WO2016082480A1 - 一种差分信号线的布线方法和pcb板 - Google Patents

一种差分信号线的布线方法和pcb板 Download PDF

Info

Publication number
WO2016082480A1
WO2016082480A1 PCT/CN2015/078903 CN2015078903W WO2016082480A1 WO 2016082480 A1 WO2016082480 A1 WO 2016082480A1 CN 2015078903 W CN2015078903 W CN 2015078903W WO 2016082480 A1 WO2016082480 A1 WO 2016082480A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential signal
width
glass fiber
wiring
line
Prior art date
Application number
PCT/CN2015/078903
Other languages
English (en)
French (fr)
Inventor
郭涛
马峰超
张远望
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2017528543A priority Critical patent/JP6634651B2/ja
Priority to US15/529,183 priority patent/US10178776B2/en
Priority to EP15863273.7A priority patent/EP3226666B1/en
Publication of WO2016082480A1 publication Critical patent/WO2016082480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0248Skew reduction or using delay lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the present invention relates to the field of wiring design, and in particular, to a method and a PCB board for differential signal lines.
  • the effect of the differential signal skew is caused by the glass fiber effect of the glass fiber cloth; because the fiberglass cloth is formed by epoxy resin bonding and lamination.
  • the difference in glass fiber height and epoxy resin content between the latitude and longitude of the glass fiber and the weaving interval results in different relative dielectric constants (Dk).
  • Dk dielectric constants
  • the methods for controlling the differential signal skew are mainly: rotating the glass fiber cloth on the process, all the wiring is tilted as a whole (so that the trace forms an acute angle with the fiber latitude and longitude lines) or the zig-zag is used.
  • the method of rotating the fiberglass cloth on the process requires cutting the glass fiber, wasting the plate, and increasing the cost. Especially when used on the large back plate, it will waste the plate and increase the cost;
  • the zig-zag wiring method needs to complete multiple small angle adjustment wiring, resulting in irregular wiring, occupying a relatively large wiring space, and the wiring is difficult, the design cycle is long, and it is suitable for the sub-card wiring, Use on the backplane will take up more wiring space.
  • Embodiments of the present invention provide a method for wiring a differential signal line and a PCB board, which can at least solve the technical problem of high cost, large occupied wiring space, and long wiring time in the existing wiring method for controlling differential signal delay.
  • an embodiment of the present invention provides a method for routing a differential signal line, including the following steps:
  • Determining a wiring direction of the differential signal line obtaining a number of glass fibers in the wiring direction of the glass fiber cloth; the wiring direction comprising: a length direction or a width direction of the glass fiber cloth;
  • the glass fiber cloth And arranging, in the wiring direction, the glass fiber cloth into a number of glass fiber units equal to the number of the wires, and obtaining the size and the quantity according to the glass fiber cloth in a direction perpendicular to the wiring direction. a width of the glass fiber unit, the glass fiber unit comprising glass fibers in a wiring direction and the binder;
  • a desired differential signal line is formed on the metal layer according to the line pitch and the line width, and the metal layer is pasted on the surface of the glass fiber cloth.
  • the determining the line spacing between the differential signal lines and the line width of the differential signal lines according to the width of the glass fiber unit includes:
  • a line spacing between the differential signal lines and a line width of the differential signal lines are determined according to a center distance between the differential signal lines.
  • the determining, according to a center distance between the differential signal lines, a line spacing between the differential signal lines and a line width of the differential signal line includes:
  • the line spacing between the differential signal lines and the line width of the differential signal lines are determined according to the principle of using a wide differential signal line and a differential signal line tight coupling principle.
  • the wiring is performed in the metal layer according to the pitch between the differential signal lines and the width of the differential signal line along the wiring direction.
  • the steps of forming the desired differential signal line include:
  • the step of forming a desired differential signal line according to the line pitch and the line width and offset wiring at an acute angle and an offset width along the wiring direction includes:
  • the offset is performed at an acute angle and the offset width with respect to the differential signal line formed last time; after the offset is completed, according to the line spacing and the line width The wiring direction continues to form the differential signal line of the predetermined length;
  • the step of determining the offset width of the offset according to the width of the glass fiber unit includes:
  • X2 is the offset width and X is the width of the glass fiber unit
  • the value of a is different each time the offset width is calculated.
  • the predetermined length is between 1800 mils and 2200 mils.
  • an embodiment of the present invention further provides a PCB board comprising: a rectangular glass fiber cloth and a metal layer adhered to the surface of the glass fiber cloth by an adhesive; the glass fiber cloth Formed by intertwined glass fibers and the binder filled between the glass fibers; the metal layer is formed with differential signal line pairs, and the pair of differential signal lines are along the dimension direction of the glass fiber cloth Extend In the dimension direction of the glass fiber cloth, the glass fiber cloth includes a glass fiber unit having the same number as the number of glass fibers, the glass fiber unit including: glass fiber in the size direction of the glass fiber and the viscosity mixture;
  • the line spacing between the differential signal lines and the line width of the differential signal lines are determined according to the width of the glass fiber unit
  • the dimensional direction of the glass fiber includes: the length or width direction of the glass fiber.
  • the center distance between the pair of differential signal lines is equal to the width of the glass fiber unit.
  • the differential signal line formed by offset wiring is disposed on the metal layer;
  • the offset width between the adjacent two wirings of the differential signal line pair is determined according to the width of the glass fiber unit
  • the angle of the offset between the adjacent two wirings of the differential signal line pair is an acute angle.
  • the embodiment of the invention provides a method for wiring a differential signal line and a PCB board, which can effectively improve the skew signal caused by the glass fiber effect of the differential signal, improve the signal quality, and save cost, wiring space and wiring time;
  • a method of routing a differential signal line comprising: providing a rectangular fiberglass cloth formed by intertwined glass fibers and an adhesive filled between the glass fibers; determining a wiring direction of the differential signal lines, Obtaining a number of glass fibers in the wiring direction of the glass fiber cloth; the wiring direction includes: a longitudinal direction or a width direction of the glass fiber cloth; and dividing the glass fiber cloth into the number in the wiring direction a glass fiber unit having the same number of sheets, and obtaining a width of the glass fiber unit according to a size and a quantity of the glass fiber cloth in a direction perpendicular to the wiring direction, wherein the glass fiber unit includes a wiring direction Fiberglass and the binder; determining a line spacing and the difference between the differential signal lines according to a width of the glass
  • the embodiment of the present invention The wiring method can also save cost and avoid waste of the board; secondly, the method of the embodiment of the invention adopts wiring along the warp or weft direction (ie, the width or length direction of the glass fiber cloth), which can save wiring space;
  • the wiring method is simple, easy to implement, saves wiring time, and shortens the development cycle.
  • the wiring method of the embodiment of the present invention can complete the wiring of the high-speed differential signal of the backplane, which can be applied to the large-sized backplane, and has high practicability.
  • FIG. 1 is a schematic flow chart of a method for wiring a differential signal line according to Embodiment 1 of the present invention
  • FIG. 2 is a distribution diagram of glass fiber and epoxy resin in a fiberglass cloth according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a design of a differential signal line width and a line spacing according to Embodiment 1 of the present invention.
