WO2016098891A1 - 超純水製造装置及び超純水製造方法 - Google Patents

超純水製造装置及び超純水製造方法 Download PDF

Info

Publication number
WO2016098891A1
WO2016098891A1 PCT/JP2015/085526 JP2015085526W WO2016098891A1 WO 2016098891 A1 WO2016098891 A1 WO 2016098891A1 JP 2015085526 W JP2015085526 W JP 2015085526W WO 2016098891 A1 WO2016098891 A1 WO 2016098891A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ultrapure water
treated
ion exchange
pure water
Prior art date
Application number
PCT/JP2015/085526
Other languages
English (en)
French (fr)
Inventor
育野 望
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56126770&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016098891(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US15/536,510 priority Critical patent/US10526226B2/en
Priority to KR1020177016234A priority patent/KR102309232B1/ko
Priority to CN201580067856.3A priority patent/CN107001075A/zh
Publication of WO2016098891A1 publication Critical patent/WO2016098891A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2611Irradiation
    • B01D2311/2619UV-irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2653Degassing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Definitions

  • the present invention relates to an ultrapure water production apparatus and an ultrapure water production method.
  • Ultrapure water used in large quantities as cleaning water in the manufacturing process of electronic devices, especially semiconductors is used as raw water (industrial water) in an ultrapure water production system consisting of a pretreatment system, primary pure water system, and subsystems. , Tap water, well water, and used ultrapure water discharged from the electronic device manufacturing process).
  • ultrapure water that includes a primary pure water system and a subsystem that processes treated water of the primary pure water system, and at least a reverse osmosis membrane separation device is provided in the primary pure water system.
  • a reverse osmosis membrane separation device installed in the primary pure water system is a high-pressure type reverse osmosis membrane separation device, and an ultrapure water production device is proposed which is installed in a single stage. Has been.
  • the ultrapure water which has a pretreatment system the primary pure water system which processes the pretreatment water processed by this pretreatment system into primary pure water, and the subsystem which processes primary pure water
  • the primary pure water system is configured such that a reverse osmosis membrane separation device, a degassing device, an electrodeionization device, an ultraviolet oxidation device, and a non-regenerative ion exchange device are connected in this order.
  • a characteristic ultrapure water production apparatus has been proposed.
  • the primary pure water system includes a two-bed / three-column ion exchange apparatus, a reverse osmosis membrane apparatus, and 180 to 190 nm.
  • a combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp that irradiates ultraviolet rays including the wavelength of the above and a mixed bed ion exchange device is provided along the flow path, and the secondary pure water system has a wavelength of 180 to 190 nm.
  • an ultrapure water production apparatus characterized in that at least one combination of an ultraviolet irradiation apparatus equipped with a low-pressure ultraviolet lamp for irradiating containing ultraviolet light and a mixed bed type ion exchange apparatus is provided along a flow path. .
  • Patent Document 4 in an ultrapure water production apparatus including a pretreatment system, a primary pure water system, and a secondary pure water system, the primary pure water system and the secondary pure water system each have a wavelength of 180 to 190 nm.
  • An ultrapure water production apparatus is proposed in which at least one set of a combination of an ultraviolet irradiation apparatus equipped with a low-pressure ultraviolet lamp that irradiates ultraviolet rays and a mixed bed ion exchange apparatus is provided along a flow path. Yes.
  • reverse osmosis membrane separation devices and / or ion exchange devices are installed in multiple stages as in the following primary purification systems (A) to (C) at the most advanced semiconductor factories in recent years. In order to improve the purity of ultrapure water.
  • A Multi-stage RO system / reverse osmosis membrane (RO membrane) separation device consisting of multiple reverse osmosis membrane (RO membrane) separation devices ⁇ Mixed-bed ion exchange device (tower) (MB) ⁇ UV sterilization device (UVst) ⁇ Reverse osmosis membrane (RO membrane) separator ⁇ ultraviolet oxidizer (UVox) ⁇ non-regenerative ion exchanger (tower) ⁇ degasifier (MDG), the number of constituent units is seven.
  • C Multi-stage electric regenerative ion exchange deionized water device (CDI) system, reverse osmosis membrane (RO membrane) separator ⁇ reverse osmosis membrane (RO membrane) separator ⁇ deaerator (MDG) ⁇ Ultraviolet oxidizer (UVox) ⁇ Multistage electric regeneration type ion exchange pure water device (CDI) ⁇ Multistage electric regeneration type ion exchange pure water device (CDI), The number of constituent units is six.
  • an ultra-low pressure type reverse osmosis membrane (RO membrane) separator standard operating pressure: 0.75 MPa) ) Is generally used.
  • the unit in this specification means an apparatus capable of any one or more of desalting, degassing, and organic substance removal, which is the main purpose of removal in the primary pure water system, and the number of constituent units.
  • the number of units provided in a system for example a primary pure water system.
  • to-be-treated water obtained by treating raw water (industrial water, tap water, well water, used ultrapure water discharged from an electronic device manufacturing process, etc.) with a pretreatment system is the above (A) to (C).
  • the water quality of the treated water (water quality at the outlet of the primary pure water system) has a specific resistance of 18 M ⁇ cm or more, a TOC concentration of 2 ⁇ g / L or less, a boron (B) concentration of 1 ng / L or less, It becomes possible to obtain a high-purity water quality having a silica (SiO 2 ) concentration of 0.1 ⁇ g / L or less.
  • the present invention has been made in view of the above circumstances, and is capable of producing high purity ultrapure water sufficiently satisfying the required water quality with reduced footprint and at low cost.
  • the main object is to provide an apparatus and a method for producing ultrapure water.
  • the present inventors have reduced the number of structural units by installing appropriate devices in an appropriate order in the primary pure water system provided in the ultrapure water device, and have high purity that sufficiently satisfies the required water quality.
  • the inventors have found that ultrapure water can be produced at low cost, and have completed the present invention.
  • the present invention provides ultrapure water comprising a four-unit primary pure water system comprising a high-pressure reverse osmosis membrane separation device, a deaeration device, an ultraviolet oxidation device, and a regenerative ion exchange device in this order.
  • a treatment method using the primary pure water system includes a step of passing the water to be treated through a high-pressure reverse osmosis membrane separation device, and a step of degassing the gas in the water to be treated.
  • a method of decomposing the organic matter in the degassed water to be treated with an ultraviolet oxidation device, and a step of treating the water to be treated with the organic matter decomposed with an ion exchange device. provide.
  • the present invention includes a pretreatment system, a primary pure water system, and a subsystem, and the primary pure water system includes a high-pressure reverse osmosis membrane separation device, a deaeration device, and an ultraviolet oxidation device.
  • An ultrapure water production apparatus comprising an ion exchange apparatus in this order is provided.
  • the high pressure type reverse osmosis membrane separation device is a reverse osmosis membrane device having a pure water permeation flux of 0.6 to 1.3 m 3 / m 2 / day under the conditions of a membrane surface effective pressure of 2.0 MPa and 25 ° C. Preferably there is.
  • the ion exchange device is preferably a regenerative ion exchange device of any one of the following a) to d).
  • A) A two-bed two-column regenerative ion exchange apparatus in which a cation exchange column filled with a strongly acidic cation exchange resin and an anion exchange column filled with a strongly basic anion exchange resin are connected in series.
  • A) Two beds 1 in which the strongly acidic cation exchange resin and the strongly basic anion exchange resin are packed in one column so that the strongly acidic cation exchange resin and the strongly basic anion exchange resin are in different layers.
