WO2016086434A1 - 一种coa基板及其制作方法 - Google Patents

一种coa基板及其制作方法 Download PDF

Info

Publication number
WO2016086434A1
WO2016086434A1 PCT/CN2014/093418 CN2014093418W WO2016086434A1 WO 2016086434 A1 WO2016086434 A1 WO 2016086434A1 CN 2014093418 W CN2014093418 W CN 2014093418W WO 2016086434 A1 WO2016086434 A1 WO 2016086434A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
black matrix
coa substrate
forming
metal layer
Prior art date
Application number
PCT/CN2014/093418
Other languages
English (en)
French (fr)
Inventor
宋利旺
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/417,287 priority Critical patent/US20160155908A1/en
Publication of WO2016086434A1 publication Critical patent/WO2016086434A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a COA substrate and a method of fabricating the same.
  • COA (Color Filter on Array) substrate is a color filter on the array substrate
  • FIG. 1 is a schematic structural view of a COA substrate of the prior art.
  • the conventional COA substrate includes a substrate 111 , First metal layer 112, gate insulating layer 113, active layer 114, ohmic contact layer 115, second metal layer 116, first passivation layer 117; color resist layer 118, second passivation layer 119, transparent conductive layer 120.
  • the transparent conductive layer 120 includes a pixel electrode, and the pixel electrode is connected to the drain region of the second metal layer through the via 121 penetrating through the color resist layer 118 and the second passivation layer 119.
  • the substrate is usually processed at a high temperature, and the high temperature causes the organic material in the color resist layer to volatilize to form bubbles. Due to the vacant space of the via 121, the generated bubbles remain in the via holes. When the display is energized, the air bubbles occupy the position of the liquid crystal molecules, and thus the liquid crystal molecules cannot reach the residual of the air bubbles, thereby affecting the display effect.
  • the present invention constructs a COA substrate, which includes:
  • a first metal layer on the substrate substrate including a gate region of the thin film transistor
  • a gate insulating layer partially located on the first metal layer for isolating the first metal layer and the second metal layer;
  • An active layer partially located on the gate insulating layer for forming a channel
  • the second metal layer is located on the ohmic contact layer, including a drain region and a source region of the thin film transistor;
  • a first passivation layer on the second metal layer for isolating the second metal layer and the color resist layer
  • the color resist layer is located on the first passivation layer for forming a color film color resistance
  • a second passivation layer is disposed on the color resist layer, and a via hole connecting the drain of the second metal layer is disposed on the second passivation layer;
  • a spacer is disposed on a surface of the COA substrate, wherein the via is filled with a spacer material.
  • the via is filled with a set amount of spacer material for flattening the surface of the COA substrate.
  • the spacer material is provided on a surface of the COA substrate, and the spacer material is used to form the spacer on a surface of the COA substrate.
  • the material of the second passivation layer is an organic transparent material.
  • the present invention provides a method for fabricating a COA substrate, comprising the steps of: forming a first metal layer on a substrate, and patterning the first metal layer to form a gate;
  • a black matrix is formed on a surface of the COA substrate, and a spacer material or a black matrix material is filled in the via hole.
  • the step of filling the via hole with a black matrix material includes filling the via matrix with the black matrix material until the surface of the COA substrate is flat.
  • the step of forming a black matrix on the surface of the COA substrate comprises:
  • the black matrix material is patterned to form the black matrix.
  • the method further includes:
  • a spacer and a black matrix are formed on a surface of the COA substrate, and a black matrix material is filled in the via hole.
  • the step of forming a spacer and a black matrix on a surface of the COA substrate includes:
  • the black matrix material is patterned to form the spacer and the black matrix.
  • the step of forming the second passivation layer on the color resist layer comprises: forming the second passivation on the color resist layer by a coating method a layer, wherein the material of the second passivation layer is an organic transparent material.
  • the invention also provides a COA substrate, the COA substrate comprising:
  • a first metal layer on the substrate substrate including a gate region of the thin film transistor
  • a gate insulating layer partially located on the first metal layer for isolating the first metal layer and the second metal layer;
  • An active layer partially located on the gate insulating layer for forming a channel
  • the second metal layer is located on the ohmic contact layer, including a drain region and a source region of the thin film transistor;
  • a first passivation layer on the second metal layer for isolating the second metal layer and the color resist layer
  • the color resist layer is located on the first passivation layer for forming a color film color resistance
  • a spacer and a black matrix are disposed on a surface of the COA substrate, wherein the via is filled with a black matrix material.
  • the via hole is filled with a set amount of a black matrix material for flattening the surface of the COA substrate.
  • the black matrix material is disposed on a surface of the COA substrate, and the black matrix material is used to simultaneously form the black matrix and the spacer on a surface of the COA substrate.
  • the material of the second passivation layer is an organic transparent material.
  • the black matrix material is a black photoresist.
  • FIG. 1 is a schematic structural view of a prior art COA substrate
  • FIG. 2 is a schematic structural view of a COA substrate according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a COA substrate according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a COA substrate according to a third embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a COA substrate according to a first embodiment of the present invention.
  • the COA substrate of the present invention includes a base substrate 11, a first metal layer 12, a gate insulating layer 13, an active layer 14, an ohmic contact layer 15, a second metal layer 16, and a first passivation layer. 17; a color resist layer 18, a second passivation layer 19, and a transparent conductive layer 20.
  • the first metal layer 12 is disposed on the base substrate 11 and includes a gate region of the thin film transistor, a gate formed by patterning the first metal layer 12, and a portion other than the gate region
  • the first metal layer is etched away during the process; in order to isolate the first metal layer 12 and the second metal layer 16, and to isolate the first metal layer 12 and the active layer 14,
  • the gate insulating layer 13 is disposed on a metal layer 12, and the gate insulating layer 13 is disposed only in a gate region of the first metal layer, and the remaining gate insulating layer 13 is disposed on the substrate On the substrate.
  • the active layer 14 is partially located on the gate insulating layer 13 for forming a channel between the drain and the source of the thin film transistor; the ohmic contact layer 15 is located at the active layer 14 Upper, for turning on the source and the drain when the gate of the thin film transistor is closed.