  • FIG. 4 is a distribution diagram of a differential signal line on a fiberglass cloth according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged view showing an actual difference between latitude and longitude lines according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a first PCB layout displacement according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a second PCB layout displacement according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a third PCB layout displacement according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of actual PCB layout design according to Embodiment 2 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present invention provides a method for wiring a differential signal line, as shown in FIG. 1 , including the following, in view of the technical problems of high cost, large occupied wiring space, and long wiring time in the conventional wiring method for controlling differential signal delay. step:
  • Step 101 Providing a rectangular glass fiber cloth formed of a glass fiber interwoven with each other and a binder filled between the glass fibers.
  • the rectangular glass fiber cloth in this embodiment includes glass fibers interwoven with each other, glass fibers in the longitudinal direction of the rectangular glass fiber cloth are called weft threads, and glass fibers in the width direction are called warps.
  • Step 102 Determine a wiring direction of the differential signal line, and obtain a number of glass fibers in the wiring direction of the glass fiber cloth; the wiring direction includes: a length direction or a width direction of the glass fiber cloth.
  • the wiring direction may be selected to be routed along the warp or weft direction.
  • the number of glass fibers obtained by the glass fiber cloth in the wiring direction in this step refers to the number of warp or weft stitches obtained. For example, when wiring in the warp direction, it is necessary to obtain the warp number of the glass fiber cloth. Specifically how to obtain it can be done in the following ways:
  • the specifications of the glass fiber cloth used in the laminate design were determined, and the number of warp and weft yarns of the glass fiber cloth of the specification was obtained by the IPC standard to be m ⁇ n. If the wiring is on a one-inch length of fiberglass cloth, the number of warp and weft threads per inch of the fiberglass cloth of this specification can be obtained by the IPC standard. In the IPC standard, the number of latitude and longitude lines of one inch is specified.
  • Step 103 arranging the glass fiber cloth into the number of the glass fiber units equal to the number of the wire in the wiring direction, and according to the size and the direction of the glass fiber cloth in a direction perpendicular to the wiring direction
  • the number of the glass fiber units is obtained by the number, and the glass fiber unit includes glass fibers in the wiring direction and the binder.
  • the glass fiber cloth can be divided into a plurality of glass fiber units of the same width, that is, equally divided; when the wires are routed along the warp threads, the number of the glass fiber units and the warp threads
  • the number is equal, and the glass unit includes: a warp (glass fiber in the width direction) and an adhesive (adhesive along the width direction, such as an epoxy resin); when wired along the weft, the glass fiber
  • the number of units is equal to the number of wefts, and the glass unit includes: a weft and an adhesive; in this embodiment, the adhesive is filled throughout the glass unit, including: an adhesive attached to the glass fiber and filled in An adhesive between adjacent glass fibers, the width of the adhesive in the glass unit being equal to the width of the glass unit.
  • the process of obtaining the width of the glass fiber unit in this step may include:
  • Step 104 Determine a line spacing between the differential signal lines and a line width of the differential signal lines according to a width of the glass fiber unit.
  • the specific process of this step may include:
  • a line spacing between the differential signal lines and a line width of the differential signal lines are determined according to a center distance between the differential signal lines.
  • the pitch (line spacing) between the differential signal lines and the width of the differential signal line (line) are determined according to the principle of using a wide differential signal line and a differential signal line tight coupling principle according to the center distance. width).
  • the spacing between the differential signal lines and the difference are determined according to the differential impedance and the center distance according to the principle of using a wide differential signal line and the principle of tight coupling of differential signal lines.
  • the width of the signal line is determined according to the differential impedance and the center distance according to the principle of using a wide differential signal line and the principle of tight coupling of differential signal lines.
  • Step 105 along the wiring direction, perform a wiring on the metal layer according to the line pitch and the line width to form a desired differential signal line, and the metal layer is pasted on the surface of the glass fiber cloth.
  • the wiring method provided in this embodiment can make the differential signal line P/N fall at the position of the same Dk medium property, effectively improve the skew signal caused by the glass fiber effect of the differential signal, and improve the quality of the differential signal; meanwhile, the wiring method of the present invention It is also possible to save costs and avoid waste of the board; secondly, the present embodiment provides wiring along the warp or weft direction (ie, the width or length direction of the glass fiber cloth), which can save wiring space; finally, the wiring method is simple. Easy to implement, save wiring time and shorten development cycle.
  • the wiring method of the present invention can complete the wiring of the high-speed differential signal of the backplane, which can be applied to a large-sized backplane, and has high practicability.
  • the differential signal line pitch and the line width are designed according to the principle of using a wide differential signal line and the differential signal line tight coupling principle to further reduce the skew between the differential signals p/n.
  • the wiring method of the present embodiment will be described below by taking a rectangular glass fiber cloth of a certain specification and wiring in the warp direction as an example.
  • the length of the rectangular glass fiber cloth of this specification is 1 inch, and the warp and weft of the glass fiber cloth of the specification are The number of bars is 60 ⁇ 60:
  • the glass fiber cloth with a length of 1000 mil can be divided into 60 equal parts.
  • Each aliquot ie, glass fiber unit
  • the line width/line spacing is 7.6/9.1/7.6 (mil).
  • the flat width of the fiberglass cloth is not equal, that is, the width of the glass fiber is not the same, so the spacing between two adjacent glass fibers is different, as shown in FIG. It is shown that since the widths of the warp threads are not the same, the warp pitch S1 is not equal to the warp pitch S2. This situation can occur both in the warp direction and in the weft direction, and is randomly generated due to processing. This situation can seriously cause the skew between the differential signals to increase and deteriorate the signal quality.
  • the step 105 in the method of the embodiment specifically includes the following contents:
  • wiring is formed according to the line spacing and the line width at an initial wiring position to form a differential signal line of a predetermined length;
  • offset wiring is formed on the metal layer at an acute angle and an offset width along the wiring direction to form a desired differential signal line, the offset width It is determined by the width of the glass unit.
  • a Y-length differential signal line is formed along the warp direction at the initial point, and then the first offset is performed along the warp direction at an acute angle angle ⁇ and an offset width X2.
  • a differential signal line of Y length is formed on the metal layer, and then a second offset is performed along the warp direction at an acute angle ⁇ and an offset width X2 to continue forming a Y length on the metal layer.
  • the step of forming the required differential signal line according to the line pitch and the line width according to the line pitch and the line width and performing the offset wiring at an acute angle and an offset width along the wiring direction may include:
  • the offset is performed at an acute angle and the offset width with respect to the differential signal line formed last time; after the offset is completed, according to the line spacing and the line width The wiring direction continues to form the differential signal line of the predetermined length;
