WO2016076429A1 - インバータ制御装置及び車両用制御装置 - Google Patents

インバータ制御装置及び車両用制御装置 Download PDF

Info

Publication number
WO2016076429A1
WO2016076429A1 PCT/JP2015/082037 JP2015082037W WO2016076429A1 WO 2016076429 A1 WO2016076429 A1 WO 2016076429A1 JP 2015082037 W JP2015082037 W JP 2015082037W WO 2016076429 A1 WO2016076429 A1 WO 2016076429A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
electrical machine
rotating electrical
inverter
rotation speed
Prior art date
Application number
PCT/JP2015/082037
Other languages
English (en)
French (fr)
Inventor
サハスブラタ
吉田高志
杉山裕樹
田島陽一
小久保昌也
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112015004320.9T priority Critical patent/DE112015004320T5/de
Priority to CN201580061618.1A priority patent/CN107112937B/zh
Priority to JP2016559124A priority patent/JP6296169B2/ja
Priority to US15/517,753 priority patent/US10351002B2/en
Publication of WO2016076429A1 publication Critical patent/WO2016076429A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/24Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by applying dc to the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an inverter control device that controls a rotating electrical machine drive device including an inverter, and a vehicle control device including the inverter control device.
  • an inverter that converts power between direct current and alternating current is provided between the alternating current rotating electrical machine and the direct current power source.
  • the rotating electrical machine has not only a function as a motor that outputs power by electric energy but also a function as a generator that generates electric power by kinetic energy such as wheels and an internal combustion engine.
  • the electric power generated by the rotating electrical machine is regenerated and stored in a DC power source.
  • a power switch such as a contactor may be provided between the DC power source and the inverter. When this power switch is in the on state, it is in a conductive state, and the DC power source, the inverter, and the rotating electrical machine are electrically connected. When the power switch is in the off state, the power switch is turned off, and the electrical connection between the DC power source, the inverter, and the rotating electrical machine is interrupted.
  • shutdown control is control for changing the switching control signal to the switching elements constituting the inverter to an inactive state to turn the inverter off.
  • Patent Document 1 discloses an abnormality detection circuit and an overcurrent detection circuit in an IPM (Intelligent Power Module) in which a plurality of switching elements are integrated to form an inverter.
  • IPM Intelligent Power Module
  • FIG. 1 and the like An example in which shutdown control is performed based on the result is disclosed.
  • shutdown control may be used as a fail-safe technique within the rated operating range of rotating electrical machines.
  • the back electromotive force increases as the rotational speed of the rotating electrical machine increases. Therefore, in general, the allowable back electromotive force is considered in consideration of the minimum value of the DC link voltage (voltage on the DC side of the inverter) in the rated operating range and the maximum rated voltage of the inverter to which the DC link voltage is applied. The rotational speed of the rotating electrical machine corresponding to the electric power and the counter electromotive force is set.
  • the back electromotive force at the maximum rotational speed becomes a very high value.
  • the shutdown control is executed while the power switch is on, a high regenerative torque is generated, and a large DC power supply current for charging the DC power supply flows, which may damage the DC power supply.
  • the power switch is turned off to protect the DC power supply, the DC link voltage rapidly increases. As a result, there is a possibility of damaging the inverter (switching element), the smoothing capacitor that smoothes the DC link voltage, and the like.
  • an inverter that performs switching control of a switching element that constitutes the inverter, and performs fail-safe control when a failure occurs in the rotating electric machine drive device, with a rotary electric machine drive device including an inverter as a control target
  • the characteristic configuration of the control device is The inverter is connected to a DC power source and is connected to an AC rotating electrical machine that is drivingly connected to the wheels of the vehicle, and performs power conversion between the DC and the multi-phase AC.
  • An AC one-phase arm is formed by a series circuit of a switching element and a lower switching element, and includes a free wheel diode connected in parallel to each switching element with the direction from the lower stage to the upper stage as the forward direction
  • the fail-safe control includes an upper-stage active short circuit control for turning on the upper-stage switching elements of all the arms in a plurality of phases, and a lower-stage for turning on the lower-stage switching elements of the arms in all of a plurality of phases.
  • Active short circuit control of any one of the side active short circuit control and shutdown control to turn off all the switching elements are selectively executed, In accordance with at least the rotational speed of the rotating electrical machine, the active short circuit control is performed in the high rotational speed region, and the shutdown control is performed in the low rotational speed region on the lower rotational speed side than the high rotational speed region. is there.
  • the back electromotive force of the rotating electrical machine increases with the rotational speed of the rotating electrical machine. For this reason, when the shutdown control is executed, the DC power supply current that flows to the DC power supply for charging and the DC link voltage that is the voltage on the DC side of the inverter tend to increase according to the rotational speed.
  • active short circuit control there is a limitation in that the rotating electrical machine may generate a large negative torque when executed at a low rotational speed, and the amount of heat generated by the rotating electrical machine increases when executed for a long time. .
  • the energy of the stator coil of the rotating electrical machine does not flow into the DC power source as a charging current, but flows back between the stator coil and the inverter. For this reason, in the active short circuit control, the DC link voltage does not increase.
  • active short circuit control is selected as fail-safe control in a high rotational speed region where the rotational speed of the rotating electrical machine is relatively high. Therefore, an increase in the DC power supply current flowing in the DC power supply and an increase in the DC link voltage are suppressed.
  • the shutdown control is selected as fail-safe control. Therefore, it is possible to suppress the rotating electric machine from generating a large negative torque, and it is possible to shorten the period for executing the active short circuit control. Further, in the low rotation speed region, the increment of the DC power supply current and the DC link voltage due to the shutdown control is suppressed within an appropriate range.
  • the DC power supply current for charging the DC power supply and the excessive increase in the DC link voltage can be appropriately suppressed while failing. Safe control can be performed.
  • an inverter that performs switching control of a switching element that constitutes the inverter, and performs fail-safe control when a failure occurs in the rotating electric machine drive device, with a rotary electric machine drive device including an inverter as a control target
  • the inverter is connected to a DC power source and is connected to an AC rotating electrical machine that is drivingly connected to the wheels of the vehicle, and performs power conversion between the DC and the multi-phase AC.
  • An AC one-phase arm is formed by a series circuit of a switching element and a lower switching element, and includes a free wheel diode connected in parallel to each switching element with the direction from the lower stage to the upper stage as the forward direction
  • pulse width modulation control which is a control method in which a plurality of pulses having different duty cycles are output in one cycle of the electrical angle, and field weakening control for adjusting the direction of the field of the rotating electrical machine to be weakened.
  • the fail-safe control includes an upper-stage active short circuit control for turning on the upper-stage switching elements of all the arms in a plurality of phases, and a lower-stage for turning on the lower-stage switching elements of the arms in all of a plurality of phases.
  • Active short circuit control of any one of the side active short circuit control and shutdown control to turn off all the switching elements are selectively executed, When the failure occurs in the rotating electrical machine drive device during execution of the rectangular wave control, the active short circuit control is executed, and when the failure occurs in the rotating electrical machine drive device during execution of the pulse width modulation control The point is that the shutdown control is executed.
  • the rectangular wave control is executed in a region where the rotational speed of the rotating electrical machine is relatively high, and the pulse width modulation control is executed in a region where the rotational speed of the rotating electrical machine is relatively low compared to the rectangular wave control.
  • the active short circuit control is selected as the fail safe control. Therefore, an increase in the DC power supply current flowing in the DC power supply and an increase in the DC link voltage are suppressed.
  • the shutdown control in which the increase of the DC power supply current or the increase of the DC link voltage is concerned is selected when a failure occurs in the rotating electrical machine drive device during the execution of the pulse width modulation control.
  • Circuit block diagram schematically showing the system configuration of the rotating electrical machine drive device Block diagram schematically showing the configuration of a vehicle drive device
  • Waveform diagram schematically showing battery current and DC link voltage response during shutdown and contactor open Diagram showing the relationship between rotation speed and fail-safe control State transition diagram for fail-safe control The figure which shows the relationship between regenerative electric power and battery current, and rotation speed
  • the figure which shows the relation between the back electromotive voltage between motor lines and the rotation speed The figure which shows the relationship between the negative torque transmitted to a wheel, negative acceleration, and rotational speed
  • Vector locus of dq axis vector coordinate system of steady current during active short circuit control Waveform diagram showing phase current before and after the start of active short circuit control
  • the figure which shows the relation between the maximum peak current of the phase current and the rotation speed during active short circuit control The figure which shows the relationship between the rotational speed and fail safe control in 2nd embodiment.
  • State transition diagram of fail-safe control in the second embodiment The block diagram which shows typically the structure of the vehicle drive device in 3rd embodiment.
  • State transition diagram of fail-safe control in the third embodiment State transition diagram of fail-safe control in the third embodiment
  • the inverter control device 20 controls a rotating electrical machine drive device 1 including the inverter 10 and controls the rotating electrical machine 80 via the rotating electrical machine drive device 1.
  • the inverter control device 20 performs switching control of the switching element 3 constituting the inverter 10 and performs fail-safe control described later when a failure occurs in the rotating electrical machine drive device 1.
  • the inverter 10 is connected to a high-voltage battery 11 (DC power supply) via a contactor 9 (power switch), and is connected to an AC rotating electrical machine 80 to connect DC and multi-phase AC (here, three-phase AC). It is the power converter device which performs power conversion between.
  • an AC one-phase arm is configured by a series circuit of an upper stage switching element 31 and a lower stage switching element 32.
  • a diode 5 (free wheel diode) is connected in parallel to each switching element 3 with the direction from the lower stage side to the upper stage side as the forward direction.
  • the contactor 9 is an example of a power switch.
  • the power switch refers to a switch that opens and closes an electric circuit, and closes (connects) the electric circuit in the on state and opens (cuts off) the electric circuit in the off state.
  • the high voltage battery 11 is an example of a DC power source.
  • the rotating electrical machine 80 to be driven by the rotating electrical machine drive device 1 and the inverter control device 20 is a rotating electrical machine that serves as a driving force source for wheels in a vehicle such as a hybrid vehicle or an electric vehicle.
  • a vehicle such as a hybrid vehicle or an electric vehicle.
  • the rotating electrical machine 80 is a rotating electrical machine that operates by a plurality of phases of alternating current (here, three-phase alternating current), and can function as both an electric motor and a generator. That is, the rotating electrical machine 80 converts the electric power from the high voltage battery 11 into power through the inverter 10 (power running). Alternatively, the rotating electrical machine 80 converts the rotational driving force transmitted from the internal combustion engine 70 and the wheels W described later with reference to FIG. 2 into electric power, and charges the high-voltage battery 11 via the inverter 10 (regeneration).
  • the rotating electrical machine 80 of the present embodiment is a rotating electrical machine (MG: Motor / Generator) that is a driving force source of a hybrid vehicle.
  • MG Motor / Generator
  • a vehicle including a so-called parallel type hybrid drive device vehicle drive device
  • This hybrid drive device includes an internal combustion engine 70 and a rotating electrical machine 80 as a driving force source for wheels in a vehicle.
  • the internal combustion engine 70 is a heat engine driven by fuel combustion.
  • various known internal combustion engines such as a gasoline engine and a diesel engine can be used.
  • the internal combustion engine 70 and the rotating electrical machine 80 are drivingly connected via an internal combustion engine separation clutch 75.
  • the hybrid drive device includes a transmission 90.
  • the transmission 90 is a stepped automatic transmission having a plurality of shift stages having different gear ratios.
  • the transmission 90 includes a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices (such as a clutch and a brake) in order to form a plurality of shift stages.
  • An input shaft of the transmission 90 is drivingly connected to an output shaft (for example, a rotor shaft) of the rotating electrical machine 80. The rotational speed and torque of the internal combustion engine 70 and the rotating electrical machine 80 are transmitted to the input shaft of the transmission 90.
  • the transmission 90 shifts the rotational speed transmitted to the transmission 90 at the gear ratio of each shift stage, converts the torque transmitted to the transmission 90 and transmits it to the output shaft of the transmission 90.
  • the output shaft of the transmission 90 is distributed to two axles via, for example, a differential gear (output differential gear device) and the like, and is transmitted to wheels W that are drivingly connected to the axles.
  • the torque obtained by multiplying the torque transmitted from the input shaft to the transmission 90 by the speed ratio corresponds to the torque transmitted to the output shaft.
  • drive connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force.
  • the “drive connection” is a state where the two rotating elements are connected so as to rotate integrally, or the two rotating elements are driven via one or more transmission members. It includes a state where force is connected to be transmitted.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement device that selectively transmits rotation and driving force for example, a friction engagement device or a meshing engagement device may be included. Therefore, it can be said that the rotating electrical machine 80 is drivingly connected to the wheel W.
  • reference numeral 17 denotes a temperature sensor that detects the temperature of the rotating electrical machine 80
  • reference numeral 18 denotes a temperature sensor that detects the temperature of the inverter 10 (the temperature of the switching element 3).
  • These temperature sensors are not limited to one each in the rotary electric machine 80 and the inverter 10, and may be provided in a plurality of locations.
  • sensors based on various principles such as a thermistor, a thermocouple, and a non-contact temperature sensor (radiation thermometer) can be appropriately used.
  • Reference numeral 13 denotes a rotation sensor that detects rotation (speed, direction, angular velocity, etc.) of the rotor of the rotating electrical machine 80
  • reference numeral 93 denotes a rotation sensor that detects rotation of the output shaft of the transmission 90.
  • a resolver As the rotation sensor, a resolver, an optical encoder, or a magnetic encoder can be used as appropriate.
  • a starter device for starting the internal combustion engine 70, various oil pumps (electric and mechanical), a control device for the transmission 90, and the like are omitted.
  • the high voltage battery 11 as a power source for driving the rotating electrical machine 80 is configured by, for example, a secondary battery (battery) such as a nickel metal hydride battery or a lithium ion battery, an electric double layer capacitor, or the like.
  • the high voltage battery 11 is a high voltage, large capacity DC power supply for supplying power to the rotating electrical machine 80.
  • the rated power supply voltage of the high voltage battery 11 is, for example, 200 to 400 [V].
  • an inverter 10 that performs power conversion between direct current and alternating current (here, three-phase alternating current) is provided between the high voltage battery 11 and the rotating electrical machine 80. Yes.
  • the voltage between the positive power supply line P and the negative power supply line N on the DC side of the inverter 10 is hereinafter referred to as “DC link voltage Vdc”.
  • the high voltage battery 11 can supply electric power to the rotating electrical machine 80 via the inverter 10 and can store electric power obtained by the rotating electrical machine 80 generating electric power.
  • a DC / DC converter 2 that converts a direct-current voltage may be provided between the high-voltage battery 11 and the inverter 10.
  • the DC / DC converter 2 supplies electric power to an auxiliary machine such as a vehicle air conditioner.
  • a smoothing capacitor 4 for smoothing the DC link voltage Vdc is provided on the DC side of the inverter 10. Smoothing capacitor 4 stabilizes a DC voltage (DC link voltage Vdc) that fluctuates according to fluctuations in power consumption of rotating electrical machine 80.
  • a contactor 9 as a power switch is provided on the inverter 10 side of the high voltage battery 11.
  • the contactor 9 is disposed between the smoothing capacitor 4 and the high voltage battery 11.
  • the contactor 9 is disposed between the DC / DC converter 2 and the high voltage battery 11. That is, the contactor 9 can disconnect the electrical connection between the electric circuit system (the DC / DC converter 2, the smoothing capacitor 4, the inverter 10) of the rotating electrical machine driving device 1 and the high voltage battery 11.
  • the contactor 9 is a mechanical relay that opens and closes (turns on and off) based on a command from a vehicle ECU (Electronic Control Unit) 100 that is one of the highest control devices of the vehicle.
  • a vehicle ECU Electronic Control Unit
  • a system main relay SMR: SystemMRMain Relay
  • IG key ignition key
  • the contactor 9 closes the contact of the SMR and becomes conductive (connected)
  • the contactor 9 The contact of is opened and becomes a non-conductive state (open state).
  • the inverter 10 is connected to the rotating electrical machine 80 and is connected to the high voltage battery 11 via the contactor 9.
  • the contactor 9 When the contactor 9 is in the connected state (on state), the high voltage battery 11 and the inverter 10 (and the rotating electrical machine 80) are electrically connected, and when the contactor 9 is in the open state (off state), the high voltage battery 11 and the inverter 10 (and the rotating electrical machine). 80) is disconnected.
  • the inverter 10 converts the DC power having the DC link voltage Vdc into a plurality of phases (n is a natural number, n-phase, here three-phase) AC power and supplies the AC power to the rotating electrical machine 80.
  • AC power generated by 80 is converted into DC power and supplied to a DC power source.
  • the inverter 10 includes a plurality of switching elements 3.
  • the switching element 3 includes an IGBT (Insulated Gate Bipolar Transistor), a power MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effector Transistor), a SiC MOSFET (Silicon Carbon Semiconductor Metal Oxide Semiconductor Semiconductor FET), a SiC SIT (SiC-Static Inductor Transistor, SiC-SIT).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effector Transistor
  • SiC MOSFET Silicon Carbon Semiconductor Metal Oxide Semiconductor Semiconductor FET
  • SiC SIT SiC-Static Inductor Transistor Transistor
  • the inverter 10 that converts power between direct current and multiple-phase alternating current is configured by a bridge circuit having a number of arms corresponding to each of the multiple phases, as is well known. That is, as shown in FIG. 1, two switching elements 3 are connected in series between the DC positive side (positive power supply line P) and the DC negative side (negative power supply line N) of the inverter 10 so that one arm Composed. In the case of three-phase alternating current, this series circuit (one arm) is connected in parallel with three lines (three phases). That is, a bridge circuit in which a set of series circuits (arms) corresponds to each of the stator coils 8 corresponding to the U phase, the V phase, and the W phase of the rotating electrical machine 80 is configured.
  • the middle point of the series circuit (arm) of the switching elements 3 of each phase that is a pair that is, the switching element 3 on the positive power supply line P side (upper switching element 31) and the switching element 3 on the negative power supply line N side (lower stage)
  • the connection point with the side switching element 32) is connected to the three-phase stator coil 8 of the rotating electrical machine 80.
  • Each switching element 3 includes a diode 5 in parallel with a forward direction from the negative electrode “N” to the positive electrode “P” (a direction from the lower stage side to the upper stage side).
  • the inverter 10 is controlled by an inverter control device 20.
  • the inverter control device 20 is constructed using a logic circuit such as a microcomputer as a core member.
  • the inverter control device 20 uses a vector control method based on the target torque TM of the rotating electrical machine 80 provided as a request signal from another control device such as the vehicle ECU 100 via a CAN (Controller Area Network) or the like.
  • the rotary electric machine 80 is controlled via the inverter 10 by performing the current feedback control.
  • the actual current flowing through the stator coil 8 of each phase of the rotating electrical machine 80 is detected by the current sensor 12, and the inverter control device 20 acquires the detection result.
  • the magnetic pole position at each time of the rotor of the rotating electrical machine 80 is detected by the rotation sensor 13 such as a resolver, and the inverter control device 20 acquires the detection result.
  • the inverter control device 20 performs current feedback control using the detection results of the current sensor 12 and the rotation sensor 13.