  • the material of the ohmic contact layer may be silicon nitride.
  • the second metal layer 16 is disposed on the ohmic contact layer 15 and includes a drain region and a source region of the thin film transistor; the second metal layer 16 is patterned to form a drain and a source; The second metal layer other than the drain and source is etched away during the process.
  • the color resist layer 18 is located in the first On a passivation layer 17, the color resist layer 18 is patterned to form a color film color resist;
  • a second passivation layer 19 is disposed on the color resist layer 18 to isolate the color resist layer 18 and The transparent conductive layer 20;
  • the second passivation layer 19 is provided with a via 21 connecting the drain of the second metal layer 16; the via 21 penetrates through the color resist layer 18
  • the second passivation layer 19 and the first passivation layer 17 are described.
  • the transparent conductive layer 20 is located on the second passivation layer 19 (only partially covered on the second passivation layer 19), and includes a pixel electrode, and the pixel electrode and the drain pass through The via holes 21 are connected, and the material of the second passivation layer 19 may be an organic transparent material.
  • a spacer 22 is further disposed on a surface of the COA substrate, wherein the via hole 21 is filled with a spacer material.
  • the spacer 22 is disposed on the second passivation layer 19 not covered by the transparent conductive layer 20, and the via hole is filled with a set amount of spacer material, the A metered spacer material is used to flatten the surface of the COA substrate.
  • the surface of the COA substrate is more flat, the liquid crystal molecules are more uniformly diffused, and at the same time, it is advantageous to obtain a more accurate optimal liquid crystal amount in the process of manufacturing the liquid crystal display panel (the liquid crystal display panel achieves the best display effect, and the required liquid crystal molecules quantity).
  • the manufacturing method of the above COA substrate comprises:
  • the step 101 is specifically: forming a gate by exposing and developing the first metal layer through a mask with a pattern, and the first metal layer except the gate portion is etched in the process.
  • the material of the first metal layer may be chromium, molybdenum, aluminum or copper or the like.
  • the active layer is used to form a channel between the drain and the source, and the material of the active layer is, for example, an amorphous silicon material.
  • the material of the ohmic contact layer may be silicon nitride.
  • the step S105 is specifically: forming a drain and a source, and forming a second metal layer other than the drain and the source portions by exposing and etching the second metal layer through a patterned mask. The middle is etched away.
  • the first passivation layer is used to isolate the second metal layer and the color resist layer.
  • the material of the color resist layer is generally an organic material, such as a negative photoresist, and the color resist layer is exposed, developed, and cured to form a color film color resist, and the color film color resist includes a red color film. , green color film, blue color film.
  • a chemical vapor deposition method is used to form an inorganic material on the color resist layer to protect the color resist layer, and molecules in the color resist layer are effectively prevented from entering the liquid crystal molecules.
  • the second passivation layer is formed in the above manner, and the organic material in the color resist layer is volatilized to form bubbles.
  • the implementation of S108 is preferably:
  • S1081 selecting an organic transparent material as a material of the second passivation layer, wherein the organic transparent material (for example, polymethyl methacrylate or polystyrene) is coated on the color resist layer to form a
  • the organic transparent material for example, polymethyl methacrylate or polystyrene
  • the second passivation layer is described, thereby effectively avoiding the problem that the process is performed at a high temperature, which easily causes the material of the color resist layer to volatilize.
  • the via holes are formed by a dry etching or a wet etching process.
  • the transparent conductive layer may be formed on the passivation layer provided with via holes by a sputter coating method.
  • a pixel electrode is disposed on the transparent conductive layer, and the pixel electrode is formed by a wet etching process, and the via hole is configured to connect the pixel electrode and the drain of the second metal layer to make a drain The current in the current reaches the pixel electrode.
  • S1011 a spacer is formed on a surface of the COA substrate, and a spacer material is filled in the via hole.
  • S1011 specifically includes:
  • the spacer material When the spacer material is coated, the spacer material is also filled into the via hole until the surface of the COA substrate is flat, that is, the thickness of the spacer material filled in the via hole is equal to that on the second passivation layer.
  • the height of the transparent conductive layer The height of the transparent conductive layer.
  • the spacer material is typically a photoresist, such as a transparent photoresist
  • the spacer is exposed and developed using a mask to form the spacer.
  • the separator is formed at a position corresponding to the thin film transistor on the COA substrate.
  • the via hole is filled with the spacer material, so that there is no free space in the via hole, so that the bubble does not remain in the COA substrate, and the bubble is easily evaporated, thereby improving the display effect.
  • the spacer on the COA substrate is formed on the second passivation layer, that is, the via hole is filled, and the spacer is also formed, thereby saving the process.
  • the invention fills the via holes while making the spacers, thereby avoiding the residual of the bubbles in the substrate, improving the display effect and saving the production cost.
  • FIG. 3 is a schematic structural diagram of a COA substrate according to a second embodiment of the present invention.
  • the COA substrate of the present invention includes a base substrate 31, a first metal layer 32, a gate insulating layer 33, an active layer 34, an ohmic contact layer 35, a second metal layer 36, and a first passivation layer. 37; a color resist layer 38, a second passivation layer 39, and a transparent conductive layer 40.
  • the first metal layer 32 is located on the base substrate 31 and includes a gate region of the thin film transistor, a gate formed by patterning the first metal layer 32, and a portion other than the gate region
  • the first metal layer is etched away during the process; in order to isolate the first metal layer 32 and the second metal layer 36, and to isolate the first metal layer 32 and the active layer 34,
  • the gate insulating layer 33 is disposed on a metal layer 32, and the gate insulating layer 33 is disposed only in a gate region of the first metal layer, and the remaining gate insulating layer 33 is disposed on the substrate On the substrate.
  • the active layer 34 is partially located on the gate insulating layer 33 for forming a channel between the drain and the source of the thin film transistor; the ohmic contact layer 35 is located at the active layer 34 Upper, for turning on the source and the drain when the gate of the thin film transistor is closed.