  • the offset width is determined according to the width of the glass fiber unit, and each offset width takes a different value. Specifically, in this embodiment, the offset is determined according to the width of the glass fiber unit.
  • the steps of the offset width include:
  • X2 is the offset width and X is the width of the glass fiber unit
  • the value of a is different each time the offset width is calculated.
  • the length of each wiring in this embodiment is between 1800 mils and 2200 mils, that is, the predetermined length is 1800 mils to 2200 mils.
  • the first calculation value a is used as a reference, and the value of the X2 value is not repeated for the value of a;
  • the number of offsets in this embodiment can be determined according to the spacing between the two devices on the PCB where the differential signal lines need to be arranged, and the length Y of each offset wiring.
  • the lowermost wiring ie, the formed differential signal line of Y length
  • the wiring is continued to form a differential signal line of Y length, as shown in FIG. 6-8, the wiring after the first displacement falls on the warp width;
  • the second displacement continues with the acute angle angle ⁇ and the offset width X2 until the desired differential signal line pair is completed.
  • the wiring after the second displacement falls on the warp pitch S2 and the warp pitch S1, that is, at the warp pitch opposite to the initial wiring position (S1, S2).
  • the second displacement wiring The skew of the formed differential signal line and the skew of the differential signal line formed by the initial wiring cancel each other, and the differential signal line formed by the second displacement wiring constitutes all skew compensation of the differential signal line formed by the initial wiring, and the entire differential signal line is observed. Yes, the P/N signal line almost compensates for all skew.
  • the wiring after the second displacement falls on the warp pitch S1 and the warp pitch S2, that is, at the same warp pitch as the initial wiring positions (S1, S2), and at this time, the second displacement wiring
  • the skew of the formed differential signal line is the same as the skew of the differential signal line formed by the initial wiring, and the entire differential signal line pair is observed, and the skew compensation of 2/3 length is improved.
  • the second displaced wiring falls on the warp pitch S3 and the warp pitch S1, that is, at a warp pitch which is completely different from the initial wiring positions (S1, S2), and at this time, the second displacement
  • the differential signal line formed by the wiring forms a skew compensation for the differential signal line formed by the initial wiring, and the entire differential signal line pair is observed to improve the skew compensation of more than 1/3 of the length.
  • the method of this embodiment performs wiring design verification on a product backplane, and the skew line between the actual test difference lines p/n is well controlled, as shown in Table 1, the measured data of a certain backplane of the product.
  • the skew value in the table represents the test value of different lengths and different trace layers for the length of the traces from a few inches to tens of inches.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the wiring method according to the first embodiment is introduced in the warp direction wiring, and the following steps are included:
  • Step S03 According to the difference line center distance X1, under the premise of determining the differential impedance, follow the use of a wider line and tight coupling design method to complete the line spacing and line width design of the differential signal line, refer to FIG. 4;
  • Step S04 when performing PCB layout, firstly performing wiring of about 2000 mils length from the starting point along the warp direction of the glass fiber according to the line spacing and the line width in step S03;
  • Step S06 After the first offset is completed, the wiring is continued along the warp direction. After the wiring length is about 2000 mil, the second acute angle and the X2 width are shifted. In the second X2 width calculation, the value of a is Must take a different value than the first time;
  • Step S07 After completing step S06, continue to complete approximately 2000 mils of wiring along the warp direction, perform a third offset, and then perform approximately 2000 mils of wiring, in such a manner as to complete the desired differential signal line.
  • Step S06 After completing step S06, continue to complete approximately 2000 mils of wiring along the warp direction, perform a third offset, and then perform approximately 2000 mils of wiring, in such a manner as to complete the desired differential signal line.
  • the value of the value a in the first calculation of the X2 value should be used as a reference, and when the X2 calculation is performed, the value of the a value in the formula can never be repeated.
  • the required differential signal lines can be formed using the steps described, as shown in FIG. 9, including a plurality of differential signal line pairs formed in accordance with the above steps.
  • Embodiment 1 and Embodiment 2 mainly introduce the wiring method of the present invention in the warp direction wiring.
  • the wiring process in the weft direction is similar to the process in the warp direction. Refer to the specific example 1 and the two types of warp direction wiring. Content, no more details here.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present embodiment provides a PCB board comprising: a rectangular glass fiber cloth and a metal layer adhered to the surface of the glass fiber cloth by an adhesive; the glass fiber cloth is interwoven by intertwined glass fibers and filled in Forming the adhesive between the glass fibers; forming a differential signal line pair on the metal layer, the pair of differential signal lines extending along a dimension direction of the glass fiber cloth; and a size of the glass fiber cloth
  • the glass fiber cloth comprises a glass fiber unit having an amount equal to the number of glass fibers, the glass fiber unit comprising: a glass fiber in a size direction of the glass fiber and the adhesive
  • the line spacing between the differential signal lines and the line width of the differential signal lines are determined according to the width of the glass fiber unit
  • the dimensional direction of the glass fiber includes: the length or width direction of the glass fiber.
  • the center distance between the pair of differential signal lines is equal to the width of the glass fiber unit.
  • the metal layer is provided with the differential signal line formed by offset wiring;
  • the offset width between the adjacent two wirings of the differential signal line pair is determined according to the width of the glass fiber unit
  • the angle of the offset between the adjacent two wirings of the differential signal line pair is an acute angle.
  • the specific structure can refer to Figure 6-8.
  • the method for wiring a differential signal line and the PCB board provided by the embodiments of the present invention have the following beneficial effects: the embodiment of the present invention provides a method for wiring a differential signal line and a PCB board, which can effectively improve the difference.
  • the signal is caused by the glass fiber effect, the signal quality is improved, and the cost, the wiring space, and the wiring time can be saved.
  • the method for routing the differential signal line includes: providing a rectangular fiberglass cloth, the glass fiber cloth Formed by intertwined glass fibers and a binder filled between the glass fibers; determining a wiring direction of the differential signal lines, obtaining a number of glass fibers in the wiring direction of the glass cloth; the wiring direction includes: a longitudinal direction or a width direction of the glass fiber cloth; the glass fiber cloth is equally divided into a number of the glass fiber units having the same number of times in the wiring direction, and the glass fiber cloth is clothed with the wire Obtaining a width of the glass fiber unit in a direction perpendicular to a direction, the glass fiber unit including a glass in a wiring direction a glass fiber and the binder; determining a line spacing between the differential signal lines and a line width of the differential signal line according to a width of the glass fiber unit; along the wiring direction, according to the line spacing And the line width is formed on the metal layer to form a required differential signal line, and the metal layer is pasted
  • the wiring method of the embodiment of the invention can save cost and avoid waste of the board; secondly, the method of the embodiment of the invention The wiring is arranged along the warp or weft direction (ie, the width or length direction of the glass fiber cloth), which can save wiring space. Finally, the wiring method is simple, easy to implement, saves wiring time, and shortens the development cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