  • the inverter control device 20 is configured to have various functional units for current feedback control, and each functional unit is realized by cooperation of hardware such as a microcomputer and software (program). . Since the current feedback control is known, a detailed description thereof is omitted here.
  • the control terminal (for example, the gate terminal of the IGBT) of each switching element 3 constituting the inverter 10 is connected to the inverter control device 20 via the driver circuit 30 and is individually controlled to be switched.
  • the vehicle ECU 100 and the inverter control device 20 that generates the switching control signal are configured with a microcomputer or the like as the core, and the operating voltage (power supply voltage of the circuit) is greatly different from that of the high-voltage circuit for driving the rotating electrical machine 80. .
  • a low voltage battery (not shown) that is a power source of a lower voltage (for example, 12 to 24 [V]) than the high voltage battery 11 is mounted on the vehicle.
  • the operating voltage of the vehicle ECU 100 and the inverter control device 20 is, for example, 5 [V] or 3.3 [V], and operates with power supplied from the low-voltage battery.
  • the low voltage battery and the high voltage battery 11 are insulated from each other and are in a floating relationship with each other. For this reason, the rotating electrical machine driving device 1 relays the driving ability of the switching control signal (for example, gate driving signal) for each switching element 3 (for example, the ability to operate subsequent circuits such as voltage amplitude and output current).
  • a driver circuit 30 (control signal drive circuit) is provided.
  • the switching control signal generated by the inverter control device 20 of the low voltage system circuit is supplied to the inverter 10 via the driver circuit 30 as a switching control signal of the high voltage circuit system. Since the low-voltage circuit and the high-voltage circuit are insulated from each other, the driver circuit 30 is configured using an insulating element such as a photocoupler or a transformer or a driver IC, for example.
  • the inverter control device 20 assumes that a failure has occurred in the rotating electrical machine drive device 1 at least when the contactor 9 is turned off, so that the operation of the rotating electrical machine 80 is restricted. Implement control. Further, when any failure occurs in the vehicle, the rotating electrical machine 80, the transmission 90, the inverter 10, and the like, the fail safe control is performed assuming that the rotating electrical machine drive device 1 has failed. The fail safe control is executed with the inverter control device 20 as a core. The inverter control device 20 executes fail-safe control in response to a request for fail-safe control from another control device such as the vehicle ECU 100 as well as when the inverter control device 20 directly acquires failure detection information.
  • the “failure” of the rotating electrical machine drive device 1 includes, for example, the occurrence of an overvoltage due to the contactor 9 being turned off, an abnormal detection current value due to a failure of the current sensor in the inverter 10, Occurrence of overcurrent due to circuit disconnection, failure of inverter control device 20 or driver circuit 30, disconnection of communication between vehicle ECU 100 and inverter control device 20, for example, any of vehicles other than inverter 10 such as transmission 90 Various failures that affect the operation of the rotating electrical machine drive device 1 such as a failure of a portion are included.
  • shutdown control is known as fail-safe control.
  • the shutdown control is control for changing the switching control signal to all the switching elements 3 constituting the inverter 10 to an inactive state so that the inverter 10 is turned off.
  • the rotor of the rotating electrical machine 80 continues to rotate due to inertia, and a large counter electromotive force is generated.
  • Vbemf motor-line back electromotive voltage
  • Vdc DC link voltage
  • the absolute value of the battery current Ib (DC power supply current) that is a current for charging the high-voltage battery 11 greatly increases. If the battery current Ib exceeds the rated current of the high-voltage battery 11, the high-voltage battery 11 may be consumed or damaged. If the rated value of the high voltage battery 11 is increased so as to withstand a large battery current Ib, there is a possibility that the scale and cost will increase.
  • the fail-safe control is executed while suppressing an excessive increase in the battery current Ib and the DC link voltage Vdc when the high-voltage battery 11 is charged. It is desirable to do.
  • the inverter control device 20 performs effective fail-safe control.
  • the inverter control device 20 controls the switching element 3 that constitutes the inverter 10 with the rotating electrical machine drive device 1 including the inverter 10 as a control target, and a failure has occurred in the rotary electrical machine drive device 1. Fail safe control is executed in the case.
  • the inverter control device 20 selectively performs shutdown control (SD) and active short circuit control (ASC) as fail-safe control.
  • the shutdown control is control for turning off all the switching elements 3 of the inverter 10.
  • the active short circuit control is a control in which either one of the upper switching elements 31 of all the arms of the plurality of phases or the lower switching element 32 of all the arms of the plurality of phases is turned on and the other side is turned off. .
  • the inverter control device 20 performs active short circuit control (ASC) in the high rotational speed region as fail-safe control according to at least the rotational speed of the rotating electrical machine 80, and is lower than in the high rotational speed region.
  • Shutdown control (SD) is executed in the low rotational speed region on the rotational speed side.
  • FIG. 4 illustrates a torque map showing the relationship between the rotational speed of the rotating electrical machine and the torque.
  • the symbol ⁇ sd in the figure indicates the maximum rotation speed (SD maximum rotation speed) that allows execution of the shutdown control.
  • a region where the rotational speed is higher than the SD maximum rotational speed (or a region higher than the SD maximum rotational speed) is a high rotational speed region.
  • a region on the lower rotational speed side than the high rotational speed region that is, a region where the rotational speed is lower than the SD maximum rotational speed (or a region below the SD maximum rotational speed) is a low rotational speed region.
  • boundary conditions such as “above / below” and “higher / lower (less than)” can be set as appropriate, and the configuration of the fail-safe control is not limited. The same applies to the case where other boundaries are shown in the following description.
  • the inverter control device 20 changes the control method of the fail safe control according to the rotation speed of the rotating electrical machine 80 during the execution of the shutdown control. Specifically, the inverter control device 20 shifts the control method to active short circuit control when the rotational speed of the rotating electrical machine 80 rises to the high rotational speed region during execution of the shutdown control. On the other hand, when the rotation speed of the rotating electrical machine 80 decreases to the low rotation speed region during the execution of the active short circuit control, the inverter control device 20 shifts the control method to the shutdown control. In this transition, a hysteresis interval (transition interval Tsw) as shown in FIG. 4 is provided between the low rotation speed region and the high rotation speed region.
  • Tsw hysteresis interval
  • the lower rotational speed side than the symbol ⁇ asc in FIG. 4 corresponds to the low rotational speed region.
  • Symbol ⁇ asc indicates the minimum rotation speed (ASC minimum rotation speed) that allows execution of active short circuit control.
  • the state transition in the fail safe control will be described with reference to the state transition diagram of FIG.
  • the contactor 9 is not in the OFF state, and the vehicle, the rotating electric machine 80, the transmission 90, the inverter 10 and the like are not broken, and the normal control is executed. Indicates the state. If any failure occurs in the rotating electrical machine drive device 1 during this normal control, information “fail” indicating that the failure has occurred is transmitted to the inverter control device 20 (# 1). In response to this information “fail”, the inverter control device 20 determines a control method for fail-safe control based on the rotational speed of the rotating electrical machine 80.
  • the control method is shifted to the shutdown control (SD) (# 3). That is, once the active short circuit control (ASC) is executed, the high rotation speed side becomes the high rotation speed region and the low rotation speed side becomes the low rotation speed region on the basis of the ASC minimum rotation speed ⁇ asc .
  • the control method is shifted to the active short circuit control (ASC) (# 4).
  • the high rotation speed side is the high rotation speed area
  • the low rotation speed side is the low rotation speed area.
  • the control method converges to shutdown control (SD).
  • SD shutdown control
  • the inverter control device 20 notifies the vehicle ECU 100, which is a host control device, that the rotating electrical machine 80 has been safely stopped.
  • the vehicle ECU 100 turns off the ignition key (IG key) of the vehicle (# 5: IG-OFF).
  • the vehicle ECU 100 notifies the occupant to urge the operation of the ignition key, and the occupant operates the ignition key in an off state.
  • the first point is the magnitude of the battery current Ib when the contactor 9 is in the on state
  • the second point is an increase in the DC link voltage Vdc when the contactor 9 is in the off state. Therefore, it is preferable that the SD maximum rotation speed ⁇ sd is set in consideration of these two points. For example, it is preferable that the lower rotational speed among the values set in consideration of each point is set as the SD maximum rotational speed ⁇ sd .
  • the SD maximum rotation speed ⁇ sd is rotated according to the battery voltage (DC power supply voltage) (for example, at the lower limit value within the rated range of the battery voltage) when the contactor 9 is in the ON state. It is preferable that the battery current Ib and the regenerative power corresponding to the rotation speed of the electric machine 80 are set to a rotation speed that is smaller than the maximum rated value allowed.
  • FIG. 6 shows the relationship between the rotation speed and the battery current Ib (I1, I2) and the relationship between the rotation speed and the regenerative power (P1, P2).
  • solid lines I1 and I2 indicate battery current Ib
  • alternate long and short dash lines P1 and P2 indicate regenerative power.
  • I2 and P2 indicate the battery current (I2) and the regenerative power (P2) when the battery voltage is the upper limit value within the rated range of the high-voltage battery 11.
  • I1 and P1 indicate the battery current (I1) and the regenerative power (P1) when the battery voltage is the lower limit value within the rated range of the high-voltage battery 11. It can be seen that the lower the battery voltage, the easier the battery current Ib flows in, and the higher battery current Ib flows in the lower rotation speed range. Therefore, when the battery voltage is the lower limit value within the rated range of the high voltage battery 11, the SD maximum rotation speed is reduced to the rotation speed ( ⁇ sd1 ) where the battery current Ib is smaller than the allowable maximum rating value (Ibth). It is preferable that ⁇ sd is set.
  • the SD maximum rotation speed ⁇ sd ( ⁇ sd1 ) is set on the basis of the maximum rated value (Ibth) at which the battery current Ib is allowed.
  • the SD maximum rotation speed ⁇ sd may be set based on a value (not shown).
  • the lower rotational speed of the rotational speeds based on the two standards is set as the SD maximum rotational speed ⁇ sd .
  • the SD maximum rotation speed ⁇ sd is the maximum rated voltage that the peak value of the counter electromotive force between the three-phase lines is allowed in the rotating electrical machine drive device 1 when the contactor 9 is in the off state. It is preferable that the rotation speed is set smaller than that.
  • FIG. 7 shows a relationship between the rotational speed and the motor line back electromotive voltage Vbemf in the partially enlarged view of the torque map of FIG.
  • FIG. 7 simply shows the relationship between the rotational speed and the motor line back electromotive voltage Vbemf, and the ON / OFF state of the contactor 9 is irrelevant.
  • the determination of the on / off state of the contactor 9 may be performed based on, for example, communication from the vehicle ECU 100 or may be performed based on the detection result of the voltage sensor 14 that detects the DC link voltage Vdc.
  • the determination of the on / off state of the contactor 9 may be made based on a rapid change in the current (battery current Ib) of the high voltage battery 11 detected by the battery current sensor 15.
  • the voltage Vmax is the smallest rated voltage allowed in the rotating electrical machine drive device 1, that is, the smallest voltage among the maximum rated voltages of the DC / DC converter 2, the smoothing capacitor 4, and the inverter 10 (switching element 3).
  • the value is shown.
  • the motor line back electromotive voltage Vbemf is applied almost directly to the DC side of the inverter 10. Therefore, when the contactor 9 is in the OFF state, the motor line back electromotive voltage Vbemf, which increases in proportion to the rotation speed, is a region where the rotation speed is higher than the rotation speed ( ⁇ sd2 ) at which the maximum rated voltage Vmax is reached (T30). It is preferable that the shutdown control is prohibited.
  • the rotation speed ( ⁇ sd2 ) at which the motor-line back electromotive voltage Vbemf reaches the maximum rated voltage Vmax can be set as the SD maximum rotation speed ⁇ sd .
  • the contactor 9 when the contactor 9 is in the ON state, the voltage of the high voltage battery 11 (or the output of the DC / DC converter 2) is applied to the DC side of the inverter 10, and this is the DC link voltage Vdc.
  • the motor-line back electromotive voltage Vbemf exceeds the DC link voltage Vdc during the shutdown control, the diode 5 connected in reverse parallel to the switching element 3 becomes conductive. That is, a current for charging the high voltage battery 11 is supplied. Therefore, the setting of the SD maximum rotation speed ⁇ sd needs to consider the battery current Ib, the regenerative power, the regenerative torque, and the like as described as the first consideration point.
  • the region of the rotational speed of the motor line between counter electromotive voltage Vbemf reaches the DC link voltage Vdc (omega sd3), to the rotational speed of the motor line between counter electromotive voltage Vbemf reaches the maximum rated voltage Vmax ( ⁇ sd2) (T20) Is an area in which shutdown control can be performed conditionally.
  • the region (T10) on the lower rotational speed side than the rotational speed ( ⁇ sd3 ) at which the motor-line back electromotive voltage Vbemf reaches the DC link voltage Vdc is an area where shutdown control is possible without particular conditions.
  • the SD maximum rotation speed ⁇ sd is calculated based on the rotation speed ( ⁇ sd2 ) at which the motor-line back electromotive voltage Vbemf reaches the maximum rated voltage Vmax and the SD maximum rotation speed ⁇ sd ( ⁇ sd1 ) based on the maximum rated value (Ibth) of the battery current Ib. ) May be set to a lower value. Further, the motor line back electromotive voltage Vbemf may be set to the lowest value among them including the rotational speed ( ⁇ sd3 ) at which the DC link voltage Vdc is reached.
  • the contactor 9 when the contactor 9 is in the OFF state, the current that cannot flow into the high voltage battery 11 charges the smoothing capacitor 4 as described above.
  • the capacity of the smoothing capacitor 4 As the capacity of the smoothing capacitor 4 is larger, the rising speed of the voltage across the terminals of the smoothing capacitor 4 is slower. If the capacity of the smoothing capacitor 4 that smoothes the DC link voltage Vdc is reduced, the speed at which the DC link voltage Vdc rises increases. Even if the withstand voltage of the switching element 3 is increased, the withstand voltage of the smoothing capacitor 4 is not different from the conventional one. Therefore, there is a possibility that the maximum rated voltage allowed in the rotating electrical machine driving device 1 becomes the maximum rated voltage of the smoothing capacitor 4. Get higher.
  • the SD maximum rotation speed ⁇ sd is set to be smaller than the maximum value to be set.
  • the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc are set to the lower rotation speed side ( ⁇ sd_C2 and ASC minimum rotation speed ⁇ asc_C2 ). If the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc shown by the dotted lines in FIG.
  • ⁇ asc_C2 is a value when the capacitance of the smoothing capacitor 4 is “C2”.
  • C1> C2 the capacity of the smoothing capacitor 4
  • the first point is a deceleration (change in vehicle behavior transmitted to the occupant) caused by the negative torque generated by the current flowing back between the rotating electrical machine 80 and the inverter 10 being transmitted to the wheels W.
  • the second point is that the stator is heated by the current flowing back through the stator coil 8 of the rotating electric machine 80, and the temperature of the stator rises, and the permanent magnet may be demagnetized.
  • the temperature rise of the stator becomes a problem.
  • the ASC minimum rotation speed ⁇ asc is set in consideration of these two points.
  • the negative torque tends to become stronger as the rotational speed decreases, with a rotational speed having a low rotational speed region as a peak. Therefore, in order to limit the negative torque, it is preferable that the lower limit rotation speed (ASC minimum rotation speed ⁇ asc ) that limits the execution of the active short circuit control is set. It is preferable that the higher rotational speed among the values set in consideration of the first and second points is set as the ASC minimum rotational speed ⁇ asc .
  • the minimum rotational speed (ASC minimum rotational speed ⁇ asc ) that allows execution of active short circuit control is the absolute value of the negative torque transmitted to the wheel W during execution of active short circuit control. It is preferable that the rotational speed is set to be smaller than the absolute value of the maximum allowable negative torque defined in advance.
  • FIG. 8 is a graph showing the relationship between rotational speed and negative torque, and rotational speed and negative acceleration.
  • the one-dot chain line in the figure indicates the negative torque TRQ, and the solid line indicates the negative acceleration G.
  • the negative torque TRQ and the negative acceleration G are calculated based on the diameter of the wheel W, the gear ratio of the transmission 90, the weight of the vehicle, the value of the steady current at each rotational speed, and the like.
  • the symbol Gth in the figure is a maximum allowable negative torque (negative maximum allowable acceleration) converted into a negative acceleration. It has been found from experiments by the inventors that it is not preferable that the maximum allowable acceleration Gth lasts for a certain period of time (time defined by experiments and specifications, for example, t seconds). This time (t seconds) is preferably a time during which the control method can be changed in consideration of the response time of the inverter control device 20. Alternatively, in consideration of the response time of the inverter control device 20, a negative acceleration that can be allowed even if the control method can be changed for a continuous time may be set as the maximum allowable acceleration Gth. From the above, it is preferable to set the rotational speed ⁇ asc 1 at which the negative acceleration G reaches the negative maximum allowable acceleration as the ASC minimum rotational speed ⁇ asc .
  • the absolute values of the negative torque TRQ and the negative acceleration G become maximum at a rotational speed ⁇ 10 lower than the ASC minimum rotational speed ⁇ asc , and rapidly decrease as the rotational speed approaches zero. This is caused by the component of the flowing current, specifically, the d-axis component and the q-axis component in the vector control.
  • the d-axis component is a current component for forming a field
  • the q-axis component is a current component that becomes torque.
  • FIG. 9 shows the simulation result of the vector locus in the dq axis vector coordinate system of the steady current during the execution of the active short circuit control.
  • the d-axis current and the q-axis current in the figure are both negative values.
  • the absolute value of the d-axis component and the absolute value of the q-axis component increase, and the absolute value of the q-axis component is increased at the rotational speed ⁇ 10.
  • the absolute value of the d-axis component continues to increase, but the q-axis component decreases.
  • the negative torque (and negative acceleration) becomes maximum at the rotational speed ⁇ 10.
  • the minimum rotation speed (ASC minimum rotation speed ⁇ asc ) that allows execution of active short circuit control is such that the phase current that flows during execution of active short circuit control can operate the rotating electrical machine 80. It is preferable that the rotation speed is set to be smaller than the maximum value of the current range in which the magnetic force of the permanent magnet of the rotating electrical machine 80 can be maintained at the maximum temperature.
  • FIG. 10 shows a simulation result of the phase current of the rotating electrical machine 80 near the start time (t asc ) of active short circuit control. In FIG. 10, for simplification, a phase current for one phase of a plurality of phases of AC current is illustrated. As shown in FIG. 10, when active short circuit control is started at time t asc , a transient current flows in the phase current.
  • the transient current lasts for the transient response period (Ttr).
  • Ttr transient response period
  • Tst steady period
  • the temperature of the stator coil of the rotating electrical machine 80 rises due to both the transient current and the steady current.
  • the maximum current absolute value
  • a temperature sensor can be attached to the rotating electrical machine 80.
  • the temperature of the permanent magnet cannot be directly measured by the temperature sensor, for example, it is preferable to measure the temperature of the stator coil 8 and convert it to the temperature of the permanent magnet.
  • the maximum temperature at which the magnetic force of the permanent magnet can be maintained is Tmg_max.