  • the material of the ohmic contact layer 35 may be silicon nitride.
  • the second metal layer 36 is disposed on the ohmic contact layer 35, including a drain region and a source region of the thin film transistor; and the second metal layer 36 is patterned to form a drain and a source; The second metal layer other than the drain and source is etched away during the process.
  • the color resist layer 38 is located in the first On a passivation layer 37, the color resist layer 38 is patterned to form a color film color resist;
  • a second passivation layer 39 is disposed on the color resist layer 38 to isolate the color resist layer 38 and The transparent conductive layer 40;
  • the second passivation layer 39 is provided with a via 41 connecting the drain of the second metal layer 36; the via 41 extends through the color resist layer 38,
  • the second passivation layer 39 and the first passivation layer 37 are described.
  • the transparent conductive layer 40 is located on the second passivation layer 39 (only partially covered on the second passivation layer 39), and includes a pixel electrode, and the pixel electrode passes through the drain The vias 41 are connected.
  • the material of the second passivation layer 39 may be an organic transparent material.
  • a black matrix 42 is disposed on a surface of the COA substrate, wherein the via holes are filled with a black matrix material.
  • the black matrix 42 is disposed on the second passivation layer 39 not covered by the transparent conductive layer 40, and the via hole is filled with a set amount of black matrix material, and the A quantitative black matrix material is used to flatten the surface of the COA substrate.
  • the surface of the COA substrate is more flat, the liquid crystal molecules are more uniformly diffused, and at the same time, it is advantageous to obtain a more accurate optimal liquid crystal amount in the process of manufacturing the liquid crystal display panel (the liquid crystal display panel achieves the best display effect, and the required liquid crystal molecules quantity).
  • the manufacturing method of the above COA substrate comprises:
  • the step 301 is specifically: forming a gate by exposing, developing, and etching the first metal layer through a patterned mask, and the first metal layer other than the gate portion is etched in the process.
  • the material of the first metal layer may be chromium, molybdenum, aluminum or copper or the like.
  • the active layer is used to form a channel between the drain and the source, and the material of the active layer is, for example, an amorphous silicon material.
  • the material of the ohmic contact layer may be silicon nitride.
  • the step S305 is specifically: forming a drain and a source, and forming a second metal layer other than the drain and the source portions by exposing and etching the second metal layer through a patterned mask. The middle is etched away.
  • the first passivation layer is used to isolate the second metal layer and the color resist layer.
  • the material of the color resist layer is generally an organic material, such as a negative photoresist, and the color resist layer is exposed, developed, and cured to form a color film color resist, and the color film color resist includes a red color film. , green color film, blue color film.
  • a chemical vapor deposition method is used to form an inorganic material on the color resist layer to protect the color resist layer, and molecules in the color resist layer are effectively prevented from entering the liquid crystal molecules.
  • the implementation of S308 is preferably:
  • S3081 selecting an organic transparent material as a material of the second passivation layer, wherein the organic transparent material (for example, polymethyl methacrylate or polystyrene) is formed on the color resist layer by coating.
  • the organic transparent material for example, polymethyl methacrylate or polystyrene
  • the second passivation layer effectively avoids the problem that the process is performed at a high temperature, which easily causes the material of the color resist layer to volatilize.
  • the transparent conductive layer may be formed on the passivation layer provided with via holes by a sputter coating method.
  • a pixel electrode is disposed on the transparent conductive layer, and the pixel electrode can be formed by a wet etching process.
  • the pixel electrode is connected to the drain of the second metal layer through the via to cause a current in the drain to reach the pixel electrode.
  • S301 forming a black matrix on the surface of the COA substrate, and filling the via hole with a black matrix material;
  • S3011 specifically includes:
  • the black matrix material When coating the black matrix material, the black matrix material is also filled into the via hole until the surface of the COA substrate is flat, that is, the thickness of the black matrix material filled in the via hole is equal to the second passivation.
  • the height of the transparent conductive layer on the layer is equal to the second passivation.
  • S402. Perform graphic processing on the black matrix material to form the black matrix.
  • the black matrix material is usually a photoresist, such as a black photoresist
  • the black matrix is exposed and developed using a mask to form the black matrix.
  • the black matrix may be disposed on an opaque region of the COA substrate, such as a region where the data lines on the COA substrate are located.
  • the via hole is filled with a black matrix material, so that there is no free space in the via hole, so that the bubble does not remain in the COA substrate, and the bubble is easily evaporated, thereby improving the display effect.
  • the black matrix is formed between the color film color resistances, and in this embodiment, the black matrix is formed on the second passivation layer, that is, the via holes are filled, and a black matrix is also formed, thereby saving the process.
  • the invention fills the via holes while making the black matrix, thereby avoiding the residual of the bubbles in the substrate, improving the display effect and saving the production cost.
  • FIG. 4 is a schematic structural diagram of a COA substrate according to a third embodiment of the present invention.
  • the COA substrate of the present embodiment is substantially the same as the COA substrate of the second embodiment, except that a black matrix 42 and a spacer 43 are simultaneously disposed on the surface of the COA substrate, wherein the via hole is filled with a black matrix. material.
  • the method for fabricating the COA substrate of the present embodiment is also substantially the same as that of the second embodiment, except that the step S402 in the specific step of S3011 of the second embodiment is to graphically process the black matrix material to form the Black matrix; in this embodiment, the steps are:
  • the spacer can also be formed using a black matrix material, and the black matrix is exposed and developed using a mask to simultaneously form the black.
  • the matrix and the spacer, the pattern on the mask at this time includes the pattern of the spacers and the pattern of the black matrix.
  • the black matrix and the spacer may be disposed on an opaque region of the COA substrate, such as a region where the data line on the COA substrate is located.
  • the invention fills the via holes while making the black matrix and the spacers, thereby avoiding the residual of the bubbles in the substrate, improving the display effect and saving the production cost.