  • Tower-type regenerative ion exchanger A
  • a mixed bed regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in one tower.
  • the present invention also treats treated water obtained by treating raw water with a pretreatment system in the order of a primary pure water system and a subsystem, and a treatment method using the primary pure water system is applied to a high-pressure reverse osmosis membrane separation device.
  • a step of passing water, a step of degassing the gas in the water to be treated, a step of decomposing organic matter in the degassed water to be treated by an ultraviolet oxidation device, and a treatment in which the organic matter is decomposed A method for producing ultrapure water comprising a step of treating water with an ion exchange device.
  • the ultrapure water manufacturing apparatus and the ultrapure water manufacturing method which can reduce the footprint and can manufacture the ultrapure water of the high purity which fully satisfy
  • FIG. 1 is a graph showing the change over time in the TOC value of the treated water of Example 1 and Comparative Examples 3 to 4 treated by the primary pure water system.
  • An ultrapure water production apparatus includes a pretreatment system, a primary pure water system, and a subsystem, and the primary pure water system includes a high-pressure reverse osmosis membrane separation device,
  • the ultrapure water production apparatus includes a deaeration device, an ultraviolet oxidation device, and an ion exchange device in this order.
  • high purity ultrapure water that sufficiently satisfies the required water quality can be produced with a reduced footprint, and the equipment cost (initial cost) and the operation cost It can be manufactured at low cost while suppressing (running cost).
  • the primary pure water system provided in the ultrapure water production apparatus includes a high-pressure reverse osmosis membrane separation device, a degassing device, an ultraviolet oxidation device, and an ion exchange device in this order. It is a system with only 4 units.
  • the primary pure water system removes ions and organic components from treated water that has been treated with raw water (industrial water, tap water, well water, used ultrapure water discharged from electronic device manufacturing processes, etc.) by the pretreatment system. I do.
  • the quality of ultrapure water produced by the ultrapure water production apparatus according to the embodiment of the present invention is described above, for example, although the primary pure water system has only 4 units (A).
  • the water quality is equivalent to or better than the water quality. Therefore, the ultrapure water produced by the ultrapure water production apparatus according to the embodiment of the present invention is high purity ultrapure water that sufficiently satisfies the required water quality.
  • the ultrapure water produced by the ultrapure water production apparatus of the embodiment according to the present invention sufficiently satisfies the required water quality is determined from raw water (industrial water, tap water, well water, electronic device production process).
  • the treated water treated by the pretreatment system is treated by the primary pure water system provided in the ultrapure water production apparatus according to the embodiment of the present invention, so that the treated water is treated.
  • the water quality (water quality at the outlet of the primary pure water system) has a specific resistance value of 18 M ⁇ cm or more, a TOC (Total Organic Carbon) concentration of 2 ⁇ g / L or less, a boron (B) concentration of 1 ng / L or less, and a silica (SiO 2 ) concentration of 0.1 ⁇ g / L. Judgment can be made based on the following. Therefore, if the quality of the water to be treated treated by the primary pure water system provided in the ultrapure water production apparatus according to the embodiment of the present invention shows the above values, it is finally treated by the subsystem described later. The ultrapure water thus obtained becomes high purity ultrapure water that sufficiently satisfies the required water quality.
  • the high-pressure reverse osmosis membrane separation apparatus removes salts and organic substances.
  • the high-pressure type reverse osmosis membrane separation device is a reverse osmosis membrane separation device conventionally used for seawater desalination, and a low pressure used in a primary pure water system provided in a conventional ultrapure water production device.
  • the skin layer on the membrane surface is denser than the type or ultra-low pressure type reverse osmosis membrane.
  • the high-pressure type reverse osmosis membrane has a lower amount of permeated water per unit operating pressure than the low-pressure type or ultra-low pressure type reverse osmosis membrane, it has weak electrolyte components such as boron, silica, and non-charged organic substances and non-charged components. High removal rate.
  • the high-pressure reverse osmosis membrane separation apparatus has a low amount of permeated water per unit operating pressure, and 0.6 to 1.3 m 3 / m 2 / day under conditions of an effective pressure of the membrane surface of 2.0 MPa and 25 ° C.
  • the pure water permeation flux may have a NaCl removal rate of 99.5% or more.
  • the values of the permeation flux and the NaCl removal rate are It is not limited.
  • the effective pressure on the membrane surface is an effective pressure acting on the membrane obtained by subtracting the osmotic pressure difference and the secondary pressure from the average operating pressure, and the NaCl removal rate is 25 ° C. with respect to an aqueous NaCl solution having an NaCl concentration of 32000 mg / L.
  • the shape of the high-pressure reverse osmosis membrane may be any shape as long as the object of the present invention is achieved and the effect is exerted, and examples thereof include a spiral shape, a hollow fiber shape, and a flat membrane shape.
  • the reason why the high pressure type reverse osmosis membrane separation device is provided is as follows. That is, since the high-pressure type reverse osmosis membrane separation device has a high degree of cross-linking of the polyamide layer for desalting or removing organic substances, as shown in Table 1 below, the ultra-low pressure type or low pressure type conventionally used in the art is used. Compared to a reverse osmosis membrane (RO membrane), the salt removal rate and organic matter removal rate are much higher.
  • RO membrane reverse osmosis membrane
  • this membrane high pressure type reverse osmosis membrane
  • RO membrane ultra-low pressure
  • Type or low-pressure type reverse osmosis membrane in particular, the treated water quality equivalent to the two-stage treatment can be obtained.
  • the deaerator in the embodiment of the present invention removes IC (inorganic carbon) and dissolved oxygen.
  • the reason why the degassing device (degassing device) is provided after the high pressure reverse osmosis membrane separation device treatment is as follows. That is, when a degassing device is installed in the front stage of the high-pressure type reverse osmosis membrane separation device, the degassing membrane or packing material provided in the degassing device due to turbidity in the raw water or Al, SiO 2, etc. (Vacuum degassing, etc.) may become dirty and the degassing efficiency may be reduced. Since the above turbidity or Al, SiO 2, etc. can be removed with a high pressure reverse osmosis membrane, after treatment with a high pressure type reverse osmosis membrane separation device, water to be treated is passed through a deaeration device to remove water. Prevents a decrease in efficiency.
  • the deaerator is installed in front of the ion exchanger and UV oxidizer.
  • the IC (inorganic carbon) component that can be removed by the degasser is a radical scavenger for the UV oxidizer, while ion exchange An anion load is applied to the apparatus.
  • the dissolved oxygen becomes a radical scavenger for the ultraviolet oxidizer, similar to the above IC (inorganic carbon) component,
  • dissolved oxygen becomes a factor substance that causes resin oxidation deterioration.
  • the deaeration device needs to be installed (provided) in front of the ultraviolet oxidation device and the ion exchange device.
  • the degassing apparatus may be any degassing apparatus as long as the object of the present invention is achieved and the effects of the present invention are achieved.
  • a decarboxylation tower, a membrane degassing apparatus, a vacuum degassing tower, a nitrogen degassing apparatus examples thereof include an apparatus and a catalyst resin deoxygenation apparatus.