  • Tmg_max the maximum temperature at which the magnetic force of the permanent magnet can be maintained.
  • current density [A rms / mm 2 ] in effective value the current is approximately 1 [° C./sec]. It was confirmed that the temperature of the stator coil 8 increased at a rate. For example, if the temperature of the permanent magnet is 10 [° C.] lower than Tmg_max, it takes about 10 seconds to reach Tmg_max even if a steady-state current continues to flow at that current density.
  • the control method of safe control can be changed.
  • the solid line in FIG. 11 approximates the relationship between the rotational speed and the absolute value of the maximum peak current under the condition that the magnet temperature is 10 [° C.] lower than Tmg_max.
  • the maximum peak current refers to a maximum value when not only a steady current but also a transient current is included.
  • the approximate curve of the maximum current shown in FIG. 11 has the maximum value Ipk when the magnet temperature is 10 [° C.] lower than Tmg_max and the rotational speed of the rotating electrical machine 80 is “ ⁇ asc2 ”. It was confirmed that a sufficient margin Imgn is secured between the maximum value Ipk and the current value Img_max that causes demagnetization. In this case, the magnetic force of the permanent magnet of the rotating electrical machine 80 can be maintained in all of the rated range of the rotating electrical machine 80. The margin Imgn decreases as the magnet temperature increases.
  • the inverter control device 20 selectively performs active short circuit control (ASC) and shutdown control (SD) according to the modulation control method of the inverter 10 when a failure occurs in the rotating electrical machine drive device. This is different from the first embodiment in that these are selectively executed according to the rotational speed of the rotating electrical machine 80.
  • ASC active short circuit control
  • SD shutdown control
  • the inverter control apparatus 20 which concerns on this embodiment is demonstrated centering on difference with said 1st embodiment. Note that points that are not particularly described can be the same as those in the first embodiment.
  • the inverter control device 20 is based on the target torque TM of the rotating electrical machine 80 provided as a request signal from another control device such as the vehicle ECU 100 via a CAN (Controller Area Network), for example. Current feedback control using a vector control method to be described later is performed to control the rotating electrical machine 80 via the inverter 10.
  • the inverter control device 20 is configured to have various functional units for current feedback control, and each functional unit is realized by cooperation of hardware such as a microcomputer and software (program). .
  • the inverter control device 20 has at least pulse width modulation (PWM) control and rectangular wave control (one pulse control (1P) as a switching pattern form (voltage waveform control form) of the switching elements 3 constituting the inverter 10. )) And two control modes. Moreover, the inverter control apparatus 20 drives the motor with the maximum efficiency with respect to the motor current as the form of the field control of the stator of the rotating electrical machine 80 and the maximum torque for outputting the maximum torque with respect to the current flowing through the stator coil 8. It has normal field control such as maximum efficiency control, and field weakening control (automatic field adjustment control (AFR)) in which field current (weakening field current) flows to weaken field magnetic flux.
  • PWM pulse width modulation
  • 1P one pulse control
  • 1P switching pattern form
  • the inverter control apparatus 20 drives the motor with the maximum efficiency with respect to the motor current as the form of the field control of the stator of the rotating electrical machine 80 and the maximum torque for outputting the maximum torque with respect to the current flowing through the stat
  • the rotating electrical machine 80 is controlled by executing current feedback control using a current vector control method in a two-axis orthogonal vector coordinate system that rotates in synchronization with the rotation of the rotating electrical machine 80.
  • a current vector control method for example, in a two-axis orthogonal vector coordinate system of a d-axis along the direction of the field magnetic flux by a permanent magnet and a q-axis that is electrically advanced by ⁇ / 2 with respect to the d-axis.
  • the inverter control device 20 determines the d-axis and q-axis current commands based on the target torque TM (torque command) of the rotating electrical machine 80 to be controlled.
  • the actual current flowing through the stator coil 8 of each phase of the rotating electrical machine 80 is detected by the current sensor 12, and the inverter control device 20 acquires the detection result.
  • the magnetic pole position at each time of the rotor of the rotating electrical machine 80 is detected by the rotation sensor 13 such as a resolver, and the inverter control device 20 acquires the detection result.
  • the actual currents of a plurality of phases are coordinate-converted into the dq axis orthogonal vector coordinate system based on the magnetic pole positions.
  • the inverter control device 20 obtains a deviation between the actual current coordinate-converted into the dq-axis orthogonal vector coordinate system and the current command set in the dq-axis orthogonal vector coordinate system, and performs proportional integral control (PI control) or proportional integral differentiation.
  • Control is executed to derive a voltage command in the dq-axis orthogonal vector coordinate system.
  • the voltage command of the dq axis orthogonal vector coordinate system is coordinate-converted to a voltage command corresponding to a plurality of phases (for example, three phases) of alternating current based on the magnetic pole position.
  • a switching control signal is generated based on this voltage command.
  • the control modes for switching the inverter 10 include pulse width modulation control and rectangular wave control.
  • a pulse width modulation waveform which is an output voltage waveform of the inverter 10 of each phase of U, V, and W, is in a high level period in which the upper arm element is turned on and the lower arm element is turned on.
  • This is a control in which the duty of each pulse is set so that the fundamental wave component becomes a sine wave shape for a certain period while being composed of a set of pulses composed of a low level period.
  • the pulse width modulation control is a control method in which a plurality of pulses having different duties are output in one cycle of the electrical angle.
  • Pulse width modulation control includes well-known sinusoidal pulse width modulation (SPWM: Sinusoidal PWM) control, space vector pulse width modulation (SVPWM: Space vector PWM) control, discontinuous pulse width modulation (DPWM) control, etc. Is included.
  • SPWM Sinusoidal PWM
  • SVPWM Space vector PWM
  • DPWM discontinuous pulse width modulation
  • the maximum modulation rate of sinusoidal pulse width modulation (SPWM) control is about 0.61
  • the maximum modulation rate of space vector pulse width modulation (SVPWM) control is about 0.71.
  • the voltage command in the sinusoidal pulse width modulation control is almost sinusoidal.
  • the voltage command of the space vector pulse width modulation control has a slight distortion due to the fact that the voltage command is partially shifted up and down so that the interphase voltage of the three-phase voltage can be used effectively. It is.
  • modulation by space vector pulse width modulation control up to a maximum modulation rate of about 0.71 is treated as “normal pulse width modulation”.
  • a modulation method having a modulation rate exceeding about 0.71 which is the maximum modulation rate of space vector pulse width modulation control, is called “overmodulation pulse width modulation” as a modulation method having a higher modulation rate than usual.
  • the discontinuous pulse width modulation (DPWM) control can perform this overmodulation pulse width modulation, and the maximum modulation rate is about 0.78.
  • This modulation factor 0.78 is a physical limit value.
  • rectangular wave control one pulse control
  • the modulation rate is fixed to about 0.78 which is a physical limit value.
  • an armature current that is a combined vector of a field current (d-axis current) and a drive current (q-axis current) along each axis of the dq-axis orthogonal vector coordinate system is calculated.
  • the inverter 10 is driven and controlled. That is, the inverter control device 20 controls the drive of the inverter 10 by controlling the current phase angle of the armature current (angle formed by the q-axis current vector and the armature current vector) in the dq-axis orthogonal vector coordinate system. Therefore, the pulse width modulation control is also referred to as current phase control.
  • the rectangular wave control is a method of controlling the inverter 10 by controlling the voltage phase of a plurality of phases of AC voltage.
  • the voltage phase of the AC voltage corresponds to the phase of a voltage command of a plurality of phases.
  • each switching element 3 of the inverter 10 is turned on and off once per electrical angle period of the rotating electrical machine 80, and one pulse per electrical angle period for each phase. Is the rotation synchronization control in which is output.
  • the rectangular wave control is also referred to as voltage phase control because the inverter 10 is driven by controlling the voltage phase of a plurality of phases of AC voltage.
  • the inverter control device 20 has at least two control modes (control methods) of pulse width modulation control and rectangular wave control as switching pattern modes (voltage waveform control modes) of the switching elements 3 constituting the inverter 10. )have. Further, the inverter control device 20 has at least two control modes (control methods) of normal field control and field weakening control as the field control mode of the stator of the rotating electrical machine 80. Although the form of field control will be described later, in this embodiment, the control method is switched by combining the switching pattern and the form of field control.
  • pulse width modulation control pulse width modulation control
  • AFR + 1P rectangular wave control
  • field weakening control which is one form of field control, will be described.
  • the induced voltage back electromotive voltage
  • the AC voltage refquired voltage required to drive the rotating electrical machine 80 also increases. If this required voltage exceeds the maximum AC voltage (maximum output voltage) that can be output from the inverter 10 by converting the DC link voltage Vdc at that time, the necessary current cannot be supplied to the stator coil 8, and rotation The electric machine 80 cannot be appropriately controlled.
  • the inverter control device 20 adjusts the current phase so that a magnetic flux in a direction that weakens the field magnetic flux of the rotating electrical machine 80 is generated from the stator coil (in this case, the current phase is set to be higher than the maximum torque control). It has an automatic field adjustment controller (Automatic Field Regulator) that performs weak field control.
  • the d-axis current in the dq-axis orthogonal vector coordinate system is a field current contributing to field generation.
  • a d-axis current adjustment command field weakening current command
  • the d-axis current command and the q-axis current command are adjusted based on the d-axis current adjustment command.
  • This torque step is relatively small in the high rotation / low torque region and large in the low rotation / high torque region. That is, since the torque step becomes smaller as the rotational speed increases, one method for suppressing the torque step when shifting from pulse width modulation control to rectangular wave control is to increase the rotational speed at which the control method is switched. Conceivable. Of course, since the back electromotive force also increases, in this case, it is necessary to start field-weakening control earlier. For example, the field weakening control may be performed before the actual modulation rate reaches 0.78. In the overmodulation control area before the transition to the rectangular wave control, for example, discontinuous pulse width modulation is executed. The torque step can be suppressed by executing the field weakening control even in the overmodulation control region.
  • the inverter control device 20 has a control method for performing pulse width modulation control together with normal field control, a control method for performing overmodulation pulse width modulation control (discontinuous pulse width modulation control) together with field weakening control, and rectangular wave control together with field weakening control. It may be configured to be able to select three or more control methods such as a control method for performing the above.
  • the inverter control device 20 has at least a control method (pulse width modulation control (PWM)) that performs pulse width modulation control together with normal field control, and a control method (rectangular wave control (AFR + 1P)) that performs rectangular wave control together with field weakening control. As long as the two control methods can be selectively executed.
  • PWM pulse width modulation control
  • AFR + 1P rectangular wave control
  • the inverter control device 20 performs fail-safe control to limit the operation of the rotating electrical machine 80 when a failure occurs in the rotating electrical machine drive device 1. And in this embodiment, the inverter control apparatus 20 determines the control system of fail safe control according to the modulation control system currently performed when a failure arises in the rotary electric machine drive device 1.
  • the inverter control device 20 has a pulse width modulation control (PWM) that is a control method in which a plurality of pulses having different duties are output in one cycle of the electrical angle, and weakens the field of the rotating electrical machine 80. At least two modulation control methods are implemented, including rectangular wave control (AFR + 1P), which is a control method in which one pulse is output in one cycle of the electrical angle.
  • PWM pulse width modulation control
  • AFR + 1P rectangular wave control
  • the inverter control device 20 executes active short circuit control (ASC) when a failure occurs in the rotating electrical machine drive device 1 during execution of the rectangular wave control (AFR + 1P), and is executing pulse width modulation control (PWM). When a failure occurs in the rotating electrical machine drive apparatus 1, shutdown control (SD) is executed.
  • ASC active short circuit control
  • PWM pulse width modulation control
  • FIG. 12 illustrates a torque map showing the relationship between the rotational speed and torque of the rotating electrical machine in the present embodiment.
  • a symbol B in the torque map indicates a boundary of the modulation control method.
  • B1 and B2 are illustrated as the boundary, this is due to the difference in the DC link voltage Vdc.
  • the boundary B1 indicates a boundary when the DC link voltage Vdc is higher than the boundary B2.
  • the boundary B1 illustrates the case where the DC link voltage Vdc is the maximum value VH within the rated range
  • the boundary B2 illustrates the case where the DC link voltage Vdc is the minimum value VL within the rated range. ing.
  • PWM pulse width modulation control
  • the inverter control device 20 sets the rotational speed of the rotating electrical machine 80 during the execution of either one of the active short circuit control (ASC) and the shutdown control (SD) selected according to the modulation control method. Based on the active short circuit control (ASC) and the shutdown control (SD), the control method of the fail safe control is shifted to the other.
  • the rotational speed of the rotating electrical machine 80 also changes during the execution of failsafe control. Since the magnitude of the back electromotive force varies depending on the rotation speed, even if fail-safe control is executed by the control method selected once, the control method of fail-safe control is changed according to the rotation state of the rotating electrical machine 80. Is preferred. However, after fail-safe control is started, normal modulation control is not executed.
  • the failsafe control method cannot be reselected based on the modulation control method.
  • the counter electromotive force of the rotating electrical machine 80 depends on the rotational speed of the rotating electrical machine 80. Therefore, after fail-safe control is started, it is preferable that a control method for fail-safe control is selected based on the rotation speed of the rotating electrical machine 80.
  • symbol ⁇ sd indicates the maximum rotation speed (SD maximum rotation speed) that allows execution of the shutdown control.
  • SD maximum rotation speed a region where the rotational speed is higher than the SD maximum rotational speed ⁇ sd (or a region greater than the SD maximum rotational speed ⁇ sd ) is referred to as a high rotational speed region.
  • an area on the lower rotational speed side than the high rotational speed area that is, an area where the rotational speed is lower than the SD maximum rotational speed ⁇ sd (or an area below the SD maximum rotational speed ⁇ sd ) is referred to as a low rotational speed area.
  • a hysteresis interval (transition interval Tsw) is provided when the failsafe control control method is shifted from the currently executed control method to another control method during the failsafe control.
  • Tsw transition interval
  • the boundary between the high rotation speed region and the low rotation speed region is set to the SD maximum rotation speed ⁇ sd .
  • the boundary is set to the ASC minimum rotation speed ⁇ asc on the lower rotation speed side.
  • the ASC minimum rotation speed ⁇ asc is the minimum rotation speed at which the rotation speed of the rotating electrical machine 80 allows execution of active short circuit control (ASC).
  • high rotational speed than the ASC minimum rotation speed omega asc region is a high rotational speed region.
  • the region on the lower rotational speed side than the high rotational speed region that is, the region where the rotational speed is lower than the ASC minimum rotational speed ⁇ asc (or the region below the ASC minimum rotational speed ⁇ asc ) is the low rotational speed region.
  • boundary conditions such as “above / below” and “higher / lower (less than)” can be set as appropriate, and the configuration of the fail-safe control is not limited. The same applies to the case where other boundaries are shown in the following description.
  • the inverter control device 20 changes the control method of the fail-safe control according to the rotation speed of the rotating electrical machine 80 during the execution of the shutdown control. Specifically, the inverter control device 20 performs control when the rotational speed of the rotating electrical machine 80 increases to the SD maximum rotational speed ⁇ sd or more during the shutdown control (when the rotational speed increases to the high rotational speed region). Transition system to active short circuit control. On the other hand, the inverter control device 20 controls the control method when the rotational speed of the rotating electrical machine 80 decreases to the ASC minimum rotational speed ⁇ asc or less during the execution of the active short circuit control (when the rotational speed decreases to the low rotational speed region). Transition to shutdown control.
  • the state transition of the fail-safe control in the present embodiment will be described with reference to the state transition diagram of FIG.
  • the contactor 9 is not in the OFF state, and the vehicle, the rotating electric machine 80, the transmission 90, the inverter 10 and the like are not broken, and the normal control is executed. Indicates the state. If any failure occurs in the rotating electrical machine drive device 1 during this normal control, information “fail” indicating that the failure has occurred is transmitted to the inverter control device 20 (# 1). In response to this information “fail”, the inverter control device 20 determines a control method for fail-safe control based on the modulation control method of the inverter 10.
  • ASC active short circuit control
  • SD shutdown control
  • the control method of the fail safe control is changed according to the rotation speed ⁇ .
  • the rotation speed ⁇ falls below the ASC minimum rotation speed ⁇ asc during execution of active short circuit control (ASC) (when the rotation speed ⁇ decreases to the low rotation speed region)
  • the control method is shifted to shutdown control (SD).
  • the rotational speed ⁇ becomes higher than the SD maximum rotational speed ⁇ sd during execution of the shutdown control (SD) (when the rotational speed ⁇ rises to the high rotational speed region)
  • the control method is active short circuit control (ASC).
  • the rotational speed ⁇ increases during the fail-safe control, the rotational speed of the wheel W increases by going down a slope or a step, and the increase in the rotational speed is transmitted to the rotating electrical machine 80. Etc. are assumed.
  • the control method converges to shutdown control (SD).
  • SD shutdown control
  • the inverter control device 20 notifies the vehicle ECU 100, which is a host control device, that the rotating electrical machine 80 has been safely stopped.
  • the vehicle ECU 100 turns off the ignition key (IG key) of the vehicle (# 5: IG-OFF).
  • the vehicle ECU 100 notifies the occupant to urge the operation of the ignition key, and the occupant operates the ignition key in an off state.
  • the inverter control device 20 starts from the control method being executed based not only on the rotational speed of the rotating electrical machine 80 but also on the DC link voltage Vdc during the execution of the fail safe control selected according to the modulation control method.
  • the control method of fail-safe control may be shifted to another control method.
  • FIG. 12 when the value of the DC link voltage Vdc is different, the boundary B for changing the modulation control method is also different.
  • the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc are set in conjunction with this boundary B.
  • values corresponding to the DC link voltage Vdc are used for the determination criteria (SD maximum rotation speed ⁇ sd and ASC minimum rotation speed ⁇ asc ) in the state transition diagram shown in FIG. That is, the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc are set according to the DC link voltage Vdc, and the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc are the DC link voltage Vdc. The smaller the value is, the smaller the value is set. Note that the concept for setting the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc is as described in the first embodiment, and a description thereof will be omitted here.
  • the vehicle control device 50 includes a vehicle drive device 60 including at least a rotary electric machine (MG: Motor / Generator) 80 and a transmission 90, and the rotary electric machine including the inverter 10 described above.
  • the drive device 1 (INV) is a control target.
  • the inverter control device 20 for controlling the rotating electrical machine drive device 1 is included.
  • the vehicle drive device 60 is a so-called parallel-type hybrid drive device, and includes an internal combustion engine 70 and a rotating electrical machine 80 as driving force sources for the wheels W.
  • the vehicle drive device 60 includes the internal combustion engine 70, the rotating electrical machine 80, and the transmission 90.
  • the internal combustion engine 70 and the rotating electrical machine 80 are drivingly connected via an internal combustion engine separation clutch 75.
  • the vehicle drive device 60 includes, in order from the side of the internal combustion engine 70, a power transmission path that connects the internal combustion engine 70 and the wheels W to the internal combustion engine separation clutch 75, the rotating electrical machine 80, and the transmission 90. Is provided.
  • this active short circuit control (ASC) is performed as fail safe control
  • this vehicle control apparatus 50 performs fail safe shift control for controlling the transmission 90 in a direction in which the gear ratio decreases.