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种COA基板及其制作方法,所述方法包括:在衬底基板(11)上依次形成第一金属层(12)、栅绝缘层(13)、有源层(14)、欧姆接触层(15)、第二金属层(16)、第一钝化层(17)、色阻层(18)、第二钝化层(19)、过孔(21)、透明导电层(20);以及在所述COA基板的表面形成隔离子(22)和/或黑色矩阵(42),并在所述过孔(21)内填充隔离子材料或黑色矩阵材料有机材料。

Description

一种COA基板及其制作方法 技术领域
本发明涉及液晶显示器技术领域,特别是涉及一种COA基板及其制作方法。
背景技术
COA(Color Filter on Array)基板是将彩色滤色片制作在阵列基板上,请参照图1,图1为现有技术的COA基板的结构示意图,如图1所示,现有的COA基板包括衬底基板111、第一金属层112、栅极绝缘层113、有源层114、欧姆接触层115、第二金属层116、第一钝化层117;色阻层118、第二钝化层119、透明导电层120,透明导电层120包括像素电极,像素电极通过贯穿色阻层118和第二钝化层119的过孔121连接第二金属层的漏极区。
但是现有的COA 基板通常在高温中制程,高温会造成色阻层中的有机材料挥发形成气泡,由于过孔121存在空余的空间,会使得产生的气泡残留在过孔中。在显示器通电时,气泡占据了液晶分子的位置,因而液晶分子不能到达气泡残留处,从而影响显示效果。
因此,有必要提供一种COA基板及其制作方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种COA基板及其制作方法,以解决现有技术过孔中残留气泡影响显示效果的技术问题。
技术解决方案
为解决上述技术问题,本发明构造了一种COA基板,其包括:
衬底基板;
第一金属层,位于所述衬底基板上,包括薄膜晶体管的栅极区;
栅极绝缘层,部分位于所述第一金属层上,用于隔离所述第一金属层和第二金属层;
有源层,部分位于所述栅极绝缘层上,用于形成沟道;
欧姆接触层,位于所述有源层上;
所述第二金属层,位于所述欧姆接触层上,包括薄膜晶体管的漏极区和源极区;
第一钝化层,位于所述第二金属层上,用于隔离所述第二金属层和色阻层;
所述色阻层,位于所述第一钝化层上,用于形成彩膜色阻;
第二钝化层,位于所述色阻层上,所述第二钝化层上设置有连接所述第二金属层的漏极的过孔;
透明导电层,位于所述第二钝化层上及所述过孔内;以及
隔离子,设置在所述COA基板的表面,其中所述过孔内填充有隔离子材料。
在本发明的COA基板中,所述过孔内填充有设定量的隔离子材料,所述设定量的隔离子材料用于使所述COA基板的表面平整。
在本发明的COA基板中,在所述COA基板的表面设置有所述隔离子材料,所述隔离子材料用于在所述COA基板的表面形成所述隔离子。
在本发明的COA基板中,所述第二钝化层的材料为有机透明材料。
本发明构造了一种COA基板的制作方法,包括以下步骤:在衬底基板上形成第一金属层,对所述第一金属层进行图形化处理形成栅极;
在所述栅极及未被所述栅极覆盖的衬底基板上形成栅绝缘层;
在所述栅绝缘层上形成有源层;
在所述有源层上形成欧姆接触层;
在所述欧姆接触层上形成第二金属层,对所述第二金属层进行图形化处理形成漏极和源极;
在所述第二金属层上形成第一钝化层;
在所述第一钝化层上形成色阻层;
在所述色阻层上形成第二钝化层;
在所述第二钝化层上形成连接所述第二金属层的漏极的过孔;
在所述第二钝化层上及所述过孔内形成透明导电层以及
在所述COA基板的表面形成黑色矩阵,并在所述过孔内填充隔离子材料或黑色矩阵材料。
在本发明的COA基板的制作方法中,所述在所述过孔内填充黑色矩阵材料的步骤包括:在所述过孔内填充所述黑色矩阵材料,直至所述COA基板的表面平整。
在本发明的COA基板的制作方法中,所述在所述COA基板的表面形成黑色矩阵的步骤包括:
在所述COA基板的表面涂布所述黑色矩阵材料;以及
对所述黑色矩阵材料进行图形化处理形成所述黑色矩阵。
在本发明的COA基板的制作方法中,所述在所述第二钝化层上及所述过孔内形成透明导电层的步骤之后,所述方法还包括:
在所述COA基板的表面形成隔离子和黑色矩阵,并在所述过孔内填充黑色矩阵材料。
在本发明的COA基板的制作方法中,所述在所述COA基板的表面形成隔离子和黑色矩阵的步骤包括:
在所述COA基板的表面涂布所述黑色矩阵材料;以及
对所述黑色矩阵材料进行图形化处理形成所述隔离子和所述黑色矩阵。
在本发明的COA基板的制作方法中,所述在所述色阻层上形成所述第二钝化层的步骤包括:通过涂布方式在所述色阻层上形成所述第二钝化层,其中所述第二钝化层的材料为有机透明材料。
本发明还提供一种COA基板,所述COA基板包括:
衬底基板;
第一金属层,位于所述衬底基板上,包括薄膜晶体管的栅极区;
栅极绝缘层,部分位于所述第一金属层上,用于隔离所述第一金属层和第二金属层;
有源层,部分位于所述栅极绝缘层上,用于形成沟道;
欧姆接触层,位于所述有源层上;
所述第二金属层,位于所述欧姆接触层上,包括薄膜晶体管的漏极区和源极区;
第一钝化层,位于所述第二金属层上,用于隔离所述第二金属层和色阻层;
所述色阻层,位于所述第一钝化层上,用于形成彩膜色阻;
第二钝化层,位于所述色阻层上,所述第二钝化层上设置有连接所述第二金属层的漏极的过孔;以及
透明导电层,位于所述第二钝化层上及所述过孔内;以及
隔离子和黑色矩阵,设置在所述COA基板的表面,其中所述过孔内填充有黑色矩阵材料。
在本发明的COA基板中,所述过孔内填充有设定量的黑色矩阵材料,所述设定量的黑色矩阵材料用于使所述COA基板的表面平整。
在本发明的COA基板中,其中在所述COA基板的表面设置有所述黑色矩阵材料,所述黑色矩阵材料用于在所述COA基板的表面同时形成所述黑色矩阵和隔离子。
在本发明的COA基板中,所述第二钝化层的材料为有机透明材料。
在本发明的COA基板中,所述黑色矩阵材料为黑色光刻胶。
有益效果
本发明的COA基板及其制作方法,通过在形成隔离子和/或黑色矩阵时,在所述过孔内填充隔离子材料或黑色矩阵材料,从而提高显示效果。
附图说明
图1为现有技术的COA基板的结构示意图;
图2为本发明第一实施例的COA基板的结构示意图;
图3为本发明第二实施例的COA基板的结构示意图;
图4为本发明第三实施例的COA基板的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