一种差分信号线的布线方法和PCB板。该布线方法包括:提供矩形状玻纤布,玻纤布由相互编织交错的玻纤和填充在玻纤间的粘合剂形成(101);确定差分线的布线方向,获取玻纤布在该方向上的玻纤扎数,布线方向包括玻纤布长度或宽度方向(102);在布线方向上将玻纤布等分为数量与扎数相等的玻纤单元,根据玻纤布与布线方向垂直的方向上尺寸和数量获取玻纤单元宽度,玻纤单元包括布线方向上的玻纤和粘合剂(103);根据玻纤单元宽度确定差分信号线的线距和线宽(104);沿着布线方向根据线距和线宽在金属层进行布线形成所需的差分信号线,金属层粘贴在玻纤布表面(105)。这种方法解决了现有控制差分信号延迟布线方法成本高、占用布线空间多和布线时间长的问题。

Description

一种差分信号线的布线方法和PCB板 技术领域
本发明涉及布线设计领域,尤其涉及一种差分信号线的布线方法和PCB板。
背景技术
在通信业务量提升、通信设备小型化的大背景下,主流的Serdes信号速率已经提升到10.3125Gbps、12.5Gbps,甚至下一步将直接升级到25Gbps;随着信号速率的极大提升,对于差分信号质量特别是p/n间skew的控制提出了更加严苛的要求。
差分信号skew的产生除了PCB布线物理尺寸的差异之外,更深一层的影响是玻璃纤维布的玻纤效应引起;因为玻纤布的形成是依靠环氧树脂将玻纤粘合、层压完成;玻纤经纬线及编织间隔处玻纤高度及环氧树脂含量的差异导致各处的相对介电常数(Dk)是不同的;当PCB布线后,差分信号的两根走线随机落在玻纤布上,导致了p/n间的skew。
目前控制差分信号延迟(skew)的方法主要有:工艺上旋转玻璃纤维布,所有布线整体倾斜(使得走线与玻纤经纬线形成一个锐角)方式或者使用zig-zag的走线方式。
目前常用的旋转玻纤、所有布线整体倾斜方法和zig-zag走线方式在成本控制、布线空间上都有缺陷,特别是对于大尺寸背板影响更大。现有控制差分走线skew的方法至少存在以下问题:
1、工艺上旋转玻纤布的方式,需要对玻纤进行裁剪,浪费板材,增加成本,尤其在大背板上使用将会更浪费板材、增加成本;
2、采用的zig-zag的布线方式需要完成多次小角度调整布线,导致布线不规则,占用比较大的布线空间,且布线难度大,设计周期较长,并且其适用于子卡布线,在背板上使用将会占用较多的布线空间。
3、对于所有布线整体倾斜的布线方式,因布线难度增大而导致使用较多的布线时间。
发明内容
本发明实施例提供了一种差分信号线的布线方法和PCB板,能够至少解决现有控制差分信号延迟的布线方法存在的成本高、占用布线空间多和布线时间长的技术问题。
为至少解决上述技术问题,本发明实施例提供了一种差分信号线的布线方法,包括如下步骤:
提供矩形状的玻璃纤维布,所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的粘合剂形成;
确定差分信号线的布线方向,获取玻璃纤维布在所述布线方向上的玻璃纤维扎数;所述布线方向包括:所述玻璃纤维布的长度方向或宽度方向;
在所述布线方向上将所述玻璃纤维布等分为数量与所述扎数相等的玻纤单元,并根据所述玻璃纤维布在与所述布线方向垂直的方向上尺寸和所述数量获取所述玻纤单元的宽度,所述玻纤单元包括布线方向上的玻璃纤维和所述粘合剂;
根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽;
沿着所述布线方向,根据所述线距和所述线宽在金属层进行布线形成所需的差分信号线,所述金属层粘贴在所述玻璃纤维布表面。
所述根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽的步骤包括:
将所述玻纤单元的宽度作为所述差分信号线之间的中心距;
根据所述差分信号线之间的中心距确定所述差分信号线之间的线距和所述差分信号线的线宽。
所述根据所述差分信号线之间的中心距确定所述差分信号线之间的线距和所述差分信号线的线宽的步骤包括:
按照使用较宽的差分信号线原则和差分信号线紧耦合原则,并根据所述中心距确定所述差分信号线之间的线距和所述差分信号线的线宽。
当至少两个所述玻纤单元中玻璃纤维的宽度不相等时,所述沿着所述布线方向,根据所述差分信号线之间的间距和所述差分信号线的宽度在金属层进行布线形成所需的差分信号线的步骤包括:
沿所述布线方向,在初始布线位置根据所述线距和所述线宽进行布线形成预定长度的差分信号线;
根据所述线距和所述线宽,且沿着所述布线方向以锐角角度和偏移宽度在所述金属层上进行偏移布线形成所需的差分信号线,所述偏移宽度是通过所述玻纤单元的宽度确定的。
所述根据所述线距和所述线宽,且沿着所述布线方向以锐角角度和偏移宽度进行偏移布线形成所需的差分信号线的步骤包括:
根据所述玻纤单元的宽度确定本次进行偏移的偏移宽度;
沿着所述布线方向,相对于上一次形成的所述差分信号线以锐角角度和所述偏移宽度进行本次偏移;在本次偏移完成后,根据线距和所述线宽沿着所述布线方向继续形成所述预定长度的差分信号线;
接着不断重复上述两个步骤直到形成所需的差分信号线。
所述根据所述玻纤单元的宽度确定本次进行偏移的偏移宽度的步骤包括:
通过以下公式计算出本次进行偏移的偏移宽度:
X2=(a+1/2)*X,a=0、±1、±2、±3、±4……±n,n大于4的正整数;
其中,X2为偏移宽度,X为玻纤单元的宽度;
每次计算偏移宽度时a的取值不相同。
所述预定长度在1800mil-2200mil之间。
同样为了至少解决上述技术问题,本发明实施例还提供了一种PCB板,包括:矩形状的玻璃纤维布和通过粘合剂粘贴在所述玻璃纤维布表面的金属层;所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的所述粘合剂形成;所述金属层上形成有差分信号线对,所述对差分信号线对沿着所述玻璃纤维布的尺寸方向延伸;在 所述玻璃纤维布的尺寸方向上,所述玻璃纤维布包括数量与玻璃纤维扎数相等的玻纤单元,所述玻纤单元包括:所述玻璃纤维的尺寸方向上的玻璃纤维和所述粘合剂;
所述差分信号线之间的线距和所述差分信号线的线宽是根据玻纤单元的宽度确定的;
所述玻璃纤维的尺寸方向包括:玻璃纤维的长度或宽度方向。
所述差分信号线对之间的中心距与所述玻纤单元的宽度相等。
所述金属层上设有通过偏移布线方式形成的所述差分信号线;
所述差分信号线对相邻两次布线之间的偏移宽度是根据所述玻纤单元的宽度确定的;
所述差分信号线对相邻两次布线之间的偏移角度为锐角角度。
本发明实施例的有益效果是:
本发明实施例提供了一种差分信号线的布线方法和PCB板,可以有效的改善差分信号因玻纤效应引起skew,提升信号质量,并且可以节省成本、布线空间和布线时间;本发明实施例的差分信号线的布线方法,包括:提供矩形状的玻璃纤维布,所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的粘合剂形成;确定差分信号线的布线方向,获取玻璃纤维布在所述布线方向上的玻璃纤维扎数;所述布线方向包括:所述玻璃纤维布的长度方向或宽度方向;在所述布线方向上将所述玻璃纤维布等分为数量与所述扎数相等的玻纤单元,并根据所述玻璃纤维布在与所述布线方向垂直的方向上尺寸和所述数量获取所述玻纤单元的宽度,所述玻纤单元包括布线方向上的玻璃纤维和所述粘合剂;根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽;沿着所述布线方向,根据所述线距和所述线宽在金属层进行布线形成所需的差分信号线,所述金属层粘贴在所述玻璃纤维布表面;本发明实施例的布线方法可以使得差分信号线P/N落在同种Dk介质属性的位置,有效地改善差分信号因玻纤效应引起skew,提升差分信号的质量;同时,本发明实施例的布线方法还可以节省成本,避免板材的浪费;其次本发明实施例的方法均是采用沿着经线或者纬线方向(即玻璃纤维布的宽度或长度方向)布线,可以节省布线空间;最后,这种布线方式简单,易于实现,节省布线时间,缩短开发周期。
本发明实施例的布线方法可以完成背板的高速差分信号的布线,其可以应用于大尺寸背板中,实用性强。
附图说明