  • the control apparatus 50 for vehicles which concerns on this embodiment is demonstrated centering on the point which was not demonstrated in said 1st embodiment and 2nd embodiment. Note that points that are not particularly described can be the same as those in the first embodiment or the second embodiment.
  • the transmission 90 includes a stepped transmission mechanism including a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices.
  • the configuration of the transmission 90 is not limited thereto. Absent. That is, the transmission 90 is formed with a plurality of shift stages according to the engagement states (engagement or release) of the plurality of friction engagement elements, and changes the rotational speed of the input shaft at the gear ratio of each shift stage. It is not limited to a speed change mechanism (stepped speed change mechanism) that transmits to the output shaft.
  • the transmission 90 is a transmission mechanism (CVT: Continuously Variable Transmission (CVT)) that allows continuous shifting by passing a belt or chain through two pulleys (pulleys) and changing the pulley diameter. ). That is, the transmission 90 can change the transmission speed of the input shaft and transmit it to the output shaft, and the transmission device 90 can be changed in its transmission ratio. Also good.
  • the vehicle drive device 60 includes an internal combustion engine control device 40, an inverter by integrated control (running control) by a vehicle ECU (Electronic Control Unit) 100 that is one of the highest control devices of the vehicle. Control is performed via the control device 20 and the shift control device 41.
  • the internal combustion engine control device 40 drives and controls the internal combustion engine 70, including control of a fuel supply device (not shown), an air supply / exhaust mechanism, an ignition device, and the like.
  • the rotating electrical machine 80 is connected to a DC power source (a high-voltage battery 11 described later) and is connected to an AC rotating electrical machine 80, and includes the inverter 10 that performs power conversion between DC and a plurality of phases of AC. It is driven via the driving device 1.
  • the inverter control device 20 functions as a rotating electrical machine control device that controls the rotating electrical machine drive device 1. Specifically, the inverter control device 20 controls the switching of the switching element 3 that constitutes the inverter 10 already described with reference to FIG.
  • the transmission control device 41 controls a transmission mechanism (not shown) included in the transmission device 90 via, for example, a hydraulic control device 85. In this embodiment, the shift control device 41 also controls the internal combustion engine separation clutch 75 via the hydraulic control device 85.
  • the vehicle control device 50 is a control device that controls the vehicle drive device 60 and the rotating electrical machine drive device 1.
  • the inverter control device 20 and the shift control device 41 constitute a vehicle control device (vehicle drive device control device) 50.
  • the vehicle control device 50 may be configured by the internal combustion engine control device 40, the inverter control device 20, and the shift control device 41.
  • FIG. 14 also illustrates a temperature sensor 17 that detects the temperature of the rotating electrical machine 80, and a temperature sensor 18 that detects the temperature of the inverter 10 (the temperature of the switching element 3).
  • the detection results of the temperature sensors 17 and 18 are transmitted to the vehicle control device 50 (the inverter control device 20 and the shift control device 41).
  • Reference numeral 13 denotes a rotation sensor that detects rotation (speed, direction, angular velocity, etc.) of the rotor of the rotating electrical machine 80
  • reference numeral 93 denotes a rotation sensor that detects rotation of the output shaft of the transmission 90. Similar to the temperature sensors 17 and 18, the detection results of the rotation sensors 13 and 93 are transmitted to the vehicle control device 50 (the inverter control device 20 and the shift control device 41).
  • a starter device for starting the internal combustion engine 70 and various oil pumps (electrical and mechanical) are omitted.
  • the inverter control device 20 controls the rotating electrical machine 80 including the inverter 10 and controls the rotating electrical machine 80 via the rotating electrical machine drive device 1. As described above, the inverter control device 20 performs switching control of the switching element 3 constituting the inverter 10 and performs fail-safe control described later when a failure occurs in the rotating electrical machine drive device 1.
  • the inverter control device 20 includes the vehicle drive device 60 that includes the transmission 90 in the power transmission path that connects the rotating electrical machine 80 that serves as the drive force source for the vehicle wheel W and the wheel W, and the high-voltage battery 11. And the rotating electrical machine drive device 1 including the inverter 10 that is connected to the AC rotating electrical machine 80 and performs power conversion between the direct current and the multiple-phase alternating current.
  • the inverter control device 20 sets a gear ratio that is a ratio of the rotational speed of the input shaft of the transmission 90 to the rotational speed of the output shaft of the transmission 90, and controls the transmission 90, and the inverter 10 Inverter control for switching control of the switching element 3 constituting the above is executed, and when a failure occurs in the rotating electrical machine drive device 1, the above fail-safe control is executed.
  • FIG. 15 shows the relationship between fail-safe control and fail-safe shift control.
  • the vehicle control device 50 executes the fail-safe shift control for controlling the transmission 90 in the direction in which the gear ratio becomes smaller ( Time t2).
  • the gear ratio is set, Corresponding gears are formed.
  • FIG. 15 shows an example in which the shift speed is changed from the third speed (3rd) to the sixth speed (6th).
  • the fail-safe control method transitions to shutdown control.
  • the inverter control device 20 changes the control method of the fail safe control according to the rotation speed of the rotating electrical machine 80 during the execution of the fail safe control (during a shift) or after the execution (after the shift). For example, when the rotation speed of the rotating electrical machine 80 rises to the high rotation speed region during the execution of the shutdown control, the control method transitions to active short circuit control. As a case where the rotational speed of the rotating electrical machine 80 increases during the fail-safe control, the rotational speed of the wheel W increases by going down a slope or a step, and the increase in rotational speed is transmitted to the rotating electrical machine 80. A case is assumed.
  • the rotational speed of the rotating electrical machine 80 may increase due to the transmission of the driving force by the internal combustion engine 70. That is, the case where the accelerator pedal is operated by the passenger corresponds to this case. If any trouble has occurred in the vehicle, this is also notified to the passenger. However, for example, if the vehicle is traveling on an expressway, there is a possibility that the occupant operates the accelerator pedal in an attempt to stop the vehicle in the nearest service area instead of the road shoulder.
  • FIG. 16 shows an example of a case where the rotational speed increases after execution of fail-safe shift control.
  • the change from time t1 to time t3 is as described above with reference to FIG. After the time t3, that is, after the control method shifts to the shutdown control, the rotational speed of the rotating electrical machine 80 starts to increase again.
  • the rotational speed of the rotating electrical machine 80 reaches the SD maximum rotational speed ⁇ sd at which the control method shifts to the active short circuit control, and rises to the high rotational speed region.
  • the vehicle control device 50 executes fail-safe shift control and controls the transmission 90 in a direction in which the gear ratio is further reduced. .
  • the gear position is changed from the sixth speed (6th) to the seventh speed (7th).
  • the hysteresis interval (transition interval Tsw) provided between the low rotation speed region and the high rotation speed region is applied, and the failure is applied.
  • Tsw transition interval
  • FIG. 17 illustrates an example in which such hysteresis is not considered.
  • the change from time t1 to time t3 is the same as in FIGS. 15 and 16.
  • the rotational speed of the rotating electrical machine 80 starts to increase again.
  • the criterion for execution of fail-safe shift control is that the rotational speed of the rotating electrical machine 80 reaches the SD maximum rotational speed ⁇ sd and rises to the high rotational speed region at time t5. .
  • the criterion for executing the fail-safe shift control is that the rotational speed of the rotating electrical machine 80 increases to the ASC minimum rotational speed ⁇ asc .
  • the time t4 when the rotational speed reaches the ASC minimum rotational speed ⁇ asc is greater than the time t5 when the rotational speed reaches the SD maximum rotational speed ⁇ sd. fast.
  • the control system does not immediately shift to the active short circuit control because the high rotational speed region is not reached. Therefore, in the form of FIG. 17, the fail-safe shift control can be executed with a margin to reduce the gear ratio.
  • the shift speed is changed from the sixth speed (6th) to the seventh speed (7th) at time t4, and the shift speed is changed from the seventh speed (7th) at time t6. It has been changed to 8th gear (8th).
  • the state transition of the fail safe control in the present embodiment will be described with reference to the state transition diagram of FIG.
  • the contactor 9 is not in the OFF state, and the vehicle, the rotating electric machine 80, the transmission 90, the inverter 10 and the like are not broken, and the normal control is executed. Indicates the state. If any failure occurs in the rotating electrical machine drive device 1 during this normal control, information “fail” indicating that the failure has occurred is transmitted to the inverter control device 20 (# 1). In response to this information “fail”, the inverter control device 20 determines a control method for fail-safe control based on the rotational speed of the rotating electrical machine 80.
  • the transmission 90 is controlled in a direction in which the gear ratio decreases, and the rotational speed of the rotating electrical machine 80 is reduced to a low rotational speed region.
  • Fail safe shift control (upshift) is executed. If the rotational speed ⁇ falls below the ASC minimum rotational speed ⁇ asc during execution of the active short circuit control (ASC), the control method is shifted to the shutdown control (SD) (# 3).
  • SD shutdown control
  • the high rotational speed side is the high rotational speed region and the low rotational speed side is the low rotational speed with reference to the ASC minimum rotational speed ⁇ asc. It becomes an area.
  • the control method is shifted to the active short circuit control (ASC) (# 4).
  • the high rotation speed side is the high rotation speed area
  • the low rotation speed side is the low rotation speed area.
  • the control method converges to shutdown control (SD).
  • SD shutdown control
  • the inverter control device 20 notifies the vehicle ECU 100, which is a host control device, that the rotating electrical machine 80 has been safely stopped.
  • the vehicle ECU 100 turns off the ignition key (IG key) of the vehicle (# 5: IG-OFF).
  • the vehicle ECU 100 notifies the occupant to urge the operation of the ignition key, and the occupant operates the ignition key in an off state.
  • fail-safe control when fail-safe control is executed, it is also notified to the occupant that some kind of failure has occurred in the vehicle.
  • the speed of the vehicle gradually decreases as described above with reference to FIG.
  • the occupant wants to move the vehicle to a desired place, such as a service area on an expressway, and then stop the vehicle to check for a failure or wait for assistance. In that case, it is not preferable that the rotational speed of the wheel W is simply reduced to stop the vehicle.
  • the vehicle can be advanced to some extent using the driving force of the internal combustion engine 70 in which no failure has occurred.
  • the rotational speed of the wheel W can be kept at a certain high value while the rotational speed of the rotating electrical machine 80 is kept low. As a result, there is a high possibility that the occupant can move the vehicle to a desired location.
  • the vehicle can be stopped using a braking device.
  • the determination of the control method of the fail safe control that is executed when a failure occurs in the rotating electrical machine drive device 1 is not limited to the form based on the rotational speed of the rotating electrical machine 80.
  • a fail-safe control method may be determined according to the modulation control method of the inverter 10.
  • the inverter control device 20 has at least pulse width modulation (PWM) control and rectangular wave control (one pulse control) as the switching pattern form (voltage waveform control form) of the switching element 3 constituting the inverter 10. (1P)) and two control modes (modulation methods).
  • the inverter control apparatus 20 drives the motor with the maximum efficiency with respect to the motor current as the form of the field control of the stator of the rotating electrical machine 80 and the maximum torque for outputting the maximum torque with respect to the current flowing through the stator coil 8. It has normal field control such as maximum efficiency control, and field weakening control (automatic field adjustment control (AFR)) in which field current (weakening field current) flows to weaken field magnetic flux.
  • AFR automatic field adjustment control
  • the inverter control device 20 has at least two control forms of pulse width modulation control executed together with normal field control and rectangular wave control (one pulse control (1P)) executed together with field weakening control. Switching control of the inverter 10 is performed.
  • the inverter control device 20 can determine a control method for fail-safe control according to a control method for switching control that is executed when a failure occurs in the rotating electrical machine drive device 1. For example, as shown in FIG.
  • the inverter control device 20 performs active short circuit control (ASC) when a failure occurs in the rotating electrical machine drive device 1 during execution of rectangular wave control together with field weakening control,
  • ASC active short circuit control
  • SD shutdown control
  • the pulse width modulation control executed together with the normal field control is applied when the rotational speed of the rotating electrical machine 80 is relatively low, and is weakened.
  • the rectangular wave control executed together with the field control is applied when the rotational speed is relatively high.
  • the configuration that determines the failsafe control control method based on the modulation control method of the inverter 10 also means that the failsafe control control method is determined based on the rotational speed of the rotating electrical machine 80 in a broad sense. it can. Since pulse width modulation control and rectangular wave control have already been described in the second embodiment, description thereof is omitted here.
  • FIG. 12 shows an example of a torque map showing the relationship between the rotational speed of the rotating electrical machine and the torque in this case.
  • a symbol B in the torque map indicates a boundary of the modulation control method. Although B1 and B2 are illustrated as the boundary, this is due to the difference in the DC link voltage Vdc.
  • the boundary B1 indicates a boundary when the DC link voltage Vdc is higher than the boundary B2.
  • the boundary B1 illustrates the case where the DC link voltage Vdc is the maximum value VH within the rated range
  • the boundary B2 illustrates the case where the DC link voltage Vdc is the minimum value VL within the rated range. ing.
  • the DC link voltage Vdc is a DC voltage after boosting when the DC / DC converter 2 is provided, and is equal to the voltage of the high voltage battery 11 when the DC / DC converter 2 is not provided. Equivalent to.
  • the inverter control device 20 is executing based on the rotational speed of the rotating electrical machine 80 during the execution of the fail safe control even when the control method of the fail safe control is selected according to the modulation control method of the inverter 10.
  • the control method of fail-safe control is shifted from one control method to another control method. Since the form of the transition is the same as that described above with reference to FIG. 4, detailed description thereof is omitted. That is, the inverter control device 20 changes the control method of the fail-safe control according to the rotation speed of the rotating electrical machine 80 during the execution of the shutdown control.
  • the inverter control device 20 performs control when the rotational speed of the rotating electrical machine 80 increases to the SD maximum rotational speed ⁇ sd or more during the shutdown control (when the rotational speed increases to the high rotational speed region). Transition system to active short circuit control. On the other hand, the inverter control device 20 controls the control method when the rotational speed of the rotating electrical machine 80 decreases to the ASC minimum rotational speed ⁇ asc or less during the execution of the active short circuit control (when the rotational speed decreases to the low rotational speed region). Transition to shutdown control.
  • the higher rotation speed side than the boundary B1 and the boundary B2 can also be referred to as a high rotation speed region, and the low rotation speed side can be referred to as a low rotation speed region. That is, when a failure occurs in the rotating electrical machine drive device 1, the failsafe control control method is determined according to the high rotation speed region and the low rotation speed region set based on the boundary B1 and the boundary B2. It can be said. During the execution of the fail safe control, the control method of the fail safe control is determined according to the high rotation speed region and the low rotation speed region set based on the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc. It can be said that a transition is made.
  • FIG. 19 shows a state transition diagram when the control method of fail-safe control is determined based on modulation control.
  • step # 1 when the inverter control device 20 receives information “fail” indicating that some failure has occurred in the rotating electrical machine drive device 1, the inverter control device 20 performs fail-safe control based on the modulation control method of the inverter 10. Determine the control method. If the modulation control method is rectangular wave control (AFR + 1P), active short circuit control (ASC) is selected (# 2a). On the other hand, when the modulation control method is pulse width modulation control (PWM), shutdown control (SD) is selected (# 2s).
  • PWM pulse width modulation control
  • SD shutdown control
  • step # 2a and step # 2s except for the conditions for determining the control method, the contents are the same as those described above with reference to FIG. Further, the concept for setting the SD maximum rotation speed ⁇ sd and the ASC minimum rotation speed ⁇ asc is as described in the first embodiment, and thus the description thereof is omitted here.
  • the minimum rotation speed (ASC minimum rotation speed ⁇ asc ) that allows the execution of the active short circuit control is the maximum temperature at which the phase current that flows during the execution of the active short circuit control can operate the rotating electrical machine 80. It is preferable that the rotational speed is set to be smaller than the maximum value of the current range in which the permanent magnet of the rotating electrical machine 80 can be maintained. In view of this condition, the temperature condition of the rotating electrical machine 80 can be added to the execution condition of the fail-safe shift control. That is, if the temperature increase of the rotating electrical machine 80 due to the execution of the active short circuit control is allowable, there is no problem even if the active short circuit control is continued.
  • the fail-safe shift control can be executed when the active short circuit control is executed as the fail-safe control and the temperature of the rotating electrical machine 80 is equal to or higher than a predetermined regulation temperature.
  • the regulated temperature is various values obtained by experiments and simulations, specifically, the time until the magnetic force of the permanent magnet is deteriorated, the rate of temperature increase per unit time, the temperature sensor Is set based on the error range, current value, and the like.
  • the inverter control device (20) controls switching of the switching element (3) constituting the inverter (10) with the rotating electrical machine drive device (1) including the inverter (10) as a control target, and the rotating electrical machine.
  • a device that performs fail-safe control when a failure occurs in a drive device The inverter (10) is connected to a DC power source (11) and is connected to an AC rotating electric machine (80) drivingly connected to a vehicle wheel (W), and power is supplied between the DC and the multi-phase AC.
  • An arm for one phase of alternating current is constituted by a series circuit of the upper stage side switching element (31) and the lower stage side switching element (32), and the direction from the lower stage side to the upper stage side is changed.
  • the upper stage side active short circuit control for turning on the upper stage side switching elements (31) of all the arms of a plurality of phases, and the lower stage side switching elements (32) of all the arms of a plurality of phases.
  • the active short circuit control (ASC) of any one of the lower-stage active short circuit controls for turning on the switch and the shutdown control (SD) for turning off all the switching elements (3) are selectively executed. Is, The active short circuit control (ASC) is executed in the high rotation speed region according to at least the rotation speed of the rotating electrical machine (80), and the shutdown is performed in the low rotation speed region on the lower rotation speed side than the high rotation speed region.
  • the control (SD) is executed.
  • the counter electromotive force of the rotating electrical machine (80) increases in accordance with the rotational speed of the rotating electrical machine (80). For this reason, when the shutdown control (SD) is executed, the DC power supply current (Ib) flowing through the DC power supply (11) for charging or the voltage on the DC side of the inverter (10) according to the rotational speed. There is a tendency that the DC link voltage (Vdc) is increased.
  • the rotating electric machine (80) may generate a large negative torque when executed at a low rotational speed, or the rotating electric machine (80) generates heat when executed for a long time. There are limitations in terms of the amount.
  • active short circuit control is selected as fail-safe control in a high rotational speed region where the rotational speed of the rotating electrical machine (80) is relatively high. Therefore, an increase in the DC power supply current (Ib) flowing through the DC power supply (11) and an increase in the DC link voltage (Vdc) are suppressed.
  • active short circuit control ASC
  • a negative torque is generated in the rotating electrical machine (80), so that the rotating electrical machine (80) rotating in the high rotational speed region can be decelerated.
  • the return current by the active short circuit control (ASC) increases the temperature of the stator coil of the rotating electrical machine (80), and may demagnetize the permanent magnet depending on the reached temperature.