请参照图2,图2为本发明第一实施例的COA基板的结构示意图。
本发明的COA基板如图2所示,包括衬底基板11、第一金属层12、栅极绝缘层13、有源层14、欧姆接触层15、第二金属层16、第一钝化层17;色阻层18、第二钝化层19、透明导电层20。
所述第一金属层12,位于所述衬底基板11上,包括薄膜晶体管的栅极区,对所述第一金属层12进行图形化处理形成的栅极,所述栅极区部分以外的第一金属层在制程过程中被刻蚀掉;为了隔离所述第一金属层12和所述第二金属层16、以及隔离所述第一金属层12和有源层14,在所述第一金属层12上设置所述栅极绝缘层13,仅在所述第一金属层的栅极区设置有所述栅极绝缘层13,其余所述栅极绝缘层13设置在所述衬底基板上。所述有源层14,部分位于所述栅极绝缘层13上,用于形成所述薄膜晶体管的漏极和源极之间的沟道;所述欧姆接触层15位于所述有源层14上,用于在所述薄膜晶体管的栅极闭合时,导通源极和漏极。所述欧姆接触层的材料可为氮化硅。
所述第二金属层16,位于所述欧姆接触层15上,包括薄膜晶体管的漏极区和源极区;对所述第二金属层16进行图形化处理形成漏极和源极;所述漏极和源极以外的第二金属层在制程过程中被刻蚀掉。
第一钝化层17,位于所述第二金属层16上,用于将所述漏极和所述源极分别与所述色组层18隔离;所述色阻层18,位于所述第一钝化层17上,对所述色阻层18进行图形化处理以形成彩膜色阻;第二钝化层19,位于所述色阻层18上,用隔离所述色阻层18和所述透明导电层20;所述第二钝化层19上设置有连接所述第二金属层16的所述漏极的过孔21;所述过孔21贯穿所述色阻层18、所述第二钝化层19、以及所述第一钝化层17。所述透明导电层20,位于所述第二钝化层19上(仅部分覆盖在所述第二钝化层19上),其包括像素电极,所述像素电极与所述漏极之间通过过孔21连接,所述第二钝化层19的材料可为有机透明材料。
在所述COA基板的表面还设置有隔离子22,其中所述过孔21内填充有隔离子材料。具体地,所述隔离子22设置在未被所述透明导电层20覆盖的所述第二钝化层19上,且在所述过孔内填充有设定量的隔离子材料,所述设定量的隔离子材料用于使所述COA基板的表面平整。当COA基板的表面更加平整时,使液晶分子扩散更加均匀,同时有利于在制作液晶显示面板过程中,获取更加准确的最佳液晶量(液晶显示面板达到最佳显示效果,所需要的液晶分子的数量)。
上述COA基板的制作方法包括:
S101、在衬底基板上形成第一金属层,对所述第一金属层进行图形化处理形成栅极;
所述步骤101具体是通过带有图形的掩模板,对所述第一金属层经过曝光显影、刻蚀后形成栅极,所述栅极部分以外的第一金属层在制程中被刻蚀掉。所述第一金属层的材料可为铬、钼、铝或铜等。
S102、在所述栅极及未被所述栅极覆盖的衬底基板上形成栅绝缘层;
S103、在所述栅绝缘层上形成有源层;
所述有源层用于形成漏极和源极之间的沟道,所述有源层的材料譬如为非晶硅材料。
S104、在所述有源层上形成欧姆接触层;
所述欧姆接触层的材料可为氮化硅。
S105、在所述欧姆接触层上形成第二金属层,对所述第二金属层进行图形化处理形成漏极和源极;
所述步骤S105具体是通过带有图形的掩模板,对所述第二金属层经过曝光显影、刻蚀后形成漏极和源极,漏极和源极部分以外的第二金属层在制程过程中被刻蚀掉。
S106、在所述第二金属层上形成第一钝化层;
所述第一钝化层用于隔离所述第二金属层和所述色阻层。
S107、在所述第一钝化层上形成色阻层;
所述色阻层的材料一般为有机材料,譬如为负型光刻胶,通过对所述色阻层进行曝光、显影、固化以形成彩膜色阻,所述彩膜色阻包括红色彩膜、绿色彩膜、蓝色彩膜。
S108、在所述色阻层上形成第二钝化层;
通常是使用化学气相沉积方法,将无机材料制作在所述色阻层上以对所述色阻层起到保护作用,有效地防止了色阻层中的分子进入液晶分子。
但是由于化学气相沉积,通常是在高温下进行,因而采用上述方式制作第二钝化层,会使得色阻层中的有机材料挥发形成气泡,为了避免此现象,S108实现方式优选为:
S1081、选取有机透明材料作为所述第二钝化层的材料,所述有机透明材料(譬如为聚甲基丙烯酸甲酯、聚苯乙烯)通过涂布方式在所述色阻层上以形成所述第二钝化层,从而有效地避免了制程在高温下进行,容易导致色阻层的材料挥发的问题。
S109、在所述第二钝化层上形成连接所述第二金属层的漏极的过孔;
通过干蚀刻或湿蚀刻工艺形成所述过孔。
S1010、在所述第二钝化层上及所述过孔内形成透明导电层;
可以利用溅射镀膜法,在设置有过孔的所述钝化层上形成所述透明导电层。所述透明导电层上设置有像素电极,可通过湿蚀刻工艺形成所述像素电极,所述过孔用于连接所述像素电极与所述第二金属层的所述漏极,以使漏极中的电流到达像素电极中。
S1011、在所述COA基板的表面形成隔离子,并在所述过孔内填充隔离子材料。S1011具体包括:
S201、在所述COA基板的表面涂布所述隔离子材料;
在涂布所述隔离子材料时,同时也向所述过孔内填充隔离子材料,直至COA基板的表面平整,即所述过孔内填充的隔离子材料的厚度等于第二钝化层上的透明导电层的高度。
S202、对所述隔离子材料进行图形化处理形成所述隔离子。
由于所述隔离子材料通常为光刻胶,譬如为透明光刻胶,使用掩模板对所述隔离子进行曝光、并显影后形成所述隔离子。可可将所述隔离子形成在与COA基板上的薄膜晶体管相应的位置上。
本实施例在所述过孔内填充有隔离子材料,因而所述过孔内没有空余空间,使得气泡不会残留在COA基板内,便于气泡挥发掉,进而提高显示效果。本实施例将COA基板上的隔离子形成在第二钝化层,即填充了过孔,也形成了隔离子,从而节省了制程工序。
本发明在制作隔离子的同时,填充过孔,从而避免了基板内气泡的残留,提高了显示效果,节省了生产成本。
请参照图3,图3为本发明第二实施例的COA基板的结构示意图。
本发明的COA基板如图3所示,包括衬底基板31、第一金属层32、栅极绝缘层33、有源层34、欧姆接触层35、第二金属层36、第一钝化层37;色阻层38、第二钝化层39、透明导电层40。