图1为本发明实施例一提供的一种差分信号线的布线方法的流程示意图;
图2为本发明实施例一提供的玻纤布中玻纤、环氧树脂分布图;
图3为本发明实施例一提供的差分信号线宽和线距的设计示意图;
图4为本发明实施例一提供的差分信号线在玻纤布上的分布图;
图5为本发明实施例一提供的实际经纬线间隔差异放大图;
图6为本发明实施例一提供的第一种PCB布线位移示意图;
图7为本发明实施例一提供的第二种PCB布线位移示意图;
图8为本发明实施例一提供的第三种PCB布线位移示意图;
图9为本发明实施例二提供的一种实际PCB布线设计示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
考虑到现有控制差分信号延迟的布线方法存在的成本高、占用布线空间多和布线时间长的技术问题,本实施例提供了一种差分信号线的布线方法,如图1所示,包括如下步骤:
步骤101:提供矩形状的玻璃纤维布,所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的粘合剂形成。
本实施例中矩形玻璃纤维布包括:相互编织交错的玻璃纤维,在矩形玻璃纤维布的长度方向上的玻璃纤维称作纬线,在宽度方向上的玻璃纤维称作经线。
步骤102:确定差分信号线的布线方向,获取玻璃纤维布在所述布线方向上的玻璃纤维扎数;所述布线方向包括:所述玻璃纤维布的长度方向或宽度方向。
本实施例中布线方向可以选用沿着经线或纬线方向进行布线。
本步骤中获取玻璃纤维布在所述布线方向上的玻璃纤维数量指的是获取经线或者纬线扎数,例如,当按照经线方向布线时,需要获取玻璃纤维布的经线扎数。具体地如何获取可以采用以下方式:
首先确定叠层设计时使用的玻璃纤维布的规格,通过IPC标准获得该规格玻璃纤维布的经、纬线扎数为m×n。假如在一英寸长度的玻璃纤维布上布线时,可以通过IPC标准获得该规格玻纤维布每一英寸的经、纬线扎数。在IPC标准中,规定的是一英寸长度的经纬线扎数。
步骤103:在所述布线方向上将所述玻璃纤维布等分为数量与所述扎数相等的玻纤单元,并根据所述玻璃纤维布在与所述布线方向垂直的方向上尺寸和所述数量获取所述玻纤单元的宽度,所述玻纤单元包括布线方向上的玻璃纤维和所述粘合剂。
在获取经线或者纬线的数量(扎数)后,就可以将玻璃纤维布划分为多个宽度相同的玻纤单元,即等分;当沿着经线布线时,该玻纤单元的数量与经线的数量相等,且玻纤单元包括:经线(沿宽度方向上的玻璃纤维)和粘合剂(沿着宽度方向上的粘合剂,例如环氧树脂);当沿着纬线布线时,该玻纤单元的数量与纬线的数量相等,且玻纤单元包括:纬线和粘合剂;在本实施例中粘合剂填充在整个玻纤单元,包括:附着在玻璃纤维上的粘合剂和填充在相邻玻璃纤维之间的粘合剂,所述玻纤单元中粘合剂的宽度与玻纤单元宽度相等。
本步骤中获取玻纤单元的宽度的过程可以包括:
当沿着经线布线时,将玻璃纤维布的长度除以经线数量即可得到玻纤单元的宽度;例如玻璃纤维布长度为一英寸时的经线数量为n时,玻纤单元的宽度X=1000/n(mil)
当沿着纬线布线时,将玻璃纤维布的宽度除以纬线数量即可得到玻纤单元的宽度,例如玻璃纤维布宽度为一英寸时的纬线数量为m时,玻纤单元的宽度X=1000/m(mil)。
步骤104:根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽。
本步骤具体过程可以包括:
将所述玻纤单元的宽度作为所述差分信号线之间的中心距;
根据所述差分信号线之间的中心距确定所述差分信号线之间的线距和所述差分信号线的线宽。
如按照经线方向布线,则设计差分线中心距X1=X=1000/m(mil),如按照纬线方向布线,则设计差分线中心距X1=X=1000/n(mil);然后根据X1来确定差分信号线之间的间距和宽度(即线距和线宽)。
优选地,按照使用较宽的差分信号线原则和差分信号线紧耦合原则,并根据所述中心距确定所述差分信号线之间的间距(线距)和所述差分信号线的宽度(线宽)。
具体地,在加工工艺保证的前提下,按照使用较宽的差分信号线原则和差分信号线紧耦合原则,根据差分阻抗和所述中心距确定所述差分信号线之间的间距和所述差分信号线的宽度。
步骤105:沿着所述布线方向,根据所述线距和所述线宽在金属层进行布线形成所需的差分信号线,所述金属层粘贴在所述玻璃纤维布表面。
在获得差分信号线之间的间距和差分信号线的宽度之后,就可以沿着经线或纬线方向在金属层上进行布线制作所需的一对差分信号线,该对差分信号线的长度可以根据实际布线需求设定。
本实施例提供的布线方法可以使得差分信号线P/N落在同种Dk介质属性的位置,有效地改善差分信号因玻纤效应引起skew,提升差分信号的质量;同时,本发明的布线方法还可以节省成本,避免板材的浪费;其次本实施例提供的均是采用沿着经线或者纬线方向(即玻璃纤维布的宽度或长度方向)布线,可以节省布线空间;最后,这种布线方式简单,易于实现,节省布线时间,缩短开发周期。
进一步地,本发明的布线方法可以完成背板的高速差分信号的布线,其可以应用于大尺寸背板中,实用性强。
另外,本实施例方法中按照使用较宽的差分信号线原则和差分信号线紧耦合原则设计差分信号线线距和线宽可以进一步降低差分信号p/n间的skew。
下面以某规格的矩形玻璃纤维布和以经线方向布线为例来介绍本实施例的布线方法,该规格的矩形玻璃纤维布的长度为1英寸,并且该规格的玻璃纤维布的经线和纬线的扎数为60×60:
首选可以将这长度为1000mil的玻纤布划分为60等分,每一等份(即玻纤单元)包含经线(玻璃纤维)和环氧树脂两部分(先假设,两部分等间距),如图2所示。
1000mil进行60份等间距分割后,每份尺寸为X=1000/60mil=16.7mil;进行差分信号线的中心距设计,设计规则:差分信号的中心距等于玻纤的等份间距,即X1=X=16.7mil,如图3所示。
根据上述规则完成差分线中心距的设计后,假定差分阻抗为100ohm,根据叠层情况,同时考虑使用较宽的走线及紧耦合设计,完成线宽/线距为7.6/9.1/7.6(mil)的差分信号线宽/线距设计。
按照上述过程完成的差分线,可以验证不论随机布线在什么位置,差分信号的P/N信号线均可以落在同种Dk介质属性的位置,如图4所示。
考虑到实际在玻纤布的加工过程,是有可能出现玻纤布的扁平宽度是不相等的,即玻璃纤维的宽度不相同,因此相邻两个玻璃纤维的间距不相同,如图5所示,由于经线的宽度不相同,因此经线间距S1不等于经线间距S2。这种情况既可以出现在经线方向也会出现在纬线方向,且因加工产生所以是随机产生的,这种情况会严重导致差分信号间Skew增大,恶化信号质量。
针对该情况,即当至少两个所述玻纤单元中玻璃纤维的宽度不相等时,本实施例方法中步骤105具体包括以下内容:
首选,沿所述布线方向,在初始布线位置根据所述线距和所述线宽进行布线形成预定长度的差分信号线;
然后,根据所述线距和所述线宽,且沿着所述布线方向以锐角角度和偏移宽度在所述金属层上进行偏移布线形成所需的差分信号线,所述偏移宽度是通过所述玻纤单元的宽度确定的。
例如,在确定线距和线宽之后,先在初始点沿着经线方向布线形成Y长度的差分信号线,然后沿着经线方向以锐角角度β和偏移宽度X2进行第一次偏移,在第一次偏移之后,继续在金属层上形成Y长度的差分信号线,接着,沿着经线方向以锐角角度β和偏移宽度X2进行第二次偏移,继续在金属层上形成Y长度的差分信号线,……直至形成所需的差分信号线为止。
优选地,本实施例中所述根据所述线距和所述线宽,且沿着所述布线方向以锐角角度和偏移宽度进行偏移布线形成所需的差分信号线的步骤可以包括:
根据所述玻纤单元的宽度确定本次进行偏移的偏移宽度;
沿着所述布线方向,相对于上一次形成的所述差分信号线以锐角角度和所述偏移宽度进行本次偏移;在本次偏移完成后,根据线距和所述线宽沿着所述布线方向继续形成所述预定长度的差分信号线;
接着不断重复上述两个步骤直到形成所需的差分信号线。
本实施例中每次偏移宽度是根据玻纤单元的宽度确定的,每次偏移宽度取不同的值,具体地,本实施例中根据所述玻纤单元的宽度确定本次进行偏移的偏移宽度的步骤包括:
通过以下公式计算出本次进行偏移的偏移宽度:
X2=(a+1/2)*X,a=0、±1、±2、±3、±4……±n,n大于4的正整数;
