CN107895787B - 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池 - Google Patents

一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池 Download PDF

Info

Publication number
CN107895787B
CN107895787B CN201711146484.0A CN201711146484A CN107895787B CN 107895787 B CN107895787 B CN 107895787B CN 201711146484 A CN201711146484 A CN 201711146484A CN 107895787 B CN107895787 B CN 107895787B
Authority
CN
China
Prior art keywords
hnb
rgo
ion battery
composite material
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711146484.0A
Other languages
English (en)
Other versions
CN107895787A (zh
Inventor
熊锦华
范建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan Lirong Electronic Technology Co ltd
Original Assignee
Longyan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan University filed Critical Longyan University
Priority to CN201711146484.0A priority Critical patent/CN107895787B/zh
Publication of CN107895787A publication Critical patent/CN107895787A/zh
Application granted granted Critical
Publication of CN107895787B publication Critical patent/CN107895787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池,将有机胺TBAOH插层HNb3O8、剥离制备的Nb3O8 (TBA+)纳米片胶体悬浮液和经典Hummer法制备的石墨烯氧化物纳米片GO溶胶为主要原料,以一定的GO比例混合、调pH,经一步水热得到HNb3O8/RGO复合物;将HNb3O8/RGO复合材料、聚偏氟乙烯和乙炔黑混合研磨均匀涂在铜箔上,干燥后作为负极,将金属锂作为参比电极和对电极,将LiClO4/EC‑DMC溶液作为电解质,在手套箱中组装制成锂离子电池。此方法简单,成本廉价,能耗低,重现性好,锂离子电池具有提高的比容量和超高循环稳定性,以及优异的倍率放电性能。

