-25 2022-03-04 深圳市瀚海龙科技有限公司 一种超容量石墨烯电池及其制备方法
CN114335882A (zh) * 2021-12-09 2022-04-12 河北工程大学 一种改性pe基锂离子电池隔膜及其制备方法
CN114322662A (zh) * 2021-12-13 2022-04-12 中国科学技术大学 一种能量收集-储存可穿戴防护设备及其制备方法
CN114864872A (zh) * 2022-04-15 2022-08-05 广东马车动力科技有限公司 一种复合电极及其制备方法与应用
CN114984910A (zh) * 2022-06-10 2022-09-02 四川久远智能消防设备有限责任公司 一种voc气体过滤器用复合活性炭膜
CN116282014A (zh) * 2023-03-13 2023-06-23 中国矿业大学 一种煤基多孔炭材料的制备方法及其应用
CN117317188A (zh) * 2023-10-30 2023-12-29 湖北美赛尔科技有限公司 一种含活性炭负极材料的耐低温锂离子电池及其制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795249B (zh) * 2015-01-06 2018-11-06 宁波中车新能源科技有限公司 一种基于复合正、负极材料的新型电池电容
CN105280907B (zh) * 2015-09-16 2017-03-22 宁波中车新能源科技有限公司 基于复合镍钴铝/钛酸锂体系的电池电容及其制备方法
CN105336504B (zh) * 2015-09-24 2017-05-10 宁波中车新能源科技有限公司 一种混合电容电池
CN105244184A (zh) * 2015-09-24 2016-01-13 宁波南车新能源科技有限公司 一种混合电容电池的制备方法
CN105390701B (zh) * 2015-12-15 2019-08-02 宁波中车新能源科技有限公司 一种复合粘结剂及应用复合粘结剂的电池电容正极浆料
CN105513827B (zh) * 2015-12-15 2017-06-13 宁波中车新能源科技有限公司 一种(lmo‑ncm‑ac)/(lto‑ac)混合电池电容电极材料及电极片
CN105632774A (zh) * 2015-12-31 2016-06-01 江苏集盛星泰新能源科技有限公司 锂离子电容器及其制作方法
CN105514407B (zh) * 2016-01-25 2019-06-07 张博 耐寒型锰酸锂-钛酸锂电池的制备方法
CN105551815B (zh) * 2016-02-02 2018-04-27 中国科学院青岛生物能源与过程研究所 一种锂离子电容器及其制备方法
CN106098406B (zh) * 2016-07-21 2019-11-08 宁波中车新能源科技有限公司 一种电池电容器用的正极复合材料
CN106252097B (zh) * 2016-07-28 2018-08-31 宁波中车新能源科技有限公司 一种(Li4Ti5O12-AC)/AC混合超级电容器
DE102016221172A1 (de) * 2016-10-27 2018-05-03 Robert Bosch Gmbh Optimierter Hybridsuperkondensator
CN106848397A (zh) * 2016-12-22 2017-06-13 宁波中车新能源科技有限公司 一种锂离子电容器用电解液
DE102017204207A1 (de) * 2017-03-14 2018-09-20 Robert Bosch Gmbh Hybrid-Superkondensator, Verfahren zur Herstellung eines Hybrid-Superkondensators und Fahrzeug
US11289277B2 (en) * 2017-05-01 2022-03-29 Tayca Corporation Lithium ion capacitor positive electrode
CN107564733A (zh) * 2017-08-23 2018-01-09 吴江佳亿电子科技有限公司 一种超级电容器用阻燃型电解液、其制备方法及超级电容器
CN107564735A (zh) * 2017-08-23 2018-01-09 吴江佳亿电子科技有限公司 超级电容器用的阻燃有机电解液、其制备方法及超级电容器
CN109637844A (zh) * 2018-11-27 2019-04-16 中国电子科技集团公司第十八研究所 一种锂离子电容器用正极复合材料的制备方法
CN113097453A (zh) * 2020-01-09 2021-07-09 荣盛盟固利新能源科技有限公司 一种锂离子电池正极电极预嵌锂方法
CN112341546B (zh) * 2020-10-27 2022-07-05 北京化工大学 一种氟化生物质膜材料的制备方法
JP7150799B2 (ja) 2020-11-19 2022-10-11 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
CN112687873B (zh) * 2020-12-23 2021-12-07 湖南永盛新材料股份有限公司 一种高比能量锂电池的制备方法
CN113782739A (zh) * 2021-09-15 2021-12-10 芜湖天弋能源科技有限公司 一种电池电容产品
WO2023117491A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Energy storage cells with fast charge and discharge capabilites
CN115353090A (zh) * 2022-08-11 2022-11-18 华南理工大学 一种新型生物质硬炭钠离子电池材料及其制备方法
CN115520850B (zh) * 2022-08-30 2024-01-26 河南师范大学 一种钛白副产硫酸亚铁和废旧石墨负极材料综合资源化回收再利用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280334A (zh) * 2013-04-03 2013-09-04 王子齐 通用动力高储能多介质电容电池斛
CN103339701A (zh) * 2011-02-18 2013-10-02 住友电气工业株式会社 集电体用三维网状铝多孔体、使用该铝多孔体的集电体、使用该集电体的电极、以及均使用该电极的非水电解质电池、电容器和锂离子电容器
CN104078246A (zh) * 2014-07-02 2014-10-01 长沙国容新能源有限公司 一种锂离子电池电容器
CN104795249A (zh) * 2015-01-06 2015-07-22 宁波南车新能源科技有限公司 一种基于复合正、负极材料的新型电池电容