  • the maximum peak current (absolute value) of the steady current and the transient current is smaller in the region where the rotational speed is relatively high than in the region where the rotational speed is low (see, for example, FIG. 11). ). Therefore, when active short circuit control (ASC) is executed in the high rotational speed region, the magnetic force of the permanent magnet of the rotating electrical machine (80) can be maintained even if the temperature rises due to the reflux current. On the other hand, in the low rotational speed region where the rotational speed of the rotating electrical machine (80) is relatively low, the shutdown control (SD) is selected as fail-safe control.
  • the rotational speed of the rotating electrical machine (80) may change during the execution of fail-safe control. For example, when the vehicle is going down a slope, the rotational speed of the rotating electrical machine (80) that is drivingly connected to the wheels (W) may increase. When it is determined that the increment of the DC power supply current (Ib) or the DC link voltage (Vdc) for charging the DC power supply (11) is suppressed within an appropriate range and the shutdown control (SD) is executed, When the rotational speed of the rotating electrical machine (80) increases, the DC power supply current (Ib) and the DC link voltage (Vdc) may increase beyond an appropriate range.
  • the inverter control device (20) is configured to control the inverter when the rotational speed of the rotating electrical machine (80) increases to the high rotational speed region during the execution of the shutdown control (SD). Is preferably transferred to the active short circuit control (ASC).
  • the rotational speed of the rotating electrical machine (80) decreases during the execution of the fail safe control. Since the active short circuit control (ASC) circulates current between the stator coil (8) and the inverter (20), most of the energy is converted into heat in the stator coil (8) and the inverter (20). Will be consumed. Due to this heat, the stator coil (8) and the switching element (3) may be consumed. In addition, the stator coil (8) may be heated, and the temperature of the stator may rise to demagnetize the permanent magnet. In addition, when the active short circuit control (ASC) is executed at a low rotational speed, the rotating electrical machine (80) may generate a large negative torque.
  • ASC active short circuit control
  • the inverter (80) When the inverter (80) is connected to the DC power source (11) via the power switch (9) that cuts off the power supply in the OFF state, the regenerative power is supplied to the DC power source when the power switch (9) is ON. Charge (11). On the other hand, when the power switch (9) is in the OFF state, the connection with the DC power supply (11) is cut off, so the regenerative power increases the DC link voltage (Vdc). For this reason, the rotational speed of the rotating electrical machine (80), which serves as a reference for selecting either the active short circuit control (ASC) or the shutdown control (SD), is set to the on / off state of the power switch (9). It is preferable that it is set accordingly.
  • ASC active short circuit control
  • SD shutdown control
  • the inverter (80) is connected to the DC power source (11) via a power switch (9) that cuts off the power supply in the off state, and executes the shutdown control (SD).
  • the allowable maximum rotational speed ( ⁇ sd ) depends on the DC power supply voltage (Ib) according to the rotational speed of the rotating electrical machine (80) according to the DC power supply voltage when the power switch (9) is in the ON state. It is preferable that the regenerative power is set to a rotation speed that is smaller than the maximum rated value allowed.
  • the maximum rotational speed ( ⁇ sd ) is such that, when the power switch (9) is in an off state, the peak value of the back electromotive force between the three-phase lines is allowed in the rotating electrical machine drive device (1). It is preferable that the maximum rotation speed ( ⁇ sd ) is set to a rotation speed that is smaller than the maximum rated voltage.
  • the DC power supply voltage which is the voltage of the DC power supply (11)
  • the potential difference from the voltage generated by the rotating electrical machine (80) increases, and the DC power supply current (Ib) And regenerative power also tends to increase. Therefore, as described above, when the power switch (9) is in the ON state, the DC power supply current (Ib) with respect to the rotational speed of the rotating electrical machine (80) when the DC power supply voltage is the lower limit value within the rated range. It is preferable that the maximum rotation speed ( ⁇ sd ) is set based on the characteristics of the regenerative power.
  • the maximum rotation speed ( ⁇ sd ) further smoothes the DC link voltage (Vdc) that is the voltage on the DC side of the inverter (10).
  • Vdc DC link voltage
  • the voltage of the smoothing capacitor (4) that rises due to the charge supplied from the rotating electric machine (80) during the execution of the shutdown control (SD) is allowed to be the maximum value. It is preferable to set it to be smaller than that.
  • a smoothing capacitor (4) is often provided on the DC side of the inverter (10).
  • the smoothing capacitor (4) When the power switch (9) is in the OFF state, the current for charging the DC power supply (11) is cut off, so that the current charges the smoothing capacitor (4) and the DC link voltage (Vdc) is reduced. Raise.
  • the smoothing capacitor (4) often has the lowest withstand voltage.
  • the capacity of the smoothing capacitor (4) is reduced for the purpose of downsizing the rotating electrical machine drive device (1), the voltage across the terminals of the smoothing capacitor (4) (that is, the DC link voltage (Vdc)) is increased.
  • the rising speed also tends to increase. Therefore, as described above, it is preferable that the maximum rotation speed ( ⁇ sd ) is set according to the allowable value of the smoothing capacitor (4).
  • the negative torque is generated in the rotating electrical machine (80), and the negative torque is also transmitted to the wheels (W) that are drivingly connected to the rotating electrical machine (80).
  • This negative torque acts as a braking force and makes the vehicle occupant feel negative acceleration.
  • Such acceleration is preferably suppressed to such an extent that the passenger does not feel uncomfortable.
  • the minimum rotational speed ( ⁇ asc ) that allows execution of the active short circuit control (ASC) is transmitted to the wheel (W) during the execution of the active short circuit control (ASC). It is preferable that the absolute value of the negative torque is set to a rotational speed that is smaller than a predetermined absolute value of the maximum allowable negative torque.
  • the phase current that flows during the active short circuit includes a steady current and a transient current, but the current to be suppressed is an instantaneous peak current (absolute value) including the steady current and the transient current.
  • the minimum rotational speed ( ⁇ asc ) that allows execution of the active short circuit control (ASC) is determined by the phase current that flows during the execution of the active short circuit control (ASC). It is preferable that the rotation speed is set to be smaller than the maximum value of the current range in which the magnetic force of the permanent magnet of the rotating electrical machine (80) can be maintained at the maximum temperature at which the operation can be performed.
  • the inverter control device (20) controls switching of the switching element (3) constituting the inverter (10) with the rotating electrical machine drive device (1) including the inverter (10) as a control target, and the rotating electrical machine.
  • a device that performs fail-safe control when a failure occurs in a drive device The inverter (10) is connected to a DC power source (11) and is connected to an AC rotating electric machine (80) drivingly connected to a vehicle wheel (W), and power is supplied between the DC and the multi-phase AC.
  • An arm for one phase of alternating current is constituted by a series circuit of the upper stage side switching element (31) and the lower stage side switching element (32), and the direction from the lower stage side to the upper stage side is changed.
  • PWM pulse width modulation control
  • AFR + 1P rectangular wave control
  • the active short circuit control (ASC) of any one of the lower-stage active short circuit controls for turning on the switch and the shutdown control (SD) for turning off all the switching elements (3) are selectively executed. Is, When a failure occurs in the rotating electrical machine drive device (1) during execution of the rectangular wave control (AFR + 1P), the active short circuit control (ASC) is executed, and the pulse width modulation control (PWM) is being executed. In addition, when a failure occurs in the rotating electrical machine drive device (1), the shutdown control (SD) is executed.
  • the rectangular wave control (AFR + 1P) is executed in a region where the rotational speed of the rotating electrical machine (80) is relatively high, and the pulse width modulation control (PWM) is relatively compared to the rectangular wave control (AFR + 1P). 80) is executed in a region where the rotational speed is low.
  • the active short circuit control (ASC) is selected as the fail safe control. Therefore, an increase in the DC power supply current (Ib) flowing through the DC power supply (11) and an increase in the DC link voltage (Vdc) are suppressed.
  • the active short circuit control (ASC) when executed, a negative torque is generated in the rotating electrical machine (80), so that the rotating electrical machine (80) rotating in a relatively high rotational speed region can be decelerated.
  • the return current by the active short circuit control (ASC) increases the temperature of the stator coil of the rotating electrical machine (80) and may demagnetize the permanent magnet depending on the temperature reached.
  • the maximum peak current (absolute value) of the steady current and the transient current is smaller in the region where the rotational speed is relatively high than in the region where the rotational speed is low (see, for example, FIG. 11). ).
  • the shutdown control in which the increase of the DC power supply current (Ib) or the increase of the DC link voltage (Vdc) is concerned, is applied to the rotating electrical machine drive device (1) during the execution of the pulse width modulation control (PWM). Selected when a failure occurs. Therefore, it is possible to suppress the rotating electric machine (80) from generating a large negative torque, and it is possible to shorten the period for executing the active short circuit control (ASC).
  • the pulse width modulation control since the rotational speed of the rotating electrical machine (80) is relatively low, the DC power supply current (Ib) and the DC link voltage (Vdc) are increased by the shutdown control (SD). Is controlled within an appropriate range.
  • the DC power supply current (Ib) and the DC link voltage (Vdc) are excessively increased. While suppressing, fail-safe control can be appropriately executed.
  • the inverter control device (20) performs the rotating electric machine (80) during the execution of any one of the active short circuit control (ASC) and the shutdown control (SD) selected according to the modulation control method. It is preferable to shift the control method of the fail-safe control to one of the active short circuit control (ASC) and the shutdown control (SD) based on the rotation speed of ().
  • the rotational speed of the rotating electrical machine (80) also changes during the execution of fail-safe control. Since the magnitude of the back electromotive force varies depending on the rotation speed, it is preferable to make a transition to an appropriate control method according to the rotation state of the rotating electrical machine (80) even if control of the control method selected once is executed. It is.
  • the failsafe control method cannot be reselected based on the modulation control method.
  • the counter electromotive force of the rotating electrical machine (80) depends on the rotational speed of the rotating electrical machine (80). Therefore, after any one of the active short circuit control (ASC) and the shutdown control (SD) is started, the fail-safe control method is selected based on the rotation speed of the rotating electrical machine (80). It is preferable.
  • the rotational speed of the rotating electrical machine (80) may change during the execution of fail-safe control. For example, when the vehicle is going down a slope, the rotational speed of the rotating electrical machine (80) that is drivingly connected to the wheels (W) may increase. When it is determined that the increment of the DC power supply current (Ib) or the DC link voltage (Vdc) is suppressed within an appropriate range and the shutdown control (SD) is executed, the rotational speed of the rotating electrical machine (80) Increases, the DC power supply current (Ib) and the DC link voltage (Vdc) may increase beyond an appropriate range.
  • the inverter (10) is connected to the DC power source (11) via a power switch (9) that cuts off the supply of power in an off state, and the inverter control device (20) If the rotational speed of the rotating electrical machine (80) rises above the maximum rotational speed ( ⁇ sd ) that allows execution of the shutdown control (SD) during execution of the shutdown control (SD), the control method is changed. It is preferable to shift to the active short circuit control (ASC).
  • the maximum rotational speed ( ⁇ sd ) is equal to the direct current power supply current (Ib) corresponding to the rotational speed of the rotating electrical machine (80) according to the direct current power supply voltage when the power switch (9) is turned on.
  • the regenerative power are preferably set to a rotational speed that is smaller than the allowable maximum rated value.
  • the maximum rotational speed ( ⁇ sd ) is such that, when the power switch (9) is in an off state, the peak value of the back electromotive force between the three-phase lines is allowed in the rotating electrical machine drive device (1). It is preferable that the maximum rotation speed ( ⁇ sd ) is set to a rotation speed that is smaller than the maximum rated voltage.
  • the inverter (80) Since the inverter (80) is connected to the DC power supply (11) via the power switch (9), the regenerative power charges the DC power supply (11) when the power switch (9) is on. When the power switch (9) is in the OFF state, the connection with the DC power supply (11) is cut off, so the regenerative power increases the DC link voltage (Vdc). For this reason, it is preferable that the rotational speed of the rotating electrical machine (80) serving as a reference for selecting a control method for fail-safe control is set according to the on / off state of the power switch (9).
  • the DC power supply voltage which is the voltage of the DC power supply (11)
  • the potential difference from the voltage generated by the rotating electrical machine (80) increases, and the DC power supply current (Ib) And regenerative power also tends to increase. Therefore, as described above, when the power switch (9) is in the ON state, the DC power supply current (Ib) with respect to the rotational speed of the rotating electrical machine (80) when the DC power supply voltage is the lower limit value within the rated range. It is preferable that the maximum rotation speed ( ⁇ sd ) is set based on the characteristics of the regenerative power.
  • the maximum rotation speed ( ⁇ sd ) further smoothes the DC link voltage (Vdc) that is the voltage on the DC side of the inverter (10).
  • Vdc DC link voltage
  • the voltage of the smoothing capacitor (4) that rises due to the charge supplied from the rotating electric machine (80) during the execution of the shutdown control (SD) is allowed to be the maximum value. It is preferable to set it to be smaller than that.
  • a smoothing capacitor (4) is often provided on the DC side of the inverter (10).
  • the smoothing capacitor (4) When the power switch (9) is in the OFF state, the current for charging the DC power supply (11) is cut off, so that the current charges the smoothing capacitor (4) and the DC link voltage (Vdc) is reduced. Raise.
  • the smoothing capacitor (4) often has the lowest withstand voltage.
  • the capacity of the smoothing capacitor (4) is reduced for the purpose of downsizing the rotating electrical machine drive device (1), the voltage across the terminals of the smoothing capacitor (4) (that is, the DC link voltage (Vdc)) is increased.
  • the rising speed also tends to increase. Therefore, as described above, it is preferable that the maximum rotation speed ( ⁇ sd ) is set according to the allowable value of the smoothing capacitor (4).
  • the rotational speed of the rotating electrical machine (80) decreases during the execution of the fail safe control. Since the active short circuit control (ASC) circulates current between the stator coil (8) and the inverter (20), most of the energy is converted into heat in the stator coil (8) and the inverter (20). Will be consumed. Due to this heat, the stator coil (8) and the switching element (3) may be consumed. In addition, the stator coil (8) may be heated, and the temperature of the stator may rise to demagnetize the permanent magnet. In addition, when the active short circuit control (ASC) is executed at a low rotational speed, the rotating electrical machine (80) may generate a large negative torque.
  • ASC active short circuit control
  • the current return by the active short circuit control (ASC) is terminated at an appropriate time. Therefore, as one aspect, during the execution of the active short circuit control (ASC), the rotation speed of the rotating electrical machine (80) is less than or equal to the minimum rotation speed ( ⁇ asc ) that allows the execution of the active short circuit control. When it decreases, it is preferable to shift the control method to the shutdown control (SD).
  • SD shutdown control
  • the boundary (B) for changing the modulation control method is also different.
  • the maximum rotation speed ( ⁇ sd ) and the minimum rotation speed ( ⁇ asc ) are set in conjunction with this boundary (B). Therefore, after fail-safe control is started, determination criteria (maximum rotational speed ( ⁇ sd ) and minimum rotational speed ( ⁇ asc )) when changing the control method of fail-safe control are also set to the DC link voltage (Vdc). It is preferred that corresponding values are used.
  • the rotational speed of the rotating electrical machine (80) increases to a value equal to or higher than the maximum rotational speed ( ⁇ sd ) that allows the execution of the shutdown control (SD).
  • the control method is changed to the active short circuit control (ASC), and during the execution of the active short circuit control (ASC), the rotational speed of the rotating electrical machine (80) is changed to the active short circuit control ( ASC) is executed when the speed falls below the minimum rotational speed ( ⁇ asc ) that allows execution of ASC), the control method is shifted to the shutdown control (SD), and the maximum rotational speed ( ⁇ sd ) and the minimum rotational speed are changed.
  • the speed ( ⁇ asc ) depends on the DC link voltage (Vdc) which is the voltage on the DC side of the inverter (10). The smaller the DC link voltage (Vdc), the better.
  • the negative torque is generated in the rotating electrical machine (80), and the negative torque is also transmitted to the wheels (W) that are drivingly connected to the rotating electrical machine (80).
  • This negative torque acts as a braking force and makes the vehicle occupant feel negative acceleration.
  • Such acceleration is preferably suppressed to such an extent that the passenger does not feel uncomfortable.
  • the minimum rotational speed ( ⁇ asc ) that allows execution of the active short circuit control (ASC) is transmitted to the wheel (W) during the execution of the active short circuit control (ASC). It is preferable that the absolute value of the negative torque is set to a rotational speed that is smaller than a predetermined absolute value of the maximum allowable negative torque.
  • the phase current that flows during the active short circuit includes a steady current and a transient current, but the current to be suppressed is an instantaneous peak current (absolute value) including the steady current and the transient current.
  • the minimum rotational speed ( ⁇ asc ) that allows execution of the active short circuit control (ASC) is determined by the phase current that flows during the execution of the active short circuit control (ASC). It is preferable that the rotation speed is set to be smaller than the maximum value of the current range in which the magnetic force of the permanent magnet of the rotating electrical machine (80) can be maintained at the maximum temperature at which the operation can be performed.
  • the inverter control device (20) described above can also be applied to the vehicle control device (50).
  • the vehicle control device (50) includes a transmission (90) in a power transmission path connecting the rotating electrical machine (80) serving as a driving force source of the vehicle wheel (W) and the wheel (W).
  • a vehicle drive device (60) and a rotating electrical machine drive device (1) including the inverter (10) are controlled, and the device includes the inverter control device (20).
  • a speed change control for controlling the speed change device (90) by setting a speed change ratio that is a ratio of the speed of rotation of the input shaft of the speed change device (90) to the speed of rotation of the output shaft of the speed change device (90); Performing inverter control for switching control of the switching element (3) constituting the inverter (10);
  • fail-safe shift control for controlling the transmission (90) in a direction in which the gear ratio becomes smaller is executed.
  • the rotational speed of the rotating electrical machine (80) is reduced by executing fail-safe shift control (upshift) to reduce the gear ratio, the continuous short-circuit current (ASC) is maintained for a long time.
  • the counter electromotive force generated in the rotating electrical machine (80) can be appropriately discharged while being suppressed.
  • Fail-safe control can be appropriately executed while suppressing an excessive increase in voltage (Vdc) and a long-term continuation of the circulating current.
  • the vehicular control device (50) controls the transmission (90) in a direction in which the gear ratio decreases by the fail-safe shift control (upshift), so that the rotational speed of the rotating electrical machine (80) is increased. Is preferably reduced to the low rotational speed region.
  • the control method of the fail-safe control is shifted from the active short circuit control (ASC) to the shutdown control (SD). Therefore, it is possible to suppress the rotating electric machine (80) from generating a large negative torque, and it is possible to shorten the period for executing the active short circuit control (ASC).
  • the heating of the rotating electrical machine (80) due to the continuous continuation of the circulating current is also suppressed. As a result, the possibility of demagnetizing the permanent magnet of the rotating electrical machine (80) due to overheating is also suppressed.
  • the rotational speed of the wheel (W) is increased when the vehicle goes down a slope or a step, and the increase in the rotational speed is transmitted to the rotating electrical machine (80).
  • the rotational speed of (80) may increase.
  • active short circuit control (ASC) is executed as fail-safe control.
  • fail-safe shift control is executed, the rotational speed of the rotating electrical machine (80) can be reduced, and execution of active short circuit control (ASC) can be suppressed.