Description

一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池
技术领域
本发明属于能源技术领域,具体涉及一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池。
背景技术
随着社会的发展,简便、高能密度、寿命长、安全的锂离子电池已经成为当今人类追求的理想能源存储装置。基于锂离子电池储能的基本原理,设计和开发锂离子电池材料是提高当前锂离子电池性能的重要手段。近来,铌基金属氧化物如Nb2O5由于具有出色的稳定性、合适的工作电压平台(1.0~2.0 V vs. Li+/Li)和较高的理论电容(200 mAh g-1)在锂离子电池领域具有广泛的应用前景。层状的HNb3O8是一类典型由[NbO6]八面体通过共边或共角组成无限延伸的二维Nb3O8 -平板并且Nb3O8 -平板通过板间H+连接垂直堆积而成。然而,传统的体相HNb3O8由于比表面积小、较大的锂离子传递路径和差的电导率限制了Li+的传输效率,最终导致该类锂电电极材料的电池容量及其稳定性差。因此,提高HNb3O8电极材料中Li+的迁移速率关键在于合理的设计电极材料的组成和结构。
发明内容
针对传统体相HNb3O8比表面积小、锂离子传输路径长和差的电导率而造成的锂离子存储性能差的技术问题,本发明提供了一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池。
为实现上述目的,本发明采用如下技术方案:
一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池,将HNb3O8/RGO复合材料、聚偏氟乙烯和乙炔黑混合研磨均匀涂在铜箔上,待干燥后作为负极,将金属锂作为参比电极和对电极,将LiClO4/EC-DMC溶液作为电解质,在手套箱中组装制成所述锂离子电池;
HNb3O8/RGO复合材料的制备方法是:有机胺TBAOH插层HNb3O8、剥离制备的Nb3O8 -(TBA+)纳米片胶体悬浮液和经典Hummer法制备的石墨烯氧化物纳米片(GO)溶胶为主要原料,以一定的GO质量百分数比例混合、搅拌均匀得混合溶液,盐酸调节pH后,经一步水热得到HNb3O8/RGO复合物。
其中:所述GO质量百分数分别为1%-5%。
所述混合溶液用6 M 盐酸调节pH, pH=1.0。
所述一步水热条件为:温度为180 0C、24 h。
所述HNb3O8/RGO复合材料、聚偏氟乙烯和乙炔黑的质量比为7:2:1。
所述LiClO4/EC-DMC溶液的浓度为1mol/L,其中EC与DMC的体积比为1:1。
所述一步水热后,离心并且用1 M稀盐酸、去离子水和乙醇清洗多遍,然后在40℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得HNb3O8/RGO复合物。
采用上述方法后,本发明不仅能有效地解决HNb3O8锂离子电池性能差的技术问题,其制备方法简单,成本廉价,能耗低,重现性好,所制得锂离子电池具有提高的比容量和超高循环稳定性,还表现出优异的倍率放电性能,具有广阔的商业前景。
附图说明
图1是本发明实施例1制备的Nb3O8 -(TBA+)纳米片(A)和GO(B)的透射电镜图(TEM);
图2是本发明实施例1制备的HNb3O8/RGO的扫描电镜图(SEM);
图3是本发明实施例1所制得的HNb3O8/RGO复合物、单纯的HNb3O8纳米片和层状HNb3O8组装成的锂离子电池在不同倍率下充放电的循环性能曲线;
图4是本发明实施例1所制得的HNb3O8/RGO复合物组装成的锂离子电池在电流密度为1 Ag-1和10 Ag-1下的稳定性测试。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:
一种2D/2D自组装复合材料HNb3O8/RGO的制备方法,25 mL有机胺TBAOH插层HNb3O8、剥离制备的Nb3O8 -(TBA+)纳米片胶体悬浮液(2.0 mg/mL)和1.0 mL经典Hummer法制备的石墨烯氧化物纳米片(GO)溶胶(1.0 mg/mL)为主要原料,(GO百分含量2.0 %)混合、搅拌均匀得混合溶液,调节pH=1.0后,经一步水热,180 0C、24 h,离心并且用1 M稀盐酸、去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得HNb3O8/RGO复合物。
将所得HNb3O8/RGO复合物用于组装锂离子电池,其组装方法包括:将HNb3O8/RGO、聚偏氟乙烯和乙炔黑按质量比为7:2:1混合研磨均匀后涂在铜箔上,待干燥作为负极,将金属锂作为参比电极和对电极,将1mol/L LiClO4/EC-DMC(1:1,v/v)溶液作为电解质,在手套箱中组装制成锂离子电池。
本实施例组装的锂离子电池在电流密度为1 A/g时充放电循环1000圈,比容量为183.9 mAh/g;电流密度为10 A/g时其充放电循环3000圈,比容量为116.7 mAh/g,表明其循环稳定性良好。
实施例2:
一种2D/2D自组装复合材料HNb3O8/RGO的制备方法,25 mL有机胺TBAOH插层HNb3O8、剥离制备的Nb3O8 -(TBA+)纳米片胶体悬浮液(2.0 mg/mL)和0.5 mL经典Hummer法制备的石墨烯氧化物纳米片(GO)溶胶(1.0 mg/mL)为主要原料,(GO百分含量1.0 %)混合、搅拌均匀得混合溶液,调节pH=1.0后,经一步水热,180 0C、24 h,离心并且用1 M稀盐酸、去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得HNb3O8/RGO复合物。
将所得HNb3O8/RGO复合物用于组装锂离子电池,其组装方法包括:将HNb3O8/RGO、聚偏氟乙烯和乙炔黑按质量比为7:2:1混合研磨均匀后涂在铜箔上,待干燥作为负极,将金属锂作为参比电极和对电极,将1mol/L LiClO4/EC-DMC(1:1,v/v)溶液作为电解质,在手套箱中组装制成锂离子电池。
实施例3:
一种2D/2D自组装复合材料HNb3O8/RGO的制备方法,25 mL有机胺TBAOH插层HNb3O8、剥离制备的Nb3O8 -(TBA+)纳米片胶体悬浮液(2.0 mg/mL)和2.5 mL经典Hummer法制备的石墨烯氧化物纳米片(GO)溶胶(1.0 mg/mL)为主要原料,(GO百分含量5.0 %)混合、搅拌均匀得混合溶液,调节pH=1.0后,经一步水热,180 0C、24 h,离心并且用1 M稀盐酸、去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得HNb3O8/RGO复合物。
将所得HNb3O8/RGO复合物用于组装锂离子电池,其组装方法包括:将HNb3O8/RGO、聚偏氟乙烯和乙炔黑按质量比为7:2:1混合研磨均匀后涂在铜箔上,待干燥作为负极,将金属锂作为参比电极和对电极,将1mol/L LiClO4/EC-DMC(1:1,v/v)溶液作为电解质,在手套箱中组装制成锂离子电池。
本发明的显著优点在于:
(1)本发明提供了一种2D/2D自组装复合材料HNb3O8/RGO的制备方法,该方法操作简单,成本低廉,能耗低,重现性好,具有良好的应用价值。
(2)以本发明方法制备的HNb3O8/RGO复合物做为锂离子电池的负极,组装得到的锂离子电池具有很高的比容量和超高的循环稳定性;电流密度为1 A/g时充放电循环1000圈,比容量为183.9 mAh/g;电流密度为10 A/g时其充放电循环3000圈,比容量为116.7 mAh/g,表明其循环稳定性良好。