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807683A (zh) * 2010-04-28 2010-08-18 常州市宙纳新能源科技有限公司 一种锂离子电容电池的正负极片及其两种极片的制作方法
CN103560010A (zh) * 2013-10-22 2014-02-05 山东精工电子科技有限公司 电化学电容器
CN204045667U (zh) * 2014-08-12 2014-12-24 徐敖奎 一种复合极片制造的电容电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339701A (zh) * 2011-02-18 2013-10-02 住友电气工业株式会社 集电体用三维网状铝多孔体、使用该铝多孔体的集电体、使用该集电体的电极、以及均使用该电极的非水电解质电池、电容器和锂离子电容器
CN103280334A (zh) * 2013-04-03 2013-09-04 王子齐 通用动力高储能多介质电容电池斛
CN104078246A (zh) * 2014-07-02 2014-10-01 长沙国容新能源有限公司 一种锂离子电池电容器
CN104795249A (zh) * 2015-01-06 2015-07-22 宁波南车新能源科技有限公司 一种基于复合正、负极材料的新型电池电容

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728294A (zh) * 2019-01-30 2019-05-07 桑顿新能源科技有限公司 正极材料及其制备方法、正电极和电池
CN111875797A (zh) * 2020-07-27 2020-11-03 河北金力新能源科技股份有限公司 一种聚酰亚胺隔膜及其制备方法
CN111875797B (zh) * 2020-07-27 2022-06-07 河北金力新能源科技股份有限公司 一种聚酰亚胺隔膜及其制备方法
CN114132966A (zh) * 2020-09-03 2022-03-04 星恒电源(滁州)有限公司 一种表面修饰锰酸锂材料及其制备方法
CN112448017A (zh) * 2020-11-24 2021-03-05 山东交通学院 一种高储能动力电池及制备方法
CN113013416A (zh) * 2021-03-22 2021-06-22 河南省特种设备安全检测研究院 一种防爆叉车锂电池及其制备方法
CN113013416B (zh) * 2021-03-22 2024-02-20 河南省特种设备安全检测研究院 一种防爆叉车锂电池及其制备方法
CN113451054A (zh) * 2021-06-28 2021-09-28 鹏盛国能(深圳)新能源集团有限公司 一种锂离子电容电池及其制备方法
CN114142080A (zh) * 2021-11-25 2022-03-04 深圳市瀚海龙科技有限公司 一种超容量石墨烯电池及其制备方法
CN114142080B (zh) * 2021-11-25 2024-04-05 东莞市茂盛新能源科技有限公司 一种超容量石墨烯电池及其制备方法
CN114335882B (zh) * 2021-12-09 2024-01-30 河北工程大学 一种改性pe基锂离子电池隔膜及其制备方法
CN114335882A (zh) * 2021-12-09 2022-04-12 河北工程大学 一种改性pe基锂离子电池隔膜及其制备方法
CN114322662A (zh) * 2021-12-13 2022-04-12 中国科学技术大学 一种能量收集-储存可穿戴防护设备及其制备方法
CN114864872A (zh) * 2022-04-15 2022-08-05 广东马车动力科技有限公司 一种复合电极及其制备方法与应用
CN114984910B (zh) * 2022-06-10 2024-02-13 四川久远智能消防设备有限责任公司 一种voc气体过滤器用复合活性炭膜
CN114984910A (zh) * 2022-06-10 2022-09-02 四川久远智能消防设备有限责任公司 一种voc气体过滤器用复合活性炭膜
CN116282014A (zh) * 2023-03-13 2023-06-23 中国矿业大学 一种煤基多孔炭材料的制备方法及其应用
CN117317188A (zh) * 2023-10-30 2023-12-29 湖北美赛尔科技有限公司 一种含活性炭负极材料的耐低温锂离子电池及其制备方法
CN117317188B (zh) * 2023-10-30 2024-03-22 湖北美赛尔科技有限公司 一种含活性炭负极材料的耐低温锂离子电池及其制备方法