  • the vehicle control device (50) determines that the rotational speed of the rotating electrical machine (80) is increased to the high rotational speed region during or after execution of the fail-safe shift control, Furthermore, it is preferable to control the transmission (90) in a direction in which the transmission ratio becomes smaller.
  • the vehicle drive device (60) further includes an internal combustion engine (70) as a driving force source and power transmission between the internal combustion engine (70) and the wheels (W) is maintained, the rotating electric machine Even in a state where the driving force due to (80) is lost, the wheel (W) can be rotated by the driving force of the internal combustion engine (70).
  • fail-safe control is executed, the passenger is also informed that some failure has occurred in the vehicle or the vehicle drive device (60). However, an occupant may desire to stop the vehicle by moving it to a desired location such as a service area.
  • the temperature condition of the rotating electrical machine (80) can be added to the execution condition of the fail-safe shift control.
  • the active short circuit control (ASC) is executed as the fail-safe control, and the temperature of the rotating electrical machine (80) is equal to or higher than a predetermined regulation temperature. It is preferable to be executed in this case.
  • the regulated temperature is various values obtained by experiments and simulations, specifically, the time until the magnetic force of the permanent magnet is deteriorated, the rate of temperature increase per unit time, the temperature sensor Is preferably set based on the error range, current value, and the like.
  • the inverter (80) When the inverter (80) is connected to the DC power source (11) via the power switch (9) that cuts off the power supply in the OFF state, the regenerative power is supplied to the DC power source when the power switch (9) is ON. Charge (11). When the power switch (9) is in the OFF state, the connection with the DC power supply (11) is cut off, so the regenerative power increases the DC link voltage (Vdc). For this reason, it is preferable that the rotational speed of the rotating electrical machine (80) serving as a reference for selecting a control method for fail-safe control is set according to the on / off state of the power switch (9).
  • the inverter (10) is connected to the DC power source (11) via a power switch (9) that cuts off the supply of power in the off state, and executes the shutdown control (SD).
  • the allowable maximum rotational speed ( ⁇ sd ) depends on the DC power supply voltage (Ib) according to the rotational speed of the rotating electrical machine (80) according to the DC power supply voltage when the power switch (9) is in the ON state. It is preferable that the regenerative power is set to a rotation speed that is smaller than the maximum rated value allowed.
  • the maximum rotational speed ( ⁇ sd ) is such that, when the power switch (9) is in an off state, the peak value of the back electromotive force between the three-phase lines is allowed in the rotating electrical machine drive device (1). It is preferable that the maximum rotation speed ( ⁇ sd ) is set to a rotation speed that is smaller than the maximum rated voltage.
  • the DC power supply voltage which is the voltage of the DC power supply (11)
  • the potential difference from the voltage generated by the rotating electrical machine (80) increases, and the DC power supply current (Ib) And regenerative power also tends to increase. Therefore, as described above, when the power switch (9) is in the ON state, the DC power supply current (Ib) with respect to the rotational speed of the rotating electrical machine (80) when the DC power supply voltage is the lower limit value within the rated range. It is preferable that the maximum rotation speed ( ⁇ sd ) is set based on the characteristics of the regenerative power.
  • the technology according to the present disclosure can be used for an inverter control device that controls a rotating electrical machine drive device including an inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 回転電機駆動装置に故障が生じた場合に、直流電源を充電する電流や直流リンク電圧の過大な増加を抑制しつつ、適切にフェールセーフ制御を実行する。 インバータ制御装置は、フェールセーフ制御として、複数相全てのアームの上段側スイッチング素子をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全てのアームの下段側スイッチング素子をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御(ASC)と、全てのスイッチング素子をオフ状態とするシャットダウン制御(SD)と、を選択的に実行する。インバータ制御装置は、回転電機の回転速度又は前記回転電機駆動装置に故障が生じた際に実行中の変調制御方式に応じて、アクティブショートサーキット制御(ASC)又はシャットダウン制御(SD)を実行する。

Description

インバータ制御装置及び車両用制御装置
 本発明は、インバータを備えた回転電機駆動装置を制御対象とするインバータ制御装置、及び当該インバータ制御装置を含む車両用制御装置に関する。
 交流の回転電機と直流電源との間には、直流と交流との間で電力変換を行うインバータが備えられる場合が多い。ここで、回転電機は、電気エネルギーにより動力を出力するモータとしての機能に留まらず、車輪や内燃機関などの運動エネルギーにより発電を行う発電機としての機能も有している。回転電機により発電された電力は、直流電源に回生されて蓄電される。尚、直流電源とインバータとの間には、コンタクタ等の電源スイッチが備えられている場合がある。この電源スイッチがオン状態であると導通状態となり、直流電源とインバータ及び回転電機とが電気的に接続される。電源スイッチがオフ状態であると非導通状態となり、直流電源とインバータ及び回転電機との電気的接続が遮断される。
 ところで、このような回転電機のインバータに過電流や過電圧などの故障が生じた場合、例えばシャットダウン制御が実施される。シャットダウン制御とは、インバータを構成するスイッチング素子へのスイッチング制御信号を非アクティブ状態に変化させてインバータをオフ状態にする制御である。例えば、特開2003-134797号公報(特許文献1)には、複数個のスイッチング素子が一体化されてインバータが構成されたIPM(Intelligent Power Module)において、異常検出回路や過電流検出回路の検出結果に基づいてシャットダウン制御が行われる例が開示されている(図1等)。
 このように、回転電機の定格動作範囲内におけるフェールセーフの手法として、シャットダウン制御が用いられる場合がある。ところで、回転電機の回転速度が高くなると逆起電力も大きくなることが知られている。従って、一般的には、定格動作範囲における直流リンク電圧(インバータの直流側の電圧)の最低値や、直流リンク電圧が印加されるインバータなどの最大定格電圧を考慮して、許容可能な逆起電力及びその逆起電力に対応する回転電機の回転速度が設定される。
特開2003-134797号公報
 しかし、回転電機の用途によっては、最高回転速度における逆起電力が非常に高い値となってしまう可能性がある。例えば、非常に高い回転速度で回転電機が力行している際に故障が生じてシャットダウン制御が実行される場合を考える。電源スイッチがオン状態においてシャットダウン制御が実行されると、高い回生トルクが生じて直流電源を充電する大きい直流電源電流が流れ、直流電源にダメージ(damage)を与える可能性がある。一方、直流電源を保護するために電源スイッチがオフ状態にされると、直流リンク電圧が急激に上昇する。その結果、インバータ(スイッチング素子)や直流リンク電圧を平滑化する平滑コンデンサ等にダメージ(damage)を与える可能性がある。
 そこで、インバータを備えた回転電機駆動装置に故障が生じた場合に、直流電源に流れる直流電源電流や直流リンク電圧の過大な増加を抑制しつつ、適切にフェールセーフ制御を実行することが望まれる。
 上記に鑑みた、インバータを備えた回転電機駆動装置を制御対象として、前記インバータを構成するスイッチング素子をスイッチング制御すると共に、前記回転電機駆動装置に故障が生じた場合にフェールセーフ制御を実行するインバータ制御装置の特徴構成は、
 前記インバータは、直流電源に接続されると共に、車両の車輪に駆動連結された交流の回転電機に接続されて直流と複数相交流との間で電力変換を行うものであって、上段側スイッチング素子と下段側スイッチング素子との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子に並列に接続されたフリーホイールダイオードを備えるものであり、
 前記フェールセーフ制御は、複数相全ての前記アームの前記上段側スイッチング素子をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全ての前記アームの前記下段側スイッチング素子をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御と、全ての前記スイッチング素子をオフ状態とするシャットダウン制御と、を選択的に実行するものであり、
 少なくとも前記回転電機の回転速度に応じて、高回転速度領域では前記アクティブショートサーキット制御を実行し、前記高回転速度領域よりも低回転速度側の低回転速度領域では前記シャットダウン制御を実行する点にある。
 回転電機の逆起電力は、回転電機の回転速度に応じて大きくなる。このため、シャットダウン制御が実行された場合には、回転速度に応じて、充電のために直流電源に流れる直流電源電流や、インバータの直流側の電圧である直流リンク電圧が増加する傾向がある。一方、アクティブショートサーキット制御では、低い回転速度で実行した場合に回転電機が大きな負トルクを発生させることがある点や、長時間実行した場合に回転電機の発熱量が大きくなる点で制約がある。しかし、回転電機のステータコイルが持つエネルギーが充電のための電流として直流電源に流れ込まずに、ステータコイルとインバータとの間で還流する。このため、アクティブショートサーキット制御では、直流リンク電圧も上昇しない。
 本構成によれば、相対的に回転電機の回転速度が高い高回転速度領域では、フェールセーフ制御としてアクティブショートサーキット制御が選択される。従って、直流電源に流れる直流電源電流の増加や、直流リンク電圧の上昇が抑制される。一方、相対的に回転電機の回転速度が低い低回転速度領域では、フェールセーフ制御としてシャットダウン制御が選択される。従って、回転電機が大きな負トルクを発生させることを抑制できると共にアクティブショートサーキット制御を実行する期間も短縮できる。また、低回転速度領域では、シャットダウン制御による直流電源電流や直流リンク電圧の増分は、適切な範囲内に抑制される。このように、本構成によれば、インバータを備えた回転電機駆動装置に故障が生じた場合に、直流電源を充電する直流電源電流や直流リンク電圧の過大な増加を抑制しつつ、適切にフェールセーフ制御を実行することができる。
 上記に鑑みた、インバータを備えた回転電機駆動装置を制御対象として、前記インバータを構成するスイッチング素子をスイッチング制御すると共に、前記回転電機駆動装置に故障が生じた場合にフェールセーフ制御を実行するインバータ制御装置のもう一つの特徴構成は、
 前記インバータは、直流電源に接続されると共に、車両の車輪に駆動連結された交流の回転電機に接続されて直流と複数相交流との間で電力変換を行うものであって、上段側スイッチング素子と下段側スイッチング素子との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子に並列に接続されたフリーホイールダイオードを備えるものであり、
 電気角の一周期においてデューティーの異なる複数のパルスが出力される制御方式であるパルス幅変調制御と、前記回転電機の界磁を弱める方向に調整する弱め界磁制御と共に実施され、電気角の一周期において1つのパルスが出力される制御方式である矩形波制御との少なくとも2つの変調制御方式を選択的に実行すると共に、
 前記フェールセーフ制御は、複数相全ての前記アームの前記上段側スイッチング素子をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全ての前記アームの前記下段側スイッチング素子をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御と、全ての前記スイッチング素子をオフ状態とするシャットダウン制御と、を選択的に実行するものであり、
 前記矩形波制御の実行中に前記回転電機駆動装置に故障が生じた場合には前記アクティブショートサーキット制御を実行し、前記パルス幅変調制御の実行中に前記回転電機駆動装置に故障が生じた場合には前記シャットダウン制御を実行する点にある。
 矩形波制御は、相対的に回転電機の回転速度が高い領域において実行され、パルス幅変調制御は、矩形波制御に比べて相対的に回転電機の回転速度が低い領域において実行される。本構成によれば、矩形波制御の実行中に回転電機駆動装置に故障が生じた場合には、フェールセーフ制御としてアクティブショートサーキット制御が選択される。従って、直流電源に流れる直流電源電流の増加や、直流リンク電圧の上昇が抑制される。一方、直流電源電流の増加や直流リンク電圧の上昇が懸念されるシャットダウン制御は、パルス幅変調制御の実行中に回転電機駆動装置に故障が生じた場合に選択される。従って、回転電機が大きな負トルクを発生させることを抑制できると共にアクティブショートサーキット制御を実行する期間も短縮できる。また、パルス幅変調制御の実行中は、相対的に回転電機の回転速度が低いため、シャットダウン制御による直流電源電流や直流リンク電圧の増分は、適切な範囲内に抑制される。このように、本構成によれば、インバータを備えた回転電機駆動装置に故障が生じた場合に、直流電源を充電する直流電源電流や直流リンク電圧の過大な増加を抑制しつつ、適切にフェールセーフ制御を実行することができる。
回転電機駆動装置のシステム構成を模式的に示す回路ブロック図 車両の駆動装置の構成を模式的に示すブロック図 シャットダウン及びコンタクタオープンの際のバッテリ電流及び直流リンク電圧の応答を模式的に示す波形図 回転速度とフェールセーフ制御との関係を示す図 フェールセーフ制御の状態遷移図 回生電力及びバッテリ電流と回転速度との関係を示す図 モータ線間逆起電圧と回転速度との関係を示す図 車輪に伝達される負トルク及び負の加速度と回転速度との関係を示す図 アクティブショートサーキット制御中の定常電流のdq軸ベクトル座標系におけるベクトル軌跡 アクティブショートサーキット制御の開始前後の相電流を示す波形図 アクティブショートサーキット制御中の相電流の最大ピーク電流と回転速度との関係を示す図 第二実施形態における回転速度とフェールセーフ制御との関係を示す図 第二実施形態におけるフェールセーフ制御の状態遷移図 第三実施形態における車両用駆動装置の構成を模式的に示すブロック図 第三実施形態におけるフェールセーフ制御とフェールセーフ変速制御との関係を示す図 第三実施形態におけるフェールセーフ変速制御中に回転速度が上昇する場合の一例を示す図 第三実施形態におけるフェールセーフ変速制御中に回転速度が上昇する場合の他の例を示す図 第三実施形態におけるフェールセーフ制御の状態遷移図 第三実施形態におけるフェールセーフ制御の状態遷移図
1.第一の実施形態
 以下、第一の実施形態に係るインバータ制御装置について図面に基づいて説明する。図1に示すように、インバータ制御装置20は、インバータ10を備えた回転電機駆動装置1を制御対象とし、回転電機駆動装置1を介して回転電機80を駆動制御する。インバータ制御装置20は、インバータ10を構成するスイッチング素子3をスイッチング制御すると共に、回転電機駆動装置1に故障が生じた場合に後述するフェールセーフ制御を実行する。
 インバータ10は、高圧バッテリ11(直流電源)にコンタクタ9(電源スイッチ)を介して接続されると共に、交流の回転電機80に接続されて直流と複数相の交流(ここでは3相交流)との間で電力変換を行う電力変換装置である。インバータ10は、交流1相分のアームが上段側スイッチング素子31と下段側スイッチング素子32との直列回路により構成されている。また、下段側から上段側へ向かう方向を順方向として各スイッチング素子3には、並列にダイオード5(フリーホイールダイオード)が接続されている。なお、コンタクタ9は、電源スイッチの一例である。ここで、電源スイッチとは、電気回路を開閉する開閉器を指し、オン状態で電気回路を閉じ(接続し)、オフ状態で電気回路を開く(遮断する)。また、高圧バッテリ11は、直流電源の一例である。
 回転電機駆動装置1及びインバータ制御装置20による駆動対象の回転電機80は、例えばハイブリッド自動車や電気自動車等の車両における車輪の駆動力源となる回転電機である。本実施形態では、回転電機80がこのような車両における車輪の駆動力源である場合を例として説明するが、回転電機80の用途はこれに限定されるものではない。この回転電機80は、複数相の交流(ここでは3相交流)により動作する回転電機であり、電動機としても発電機としても機能することができる。即ち、回転電機80は、インバータ10を介して高圧バッテリ11からの電力を動力に変換する(力行)。或いは、回転電機80は、図2を参照して後述する内燃機関70や車輪Wから伝達される回転駆動力を電力に変換し、インバータ10を介して高圧バッテリ11を充電する(回生)。