所述第一金属层32,位于所述衬底基板31上,包括薄膜晶体管的栅极区,对所述第一金属层32进行图形化处理形成的栅极,所述栅极区部分以外的第一金属层在制程过程中被刻蚀掉;为了隔离所述第一金属层32和所述第二金属层36、以及隔离所述第一金属层32和有源层34,在所述第一金属层32上设置所述栅极绝缘层33,仅在所述第一金属层的栅极区设置有所述栅极绝缘层33,其余所述栅极绝缘层33设置在所述衬底基板上。所述有源层34,部分位于所述栅极绝缘层33上,用于形成所述薄膜晶体管的漏极和源极之间的沟道;所述欧姆接触层35位于所述有源层34上,用于在所述薄膜晶体管的栅极闭合时,导通源极和漏极。所述欧姆接触层35的材料可为氮化硅。
所述第二金属层36,位于所述欧姆接触层35上,包括薄膜晶体管的漏极区和源极区;对所述第二金属层36进行图形化处理形成漏极和源极;所述漏极和源极以外的第二金属层在制程过程中被刻蚀掉。
第一钝化层37,位于所述第二金属层36上,用于将所述漏极和所述源极分别与所述色组层38隔离;所述色阻层38,位于所述第一钝化层37上,对所述色阻层38进行图形化处理以形成彩膜色阻;第二钝化层39,位于所述色阻层38上,用隔离所述色阻层38和所述透明导电层40;所述第二钝化层39上设置有连接所述第二金属层36的所述漏极的过孔41;所述过孔41贯穿所述色阻层38、所述第二钝化层39以及所述第一钝化层37。所述透明导电层40,位于所述第二钝化层39上(仅部分覆盖在所述第二钝化层39上),其包括像素电极,所述像素电极与所述漏极之间通过过孔41连接。所述第二钝化层39的材料可为有机透明材料。
在所述COA基板的表面设置有黑色矩阵42,其中所述过孔内填充有黑色矩阵材料。具体地,所述黑色矩阵42设置在未被所述透明导电层40覆盖的所述第二钝化层39上,且在所述过孔内填充有设定量的黑色矩阵材料,所述设定量的黑色矩阵材料用于使所述COA基板的表面平整。当COA基板的表面更加平整时,使液晶分子扩散更加均匀,同时有利于在制作液晶显示面板过程中,获取更加准确的最佳液晶量(液晶显示面板达到最佳显示效果,所需要的液晶分子的数量)。
上述COA基板的制作方法包括:
S301、在衬底基板上形成第一金属层,对所述第一金属层进行图形化处理形成栅极;
所述步骤301具体是通过带有图案的掩模板,对所述第一金属层经过曝光显影、刻蚀后形成栅极,所述栅极部分以外的第一金属层在制程中被刻蚀掉。所述第一金属层的材料可为铬、钼、铝或铜等。
S302、在所述栅极及未被所述栅极覆盖的衬底基板上形成栅绝缘层;
S303、在所述栅绝缘层上形成有源层;
所述有源层,用于形成漏极和源极之间的沟道,所述有源层的材料譬如为非晶硅材料。
S304、在所述有源层上形成欧姆接触层;
所述欧姆接触层的材料可为氮化硅。
S305、在所述欧姆接触层上形成第二金属层,对所述第二金属层进行图形化处理形成漏极和源极;
所述步骤S305具体是通过带有图案的掩模板,对所述第二金属层经过曝光显影、刻蚀后形成漏极和源极,漏极和源极部分以外的第二金属层在制程过程中被刻蚀掉。
S306、在所述第二金属层上形成第一钝化层;
所述第一钝化层用于隔离所述第二金属层和所述色阻层。
S307、在所述第一钝化层上形成色阻层;
所述色阻层的材料一般为有机材料,譬如为负型光刻胶,通过对所述色阻层进行曝光、显影、固化以形成彩膜色阻,所述彩膜色阻包括红色彩膜、绿色彩膜、蓝色彩膜。
S308、在所述色阻层上形成第二钝化层;
通常是使用化学气相沉积方法,将无机材料制作在所述色阻层上以对所述色阻层起到保护作用,有效地防止了色阻层中的分子进入液晶分子。
但是由于化学气相沉积,通常是在高温下进行,因而采用上述方式制作第二钝化层,会使得色阻层中的有机材料挥发形成气泡,为了避免此现象,S308实现方式优选为:
S3081、选取有机透明材料作为所述第二钝化层的材料,所述有机透明材料(譬如为聚甲基丙烯酸甲酯、聚苯乙烯),通过涂布方式在所述色阻层上以形成所述第二钝化层,从而有效地避免了制程在高温下进行,容易导致色阻层的材料挥发的问题。
S309、在所述第二钝化层上形成连接所述第二金属层的所述漏极的过孔;
S3010、在所述第二钝化层上及所述过孔内形成透明导电层;
可以利用溅射镀膜法,在设置有过孔的所述钝化层上形成所述透明导电层。所述透明导电层上设置有像素电极,可通过湿蚀刻工艺形成所述像素电极。通过所述过孔,将所述像素电极连接至所述第二金属层的所述漏极,以使漏极中的电流到达像素电极中。
S3011、在所述COA基板的表面形成黑色矩阵,并在所述过孔内填充黑色矩阵材料;S3011具体包括:
S401、在所述COA基板的表面涂布所述黑色矩阵材料;
在涂布所述黑色矩阵材料时,同时也向所述过孔内填充黑色矩阵材料,直至COA基板的表面平整,即所述过孔内填充的黑色矩阵材料的厚度等于所述第二钝化层上的透明导电层的高度。
S402、对所述黑色矩阵材料进行图形化处理形成所述黑色矩阵。
由于所述黑色矩阵材料通常为光刻胶,譬如为黑色光刻胶,使用掩模板对所述黑色矩阵进行曝光、显影后形成所述黑色矩阵。可将所述黑色矩阵设置在COA基板的不透光区域上,所述不透光区域譬如为COA基板上的数据线所在的区域。
本实施例将所述过孔内填充黑色矩阵材料,因而过孔内没有空余空间,使得气泡不会残留在COA基板内,便于气泡挥发掉,进而提高显示效果。通常黑色矩阵形成在彩膜色阻之间,而本实施例将黑色矩阵形成在第二钝化层,即填充了过孔,也形成了黑色矩阵,从而节省了制程工序。
本发明在制作黑色矩阵的同时,填充过孔,从而避免了基板内气泡的残留,提高了显示效果,节省了生产成本。
请参见图4,图4为本发明第三实施例的COA基板的结构示意图。
本实施例的COA基板和第二实施例的COA基板基本相同,区别之处在于:在所述COA基板的表面同时设置有黑色矩阵42和隔离子43,其中所述过孔内填充有黑色矩阵材料。
本实施例的COA基板的制作方法也和和第二实施例基本相同,区别之处在于:第二实施例的S3011具体步骤中的S402步骤是对所述黑色矩阵材料进行图形化处理形成所述黑色矩阵;而本实施例该步骤为:
S403、对所述黑色矩阵材料进行图形化处理同时形成所述黑色矩阵和隔离子。
由于黑色矩阵材料通常为光刻胶,而隔离子材料也为光刻胶,因此也可以使用黑色矩阵材料制作隔离子,使用掩模板对所述黑色矩阵进行曝光、显影后,同时形成所述黑色矩阵和隔离子,此时掩模板上的图案包括了隔离子的图案以及黑色矩阵的图案。可将所述黑色矩阵和隔离子设置在COA基板的不透光区域上,所述不透光区域譬如为COA基板上的数据线所在的区域。
本发明在制作黑色矩阵和隔离子的同时,填充过孔,从而避免了基板内气泡的残留,提高了显示效果,节省了生产成本。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (15)