Also Published As

Publication number Publication date
DE102015122963A1 (de) 2016-07-07
CN104795249A (zh) 2015-07-22
CN104795249B (zh) 2018-11-06
DE202015104569U1 (de) 2015-09-17

Similar Documents

Publication Publication Date Title
WO2016110134A1 (zh) 一种基于复合正、负极材料的新型电池电容
CN109845004B (zh) 包括碳基材料的装置以及其制造
CN104064735B (zh) 钛酸锂-石墨烯-碳纳米管复合材料及其制备方法和应用
WO2016090977A1 (zh) 一种锂离子电容器的新型预嵌锂方法
CN102903930A (zh) 一种锂离子二次电池及其制备方法
JP2017532277A (ja) 炭素材料、リチウムイオン電池用アノード材料及びスペーサ添加剤
CN112174220B (zh) 二氧化钛包覆四氧化三钴蜂窝孔纳米线材料及其制备和应用
CN108899522B (zh) 一种高容量硅碳负极材料、制备方法及应用
CN110415994B (zh) 一种电化学能量储存用三维纳米复合电极材料及其制备方法
CN115101741B (zh) 氮掺杂石墨烯包覆硅碳复合材料及其制备方法和应用
CN115395002B (zh) 一种多孔硅负极材料及其制备方法、硅负极片以及锂离子电池
US20210408542A1 (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, battery pack and battery powered vehicle
CN104134782A (zh) 一种纳米化磷酸铁锂锂离子电池正极材料及其制备方法
CN108269967A (zh) 一种锂离子电池石墨烯/硅复合材料的制备方法
CN113889594A (zh) 一种硼掺杂锆酸镧锂包覆石墨复合材料的制备方法
CN111435732B (zh) 锂离子电池的负极材料及其制备方法和锂离子电池
CN114400307B (zh) 一种锡碳复合材料及其制备方法和应用
CN114520328B (zh) 一种锂离子电池负极材料及其制备与负极和电池
CN109449440B (zh) 微孔超薄软碳纳米片及其制备方法和应用
CN115050944B (zh) 一种三维纳米花结构的复合材料及其制备方法和应用
CN114122406B (zh) 石墨烯改性磷酸铁锂的制备方法及磷酸铁锂电池
CN115810741A (zh) 负极活性材料、其制备方法及其相关的二次电池和装置
CN116264272A (zh) 一种高比功率锂离子电池负极材料及其制备和应用
CN107895787B (zh) 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池
Wang et al. Synthesis and properties of Li2MnSiO4/C cathode materials for Li-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876635

Country of ref document: EP

Kind code of ref document: A1