Claims (3)

1.一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池,其特征在于:将HNb3O8/RGO复合材料、聚偏氟乙烯和乙炔黑混合研磨均匀涂在铜箔上,待干燥后作为负极,将金属锂作为参比电极和对电极,将LiClO4/EC-DMC溶液作为电解质,在手套箱中组装制成所述锂离子电池;
HNb3O8/RGO复合材料的制备方法是:有机胺TBAOH插层HNb3O8、剥离制备的Nb3O8-(TBA+)纳米片胶体悬浮液和经典Hummer法制备的石墨烯氧化物纳米片(GO)溶胶为主要原料,以一定的GO质量百分数比例混合、搅拌均匀得混合溶液,盐酸调节pH后,经一步水热得到HNb3O8/RGO复合物;
所述GO质量百分数分别为1%-5%;
所述混合溶液用6M盐酸调节pH,pH=1.0;
所述一步水热条件为:温度为180℃、24h;
所述一步水热后,离心并且用1M稀盐酸、去离子水和乙醇清洗多遍,然后在40℃真空烘箱中保持10h烘干产品,然后研磨成粉末状,即可得HNb3O8/RGO复合物。
2.如权利要求1所述的一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池,其特征在于:所述HNb3O8/RGO复合材料、聚偏氟乙烯和乙炔黑的质量比为7:2:1。
3.如权利要求1所述的一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池,其特征在于:所述LiClO4/EC-DMC溶液的浓度为1mol/L,其中EC与DMC的体积比为1:1。
CN201711146484.0A 2017-11-17 2017-11-17 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池 Active CN107895787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711146484.0A CN107895787B (zh) 2017-11-17 2017-11-17 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711146484.0A CN107895787B (zh) 2017-11-17 2017-11-17 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池

Publications (2)

Publication Number Publication Date
CN107895787A CN107895787A (zh) 2018-04-10
CN107895787B true CN107895787B (zh) 2020-06-12

Family

ID=61805454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711146484.0A Active CN107895787B (zh) 2017-11-17 2017-11-17 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池

Country Status (1)

Country Link
CN (1) CN107895787B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785955B (zh) * 2020-01-09 2022-05-20 郑州轻工业大学 一种高容量VNb9O25纳米片锂离子电池负极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142548A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯与MoS2的复合纳米材料及其制备方法
CN103159260A (zh) * 2013-04-03 2013-06-19 福州大学 一种分子级厚度的HNb3O8纳米片的制备方法和应用
CN105390686A (zh) * 2014-09-03 2016-03-09 丰田自动车株式会社 钠离子电池用负极活性物质和钠离子电池
CN105457620A (zh) * 2014-09-11 2016-04-06 杭州中喜化工有限公司 一种纳米铌酸锂-石墨烯复合光催化剂制备方法
CN105552346A (zh) * 2016-02-26 2016-05-04 南阳师范学院 一种铌酸钛/碳复合电极材料及其制备方法
CN105591088A (zh) * 2016-03-22 2016-05-18 北京科技大学 一种锂离子电池负极材料及其制备方法
CN107195897A (zh) * 2017-06-13 2017-09-22 东北大学 一种纳米FeNbO4/Graphene复合材料及其制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142548A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯与MoS2的复合纳米材料及其制备方法
CN103159260A (zh) * 2013-04-03 2013-06-19 福州大学 一种分子级厚度的HNb3O8纳米片的制备方法和应用
CN105390686A (zh) * 2014-09-03 2016-03-09 丰田自动车株式会社 钠离子电池用负极活性物质和钠离子电池
CN105457620A (zh) * 2014-09-11 2016-04-06 杭州中喜化工有限公司 一种纳米铌酸锂-石墨烯复合光催化剂制备方法
CN105552346A (zh) * 2016-02-26 2016-05-04 南阳师范学院 一种铌酸钛/碳复合电极材料及其制备方法
CN105591088A (zh) * 2016-03-22 2016-05-18 北京科技大学 一种锂离子电池负极材料及其制备方法
CN107195897A (zh) * 2017-06-13 2017-09-22 东北大学 一种纳米FeNbO4/Graphene复合材料及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Engineering a highly dispersed co-catalyst on a few-layered catalyst for efficient photocatalytic H2 evolution: a case study of Ni(OH)2/ HNb3O8 nanocomposites;Yuzhou Xia et al.;《Catal. Sci. Technol.》;20171005;第7卷;第5662–5669页 *