  • the reason for installing the ultraviolet oxidation device in the subsequent stage of the deaeration device and in the previous stage of the ion exchange device (tower) is as follows. That is, in the ultraviolet oxidation apparatus, an organic substance in water (treated water) is decomposed into CO 2 and an organic acid by the oxidizing power of OH radicals. The CO 2 or organic acid produced by the ultraviolet oxidation device can be removed by a subsequent ion exchange device (column).
  • the ultraviolet oxidation apparatus is not particularly limited as long as it emits light having a wavelength of 185 nm and achieves the object of the present invention and exhibits the effects of the present invention.
  • an ultraviolet oxidizer composed of synthetic quartz with very few impurities for both the lamp and the outer tube from the viewpoint of organic matter decomposition efficiency.
  • the ion exchange apparatus removes salts and removes charged organic substances.
  • the ion exchange device is not particularly limited as long as it achieves the object of the present invention and exhibits the effects of the present invention, but the ion exchange device in the embodiment of the present invention is a regenerative ion exchange device. (Tower) or non-regenerative ion exchanger (tower) is preferable.
  • a regenerative ion exchange apparatus for example, a) 2 beds in which a cation exchange column filled with a strongly acidic cation exchange resin and an anion exchange column filled with a strongly basic anion exchange resin are connected in series.
  • a two-column regenerative ion exchange apparatus a) a strongly acidic cation exchange resin and the strongly basic anion exchange in one tower so that the strongly acidic cation exchange resin and the strongly basic anion exchange resin are in different layers.
  • 2 bed 1 tower type regenerative ion exchange device packed with resin c) mixed bed regenerative ion filled uniformly in strongly acidic cation exchange resin and strongly basic anion exchange resin and packed in one tower Examples thereof include a regenerative ion exchange apparatus in which one or more electric regenerative deionization apparatuses are connected in series.
  • the pretreatment system included in the ultrapure water production apparatus includes aggregation / filtration, aggregation / pressure flotation (precipitation) / filtration, and membrane separation system (apparatus), but is not limited thereto. It can be used as long as it is generally used for removing suspended substances and colloidal substances.
  • the pretreatment system removes suspended substances and colloidal substances in raw water (industrial water, tap water, well water, used ultrapure water discharged from electronic device manufacturing processes, etc.).
  • the subsystem provided in the ultrapure water production apparatus includes a low-pressure ultraviolet oxidation apparatus, an ion exchange apparatus, and an ultrafiltration apparatus, but is not limited thereto.
  • the low-pressure ultraviolet oxidizer decomposes and removes organic substances by OH radicals that are generated when water having a wavelength of 185 nm irradiated from a low-pressure ultraviolet lamp is absorbed by water.
  • An ion exchange device provided in the subsystem removes trace amounts of ions generated from organic acids or piping generated by a low-pressure ultraviolet oxidation device.
  • the ultrafiltration device provided at the end of the subsystem removes fine particles discharged from the piping or the ion exchange device.
  • An ultrapure water production method treats treated water obtained by treating raw water by a pretreatment system in the order of a primary pure water system and a subsystem, and performs treatment by the primary pure water system.
  • the method includes a step of passing water to be treated through a high pressure type reverse osmosis membrane separator, a step of degassing the gas in the water to be treated, and an ultraviolet oxidation device for removing organic matter in the degassed water to be treated.
  • high purity ultrapure water sufficiently satisfying the required water quality can be produced with a reduced footprint, and the equipment cost (initial cost) and the operation cost It can be manufactured at low cost while suppressing (running cost).
  • the embodiment according to the present invention can also be configured as follows.
  • a pretreatment system, a primary pure water system, and a subsystem are provided, and the primary pure water system includes a high-pressure reverse osmosis membrane separation device, a deaeration device, an ultraviolet oxidation device, and an ion exchange device.
  • the ultrapure water production equipment equipped with in this order.
  • the high-pressure reverse osmosis membrane separation device has a pure water permeation flux of 0.6 to 1.3 m 3 / m 2 / day under a membrane surface effective pressure of 2.0 MPa and 25 ° C. 1]
  • the ultrapure water production apparatus according to 1].
  • a mixed bed regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in one tower.
  • a step of passing water, a step of degassing the gas in the water to be treated, a step of decomposing organic matter in the degassed water to be treated by an ultraviolet oxidizer, and the organic matter being decomposed A method for producing ultrapure water, comprising a step of treating water to be treated with an ion exchange device.
  • Example 1 Industrial water containing electrical conductivity 30 mS / m, TOC 2 mg / L, SiO 2 10 mg / L and B 30 ⁇ g / L, aggregated filtered water under the condition of pH 6 high pressure type reverse osmosis membrane (SWC4Max, membrane surface effective pressure 2.0 MPa, Pure water permeation flux at a temperature of 25 ° C.
  • SWC4Max high pressure type reverse osmosis membrane
  • Example 1 The raw water used in the above Example 1 was converted into ultra-low pressure reverse osmosis membrane (RO membrane) (ES-20, effective pressure 2.0 MPa, pure water permeation flux 1 m 3 / m 2 / day at 25 ° C .; effective pressure 0.75 MPa, temperature of 25 ° C., NaCl removal rate of 99.7% at NaCl concentration of 500 mg / L, Nitto Denko's two-stage serial water flow (first stage recovery rate 85%, second stage recovery rate 90%) Except that, water was passed under the same treatment conditions as in Example 1.
  • RO membrane reverse osmosis membrane
  • Example 2 The raw water used in Example 1 above is No. 1 cation tower (resin brand EX-CG, manufactured by Kurita Kogyo Co., Ltd.), deaerator (degassing membrane, X-50, manufactured by Polypore), No.
  • Example 3 The raw water used in the above Example 1 was converted into a high-pressure reverse osmosis membrane device (SWC4Max, manufactured by Nitto Denko) (recovery rate 85%), an ultraviolet oxidation device (JPW, manufactured by Nippon Photoscience), a degassing device (degassing membrane).
  • SWC4Max high-pressure reverse osmosis membrane device
  • JPW ultraviolet oxidation device
  • degassing device degassing membrane
  • Example 4 The raw water used in the above Example 1 was degassed (degassing membrane, manufactured by X-50 Polypore), high-pressure reverse osmosis membrane device (SWC4Max, manufactured by Nitto Denko) (recovery rate 85%), ultraviolet oxidation device (JPW, manufactured by Nippon Photo Science Co., Ltd.) The same conditions as in Example 1 except that the treatment was performed in the order of DBP (Double-BedPolisher, manufactured by Kurita Kogyo Co., Ltd.) in which the cation exchange resin layer and the anion exchange resin layer were separated in one tower. The water was passed through.
  • DBP Double-BedPolisher, manufactured by Kurita Kogyo Co., Ltd.
  • Example 1 has a specific resistance and the ultimate water quality of B (boron) and SiO 2 (silica) is equivalent to the water to be treated of Comparative Examples 1 and 2, but the TOC (Total Organic Carbon) was the lowest value.
  • FIG. 1 shows the time-dependent change in the TOC value of the treated water of Example 1 and Comparative Examples 3 to 4 treated by the primary pure water system.
  • the water to be treated of Comparative Example 3 tended to have a TOC value higher by about 0.5 ⁇ g / L than the water to be treated of Example 1. This indicates that the TOC decomposition efficiency in the ultraviolet oxidation apparatus varies depending on the order of installation (position) of the deaeration apparatus.
  • the water to be treated of Comparative Example 4 had a water quality equivalent to the water to be treated of Example 1 at the start of water flow, but the water quality tends to deteriorate with an increase in the number of days. Observed. It is considered that this is because the deaeration device is contaminated with the raw water-derived substance and the deaeration efficiency is lowered, and accordingly, the ultraviolet oxidative decomposition efficiency is lowered.