  1. 一种COA基板,其包括:
    衬底基板;
    第一金属层,位于所述衬底基板上,包括薄膜晶体管的栅极区;
    栅极绝缘层,部分位于所述第一金属层上,用于隔离所述第一金属层和第二金属层;
    有源层,部分位于所述栅极绝缘层上,用于形成沟道;
    欧姆接触层,位于所述有源层上;
    所述第二金属层,位于所述欧姆接触层上,包括薄膜晶体管的漏极区和源极区;
    第一钝化层,位于所述第二金属层上,用于隔离所述第二金属层和色阻层;
    所述色阻层,位于所述第一钝化层上,用于形成彩膜色阻;
    第二钝化层,位于所述色阻层上,所述第二钝化层上设置有连接所述第二金属层的漏极的过孔;
    透明导电层,位于所述第二钝化层上及所述过孔内;以及
    隔离子,设置在所述COA基板的表面,其中所述过孔内填充有隔离子材料。
  2. 根据权1所述的COA基板,其中所述过孔内填充有设定量的隔离子材料,所述设定量的隔离子材料用于使所述COA基板的表面平整。
  3. 根据权1所述的COA基板,其中在所述COA基板的表面设置有所述隔离子材料,所述隔离子材料用于在所述COA基板的表面形成所述隔离子。
  4. 根据权1所述的COA基板,其中所述第二钝化层的材料为有机透明材料。
  5. 一种COA基板的制作方法,其包括:
    在衬底基板上形成第一金属层,对所述第一金属层进行图形化处理形成栅极;
    在所述栅极及未被所述栅极覆盖的衬底基板上形成栅绝缘层;
    在所述栅绝缘层上形成有源层;
    在所述有源层上形成欧姆接触层;
    在所述欧姆接触层上形成第二金属层,对所述第二金属层进行图形化处理形成漏极和源极;
    在所述第二金属层上形成第一钝化层;
    在所述第一钝化层上形成色阻层;
    在所述色阻层上形成第二钝化层;
    在所述第二钝化层上形成连接所述第二金属层的漏极的过孔;
    在所述第二钝化层上及所述过孔内形成透明导电层;以及
    在所述COA基板的表面形成黑色矩阵,并在所述过孔内填充黑色矩阵材料。
  6. 根据权5所述的COA基板的制作方法,其中所述在所述过孔内填充黑色矩阵材料的步骤包括:在所述过孔内填充所述黑色矩阵材料,直至所述COA基板的表面平整。
  7. 根据权5所述的COA基板的制作方法,其中所述在所述COA基板的表面形成黑色矩阵的步骤包括:
    在所述COA基板的表面涂布所述黑色矩阵材料;以及
    对所述黑色矩阵材料进行图形化处理形成所述黑色矩阵。
  8. 根据权5所述的COA基板的制作方法,其中所述在所述第二钝化层上及所述过孔内形成透明导电层的步骤之后,所述方法还包括:
    在所述COA基板的表面形成隔离子和黑色矩阵,并在所述过孔内填充黑色矩阵材料。
  9. 根据权8所述的COA基板的制作方法,其中所述在所述COA基板的表面形成隔离子和黑色矩阵的步骤包括:
    在所述COA基板的表面涂布所述黑色矩阵材料;以及
    对所述黑色矩阵材料进行图形化处理形成所述隔离子和所述黑色矩阵。
  10. 根据权5所述的COA基板的制作方法,其中所述在所述色阻层上形成所述第二钝化层的步骤包括:通过涂布方式在所述色阻层上形成所述第二钝化层,其中所述第二钝化层的材料为有机透明材料。
  11. 一种COA基板,其包括:
    衬底基板;
    第一金属层,位于所述衬底基板上,包括薄膜晶体管的栅极区;
    栅极绝缘层,部分位于所述第一金属层上,用于隔离所述第一金属层和第二金属层;
    有源层,部分位于所述栅极绝缘层上,用于形成沟道;
    欧姆接触层,位于所述有源层上;
    所述第二金属层,位于所述欧姆接触层上,包括薄膜晶体管的漏极区和源极区;
    第一钝化层,位于所述第二金属层上,用于隔离所述第二金属层和色阻层;
    所述色阻层,位于所述第一钝化层上,用于形成彩膜色阻;
    第二钝化层,位于所述色阻层上,所述第二钝化层上设置有连接所述第二金属层的漏极的过孔;以及
    透明导电层,位于所述第二钝化层上及所述过孔内;以及
    隔离子和黑色矩阵,设置在所述COA基板的表面,其中所述过孔内填充有黑色矩阵材料。
  12. 根据权11所述的COA基板,其中所述过孔内填充有设定量的黑色矩阵材料,所述设定量的黑色矩阵材料用于使所述COA基板的表面平整。
  13. 根据权11所述的COA基板,其中在所述COA基板的表面设置有所述黑色矩阵材料,所述黑色矩阵材料用于在所述COA基板的表面同时形成所述黑色矩阵和隔离子。
  14. 根据权11所述的COA基板,其中所述第二钝化层的材料为有机透明材料。
  15. 根据权11所述的COA基板,其中所述黑色矩阵材料为黑色光刻胶。
PCT/CN2014/093418 2014-12-01 2014-12-10 一种coa基板及其制作方法 WO2016086434A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/417,287 US20160155908A1 (en) 2014-12-01 2014-12-10 Coa substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410718424.1A CN104576655B (zh) 2014-12-01 2014-12-01 一种coa基板及其制作方法
CN201410718424.1 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016086434A1 true WO2016086434A1 (zh) 2016-06-09