Also Published As

Publication number Publication date
CN107895787A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN102969492B (zh) 一种碳包覆掺杂改性钛酸锂及其制备方法
Zhang et al. An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in λ-MnO2 positive electrode
CN107732205B (zh) 一种制备硫-氮共掺杂碳包覆纳米花状钛酸锂复合负极材料的方法
CN109473663B (zh) 一种还原氧化石墨烯负载锑的钠离子电池负极材料及其制备方法
CN105185977B (zh) 一种锂离子电池负极材料的制备方法
CN108269982B (zh) 一种复合材料、其制备方法及在锂离子电池中的应用
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
CN111987297B (zh) 表面铝掺杂及磷酸钛铝锂包覆的富锂锰基正极材料及制备
CN106099066B (zh) 一种二氧化锗/石墨烯复合材料及其制备方法
CN106784700A (zh) 一种多层硅/石墨烯复合锂电池负极材料及其制备方法
Feng et al. Preparation of SnO2 nanoparticle and performance as lithium-ion battery anode
CN103000879A (zh) 一种具有一维多孔结构的尖晶石型锂镍锰氧的制备方法
CN110759379B (zh) 一种0d/2d异质结构复合负极材料的制备方法及其应用
Ding et al. Composite with TiO 2 and extension of discharge voltage range for capacity enhancement of a Li 4 Ti 5 O 12 battery
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN104934577B (zh) 嵌入石墨烯网络的介孔Li3VO4/C纳米椭球复合材料及其制备方法和应用
Xin et al. Organic solvent-assisted free-standing Li 2 MnO 3· LiNi 1/3 Co 1/3 Mn 1/3 O 2 on 3D graphene as a high energy density cathode
CN114520328B (zh) 一种锂离子电池负极材料及其制备与负极和电池
JP2015088343A (ja) 非水電解液二次電池用正極活物質の製造方法。
CN113735174A (zh) 一种基于一价阳离子掺杂锰基化合物的水系锌离子电池正极材料及其制备方法和应用
CN107895787B (zh) 一种采用2D/2D自组装复合材料HNb3O8/RGO的锂离子电池
CN109449440B (zh) 微孔超薄软碳纳米片及其制备方法和应用
CN111994896A (zh) 一种碳复合负极材料及其制备方法、锂离子电池
CN115084471B (zh) 层状卤化物双钙钛矿锂离子电池负极材料及其制备方法
CN114824202B (zh) 一种多核壳结构的FeS2@C纳米胶囊材料的制法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230103

Address after: Room 306, Building 1, Science and Technology Innovation Park, No. 15, Dongxiao Qutan Road, Donghua Community, Dongxiao Town, Xinluo District, Longyan City, Fujian Province, 364000

Patentee after: LONGYAN LIRONG ELECTRONIC TECHNOLOGY CO.,LTD.

Address before: 364000 Longyan college, No. 1, Dongxiao North Road, Xinluo District, Longyan City, Fujian Province

Patentee before: LONGYAN University