Abstract

 要求水質を充分に満足した高純度の超純水を、フットプリントを軽減させて、かつ、安価に製造することができる超純水製造装置及び超純水製造方法を提供すること。 前処理システムと、一次純水システムと、サブシステムとを備え、一次純水システムが、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、超純水製造装置を提供する。

Description

超純水製造装置及び超純水製造方法
 本発明は、超純水製造装置及び超純水製造方法に関する。
 電子デバイス、特には半導体の製造工程にて洗浄水として多量に用いられる超純水は、前処理システム、一次純水システム、及びサブシステムから構成される超純水製造システムにて原水(工業用水、水道水、井水、電子デバイス製造工程から排出される使用済みの超純水等)を処理することにより製造される。
 例えば、特許文献1では、一次純水システムと、該一次純水システムの処理水を処理するサブシステムとを備え、少なくとも該一次純水システムに逆浸透膜分離装置が設けられている超純水製造装置において、該一次純水システムに設置された逆浸透膜分離装置が高圧型逆浸透膜分離装置であり、且つ単段にて設置されていることを特徴とする超純水製造装置が提案されている。特許文献2では、前処理システムと、該前処理システムによって処理された前処理水を処理して一次純水とする一次純水システムと、一次純水を処理するサブシステムとを有する超純水製造装置において、該一次純水システムが、逆浸透膜分離装置、脱ガス装置、電気脱イオン装置、紫外線酸化装置、及び非再生型イオン交換装置の順で接続された構成とされていることを特徴とする超純水製造装置が提案されている。
 また、特許文献3では、一次純水システムと二次純水システムからなる超純水製造装置において、前記一次純水システムは、2床3塔型イオン交換装置と逆浸透膜装置と180~190nmの波長を含む紫外線を照射する低圧紫外線ランプを備えた紫外線照射装置と混床式イオン交換装置の組合せを流路に沿って設けてなり、前記二次純水システムは、180~190nmの波長を含む紫外線を照射する低圧紫外線ランプを備えた紫外線照射装置と混床式イオン交換装置の組み合わせを流路に沿って少なくとも1組設けてなることを特徴とする超純水製造装置が提案されている。
 さらに、特許文献4では、前処理システム、一次純水システムと二次純水システムからなる超純水製造装置において、前記一次純水システムと二次純水システムに、それぞれ、180~190nmの波長を含む紫外線を照射する低圧紫外線ランプを備えた紫外線照射装置と混床式イオン交換装置の組み合わせを流路に沿って、少なくとも1組設けたことを特徴とする超純水製造装置が提案されている。
特開2012-245439号 特開2003-266097号 特開2004-25184号 特開平7-75780号
 しかしながら、近年、半導体等の電子デバイスの高集積化、回路パターンの微細化に伴い、洗浄水として用いられる超純水の水質に対する水質向上の要求が更に高まっているのが現状である。超純水製造装置又は超純水製造システムにおいて、ユースポイントにおける到達水質及び水質安定性を決定づけるのは一次純水システムである。逆浸透膜分離装置、脱気装置及びイオン交換装置のそれぞれが単段に設置されるのが一次純水システムの一般的な態様である。ところが、この水質向上の要求が高まる中で、上記の一次純水システムの一般的な態様では水質向上の要求に応えられない問題がある。このため、近年の最先端の半導体工場等において、下記の(A)~(C)の一次純水システムのように逆浸透膜分離装置及び/又はイオン交換装置(塔)を複数段に設置し、超純水の高純度化を図っている。
 (A)複数の逆浸透膜(RO膜)分離装置からなる多段ROシステム
・逆浸透膜(RO膜)分離装置⇒混床式イオン交換装置(塔)(MB)⇒紫外線殺菌装置(UVst)⇒逆浸透膜(RO膜)分離装置⇒紫外線酸化装置(UVox)⇒非再生型イオン交換装置(塔)⇒脱気装置(MDG)、構成ユニット数は7である。
 (B)カチオン及びアニオン交換塔を複数段組み合わせた多段イオン交換システム
 ・陽イオン交換樹脂(H1)装置(塔)⇒脱炭酸塔⇒陰イオン交換樹脂(OH1)装置(塔)⇒陽イオン交換樹脂(H2)装置(塔)⇒陰イオン交換樹脂(OH2)装置(塔)⇒紫外線殺菌装置(UVst)⇒逆浸透膜(RO膜)分離装置⇒脱気装置(MDG)⇒紫外線酸化装置(UVox)⇒非再生型イオン交換装置(塔)、
構成ユニット数は10である。
・陽イオン交換樹脂(H1)装置(塔)⇒脱炭酸塔⇒陰イオン交換樹脂(OH1)装置(塔)⇒紫外線殺菌装置(UVst)⇒逆浸透膜(RO膜)分離装置⇒紫外線酸化装置(UVox)⇒混床式イオン交換装置(塔)(MB)⇒非再生型イオン交換装置(塔)、構成ユニット数は8である。
 (C)複数の電気再生型イオン交換装置からなる多段電気再生式イオン交換純水装置(CDI)システム・逆浸透膜(RO膜)分離装置⇒逆浸透膜(RO膜)分離装置⇒脱気装置(MDG)⇒紫外線酸化装置(UVox)⇒多段電気再生式イオン交換純水装置(CDI)⇒多段電気再生式イオン交換純水装置(CDI)、
構成ユニット数は6である。
 上記の(A)~(C)の一次純水システムに用いられている逆浸透膜(RO膜)分離装置において、超低圧型逆浸透膜(RO膜)分離装置(標準運転圧:0.75MPa)が使用されるのが一般的である。
 ここで、本明細書における、ユニットとは、一次純水システムでの除去の主目的である脱塩、脱気、有機物除去の何れか或いは複数の処理が可能な装置を意味し、構成ユニット数とは、システム、例えば一次純水システムに備えられるユニットの数を意味する。
 例えば、原水(工業用水、水道水、井水、電子デバイス製造工程から排出される使用済みの超純水等)を前処理システムによって処理した被処理水は、上記の(A)~(C)の一次純水システムで処理することで、被処理水の水質(一次純水システムの出口における水質)を、比抵抗18MΩcm以上、TOC濃度2μg/L以下、ホウ素(B)濃度1ng/L以下、シリカ(SiO)濃度0.1μg/L以下の高純度な水質にすることが可能となる。
 しかしながら、上記の(A)~(C)の一次純水システムの構成ユニット数(6~10)が多いため、フットプリントが大きく、かつ、設備コスト(イニシャルコスト)及び運営コスト(ランニングコスト)が高くなるといった問題がある。
 また、超純水の水質の要求レベルは、今後益々高まり、一次純水システムのユニット数は更に増加する傾向にある。
 本発明は、上記事情に鑑みてなされたものであり、要求水質を充分に満足した高純度の超純水を、フットプリントを軽減させて、かつ、安価に製造することができる超純水製造装置及び超純水製造方法を提供することを主目的とする。
 本発明者らは、超純水装置に備えられる一次純水システムに、適切な装置を、適切な順番に設置することによって、構成ユニット数を低減し、要求水質を充分に満足した高純度の超純水を安価に製造することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、再生型イオン交換装置とをこの順で備える、4ユニット構成の一次純水システムを備える超純水製造装置を提供する。また、本発明は、その一次純水システムによる処理方法が、高圧型逆浸透膜分離装置に該被処理水を通水する工程と、該通水された被処理水中のガスを脱気する工程と、該脱気された被処理水中の有機物を紫外線酸化装置によって分解する工程と、該有機物が分解された被処理水を、イオン交換装置によって処理する工程とを含む、超純水製造方法を提供する。
 具体的には、本発明は、前処理システムと、一次純水システムと、サブシステムとを備え、一次純水システムが、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、超純水製造装置を提供する。
 高圧型逆浸透膜分離装置とは、膜面有効圧力2.0MPa、25℃の条件において、0.6~1.3m/m/dayの純水透過流束を有する逆浸透膜装置であることが好ましい。
 イオン交換装置が以下のア)~エ)のいずれか1つの再生型イオン交換装置であることが好ましい。
ア)強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続した2床2塔式再生型イオン交換装置。
イ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが別々の異なる層となるように1つの塔内に該強酸性カチオン交換樹脂と該強塩基性アニオン交換樹脂とを充填した2床1塔式再生型イオン交換装置。