 図2の模式図に示すように、本実施形態の回転電機80は、ハイブリッド自動車の駆動力源となる回転電機(MG:Motor/Generator)である。本実施形態では、いわゆるパラレル方式のハイブリッド駆動装置(車両用駆動装置)を備える車両を例示している。このハイブリッド駆動装置は、車両における車輪の駆動力源として内燃機関70及び回転電機80を備えている。内燃機関70は、燃料の燃焼により駆動される熱機関である。例えば、内燃機関70として、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。内燃機関70と回転電機80とは、内燃機関分離クラッチ75を介して駆動連結されている。
 また、ハイブリッド駆動装置は、変速装置90を備えている。ここで、変速装置90は、変速比の異なる複数の変速段を有する有段の自動変速装置である。例えば、変速装置90は、複数の変速段を形成するため、遊星歯車機構等の歯車機構及び複数の係合装置(クラッチやブレーキ等)を備えている。変速装置90の入力軸は回転電機80の出力軸(例えばロータ軸)に駆動連結されている。変速装置90の入力軸には、内燃機関70及び回転電機80の回転速度及びトルクが伝達される。変速装置90は、変速装置90に伝達された回転速度を、各変速段の変速比で変速すると共に、変速装置90に伝達されたトルクを変換して変速装置90の出力軸に伝達する。変速装置90の出力軸は、例えばディファレンシャルギヤ(出力用差動歯車装置)等を介して2つの車軸に分配され、各車軸に駆動連結された車輪Wに伝達される。ここで、変速比は、変速装置90において各変速段が形成された場合の、出力軸の回転速度に対する入力軸の回転速度の比である(=入力軸の回転速度/出力軸の回転速度)。また、入力軸から変速装置90に伝達されるトルクに、変速比を乗算したトルクが、出力軸に伝達されるトルクに相当する。
 尚、ここで「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指す。具体的には、「駆動連結」とは、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。従って、回転電機80は、車輪Wに駆動連結されているということができる。
 ところで、図2において、符号17は回転電機80の温度を検出する温度センサ、符号18はインバータ10の温度(スイッチング素子3の温度)を検出する温度センサを例示している。これらの温度センサは、回転電機80及びインバータ10において各1つに限定されるものではなく、複数箇所に設けられていてもよい。温度センサは、サーミスタ、熱電対、非接触温度センサ(放射温度計)など種々の原理によるセンサを適宜利用することができる。また、符号13は回転電機80のロータの回転(速度・方向・角速度など)を検出する回転センサ、符号93は変速装置90の出力軸の回転を検出する回転センサである。回転センサは、レゾルバや、光学式エンコーダ、磁気式エンコーダを適宜利用することができる。尚、図2では、内燃機関70を始動するためのスタータ装置や、各種オイルポンプ(電動式及び機械式)、変速装置90の制御装置等は、省略している。
 再び図1を参照し、回転電機駆動装置1のシステム構成について説明する。回転電機80を駆動するための電力源としての高圧バッテリ11は、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池(バッテリ)や、電気二重層キャパシタなどにより構成されている。高圧バッテリ11は、回転電機80に電力を供給するために、大電圧大容量の直流電源である。高圧バッテリ11の定格の電源電圧は、例えば200~400[V]である。回転電機80は、交流の回転電機であるから、高圧バッテリ11と回転電機80との間には、直流と交流(ここでは3相交流)との間で電力変換を行うインバータ10が備えられている。インバータ10の直流側の正極電源ラインPと負極電源ラインNとの間の電圧は、以下“直流リンク電圧Vdc”と称する。高圧バッテリ11は、インバータ10を介して回転電機80に電力を供給可能であると共に、回転電機80が発電して得られた電力を蓄電可能である。
 尚、図1に破線で示すように、高圧バッテリ11とインバータ10との間に、直流電圧を変換するDC/DCコンバータ2が備えられていてもよい。DC/DCコンバータ2は、車両のエアーコンディショナーなどの補機に電力を供給する。
 インバータ10の直流側には、直流リンク電圧Vdcを平滑化する平滑コンデンサ4(直流リンクコンデンサ)が備えられている。平滑コンデンサ4は、回転電機80の消費電力の変動に応じて変動する直流電圧(直流リンク電圧Vdc)を安定化させる。
 高圧バッテリ11のインバータ10の側には、電源スイッチとしてのコンタクタ9が備えられている。DC/DCコンバータ2が備えられていない場合には、コンタクタ9は、平滑コンデンサ4と高圧バッテリ11との間に配置されている。DC/DCコンバータ2が備えられている場合には、コンタクタ9は、DC/DCコンバータ2と高圧バッテリ11との間に配置されている。即ち、コンタクタ9は、回転電機駆動装置1の電気回路系統(DC/DCコンバータ2、平滑コンデンサ4、インバータ10)と、高圧バッテリ11との電気的な接続を切り離すことが可能である。
 本実施形態において、このコンタクタ9は、車両の最も上位の制御装置の1つである車両ECU(Electronic Control Unit)100からの指令に基づいて開閉(オンオフ)するメカニカルリレーであり、例えばシステムメインリレー(SMR:System Main Relay)と称される。コンタクタ9は、車両のイグニッションキー(IGキー)がオン状態(有効状態)の際にSMRの接点が閉じて導通状態(接続状態)となり、IGキーがオフ状態(非有効状態)の際にSMRの接点が開いて非導通状態(開放状態)となる。インバータ10は、回転電機80に接続されていると共に、高圧バッテリ11との間にコンタクタ9を介して接続されている。コンタクタ9が接続状態(オン状態)において高圧バッテリ11とインバータ10(及び回転電機80)とが電気的に接続され、コンタクタ9が開放状態(オフ状態)において高圧バッテリ11とインバータ10(及び回転電機80)との電気的接続が遮断される。
 上述したように、インバータ10は、直流リンク電圧Vdcを有する直流電力を複数相(nを自然数としてn相、ここでは3相)の交流電力に変換して回転電機80に供給すると共に、回転電機80が発電した交流電力を直流電力に変換して直流電源に供給する。インバータ10は、複数のスイッチング素子3を有して構成される。スイッチング素子3には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSiC-MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC-SIT(SiC - Static Induction Transistor)、GaN-MOSFET(Gallium Nitride - MOSFET)などの高周波での動作が可能なパワー半導体素子を適用すると好適である。図1に示すように、本実施形態では、スイッチング素子3としてIGBTが用いられる。
 例えば直流と複数相の交流との間で電力変換するインバータ10は、よく知られているように複数相のそれぞれに対応する数のアームを有するブリッジ回路により構成される。つまり、図1に示すように、インバータ10の直流正極側(正極電源ラインP)と直流負極側(負極電源ラインN)との間に2つのスイッチング素子3が直列に接続されて1つのアームが構成される。3相交流の場合には、この直列回路(1つのアーム)が3回線(3相)並列接続される。つまり、回転電機80のU相、V相、W相に対応するステータコイル8のそれぞれに一組の直列回路(アーム)が対応したブリッジ回路が構成される。
 対となる各相のスイッチング素子3による直列回路(アーム)の中間点、つまり、正極電源ラインPの側のスイッチング素子3(上段側スイッチング素子31)と負極電源ラインN側のスイッチング素子3(下段側スイッチング素子32)との接続点は、回転電機80の3相のステータコイル8にそれぞれ接続される。尚、各スイッチング素子3には、負極“N”から正極“P”へ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にダイオード5が備えられている。
 図1に示すように、インバータ10は、インバータ制御装置20により制御される。インバータ制御装置20は、マイクロコンピュータ等の論理回路を中核部材として構築されている。例えば、インバータ制御装置20は、車両ECU100等の他の制御装置等からCAN(Controller Area Network)などを介して要求信号として提供される回転電機80の目標トルクTMに基づいて、ベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。回転電機80の各相のステータコイル8を流れる実電流は電流センサ12により検出され、インバータ制御装置20はその検出結果を取得する。また、回転電機80のロータの各時点での磁極位置は、例えばレゾルバなどの回転センサ13により検出され、インバータ制御装置20はその検出結果を取得する。インバータ制御装置20は、電流センサ12及び回転センサ13の検出結果を用いて、電流フィードバック制御を実行する。インバータ制御装置20は、電流フィードバック制御のために種々の機能部を有して構成されており、各機能部は、マイクロコンピュータ等のハードウエアとソフトウエア(プログラム)との協働により実現される。電流フィードバック制御については、公知であるのでここでは詳細な説明は省略する。
 ところで、インバータ10を構成する各スイッチング素子3の制御端子(例えばIGBTのゲート端子)は、ドライバ回路30を介してインバータ制御装置20に接続されており、それぞれ個別にスイッチング制御される。車両ECU100や、スイッチング制御信号を生成するインバータ制御装置20は、マイクロコンピュータなどを中核として構成され、回転電機80を駆動するための高圧系回路とは、動作電圧(回路の電源電圧)が大きく異なる。多くの場合、車両には、高圧バッテリ11の他に、高圧バッテリ11よりも低電圧(例えば12~24[V])の電源である低圧バッテリ(不図示)も搭載されている。車両ECU100やインバータ制御装置20の動作電圧は、例えば5[V]や3.3[V]であり、低圧バッテリから電力を供給されて動作する。
 低圧バッテリと高圧バッテリ11とは、互いに絶縁されており、互いにフローティングの関係にある。このため、回転電機駆動装置1には、各スイッチング素子3に対するスイッチング制御信号(例えばゲート駆動信号)の駆動能力(例えば電圧振幅や出力電流など、後段の回路を動作させる能力)をそれぞれ高めて中継するドライバ回路30(制御信号駆動回路)が備えられている。低圧系回路のインバータ制御装置20により生成されたスイッチング制御信号は、ドライバ回路30を介して高圧回路系のスイッチング制御信号としてインバータ10に供給される。低圧系回路と高圧系回路とは互いに絶縁されているため、ドライバ回路30は、例えばフォトカプラやトランスなどの絶縁素子やドライバICを利用して構成される。
 ところで、本実施形態に係るインバータ制御装置20は、少なくともコンタクタ9がオフ状態とされた場合に、回転電機駆動装置1に故障が生じたものとして、回転電機80の動作を制限すべく、フェールセーフ制御を実施する。また、車両、回転電機80、変速装置90、インバータ10等に何らかの故障が生じた場合にも、回転電機駆動装置1に故障が生じたものとして、フェールセーフ制御が実施される。フェールセーフ制御は、インバータ制御装置20を中核として実行される。インバータ制御装置20は、インバータ制御装置20が直接故障検出情報を取得した場合の他、車両ECU100など、他の制御装置からのフェールセーフ制御要求に応じてもフェールセーフ制御を実行する。ここで、回転電機駆動装置1の「故障」には、例えば、コンタクタ9がオフ状態とされたことによる過電圧の発生、インバータ10内の電流センサの故障による検出電流値の異常、インバータ10内の回路の断線による過電流の発生、インバータ制御装置20やドライバ回路30の故障、車両ECU100とインバータ制御装置20との間の通信の遮断、例えば変速装置90等のインバータ10以外の車両のいずれかの部分の故障等、回転電機駆動装置1の動作に影響を及ぼす様々な故障が含まれる。
 フェールセーフ制御としては、例えばシャットダウン制御(SD)が知られている。シャットダウン制御とは、インバータ10を構成する全てのスイッチング素子3へのスイッチング制御信号を非アクティブ状態に変化させてインバータ10をオフ状態にする制御である。この時、回転電機80のロータは慣性によって回転を続けており、大きな逆起電力が生じる。ロータが高速回転している際には、モータ線間逆起電圧(Vbemf)が直流リンク電圧Vdcよりも非常に大きくなる。尚、ロータの回転によって生成された電力は、ダイオード5を介して整流され、オン状態のコンタクタ9を通って高圧バッテリ11を充電する。図3の上段の波形図に示すように、例えば、時刻tsdにおいてシャットダウン制御が開始されると、高圧バッテリ11を充電する電流であるバッテリ電流Ib(直流電源電流)の絶対値が大きく増加する。このバッテリ電流Ibが高圧バッテリ11の定格電流を超えると、高圧バッテリ11の消耗や破損の原因となる。大きなバッテリ電流Ibに耐えられるように高圧バッテリ11の定格値を高くすると、規模の増大やコストの増大を招く可能性がある。
 コンタクタ9をオフ状態にすると、高圧バッテリ11への電流の流入は遮断される。図3の上段の波形図に示すように、バッテリ電流Ibはゼロとなる。高圧バッテリ11への流入を遮断された電流は、平滑コンデンサ4を充電し、直流リンク電圧Vdcを上昇させる。図3の下段の波形図に示すように、例えば、時刻topenにおいてコンタクタ9がオフ状態となると、直流リンク電圧Vdcは急上昇する。直流リンク電圧Vdcがインバータ10(スイッチング素子3)や、DC/DCコンバータ2、平滑コンデンサ4の定格電圧(絶対最大定格)を超えると、これらを損傷させる可能性がある。高い電圧を許容するようにこれらの定格値を高くすると、規模の増大やコストの上昇を招く可能性がある。
 従って、インバータ10を備えた回転電機駆動装置1に故障が生じた場合に、高圧バッテリ11を充電する際のバッテリ電流Ibや直流リンク電圧Vdcの過大な増加を抑制しつつ、フェールセーフ制御を実行することが望まれる。本実施形態では、このような背景に鑑みて、インバータ制御装置20が、効果的なフェールセーフ制御を実行する。
 上述したように、インバータ制御装置20は、インバータ10を備えた回転電機駆動装置1を制御対象として、インバータ10を構成するスイッチング素子3をスイッチング制御すると共に、回転電機駆動装置1に故障が生じた場合にフェールセーフ制御を実行する。インバータ制御装置20は、フェールセーフ制御として、シャットダウン制御(SD)と、アクティブショートサーキット制御(ASC)とを選択的に実行する。ここで、シャットダウン制御とは、インバータ10の全てのスイッチング素子3をオフ状態とする制御である。アクティブショートサーキット制御とは、複数相全てのアームの上段側スイッチング素子31或いは複数相全てのアームの下段側スイッチング素子32の何れか一方側をオン状態とし、他方側をオフ状態とする制御である。つまり、回転電機80とインバータ10との間で電流を還流させる制御である。尚、複数相全てのアームの上段側スイッチング素子31をオン状態とし、複数相全てのアームの下段側スイッチング素子32をオフ状態とする場合を上段側アクティブショートサーキット制御と称する。また、複数相全てのアームの下段側スイッチング素子32をオン状態とし、複数相全てのアームの上段側スイッチング素子31をオフ状態とする場合を下段側アクティブショートサーキット制御と称する。
 本実施形態では、インバータ制御装置20は、フェールセーフ制御として、少なくとも回転電機80の回転速度に応じて、高回転速度領域ではアクティブショートサーキット制御(ASC)を実行し、高回転速度領域よりも低回転速度側の低回転速度領域ではシャットダウン制御(SD)を実行する。図4は、回転電機の回転速度とトルクとの関係を示すトルクマップを例示している。図中の符号ωsdは、シャットダウン制御の実行を許容する最大回転速度(SD最大回転速度)を示している。回転速度がこのSD最大回転速度よりも高い領域(或いはSD最大回転速度以上の領域)は、高回転速度領域である。高回転速度領域よりも低回転速度側の領域、つまり、回転速度がSD最大回転速度より低い領域(或いはSD最大回転速度以下の領域)は、低回転速度領域である。尚、「以上/以下」、「より高い/より低い(未満)」等の境界条件は適宜設定可能であり、フェールセーフ制御の構成を限定するものではない。以下の説明において他の境界を示す場合も同様である。
 インバータ制御装置20は、シャットダウン制御の実行中に、回転電機80の回転速度に応じて、フェールセーフ制御の制御方式を遷移させる。具体的には、インバータ制御装置20は、シャットダウン制御の実行中に、回転電機80の回転速度が高回転速度領域まで上昇した場合には、制御方式をアクティブショートサーキット制御に遷移させる。一方、インバータ制御装置20は、アクティブショートサーキット制御の実行中に、回転電機80の回転速度が低回転速度領域まで低下した場合には、制御方式をシャットダウン制御に遷移させる。尚、この遷移に際しては、低回転速度領域と高回転速度領域との間に、図4に示すようなヒステリシス区間(遷移区間Tsw)が設けられている。アクティブショートサーキット制御の実行中に、制御方式をシャットダウン制御に遷移させる際には、図4中の符号ωascよりも低回転速度側が低回転速度領域に対応する。符号ωascは、アクティブショートサーキット制御の実行を許容する最小回転速度(ASC最小回転速度)を示している。
 ここで、図5の状態遷移図も参照して、フェールセーフ制御における状態遷移について説明する。図中の通常制御は、コンタクタ9がオフ状態とされておらず、また、車両、回転電機80、変速装置90、インバータ10等にも故障が生じておらず、通常の制御が実行されている状態を示している。この通常制御中に、回転電機駆動装置1に何らかの故障が生じた場合、故障が発生したという情報“fail”がインバータ制御装置20に伝達される(#1)。インバータ制御装置20は、この情報“fail”に応答して、回転電機80の回転速度に基づき、フェールセーフ制御の制御方式を判定する。回転速度ωが、SD最大回転速度ωsdよりも高い場合には、アクティブショートサーキット制御(ASC)が選択される(#2a)。一方、回転速度ωが、SD最大回転速度ωsdよりも低い場合には、シャットダウン制御(SD)が選択される(#2s)。つまり、フェールセーフ制御の開始に際しては、SD最大回転速度ωsdを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域である。回転速度ωが遷移区間Tswに含まれる場合には、本実施形態ではシャットダウン制御(SD)が選択される。
 アクティブショートサーキット制御(ASC)の実行中に、回転速度ωがASC最小回転速度ωascを下回ると、制御方式がシャットダウン制御(SD)に遷移される(#3)。つまり、一旦、アクティブショートサーキット制御(ASC)が実行されると、ASC最小回転速度ωascを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域となる。一方、シャットダウン制御(SD)の実行中に、回転速度ωがSD最大回転速度ωsdよりも高くなると、制御方式がアクティブショートサーキット制御(ASC)に遷移される(#4)。この場合には、SD最大回転速度ωsdを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域である。尚、フェールセーフ制御を実行中に、回転速度ωが高くなるケースとしては、坂道や段差を下ることによって車輪Wの回転速度が上昇し、その回転速度の上昇が回転電機80に伝達された場合などが想定される。
 フェールセーフ制御の実行を続けていると、基本的には次第に回転電機80の回転速度が低下してくる。従って、制御方式はシャットダウン制御(SD)に収束していく。シャットダウン制御(SD)の実行中に回転速度ωがゼロとなると、インバータ制御装置20は、回転電機80が安全に停止したことを上位の制御装置である車両ECU100に伝達する。車両ECU100は、車両のイグニッションキー(IGキー)をオフ状態とする(#5:IG-OFF)。或いは、車両ECU100は、乗員に対してイグニッションキーの操作を促す報知を行い、乗員によってイグニッションキーがオフ状態に操作される。
 以下、上述したSD最大回転速度ωsd、ASC最小回転速度ωascの設定について説明する。図3を参照して上述したように、シャットダウン制御においては、以下の2つの点に留意する必要がある。1点目は、コンタクタ9がオン状態におけるバッテリ電流Ibの大きさであり、2点目は、コンタクタ9がオフ状態における直流リンク電圧Vdcの上昇である。従って、SD最大回転速度ωsdは、これら2点を考慮して設定されると好適である。例えば、それぞれの点を考慮して設定された値の内、何れか低い方の回転速度がSD最大回転速度ωsdとして設定されると好適である。
 1点目に鑑みると、SD最大回転速度ωsdは、コンタクタ9がオン状態の場合に、バッテリ電圧(直流電源電圧)に応じて(例えば、バッテリ電圧の定格範囲内の下限値において)、回転電機80の回転速度に応じたバッテリ電流Ib及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定されていると好ましい。図6は、回転速度とバッテリ電流Ib(I1,I2)との関係、及び回転速度と回生電力(P1,P2)との関係を示している。図中において実線I1,I2は、バッテリ電流Ibを示しており、一点鎖線P1,P2は回生電力を示している。I2及びP2は、バッテリ電圧が、高圧バッテリ11の定格範囲内の上限値である場合におけるバッテリ電流(I2)及び回生電力(P2)を示している。I1及びP1は、バッテリ電圧が、高圧バッテリ11の定格範囲内の下限値である場合におけるバッテリ電流(I1)及び回生電力(P1)を示している。バッテリ電圧が低い方が、よりバッテリ電流Ibが流入し易く、より低回転速度域において高いバッテリ電流Ibが流れていることがわかる。よって、バッテリ電圧が、高圧バッテリ11の定格範囲内の下限値である場合に、バッテリ電流Ibが許容される最大定格値(Ibth)よりも小さくなる回転速度(ωsd1)に、SD最大回転速度ωsdが設定されると好適である。