其中,X2为偏移宽度,X为玻纤单元的宽度;
每次计算偏移宽度时a的取值不相同。
优选地,本实施例中每次布线的长度在1800mil-2200mil之间,即上述预定长度在1800mil-2200mil之。
同样以上述某规格的矩形玻璃纤维布和以经线方向布线的例子继续介绍:
在确定差分信号线的线距和线宽之后;考虑实际在玻纤布的加工过程,是有可能出现60扎玻纤布的扁平宽度是不相等的现象,即经线宽度不相同的现象,如图5所示。对于解决这种现象的做法就是需要沿着经线方向进行锐角角度β和X2宽度的偏移,其中,X2=(a+1/2)*X,其中a=0、±1、±2、±3、±4……±n。在进行多次偏移时,以第一次为基准,不可以对a重复取值。
由IPC标准可获知玻纤布有60扎经线,则可以计算得到X=1000/60mil=16.7mil。则在经线方向上,进行偏移布线的偏移宽度X2=(a+1/2)*16.7mil。
每完成一次位移,需要按照上述确定的线距、线宽7.6/9.1/7.6(mil),沿当前方向进行布线形成Y长度的差分信号线,然后再进行下一次的位移,直至布线完成形成所需的差分信号线,其中Y长度控制在2000mil±200mil。
在进行上述位移布线时,需要遵循以下三点:
1)完成X2的位移时,选用的角度β为锐角;
2)当进行多次X2偏移时,以第一次计算取值a为基准,X2值的计算公式中对于a值不重复取值;
3)每次位移后的布线方向仍按照原来的设计方向,且布线长度必须控制在2000mil±200mil。
在本实施例中偏移次数可以根据PCB上需要布置差分信号线的两器件之间的间距、和每次偏移布线的长度Y确定的。
下面介绍按照上述方式进行偏移布线后,差分信号线之间的skew的情况:
假如PCB初始的布线落在两个不同宽度的经线间距区域,如图6-8所示,最下面的布线(即形成的Y长度的差分信号线)分别落在经线间距S1和经线间距S2上;在以锐角角度β和偏移宽度X2进行第一次位移后,继续布线形成Y长度的差分信号线,如图6-8所示,第一次位移后的布线落在经线宽度上;接着继续以锐角角度β和偏移宽度X2进行第二次的位移,直至完成所需的差分信号线对。
如图6所示,第二次位移后的布线落在经线间距S2和经线间距S1上,即落在与初始布线位置(S1、S2)相反的经线间距处,此时,第二次位移布线形成的差分信号线的skew、与初始布线形成的差分信号线的skew相互抵消,第二次位移布线形成的差分信号线构成了初始布线形成的差分信号线的全部skew补偿,观察整个差分信号线对,P/N信号线则几乎完成了全部skew的补偿。
如图7所示,第二次位移后的布线落在经线间距S1和经线间距S2上,即落在与初始布线位置(S1、S2)相同的经线间距处,此时,第二次位移布线形成的差分信号线的skew与初始布线形成的差分信号线的skew相同,观察整个差分信号线对,改善了2/3长度的skew补偿。
如图8所示,第二位移后的布线落在经线间距S3和经线间距S1上,即落在与初始布线位置(S1、S2)完全不相同的经线间距处,此时,第二次位移布线形成的差分信号线对初始布线形成的差分信号线形成了skew补偿,观察整个差分信号线对,改善了大于1/3长度的skew补偿。
本实施例方法在某产品背板上进行了布线设计验证,经实际测试差分线p/n间skew得到了很好的控制,如表1所示,产品某背板实测数据。表中skew值代表走线长度为几英寸到数十英寸不同长度、不同走线层的测试数值。
表1
Figure PCTCN2015078903-appb-000001
实施例二:
本实施例以经线方向布线来介绍实施例一所述的布线方法,包括如下步骤:
步骤S01:先根据高速信号及叠层的需要,选择合适的玻纤布规格,根据IPC标准查阅扎数,得到此种玻纤规格经、纬线扎数为m×n,由此可以得到每一等份值X,经线方向X=1000/m(mil),参考图2;
步骤S02:根据背板布局情况,选择符合要求的布线方向,如选择经线方向布线,则设计差分线中心距X1=X=1000/m(mil),参考图3;
步骤S03:根据差分线中心距X1,在确定差分阻抗前提下,遵循使用较宽的线且紧耦合设计方法完成差分信号线的线距和线宽设计,参考图4;
步骤S04:在进行PCB布线时,根据步骤S03中的线距和线宽从起始点沿着玻纤的经线方向首先完成大约2000mil长度的布线;
步骤S05:完成步骤S04后,沿经线方向完成以锐角角度,偏移(a+1/2)*X的宽度完成第一次偏移,其中a=0、±1、±2、±3、±4……±n;
步骤S06:完成第一次偏移后,沿着经线方向继续布线,布线长度大约2000mil后,进行第二次的锐角角度、X2宽度的偏移,第二次X2宽度的计算中,a的值与第一次必须取不同值;
步骤S07:完成步骤S06后,继续沿经线方向完成大约2000mil的布线,再进行第三次的偏移,然后再进行大约2000mil的布线,如此方法直至完成所需的差分信号线。参考图6或7或8所示;
需要说明的是:对于多次偏移时X2值的计算,需以第一次计算X2值中取值a数值为基准,再进行X2计算时,公式中a值的取值绝不可以重复。
在实际布线中,可以利用述步骤形成所需的差分信号线,如图9所示,包括多个按照上述步骤形成的差分信号线对。
实施例一和实施例二主要是以经线方向布线来介绍本发明的布线方法,以纬线方向进行布线过程与以经线方向进行布线的过程类似,可以参考实施例一和二种经线方向布线的具体内容,这里就不再赘述。
实施例三:
本实施例提供了一种PCB板,包括:矩形状的玻璃纤维布和通过粘合剂粘贴在所述玻璃纤维布表面的金属层;所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的所述粘合剂形成;所述金属层上形成有差分信号线对,所述对差分信号线对沿着所述玻璃纤维布的尺寸方向延伸;在所述玻璃纤维布的尺寸方向上,所述玻璃纤维布包括数量与玻璃纤维扎数相等的玻纤单元,所述玻纤单元包括:所述玻璃纤维的尺寸方向上的玻璃纤维和所述粘合剂
所述差分信号线之间的线距和所述差分信号线的线宽是根据玻纤单元的宽度确定的;
所述玻璃纤维的尺寸方向包括:玻璃纤维的长度或宽度方向。
优选地,所述差分信号线对之间的中心距与所述玻纤单元的宽度相等。
优选地,所述金属层上设有通过偏移布线方式形成的所述差分信号线;
所述差分信号线对相邻两次布线之间的偏移宽度是根据所述玻纤单元的宽度确定的;
所述差分信号线对相邻两次布线之间的偏移角度为锐角角度。具体结构可以参考图6-8。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种差分信号线的布线方法和PCB板,具有以下有益效果:本发明实施例提供了一种差分信号线的布线方法和PCB板,可以有效的改善差分信号因玻纤效应引起skew,提升信号质量,并且可以节省成本、布线空间和布线时间;本发明实施例的差分信号线的布线方法,包括:提供矩形状的玻璃纤维布,所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的粘合剂形成;确定差分信号线的布线方向,获取玻璃纤维布在所述布线方向上的玻璃纤维扎数;所述布线方向包括:所述玻璃纤维布的长度方向或宽度方向;在所述布线方向上将所述玻璃纤维布等分为数量与所述扎数相等的玻纤单元,并根据所述玻璃纤维布在与所述布线方向垂直的方向上尺寸和所述数量获取所述玻纤单元的宽度,所述玻纤单元包括布线方向上的玻璃纤维和所述粘合剂;根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽;沿着所述布线方向,根据所述线距和所述线宽在金属层进行布线形成所需的差分信号线,所述金属层粘贴在所述玻璃纤维布表面;本发明实施例的布线方法可以使得差分信号线P/N落在同种Dk介质属性的位置,有效地改善差分信号因玻纤效应引起skew,提升差分信号的质量;同时,本发明实施例的布线方法还可以节省成本,避免板材的浪费;其次本发明实施例的方法均是采用沿着经线或者纬线方向(即玻璃纤维布的宽度或长度方向)布线,可以节省布线空间;最后,这种布线方式简单,易于实现,节省布线时间,缩短开发周期。