Family

ID=53092330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093418 WO2016086434A1 (zh) 2014-12-01 2014-12-10 一种coa基板及其制作方法

Country Status (2)

Country Link
CN (1) CN104576655B (zh)
WO (1) WO2016086434A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304647B (zh) * 2015-10-22 2018-10-12 重庆京东方光电科技有限公司 一种阵列基板、其制作方法、及显示装置
CN105372889A (zh) * 2015-10-23 2016-03-02 深圳市华星光电技术有限公司 显示装置、coa基板及其制造方法
CN105242468A (zh) * 2015-10-27 2016-01-13 深圳市华星光电技术有限公司 减少寄生电容的液晶显示面板以及其制作方法
CN105655290B (zh) * 2016-01-05 2018-11-23 深圳市华星光电技术有限公司 液晶显示面板、阵列基板及其制造方法
CN105931986A (zh) * 2016-05-18 2016-09-07 京东方科技集团股份有限公司 阵列基板的制造方法、阵列基板和显示装置
CN106783876B (zh) * 2016-12-13 2019-09-24 深圳市华星光电技术有限公司 Coa基板的制作方法及coa基板
CN106681071A (zh) * 2016-12-29 2017-05-17 惠科股份有限公司 液晶显示面板及其制备方法
CN106842685A (zh) * 2017-03-16 2017-06-13 惠科股份有限公司 一种显示面板及制造方法和显示装置
CN107086220A (zh) * 2017-04-24 2017-08-22 惠科股份有限公司 一种主动开关阵列基板及其制造方法、显示面板
CN107505786A (zh) * 2017-07-24 2017-12-22 深圳市华星光电技术有限公司 阵列基板及其制造方法、液晶显示装置
CN108333845A (zh) * 2018-02-26 2018-07-27 武汉华星光电技术有限公司 阵列基板、显示面板以及阵列基板的制作方法
CN109683371A (zh) * 2019-01-29 2019-04-26 深圳市华星光电半导体显示技术有限公司 显示面板
CN110426905A (zh) * 2019-07-16 2019-11-08 深圳市华星光电技术有限公司 彩膜阵列基板的制备方法及彩膜阵列基板
CN110941123A (zh) * 2019-11-07 2020-03-31 深圳市华星光电半导体显示技术有限公司 Coa型阵列基板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098756A (ja) * 2004-09-29 2006-04-13 Sanyo Electric Co Ltd 液晶表示装置
CN102012592A (zh) * 2009-09-04 2011-04-13 上海天马微电子有限公司 液晶显示装置及其制造方法
CN103794633A (zh) * 2014-01-27 2014-05-14 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104049430A (zh) * 2014-06-18 2014-09-17 南京中电熊猫液晶显示科技有限公司 一种阵列基板、显示装置及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098756A (ja) * 2004-09-29 2006-04-13 Sanyo Electric Co Ltd 液晶表示装置
CN102012592A (zh) * 2009-09-04 2011-04-13 上海天马微电子有限公司 液晶显示装置及其制造方法
CN103794633A (zh) * 2014-01-27 2014-05-14 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104049430A (zh) * 2014-06-18 2014-09-17 南京中电熊猫液晶显示科技有限公司 一种阵列基板、显示装置及其制造方法

Also Published As

Publication number Publication date
CN104576655B (zh) 2017-07-18
CN104576655A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2016086434A1 (zh) 一种coa基板及其制作方法
WO2019015020A1 (zh) 一种液晶显示面板的制作方法
WO2014048012A1 (zh) 液晶显示面板及其制作方法
WO2017008318A1 (zh) 一种阵列基板及其制作方法
WO2016058172A1 (zh) 一种coa基板及其制作方法
WO2017024573A1 (zh) 一种阵列基板及其制作方法
WO2013116992A1 (zh) 一种薄膜晶体管阵列基板及其制作方法
WO2016201729A1 (zh) 一种阵列基板及其制作方法、液晶显示器
WO2018120691A1 (zh) 阵列基板及其制造方法、显示装置
WO2016119280A1 (zh) 氧化物薄膜晶体管及其制作方法
WO2013116994A1 (zh) 一种薄膜晶体管阵列基板及其制作方法
WO2016090689A1 (zh) 一种阵列基板的掺杂方法及制造设备
WO2013166736A1 (zh) 液晶显示面板和液晶显示器
WO2016095251A1 (zh) 一种液晶显示面板的制作方法
WO2017015940A1 (zh) 一种阵列基板及其制作方法
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2019061711A1 (zh) 一种薄膜晶体管阵列基板的制作方法
WO2017067024A1 (zh) 色阻掩膜板及其使用方法
WO2019047357A1 (zh) 一种oled显示面板及其制程
WO2018032558A1 (zh) 一种阵列基板及其制作方法
WO2018233180A1 (zh) 一种金属线的制作方法及阵列基板
WO2017024543A1 (zh) 一种基板及光阻层的制作方法
WO2017152451A1 (zh) Ffs模式的阵列基板及制作方法
WO2017152450A1 (zh) Ffs模式的阵列基板及制作方法
WO2016019606A1 (zh) 一种阵列基板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14417287

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907376

Country of ref document: EP

Kind code of ref document: A1