ウ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して1つの塔内に充填した混床型再生式イオン交換装置。
エ)電気再生式脱イオン装置を1段又は複数段直列に接続した再生型イオン交換装置。
 また、本発明は、原水を前処理システムによって処理した被処理水を一次純水システム及びサブシステムの順によって処理し、一次純水システムによる処理方法が、高圧型逆浸透膜分離装置に被処理水を通水する工程と、通水された被処理水中のガスを脱気する工程と、脱気された被処理水中の有機物を紫外線酸化装置によって分解する工程と、有機物が分解された被処理水を、イオン交換装置によって処理する工程とを含む、超純水製造方法を提供する。
 本発明によれば、要求水質を充分に満足した高純度の超純水を、フットプリントを軽減させて、かつ、安価に製造することができる超純水製造装置及び超純水製造方法が提供される。
図1は、一次純水システムによって処理された実施例1及び比較例3~4の被処理水のTOC値の経時変化を示す図である。
 以下、本発明を実施するための形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が限定されて解釈されることはない。
1.超純水製造装置
 本発明に係る実施形態の超純水製造装置は、前処理システムと、一次純水システムと、サブシステムとを備え、一次純水システムが、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、超純水製造装置である。本実施形態の超純水製造装置によれば、要求水質を充分に満足した高純度の超純水を、フットプリントを軽減させて製造することができ、さらに設備コスト(イニシャルコスト)及び運営コスト(ランニングコスト)を抑えながら安価に製造することができる。
 <一次純水システム>
 本発明に係る実施形態の超純水製造装置に備えられる一次純水システムは、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、僅か4ユニット構成のシステムである。一次純水システムは、原水(工業用水、水道水、井水、電子デバイス製造工程から排出される使用済みの超純水等)を前処理システムによって処理した被処理水中のイオンや有機成分の除去を行う。そして、一次純水システムが僅か4ユニット構成であるにもかかわらず、本発明に係る実施形態の超純水製造装置によって製造された超純水の水質は、例えば、上記で述べた(A)~(C)の一次純水システムのように逆浸透膜分離装置及び/又はイオン交換装置(塔)を複数段に設置した一次純水システムを備える超純水製造装置によって製造された超純水の水質に対して同等以上の水質を示す。したがって、本発明に係る実施形態の超純水製造装置によって製造された超純水は、要求水質を充分に満足した高純度の超純水である。
 本発明に係る実施形態の超純水製造装置によって製造された超純水が、要求水質を充分に満足するかどうかは、原水(工業用水、水道水、井水、電子デバイス製造工程から排出される使用済みの超純水等)を前処理システムによって処理した被処理水が、本発明に係る実施形態の超純水製造装置に備えられる一次純水システムによって処理することで、被処理水の水質(一次純水システムの出口における水質)が、比抵抗値18MΩcm以上、TOC(TotalOrganicCarbon)濃度2μg/L以下、ホウ素(B)濃度1ng/L以下、シリカ(SiO)濃度0.1μg/L以下を示すかどうかで判断することができる。したがって、本発明に係る実施形態の超純水製造装置に備えられる一次純水システムによって処理された被処理水の水質が上記のような値を示せば、最終的には後述するサブシステムによって処理された超純水は、要求水質を充分に満足した高純度の超純水となる。
 本発明に係る実施形態における高圧型逆浸透膜分離装置は、塩類を除去すると共に有機物等も除去する。高圧型逆浸透膜分離装置は、従来、海水淡水化に用いられている逆浸透膜の分離装置であり、従来の超純水製造装置に備えられている一次純水システムに用いられている低圧型又は超低圧型逆浸透膜に比べて膜表面のスキン層が緻密になっている。そのため、高圧型逆浸透膜は低圧型又は超低圧型逆浸透膜に比べて単位操作圧力当たりの膜透過水量は低いもののホウ素、シリカ及び非荷電性有機物などの弱電解質成分や非荷電性成分の除去率が高い。高圧型逆浸透膜分離装置は、上述のとおり、単位操作圧力当たりの膜透過水量が低く、膜面有効圧力2.0MPa、25℃条件下において0.6~1.3m/m/dayの純水透過流束を有し、99.5%以上のNaCl除去率を有してよいが、本発明の目的を達成し、効果を奏すれば、透過流束及びNaCl除去率の値は限定されない。ここで、膜面有効圧力は平均操作圧力から浸透圧差と二次側圧力とを差し引いた膜に働く有効な圧力で、NaCl除去率はNaCl濃度32000mg/LのNaCl水溶液に対する25℃、膜面有効圧力2.7MPaでの除去率である。高圧型逆浸透膜の形状は、本発明の目的を達成し、効果を奏すれば、任意の形状でよいが、例えば、スパイラル型形状、中空糸型形状、平膜型形状等が挙げられる。
 本発明の実施形態において、高圧型逆浸透膜分離装置を備える理由は以下の通りである。すなわち、高圧型逆浸透膜分離装置は脱塩あるいは有機物除去を行うポリアミド層の架橋度が高いため下記の表1に示すように、従来、当該技術分野にて使用していた超低圧型又は低圧型逆浸透膜(RO膜)に比べはるかに脱塩率、有機物除去率が高い。そのため本膜(高圧型逆浸透膜)の使用により後段装置の負荷を大幅に低減することが可能となるばかりか本膜(高圧型逆浸透膜)処理1段で、従来のRO膜(超低圧型又は低圧型逆浸透膜)の複数段処理、特には2段処理と同等の処理水質を得ることができる。
Figure JPOXMLDOC01-appb-T000001
 本発明の実施形態における脱気装置は、IC(無機炭素)、溶存酸素の除去を行う。高圧型逆浸透膜分離装置処理後に脱気装置(脱ガス装置)を備える理由は以下の通りである。すなわち、高圧型逆浸透膜分離装置の前段に脱気装置の設備を入れた場合、原水中に存在する濁質あるいはAl、SiO等により脱気装置に備えられている脱気膜あるいは充填材(真空脱気等)が汚れ、脱気効率が低下するおそれがある。上記の濁質あるいはAl、SiO等は高圧型逆浸透膜にて除去可能であるため、高圧型逆浸透膜分離装置によって処理した後、脱気装置に被処理水を通水することにより脱気効率の低下を防止する。
 また、脱気装置をイオン交換装置、及び紫外線酸化装置の前段に設置する理由は脱気装置にて除去可能であるIC(無機炭素)成分は紫外線酸化装置に対してはラジカルスカベンジャー、一方イオン交換装置に対してはアニオン負荷となる。また、同様に、脱気装置にて除去可能である溶存酸素が過剰に存在する場合、溶存酸素は、上記のIC(無機炭素)成分と同様に、紫外線酸化装置に対してはラジカルスカベンジャーとなり、一方、イオン交換装置に対しては、溶存酸素は樹脂酸化劣化を引き起こす要因物質となる。したがって、脱気装置は紫外線酸化装置、及びイオン交換装置の前段に設置する(備える)必要性がある。脱気装置は、本発明の目的を達成し、本発明の効果を奏すれば、任意の脱気装置でよいが、例えば、脱炭酸塔、膜脱気装置、真空脱気塔、窒素脱気装置、触媒樹脂脱酸素装置等が挙げられる。
 脱気装置の後段、及びイオン交換装置(塔)の前段に紫外線酸化装置を設置する理由は以下の通りである。すなわち紫外線酸化装置においては水(被処理水)中の有機物をOHラジカルの酸化力によりCO2と有機酸に分解する。紫外線酸化装置にて生成したCOあるいは有機酸は後段のイオン交換装置(塔)にて除去を行うことができる。
 本発明の実施形態における紫外線酸化装置は、185nm波長光を放出するものであって、本発明の目的を達成し、本発明の効果を奏すものであれば、特に限定されるものではない。本発明の実施形態において、有機物分解効率の観点からランプ及び外管共、不純物が極めて少ない合成石英で構成された紫外線酸化装置を使用することが好ましい。