Claims (10)

  1. 一种差分信号线的布线方法,包括如下步骤:
    提供矩形状的玻璃纤维布,所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的粘合剂形成;
    确定差分信号线的布线方向,获取玻璃纤维布在所述布线方向上的玻璃纤维扎数;所述布线方向包括:所述玻璃纤维布的长度方向或宽度方向;
    在所述布线方向上将所述玻璃纤维布等分为数量与所述扎数相等的玻纤单元,并根据所述玻璃纤维布在与所述布线方向垂直的方向上尺寸和所述数量获取所述玻纤单元的宽度,所述玻纤单元包括布线方向上的玻璃纤维和所述粘合剂;
    根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽;
    沿着所述布线方向,根据所述线距和所述线宽在金属层进行布线形成所需的差分信号线,所述金属层粘贴在所述玻璃纤维布表面。
  2. 如权利要求1所述的方法,其中,所述根据所述玻纤单元的宽度确定所述差分信号线之间的线距和所述差分信号线的线宽的步骤包括:
    将所述玻纤单元的宽度作为所述差分信号线之间的中心距;
    根据所述差分信号线之间的中心距确定所述差分信号线之间的线距和所述差分信号线的线宽。
  3. 如权利要求2所述的方法,其中,所述根据所述差分信号线之间的中心距确定所述差分信号线之间的线距和所述差分信号线的线宽的步骤包括:
    按照使用较宽的差分信号线原则和差分信号线紧耦合原则,并根据所述中心距确定所述差分信号线之间的线距和所述差分信号线的线宽。
  4. 如权利要求1-3任一项所述的方法,其中,
    当至少两个所述玻纤单元中玻璃纤维的宽度不相等时,所述沿着所述布线方向,根据所述差分信号线之间的间距和所述差分信号线的宽度在金属层进行布线形成所需的差分信号线的步骤包括:
    沿所述布线方向,在初始布线位置根据所述线距和所述线宽进行布线形成预定长度的差分信号线;
    根据所述线距和所述线宽,且沿着所述布线方向以锐角角度和偏移宽度在所述金属层上进行偏移布线形成所需的差分信号线,所述偏移宽度是通过所述玻纤单元的宽度确定的。
  5. 如权利要求4所述的方法,其中,所述根据所述线距和所述线宽,且沿着所述布线方向以锐角角度和偏移宽度进行偏移布线形成所需的差分信号线的步骤包括:
    根据所述玻纤单元的宽度确定本次进行偏移的偏移宽度;
    沿着所述布线方向,相对于上一次形成的所述差分信号线以锐角角度和所述偏移宽度进行本次偏移;在本次偏移完成后,根据线距和所述线宽沿着所述布线方向继续形成所述预定长度的差分信号线;
    接着不断重复上述两个步骤直到形成所需的差分信号线。
  6. 如权利要求5所述的方法,其中,所述根据所述玻纤单元的宽度确定本次进行偏移的偏移宽度的步骤包括:
    通过以下公式计算出本次进行偏移的偏移宽度:
    X2=(a+1/2)*X,a=0、±1、±2、±3、±4……±n,n大于4的正整数;
    其中,X2为偏移宽度,X为玻纤单元的宽度;
    每次计算偏移宽度时a的取值不相同。
  7. 如权利要求6所述的方法,其中,所述预定长度在1800mil-2200mil之间。
  8. 一种PCB板,包括:矩形状的玻璃纤维布和通过粘合剂粘贴在所述玻璃纤维布表面的金属层;所述玻璃纤维布由相互编织交错的玻璃纤维和填充在玻璃纤维间的所述粘合剂形成;所述金属层上形成有差分信号线对,所述差分信号线对沿着所述玻璃纤维布的尺寸方向延伸;在所述玻璃纤维布的尺寸方向上,所述玻璃纤维布包括数量与玻璃纤维扎数相等的玻纤单元,所述玻纤单元包括:所述玻璃纤维的尺寸方向上的玻璃纤维和所述粘合剂;
    所述差分信号线之间的线距和所述差分信号线的线宽是根据玻纤单元的宽度确定的;
    所述玻璃纤维的尺寸方向包括:玻璃纤维的长度或宽度方向。
  9. 如权利要求8所述的PCB板,其中,所述差分信号线对之间的中心距与所述玻纤单元的宽度相等。
  10. 如权利要求8或9所述的PCB板,其中,所述金属层上设有通过偏移布线方式形成的所述差分信号线;
    所述差分信号线对相邻两次布线之间的偏移宽度是根据所述玻纤单元的宽度确定的;
    所述差分信号线对相邻两次布线之间的偏移角度为锐角角度。
PCT/CN2015/078903 2014-11-28 2015-05-13 一种差分信号线的布线方法和pcb板 WO2016082480A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017528543A JP6634651B2 (ja) 2014-11-28 2015-05-13 差動信号線の配線方法、及びpcb基板
US15/529,183 US10178776B2 (en) 2014-11-28 2015-05-13 Differential signal line wiring method and PCB board
EP15863273.7A EP3226666B1 (en) 2014-11-28 2015-05-13 Differential signal line wiring method and pcb board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410708381.9 2014-11-28
CN201410708381.9A CN105704931B (zh) 2014-11-28 2014-11-28 一种差分信号线的布线方法和pcb板

Publications (1)

Publication Number Publication Date
WO2016082480A1 true WO2016082480A1 (zh) 2016-06-02

Family

ID=56073496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078903 WO2016082480A1 (zh) 2014-11-28 2015-05-13 一种差分信号线的布线方法和pcb板

Country Status (5)