 本発明の実施形態におけるイオン交換装置は塩類を除去すると共に荷電性有機物の除去を行う。イオン交換装置は、本発明の目的を達成し、本発明の効果を奏すものであれば、特に限定されるものではないが、本発明の実施形態におけるイオン交換装置としては、再生型イオン交換装置(塔)又は非再生型イオン交換装置(塔)がよい。再生型イオン交換装置(塔)としては、例えば、ア)強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続した2床2塔式再生型イオン交換装置、イ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが別々の異なる層となるように1つの塔内に強酸性カチオン交換樹脂と該強塩基性アニオン交換樹脂とを充填した2床1塔式再生型イオン交換装置、ウ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して1つの塔内に充填した混床型再生式イオン交換装置、エ)電気再生式脱イオン装置を1段又は複数段直列に接続した再生型イオン交換装置等が挙げられる。
 <前処理システム>
 本発明に係る実施形態の超純水製造装置に備えられる前処理システムは、凝集・ろ過、凝集・加圧浮上(沈殿)・ろ過、膜分離システム(装置)を備えるが、これに限定されるものではなく、懸濁物質やコロイダル物質の除去に一般に使用されるものであれば使用することが可能である。前処理システムは原水(工業用水、水道水、井水、電子デバイス製造工程から排出される使用済みの超純水等)中の懸濁物質やコロイダル物質の除去を行う。
 <サブシステム>
 本発明に係る実施形態の超純水製造装置に備えられるサブシステムは、低圧紫外線酸化装置、イオン交換装置及び限外ろ過装置を備えるが、これらに限定されるものでない。サブシステムでは、超純水の純度を一層高める。低圧紫外線酸化装置は低圧紫外線ランプより照射される185nm波長光が水に吸収されることにより生じるOHラジカルにより有機物の分解除去を行う。サブシステム内に備えられるイオン交換装置は低圧紫外線酸化装置により生成される有機酸あるいは配管等から発生する微量イオンの除去を行う。サブシステムの末端に備えられる限外ろ過装置は配管あるいはイオン交換装置から排出される微粒子の除去を行う。
 2.超純水製造方法
 本発明に係る実施形態の超純水製造方法は、原水を前処理システムによって処理した被処理水を一次純水システム及びサブシステムの順によって処理し、一次純水システムによる処理方法が、高圧型逆浸透膜分離装置に被処理水を通水する工程と、通水された被処理水中のガスを脱気する工程と、脱気された被処理水中の有機物を紫外線酸化装置によって分解する工程と、有機物が分解された被処理水を、イオン交換装置によって処理する工程とを含む、超純水製造方法である。本実施形態の超純水製造方法によれば、要求水質を充分に満足した高純度の超純水を、フットプリントを軽減させて製造することができ、さらに設備コスト(イニシャルコスト)及び運営コスト(ランニングコスト)を抑えながら安価に製造することができる。
 本発明に係る実施形態は、以下のような構成をとることもできる。
 [1]前処理システムと、一次純水システムと、サブシステムとを備え、その一次純水システムが、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、超純水製造装置。
 [2]その高圧型逆浸透膜分離装置が、膜面有効圧力2.0MPa、25℃条件下において0.6~1.3m/m/dayの純水透過流束を有する、上記[1]に記載の超純水製造装置。
 [3]そのイオン交換装置が、以下のア)~エ)のいずれか1つの再生型イオン交換装置を有する、上記[1]又は[2]に記載の超純水製造装置。
ア)強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続した2床2塔式再生型イオン交換装置。
イ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが別々の異なる層となるように1つの塔内にその強酸性カチオン交換樹脂とその強塩基性アニオン交換樹脂とを充填した2床1塔式再生型イオン交換装置。
ウ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して1つの塔内に充填した混床型再生式イオン交換装置。
エ)電気再生式脱イオン装置を1段又は複数段直列に接続した再生型イオン交換装置。
 [4]原水を前処理システムによって処理した被処理水を一次純水システム及びサブシステムの順によって処理し、その一次純水システムによる処理方法が、高圧型逆浸透膜分離装置に該被処理水を通水する工程と、その通水された被処理水中のガスを脱気する工程と、その脱気された被処理水中の有機物を紫外線酸化装置によって分解する工程と、その有機物が分解された被処理水を、イオン交換装置によって処理する工程とを含む、超純水製造方法。
 以下の実施例及び比較例を挙げて、本発明に係る実施形態の超純水製造装置及び超純水製造方法スケール防止方法の効果について説明をする。なお、本発明の範囲は実施例に限定されるものではない。
 (実施例1)
 電気伝導率30mS/m, TOC2mg/L、SiO210mg/L及びB30μg/Lを含む工業用水、凝集ろ過水をpH6の条件にて高圧型逆浸透膜(SWC4Max、膜面有効圧力2.0MPa、温度25℃における純水透過流束0.78m/m/day;有効圧2.0MPa、温度25℃、NaCl濃度32000mg/LにおけるNaCl除去率99.8%、日東電工製)(回収率85%)に通水した後、脱気装置(脱気膜、X-50ポリポア社製)、紫外線酸化装置(JPW、日本フォトサイエンス製)、次いで1塔内でカチオン交換樹脂層、及びアニオン交換樹脂層を分離したDBP(Double-BedPolisher、栗田工業製)に通水した。
 (比較例1)
 上記の実施例1で用いた原水を超低圧型逆浸透膜(RO膜)(ES-20、有効圧2.0MPa、温度25℃における純水透過流束1m/m/day;有効圧0.75MPa、温度25℃、NaCl濃度500mg/LにおけるNaCl除去率99.7%、日東電工製)の2段直列で通水(1段目回収率85%、2段目回収率90%)したこと以外は実施例1と同様の処理条件で通水した。
 (比較例2)
 上記の実施例1で用いた原水を、No.1カチオン塔(樹脂銘柄EX-CG、栗田工業製)、脱気装置(脱気膜、X-50、ポリポア社製)、No.1アニオン塔(樹脂銘柄EX-AG、栗田工業製)、超低圧型逆浸透膜(RO膜)(ES-20、日東電工製)(回収
率90%)、紫外線酸化装置(JPW、日本フォトサイエンス製)、混床式イオン交換装置(MB)(樹脂銘柄EX-MG、栗田工業製)、非再生型イオン交換装置(樹脂銘柄EX-MG、栗田工業製)の順に通水した。脱気装置及び紫外線酸化装置の台数は実施例1と同台数に設置した。
 (比較例3)
 上記の実施例1で用いた原水を、高圧型逆浸透膜装置(SWC4Max、日東電工製)(回収率85%)、紫外線酸化装置(JPW、日本フォトサイエンス製)、脱気装置(脱気膜、X-50ポリポア社製)、1塔内でカチオン交換樹脂層及びアニオン交換樹脂層を分離したDBP(Double-BedPolisher、栗田工業製)の順として処理した以外は実施例1と同条件にて通水した。
 (比較例4)
 上記の実施例1で用いた原水を、脱気装置(脱気膜、X-50ポリポア社製)、高圧型逆浸透膜装置(SWC4Max、日東電工製)(回収率85%)、紫外線酸化装置(JPW、日本フォトサイエンス製)、1塔内でカチオン交換樹脂層及びアニオン交換樹脂層を分離したDBP(Double-BedPolisher、栗田工業株式会社製)の順として処理した以外は実施例1と同条件にて通水した。
 一次純水システムによって処理された、実施例1及び比較例1~2の被処理水の水質結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2から明らかなように、実施例1の被処理水は比抵抗、B(ホウ素)、SiO(シリカ)の到達水質は比較例1及び2の被処理水と同等であるものの、TOC(TotalOrganicCarbon)は最も低い値であった。
 一次純水システムによって処理された、実施例1及び比較例3~4の被処理水のTOC値の経時変化を図1に示す。
 図1から明らかなように、比較例3の被処理水は実施例1の被処理水に比べTOCの値は0.5μg/L程度高い傾向を示した。これは紫外線酸化装置におけるTOC分解効率が脱気装置の設置順(位置)により異なることを示している。また、図1から明らかなように、比較例4の被処理水は通水開始時こそ実施例1の被処理水と同等の水質を得ていたものの日数の増加に伴い水質が悪化する傾向が観測された。これは脱気装置が原水由来物質により汚染され脱気効率が低下し、それに伴い紫外線酸化分解効率が低下したものと考えられる。

Claims (4)

  1.  前処理システムと、一次純水システムと、サブシステムとを備え、
     該一次純水システムが、高圧型逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、
     超純水製造装置。
  2.  前記高圧型逆浸透膜分離装置が、膜面有効圧力2.0MPa、25℃条件下において0.6~1.3m/m/dayの純水透過流束を有する、請求項1に記載の超純水製造装置。
  3.  前記イオン交換装置が、以下のア)~エ)のいずれか1つの再生型イオン交換装置を有する、請求項1又は2に記載の超純水製造装置。
     ア)強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続した2床2塔式再生型イオン交換装置。
     イ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが別々の異なる層となるように1つの塔内に該強酸性カチオン交換樹脂と該強塩基性アニオン交換樹脂とを充填した2床1塔式再生型イオン交換装置。
     ウ)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して1つの塔内に充填した混床型再生式イオン交換装置。
     エ)電気再生式脱イオン装置を1段又は複数段直列に接続した再生型イオン交換装置。
  4.  原水を前処理システムによって処理した被処理水を一次純水システム及びサブシステムの順によって処理し、
     該一次純水システムによる処理方法が、高圧型逆浸透膜分離装置に該被処理水を通水する工程と、該通水された被処理水中のガスを脱気する工程と、該脱気された被処理水中の有機物を紫外線酸化装置によって分解する工程と、該有機物が分解された被処理水を、イオン交換装置によって処理する工程とを含む、
     超純水製造方法。
PCT/JP2015/085526 2014-12-19 2015-12-18 超純水製造装置及び超純水製造方法 WO2016098891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/536,510 US10526226B2 (en) 2014-12-19 2015-12-18 Ultrapure water production apparatus and ultrapure water production method
KR1020177016234A KR102309232B1 (ko) 2014-12-19 2015-12-18 초순수 제조 장치 및 초순수 제조 방법
CN201580067856.3A CN107001075A (zh) 2014-12-19 2015-12-18 超纯水制造装置以及超纯水制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014256939A JP6228531B2 (ja) 2014-12-19 2014-12-19 超純水製造装置及び超純水製造方法
JP2014-256939 2014-12-19

Publications (1)

Publication Number Publication Date
WO2016098891A1 true WO2016098891A1 (ja) 2016-06-23

Family

ID=56126770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085526 WO2016098891A1 (ja) 2014-12-19 2015-12-18 超純水製造装置及び超純水製造方法

Country Status (6)