Country Link
US (1) US10178776B2 (zh)
EP (1) EP3226666B1 (zh)
JP (1) JP6634651B2 (zh)
CN (1) CN105704931B (zh)
WO (1) WO2016082480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246658A (zh) * 2020-02-21 2020-06-05 苏州浪潮智能科技有限公司 一种pcb设计中差分布线的方法及系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973115B2 (en) 2016-05-20 2021-04-06 Ciena Corporation Spread weave induced skew minimization
US10402531B2 (en) * 2016-05-20 2019-09-03 Ciena Corporation Spread weave induced skew minimization
CN107072056B (zh) * 2017-05-31 2019-09-27 郑州云海信息技术有限公司 一种优化pcie连接器区域信号质量的设计方法
CN107315878A (zh) * 2017-06-29 2017-11-03 郑州云海信息技术有限公司 一种提高信号SI质量的Layout布线结构及布线方法
CN108254625A (zh) * 2017-12-29 2018-07-06 生益电子股份有限公司 一种插入损耗测试条
JP2019158542A (ja) * 2018-03-13 2019-09-19 古河電気工業株式会社 レーダ装置
CN108347826A (zh) * 2018-04-02 2018-07-31 郑州云海信息技术有限公司 一种抑制传输线编织效应的pcb板及设计方法
CN108984912B (zh) * 2018-07-19 2021-11-09 郑州云海信息技术有限公司 一种pcb设计自动调整线段间距的方法及系统
CN109711065A (zh) * 2018-12-28 2019-05-03 无锡市同步电子科技有限公司 一种pcb布线角度最优值确定方法
CN111698832B (zh) * 2020-06-12 2021-10-15 广东浪潮大数据研究有限公司 电路板的高速差分信号线的信号传输方法、装置及介质
CN112040637B (zh) * 2020-09-11 2022-05-17 苏州浪潮智能科技有限公司 一种具有差分线的pcb板、制造方法和电子设备
CN112911802B (zh) * 2020-12-25 2022-05-10 无锡市同步电子科技有限公司 一种类双绞线错层结构的差分信号线布线方法
CN112911805A (zh) * 2021-01-15 2021-06-04 浪潮电子信息产业股份有限公司 一种pcb板介质片选择方法、装置及系统
CN113316324B (zh) * 2021-05-27 2022-01-18 定颖电子(昆山)有限公司 一种hdi板制造工艺
CN114417781B (zh) * 2022-03-31 2022-06-17 苏州浪潮智能科技有限公司 Pcb走线串扰评估方法、系统、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120059A1 (en) * 2004-12-03 2006-06-08 Dell Products L.P. System and method for optimizing printed circuit boards to minimize effects of non-uniform dielectric
CN102209439A (zh) * 2010-03-29 2011-10-05 富士通株式会社 印刷线路板制造方法和印刷线路板
US20110272186A1 (en) * 2010-05-06 2011-11-10 Oracle International Corporation Printed circuit board with low propagation skew between signal traces
CN103813614A (zh) * 2012-11-07 2014-05-21 辉达公司 Pcb板、用于制造pcb板的芯板和用于制造pcb板的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133942A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 多層プリント配線板
US7043706B2 (en) * 2003-03-11 2006-05-09 Intel Corporation Conductor trace design to reduce common mode cross-talk and timing skew
JP2007150000A (ja) 2005-11-29 2007-06-14 Canon Inc プリント配線板
US7427719B2 (en) * 2006-03-21 2008-09-23 Intel Corporation Shifted segment layout for differential signal traces to mitigate bundle weave effect
JP2009164174A (ja) * 2007-12-28 2009-07-23 Fujitsu Ltd プリント配線板およびプリント基板ユニット
JP2009164416A (ja) * 2008-01-08 2009-07-23 Fujitsu Ltd プリント配線板およびプリント基板ユニット
JP5476906B2 (ja) * 2009-10-05 2014-04-23 富士通株式会社 配線基板の製造方法及び配線基板の設計方法
JP5471870B2 (ja) * 2010-06-17 2014-04-16 富士通株式会社 配線基板
JP5589595B2 (ja) * 2010-06-21 2014-09-17 富士通株式会社 配線基板及びその製造方法
JP6019657B2 (ja) * 2012-03-26 2016-11-02 富士通株式会社 設計支援プログラム、設計支援方法、設計支援装置および製造方法
US9312593B2 (en) * 2012-05-30 2016-04-12 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Multilayer electronic structure with novel transmission lines
WO2014088099A1 (ja) * 2012-12-06 2014-06-12 三菱瓦斯化学株式会社 金属箔張積層板の製造方法
JP6107412B2 (ja) * 2013-05-22 2017-04-05 富士通株式会社 シミュレーション方法、シミュレーション装置及びシミュレーションプログラム
TWI576023B (zh) * 2014-10-23 2017-03-21 Elite Material Co Ltd Suitable for multi-layer printed circuit board design

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120059A1 (en) * 2004-12-03 2006-06-08 Dell Products L.P. System and method for optimizing printed circuit boards to minimize effects of non-uniform dielectric
CN102209439A (zh) * 2010-03-29 2011-10-05 富士通株式会社 印刷线路板制造方法和印刷线路板
US20110272186A1 (en) * 2010-05-06 2011-11-10 Oracle International Corporation Printed circuit board with low propagation skew between signal traces
CN103813614A (zh) * 2012-11-07 2014-05-21 辉达公司 Pcb板、用于制造pcb板的芯板和用于制造pcb板的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246658A (zh) * 2020-02-21 2020-06-05 苏州浪潮智能科技有限公司 一种pcb设计中差分布线的方法及系统

Also Published As

Publication number Publication date
JP6634651B2 (ja) 2020-01-22
EP3226666A1 (en) 2017-10-04
US10178776B2 (en) 2019-01-08
CN105704931B (zh) 2021-01-22
EP3226666B1 (en) 2019-06-26
CN105704931A (zh) 2016-06-22
JP2018500757A (ja) 2018-01-11
EP3226666A4 (en) 2017-12-20
US20170325334A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2016082480A1 (zh) 一种差分信号线的布线方法和pcb板
TWI334758B (en) Shifted segment layout for differential signal traces to mitigate bundle weave effect
TW201433222A (zh) 印刷電路板、用於製造印刷電路板的核心與用於製造印刷電路板的方法
JP6508219B2 (ja) 配線基板およびその設計方法
US8035034B2 (en) Printed circuit board
JP2009164416A (ja) プリント配線板およびプリント基板ユニット
CN101242707A (zh) 电路板及其设计方法
CN105792525A (zh) 一种pcb介质层的制作方法
CN105188259B (zh) 印刷电路板、显示面板及用于印刷电路板的布线方法
CN204407323U (zh) 集成电路的虚拟图案以及半导体集成电路
JP2007294563A (ja) プリント配線板
TW201225747A (en) Printed circuit board
JP2014090027A (ja) 回路基板、回路基板の製造方法、電子装置及びガラスクロス
JP6149382B2 (ja) 特性インピーダンス管理用テストクーポンおよびこれを備えたプリント基板
CN102487573A (zh) 印刷电路板
US20140124434A1 (en) Filter
CN101394706A (zh) 电路板及其设计方法
US8327313B2 (en) Re-routing method for circuit diagram
US8502617B2 (en) Printed circuit board
JP5299201B2 (ja) プリント基板、プリント基板の製造方法
CN112911802B (zh) 一种类双绞线错层结构的差分信号线布线方法
US20180165401A1 (en) Non-orthogonal routing on a printed circuit board
TWI409010B (zh) 電路板
JP6613991B2 (ja) 配線基板の製造方法
CN109076707A (zh) 印刷布线板、电子电路、布线确定方法和程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529183

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017528543

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015863273

Country of ref document: EP