Country Link
US (1) US10526226B2 (ja)
JP (1) JP6228531B2 (ja)
KR (1) KR102309232B1 (ja)
CN (1) CN107001075A (ja)
TW (1) TWI648093B (ja)
WO (1) WO2016098891A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752692B2 (ja) * 2016-11-18 2020-09-09 オルガノ株式会社 水処理方法および装置
JP6752693B2 (ja) * 2016-11-18 2020-09-09 オルガノ株式会社 水処理方法および装置
JP6907514B2 (ja) * 2016-11-28 2021-07-21 栗田工業株式会社 超純水製造システム及び超純水製造方法
JP6350706B1 (ja) * 2017-03-30 2018-07-04 栗田工業株式会社 水質調整水製造装置
JP6299912B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
JP6299913B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP6978353B2 (ja) * 2018-03-13 2021-12-08 オルガノ株式会社 水処理管理装置及び水質監視方法
US11897790B2 (en) 2018-05-17 2024-02-13 Organo Corporation Method for producing ultrapure water, ultrapure water production system, and ion exchanger-filled module
JP7454330B2 (ja) * 2018-06-20 2024-03-22 オルガノ株式会社 被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
CN108862756A (zh) * 2018-07-31 2018-11-23 江西鹏凯环保工程设备有限公司 一种超纯水制备装置及其超纯水制备方法
JP2020142178A (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 超純水製造装置及び超純水製造装置の運転方法
JP7289206B2 (ja) * 2019-03-13 2023-06-09 オルガノ株式会社 ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP6900975B2 (ja) * 2019-06-12 2021-07-14 栗田工業株式会社 pH調整水製造装置
JP7183208B2 (ja) * 2020-02-14 2022-12-05 栗田工業株式会社 超純水製造装置及び超純水製造方法
JP2022053969A (ja) * 2020-09-25 2022-04-06 オルガノ株式会社 純水製造装置及び純水製造方法
CN112321099B (zh) * 2020-12-02 2024-02-23 中国电子系统工程第二建设有限公司 一种处理再生水中尿素的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085740A (ja) * 1996-09-11 1998-04-07 Japan Organo Co Ltd 超純水製造装置
JPH10180254A (ja) * 1996-12-24 1998-07-07 Nomura Micro Sci Co Ltd 純水の製造方法及び製造装置
JP2012245439A (ja) * 2011-05-25 2012-12-13 Kurita Water Ind Ltd 超純水製造装置
JP2015020131A (ja) * 2013-07-22 2015-02-02 栗田工業株式会社 ホウ素含有水の処理方法及び装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771669B2 (ja) * 1990-08-29 1995-08-02 日本錬水株式会社 超純水の製造法
JP2940651B2 (ja) * 1992-03-11 1999-08-25 オルガノ株式会社 純水製造装置
JP3539992B2 (ja) 1993-09-07 2004-07-07 野村マイクロ・サイエンス株式会社 超純水製造装置
JP3262949B2 (ja) 1993-09-13 2002-03-04 野村マイクロ・サイエンス株式会社 低濃度有機性廃水の処理装置
JP3200301B2 (ja) 1994-07-22 2001-08-20 オルガノ株式会社 純水又は超純水の製造方法及び製造装置
US5954965A (en) * 1996-03-29 1999-09-21 Mitsubishi Chemical Corporation Process for producing pure water
JPH10137750A (ja) * 1996-11-14 1998-05-26 Mitsubishi Chem Corp 純水製造装置の殺菌方法
JP3632343B2 (ja) * 1996-12-26 2005-03-23 オルガノ株式会社 純水製造方法及びイオン交換塔
JP3826690B2 (ja) * 1999-08-11 2006-09-27 栗田工業株式会社 電気脱イオン装置及び純水製造装置
JP2003266097A (ja) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd 超純水製造装置
CN1176032C (zh) * 2002-09-24 2004-11-17 天津大学 一种电子级水的集成膜过程生产方法
WO2004071968A1 (ja) * 2003-02-14 2004-08-26 Kurita Water Industries Ltd. 電気脱イオン装置及びその運転方法
JP3853776B2 (ja) 2003-10-06 2006-12-06 野村マイクロ・サイエンス株式会社 超純水製造装置
DE102007031113A1 (de) * 2007-06-29 2009-01-02 Christ Water Technology Ag Aufbereitung von Wasser mit Hypobromitlösung
JP5257619B2 (ja) * 2009-08-26 2013-08-07 栗田工業株式会社 純水製造装置
CN201634548U (zh) * 2010-03-04 2010-11-17 安纳社环保工程(苏州)有限公司 半导体行业研磨废水回用为超纯水的处理系统
JP5849419B2 (ja) * 2011-03-29 2016-01-27 栗田工業株式会社 純水製造装置
JP6082192B2 (ja) 2012-06-11 2017-02-15 野村マイクロ・サイエンス株式会社 純水製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085740A (ja) * 1996-09-11 1998-04-07 Japan Organo Co Ltd 超純水製造装置
JPH10180254A (ja) * 1996-12-24 1998-07-07 Nomura Micro Sci Co Ltd 純水の製造方法及び製造装置
JP2012245439A (ja) * 2011-05-25 2012-12-13 Kurita Water Ind Ltd 超純水製造装置
JP2015020131A (ja) * 2013-07-22 2015-02-02 栗田工業株式会社 ホウ素含有水の処理方法及び装置

Also Published As

Publication number Publication date
JP2016117001A (ja) 2016-06-30
JP6228531B2 (ja) 2017-11-08
TW201630653A (zh) 2016-09-01
CN107001075A (zh) 2017-08-01
US20170327396A1 (en) 2017-11-16
TWI648093B (zh) 2019-01-21
KR20170097036A (ko) 2017-08-25
US10526226B2 (en) 2020-01-07
KR102309232B1 (ko) 2021-10-05

Similar Documents

Publication Publication Date Title
JP6228531B2 (ja) 超純水製造装置及び超純水製造方法
JP5045099B2 (ja) 超純水製造装置及び超純水製造装置の運転方法
JP5733351B2 (ja) ホウ素含有水の処理方法及び装置
TWI414486B (zh) Pure water manufacturing apparatus and pure water manufacturing method
JP5617231B2 (ja) イオン交換樹脂の精製方法及び精製装置
JP5834492B2 (ja) 超純水製造装置
CN111252971A (zh) 一种超纯水制造系统及使用该系统的超纯水制造方法
TWI829879B (zh) 硼去除裝置與硼去除方法、以及純水製造裝置與純水之製造方法
JP6228471B2 (ja) 被処理水の処理装置、純水の製造装置および被処理水の処理方法
JP2017127875A (ja) 超純水製造装置及び超純水製造方法
JP2004000919A (ja) 脱塩水製造装置
WO2018096700A1 (ja) 超純水製造システム及び超純水製造方法
JP2007307561A (ja) 高純度水の製造装置および方法
JP2000015257A (ja) 高純度水の製造装置および方法
WO2021215099A1 (ja) 排水処理方法、超純水製造方法及び排水処理装置
WO2021161569A1 (ja) 超純水製造装置及び超純水製造方法
JP2002355683A (ja) 超純水製造方法及び超純水製造装置
CN212269740U (zh) 一种超纯水制造系统
WO2022239483A1 (ja) 超純水製造方法及び装置
WO2014010075A1 (ja) 超純水製造装置
JP6728835B2 (ja) 純水製造装置の運転方法
JP6285645B2 (ja) 排水処理方法及び排水処理装置
TWI592207B (zh) Ultrapure water manufacturing equipment
JP2019107631A (ja) 紫外線酸化処理方法
JP2017140548A (ja) 電気脱イオン装置の運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177016234

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15536510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870090

Country of ref document: EP

Kind code of ref document: A1