 尚、ここでは、バッテリ電流Ibが許容される最大定格値(Ibth)を基準として、SD最大回転速度ωsd(ωsd1)が設定される形態を例示したが、回生電力が許容される最大定格値(不図示)を基準として、SD最大回転速度ωsdが設定されてもよい。当然ながら、両基準に基づく回転速度の内、何れか低い方の回転速度がSD最大回転速度ωsdとして設定されると好適である。
 2点目に鑑みると、SD最大回転速度ωsdは、コンタクタ9がオフ状態の場合に、3相の線間における逆起電力のピーク値が、回転電機駆動装置1において許容される最大定格電圧よりも小さくなる回転速度に設定されていると好ましい。図7は、図4のトルクマップの部分拡大図において、回転速度とモータ線間逆起電圧Vbemfとの関係を示している。尚、図7は、単純に回転速度とモータ線間逆起電圧Vbemfとの関係を示しており、コンタクタ9のオンオフ状態は無関係である。また、コンタクタ9のオンオフ状態の判定は、例えば、車両ECU100からの通信に基づいて実施されても良いし、直流リンク電圧Vdcを検出する電圧センサ14の検出結果に基づいて実施されても良い。また、コンタクタ9のオンオフ状態の判定は、バッテリ電流センサ15により検出された高圧バッテリ11の電流(バッテリ電流Ib)の急激な変化に基づいて判定されてもよい。
 図中において電圧Vmaxは、回転電機駆動装置1において許容される最大定格電圧、つまり、DC/DCコンバータ2、平滑コンデンサ4、インバータ10(スイッチング素子3)の最大定格電圧の内、最も小さい電圧の値を示している。コンタクタ9がオフ状態の場合には、モータ線間逆起電圧Vbemfがほぼそのままインバータ10の直流側に印加されることになる。従って、コンタクタ9がオフ状態の場合には、回転速度に比例して上昇するモータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)よりも回転速度が高い領域(T30)は、シャットダウン制御が禁止されると好適である。従って、コンタクタ9がオフ状態の場合には、モータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)をSD最大回転速度ωsdとして設定することができる。
 一方、コンタクタ9がオン状態の場合には、インバータ10の直流側には高圧バッテリ11(或いはDC/DCコンバータ2の出力)の電圧が印加されており、これが直流リンク電圧Vdcとなっている。例えば、シャットダウン制御中に、モータ線間逆起電圧Vbemfが直流リンク電圧Vdcを超えると、スイッチング素子3に対して逆並列接続されたダイオード5が導通する。即ち、高圧バッテリ11を充電する電流が供給される。このため、SD最大回転速度ωsdの設定には、1点目の考慮点として説明したように、バッテリ電流Ibや回生電力、回生トルクなどを考慮する必要がある。従って、モータ線間逆起電圧Vbemfが直流リンク電圧Vdcに達する回転速度(ωsd3)から、モータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)までの領域(T20)は、条件付きでシャットダウン制御が可能な領域である。モータ線間逆起電圧Vbemfが直流リンク電圧Vdcに達する回転速度(ωsd3)よりも低回転速度側の領域(T10)は、特に条件を付けることなく、シャットダウン制御が可能な領域である。
 SD最大回転速度ωsdは、モータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)、バッテリ電流Ibの最大定格値(Ibth)に基づくSD最大回転速度ωsd(ωsd1)の何れか低い値に設定されてもよい。また、モータ線間逆起電圧Vbemfが直流リンク電圧Vdcに達する回転速度(ωsd3)も含めて、それらの内の最も低い値に設定されてもよい。
 ところで、コンタクタ9がオフ状態の場合、高圧バッテリ11へ流入することができなくなった電流は、上述したように平滑コンデンサ4を充電する。平滑コンデンサ4の容量が大きいほど、平滑コンデンサ4の端子間電圧の上昇速度は遅くなる。直流リンク電圧Vdcを平滑化する平滑コンデンサ4を小容量化すると、直流リンク電圧Vdcが上昇する速度は速くなる。スイッチング素子3の耐圧が高くなっても、平滑コンデンサ4の耐圧は従来と変わりがないので、回転電機駆動装置1において許容される最大定格電圧が、平滑コンデンサ4の最大定格電圧となる可能性が高くなる。従って、1つの態様として、コンタクタ9がオフ状態の場合には、平滑コンデンサ4の容量に応じて、シャットダウン制御の実行中に回転電機80から供給される電荷により上昇する平滑コンデンサの電圧が、許容される最大値よりも小さくなるようにSD最大回転速度ωsdが設定されていると好適である。この場合、図4に一点鎖線で示すように、SD最大回転速度ωsd及びASC最小回転速度ωascは、より回転速度が低い側に設定される(ωsd_C2及びASC最小回転速度ωasc_C2)。図4に点線で示すSD最大回転速度ωsd及びASC最小回転速度ωascが、平滑コンデンサ4の容量が“C1”とした場合の値とすれば、SD最大回転速度ωsd_C2及びASC最小回転速度ωasc_C2は、平滑コンデンサ4の容量を“C2”とした場合の値である。ここで、“C1>C2”である。
 次に、ASC最小回転速度ωascの設定について説明する。アクティブショートサーキット制御に際しては、以下の2つの点に留意する必要がある。1点目は、回転電機80とインバータ10との間で還流する電流によって発生する負トルクが車輪Wに伝達されることによって生じる減速度(乗員に伝わる車両挙動変化)である。2点目は、回転電機80のステータコイル8を通って還流する電流によってステータが加熱され、ステータの温度が上昇して永久磁石を減磁させる可能性があることである。特に、アクティブショートサーキット制御が長時間継続された場合には、ステータの温度上昇が問題となる。即ち、これら2点を考慮して、ASC最小回転速度ωascが設定されると好適である。特に、後述するように、負トルクは、低回転速度領域のある回転速度をピークとして、回転速度が低下するほど強くなる傾向がある。従って、負トルクを制限するために、アクティブショートサーキット制御の実行を制限する下限の回転速度(ASC最小回転速度ωasc)が設定されると好適である。尚、1点目及び2点目のそれぞれの点を考慮して設定された値の内、何れか高い方の回転速度がASC最小回転速度ωascとして設定されると好適である。
 1点目に鑑みると、アクティブショートサーキット制御の実行を許容する最小回転速度(ASC最小回転速度ωasc)は、アクティブショートサーキット制御の実行中に車輪Wに伝達される負トルクの絶対値が、予め規定された最大許容負トルクの絶対値よりも小さくなる回転速度に設定されていると好適である。図8は、回転速度と負トルク、回転速度と負の加速度との関係を示したグラフである。図中の一点鎖線は負トルクTRQを示し、実線は負の加速度Gを示している。負トルクTRQ及び負の加速度Gは、車輪Wの径、変速装置90の変速比、車両の重量、各回転速度における定常電流の値等に基づいて演算されている。
 ここで、図中の符号Gthは、負の加速度に換算した最大許容負トルク(負の最大許容加速度)である。発明者らの実験等によって、最大許容加速度Gthが一定時間(実験や仕様によって規定される時間、例えばt秒)以上継続すると好ましくないことが判明している。この時間(t秒)は、インバータ制御装置20の応答時間を考慮して、制御方式を遷移させることが可能な時間であると好ましい。或いは、インバータ制御装置20の応答時間を考慮して、制御方式を遷移させることが可能な時間継続しても許容可能な負の加速度を最大許容加速度Gthとしてもよい。以上により、負の加速度Gが負の最大許容加速度に達する回転速度ωasc1をASC最小回転速度ωascとして設定すると好適である。
 図8に示すように、負トルクTRQ及び負の加速度Gの絶対値は、ASC最小回転速度ωascよりも低い回転速度ω10の時に最大となり、回転速度がゼロに向かうと急速に減少する。これは、還流する電流の成分、具体的にはベクトル制御におけるd軸成分とq軸成分とに起因する。よく知られているように、d軸成分は界磁を形成するための電流成分であり、q軸成分はトルクとなる電流成分である。図9は、アクティブショートサーキット制御の実行中における定常電流のdq軸ベクトル座標系におけるベクトル軌跡のシミュレーション結果を示している。尚、図中のd軸電流及びq軸電流は、共に負の値である。図9に円弧状の矢印で示すように、回転速度ωがゼロから上昇するに従って、d軸成分の絶対値及びq軸成分の絶対値が増加し、回転速度ω10においてq軸成分の絶対値が最大となる。回転速度がω10を超えて上昇すると、d軸成分の絶対値は上昇を続けるが、q軸成分は減少していく。このように、回転速度ω10においてq軸成分が最大となるので、この回転速度ω10において負トルク(及び負の加速度)が最大となる。
 2点目に鑑みると、アクティブショートサーキット制御の実行を許容する最小回転速度(ASC最小回転速度ωasc)は、アクティブショートサーキット制御の実行中に流れる相電流が、回転電機80の運転が可能な最大の温度において回転電機80の永久磁石の磁力を保持可能な電流の範囲の最大値よりも小さくなる回転速度に設定されていると好適である。図10は、アクティブショートサーキット制御の開始時刻(tasc)付近の回転電機80の相電流のシミュレーション結果を示している。図10では、簡略化のため、複数相の交流電流の内の1相分の相電流を例示している。図10に示すように、時刻tascにおいてアクティブショートサーキット制御が開始されると、相電流には過渡電流が流れる。過渡電流は、過渡応答期間(Ttr)の間継続する。過渡応答期間(Ttr)が経過すると、定常期間(Tst)となり、相電流は安定して定常電流が流れるようになる。回転電機80のステータコイルの温度は、過渡電流及び定常電流の双方に起因して上昇する。図10の例において、最大電流(絶対値)は、過渡電流の“|-Ipk|”である。上述したように、回転電機80には温度センサを取り付けることができる。但し、温度センサによって直接永久磁石の温度が測定可能とは限らないので、例えば、ステータコイル8の温度を計測して永久磁石の温度に換算すると好適である。
 ここで、例えば、永久磁石の磁力を保持可能な最大温度をTmg_maxとする。発明者らによれば、実験的に求めた電流密度(実効値での電流密度[Arms/mm])でステータコイル8に定常状態の電流が流れると、おおよそ1[℃/sec]の割合でステータコイル8の温度が上昇することが確かめられた。例えば、永久磁石の温度が、Tmg_maxよりも10[℃]低い場合には、その電流密度で定常状態の電流が流れ続けたとしても、Tmg_maxに達するまでに約10秒を要し、その間にフェールセーフ制御の制御方式を遷移させることができる。
 図11の実線は、磁石の温度がTmg_maxよりも10[℃]低い条件で、回転速度と最大ピーク電流の絶対値との関係を近似したものである。ここで、最大ピーク電流とは、定常電流だけではなく過渡電流も含めた場合の最大値をいう。図11に示す最大電流の近似曲線は、磁石の温度がTmg_maxよりも10[℃]低く、回転電機80の回転速度が“ωasc2”の時に最大値Ipkとなる。最大値Ipkと、減磁を生じさせる電流値Img_maxとの間には、充分なマージンImgnが確保されていることが確かめられた。この場合には、回転電機80の定格範囲内の全てにおいて、回転電機80の永久磁石の磁力を保持可能である。尚、このマージンImgnは、磁石の温度が高くなると小さくなる。
2.第二の実施形態
 次に、インバータ制御装置の第二の実施形態について説明する。本実施形態では、インバータ制御装置20は、回転電機駆動装置に故障が生じた場合におけるインバータ10の変調制御方式に応じて、アクティブショートサーキット制御(ASC)とシャットダウン制御(SD)とを選択的に実行する点で、回転電機80の回転速度に応じてこれらを選択的に実行する上記第一の実施形態とは異なる。以下では、本実施形態に係るインバータ制御装置20について、上記第一の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第一の実施形態と同様とすることができる。
 本実施形態でも、インバータ制御装置20は、例えば、車両ECU100等の他の制御装置等からCAN(Controller Area Network)などを介して要求信号として提供される回転電機80の目標トルクTMに基づいて、後述するベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。インバータ制御装置20は、電流フィードバック制御のために種々の機能部を有して構成されており、各機能部は、マイクロコンピュータ等のハードウエアとソフトウエア(プログラム)との協働により実現される。
 インバータ制御装置20は、インバータ10を構成するスイッチング素子3のスイッチングパターンの形態(電圧波形制御の形態)として、少なくともパルス幅変調(PWM:Pulse Width Modulation)制御と矩形波制御(1パルス制御(1P))との2つの制御形態を有している。また、インバータ制御装置20は、回転電機80のステータの界磁制御の形態として、ステータコイル8を流れる電流に対して最大トルクを出力する最大トルク制御や、モータ電流に対して最大効率でモータを駆動する最大効率制御などの通常界磁制御、及び、界磁電流(弱め界磁電流)を流して界磁磁束を弱める弱め界磁制御(自動界磁調整制御(AFR:Automatic Field Regulate))を有している。
 本実施形態では、回転電機80の回転に同期して回転する2軸の直交ベクトル座標系における電流ベクトル制御法を用いた電流フィードバック制御を実行して回転電機80を制御する。電流ベクトル制御法では、例えば、永久磁石による界磁磁束の方向に沿ったd軸と、このd軸に対して電気的にπ/2進んだq軸との2軸の直交ベクトル座標系において電流フィードバック制御を行う。インバータ制御装置20は、制御対象となる回転電機80の目標トルクTM(トルク指令)に基づいて、d軸及びq軸の電流指令を決定する。回転電機80の各相のステータコイル8を流れる実電流は電流センサ12により検出され、インバータ制御装置20はその検出結果を取得する。また、回転電機80のロータの各時点での磁極位置は、例えばレゾルバなどの回転センサ13により検出され、インバータ制御装置20はその検出結果を取得する。複数相(例えば3相)の実電流は、磁極位置に基づいてdq軸直交ベクトル座標系に座標変換される。
 インバータ制御装置20は、dq軸直交ベクトル座標系に座標変換された実電流と、dq軸直交ベクトル座標系で設定された電流指令との偏差を求めて比例積分制御(PI制御)や比例積分微分制御(PID制御)を実行して、dq軸直交ベクトル座標系における電圧指令を導出する。dq軸直交ベクトル座標系の電圧指令は、磁極位置に基づいて、複数相(例えば3相)の交流に対応した電圧指令に座標変換される。この電圧指令に基づいて、スイッチング制御信号が生成される。
 上述したように、本実施形態では、インバータ10をスイッチングする制御形態には、パルス幅変調制御と矩形波制御とがある。パルス幅変調制御は、U,V,Wの各相のインバータ10の出力電圧波形であるパルス幅変調波形が、上アーム素子がオン状態となるハイレベル期間と、下アーム素子がオン状態となるローレベル期間とにより構成されるパルスの集合で構成されると共に、その基本波成分が一定期間で正弦波状となるように、各パルスのデューティーが設定される制御である。換言すれば、パルス幅変調制御は、電気角の一周期においてデューティーの異なる複数のパルスが出力される制御方式である。パルス幅変調制御には、公知の正弦波パルス幅変調(SPWM : Sinusoidal PWM)制御や、空間ベクトルパルス幅変調(SVPWM : Space vector PWM)制御、不連続パルス幅変調(DPWM:Discontinuous PWM)制御などが含まれる。
 ところで、直流電圧から交流電圧への変換率を示す指標として、直流電圧に対する複数相の交流電圧の線間電圧の実効値の割合を示す変調率がある。一般的に、正弦波パルス幅変調(SPWM)制御の最大変調率は約0.61、空間ベクトルパルス幅変調(SVPWM)制御の最大変調率は約0.71である。正弦波パルス幅変調制御における電圧指令はほぼ正弦波状である。空間ベクトルパルス幅変調制御の電圧指令は、部分的に電圧指令を上下にシフトさせて3相電圧の相間電圧を有効に利用できるようにしたことでやや歪みを有しているが、ほぼ正弦波状である。従って、一般的に、最大変調率が約0.71までの空間ベクトルパルス幅変調制御による変調は、“通常パルス幅変調”として扱われる。一方、空間ベクトルパルス幅変調制御の最大変調率である約0.71を越える変調率を有する変調方式は、通常よりも変調率を高くした変調方式として、“過変調パルス幅変調”と称される。不連続パルス幅変調(DPWM)制御は、この過変調パルス幅変調が可能であり、最大変調率は約0.78である。この変調率0.78は、物理的な限界値である。不連続パルス幅変調制御において変調率が0.78に達すると、電気角の1周期において1つのパルスが出力される矩形波制御(1パルス制御)となる。矩形波制御では、変調率は物理的な限界値である約0.78に固定される。
 本実施形態においては、パルス幅変調制御では、dq軸直交ベクトル座標系の各軸に沿った界磁電流(d軸電流)と駆動電流(q軸電流)との合成ベクトルである電機子電流を制御してインバータ10を駆動制御する。つまり、インバータ制御装置20は、dq軸直交ベクトル座標系における電機子電流の電流位相角(q軸電流ベクトルと電機子電流ベクトルとの為す角)を制御してインバータ10を駆動制御する。従って、パルス幅変調制御は、電流位相制御とも称される。
 これに対して、矩形波制御は、複数相の交流電圧の電圧位相を制御してインバータ10を制御する方式である。交流電圧の電圧位相とは、複数相の電圧指令の位相に相当する。本実施形態では、矩形波制御は、インバータ10の各スイッチング素子3のオン及びオフが回転電機80の電気角1周期に付き1回ずつ行われ、各相について電気角1周期に付き1つのパルスが出力される回転同期制御である。本実施形態においては、矩形波制御は、複数相の交流電圧の電圧位相を制御することによってインバータ10を駆動するので、電圧位相制御とも称される。
 このように、インバータ制御装置20は、インバータ10を構成するスイッチング素子3のスイッチングパターンの形態(電圧波形制御の形態)として、少なくともパルス幅変調制御と矩形波制御との2つの制御形態(制御方式)を有している。また、インバータ制御装置20は、回転電機80のステータの界磁制御の形態として、少なくとも通常界磁制御と弱め界磁制御との2つの制御形態(制御方式)を有している。界磁制御の形態については、後述するが、本実施形態では、スイッチングパターンと界磁制御の形態とを組み合わせて制御方式が切り替えられる。例えば、通常界磁制御と共にパルス幅変調制御が行われる第1制御方式(以下適宜「パルス幅変調制御(PWM)」と表記する場合がある)と、弱め界磁制御と共に矩形波制御が行われる第2制御方式(以下適宜「矩形波制御(AFR+1P)」と表記する場合がある)とである。
 以下、界磁制御の1つの形態である弱め界磁制御について説明する。回転電機80は、回転速度が高くなるに従って誘起電圧(逆起電圧)が高くなり、回転電機80を駆動するために必要となる交流電圧(必要電圧)も高くなる。この必要電圧が、そのときの直流リンク電圧Vdcを変換してインバータ10から出力し得る最大の交流電圧(最大出力電圧)を超えると、ステータコイル8に必要な電流を流すことができなくなり、回転電機80を適切に制御することができなくなる。そのため、インバータ制御装置20は、回転電機80の界磁磁束を弱める方向の磁束がステータコイルから発生するように電流位相を調節する界磁調整制御(この場合は、電流位相を最大トルク制御よりも進める弱め界磁制御)を行なう自動界磁調整制御器(Automatic Field Regulator)を有している。上述したように、dq軸直交ベクトル座標系におけるd軸電流は、界磁の生成に寄与する界磁電流である。例えば、実際の変調率に基づいて、d軸電流調整指令(弱め界磁電流指令)が導出され、このd軸電流調整指令に基づいてd軸電流指令及びq軸電流指令が調整される。
 ところで、インバータ10の各アームの上段側スイッチング素子31と下段側スイッチング素子32とを相補的にオン/オフさせる場合、各アームの正負両極間が短絡することを防止するために、両素子を同時にオフ状態とするデッドタイムが設けられる。当然ながら、このデッドタイムには相電流が流れないから、変調率は理論上の値よりも低下する。特にパルス幅変調のように、電気角の1周期内において多くのパルスが用いられる場合には、電気角の1周期内におけるスイッチング回数が矩形波制御よりも多くなり、デッドタイムの影響が大きくなる。このため、例えば過変調パルス幅変調など、理論的には限りなく変調率を0.78まで近づけることができる変調方式であっても、実際にはそれよりも低い変調率までしか実現することができない。その結果、制御方式がパルス幅変調制御から矩形波制御に切り替わった際に、大きく変調率が上昇し、出力されるトルクが急激に変化するトルク段差が生じる場合がある。
 このトルク段差は、相対的に高回転・低トルク領域では小さくなり、低回転・高トルク領域では大きくなる。即ち、回転速度が大きい方がトルク段差は小さくなるから、パルス幅変調制御から矩形波制御に移行する際のトルク段差を抑制する1つの方法として、制御方式を切り替える回転速度をより高くすることが考えられる。当然ながら逆起電力も大きくなるから、この場合には、弱め界磁制御をより早く開始する必要がある。例えば、実変調率が0.78に達するよりも前から弱め界磁制御を行えばよい。矩形波制御に遷移する前の過変調制御領域では、例えば不連続パルス幅変調が実行される。過変調制御領域においても弱め界磁制御が実行されることによって、トルク段差を抑制することができる。
 このように、インバータ制御装置20は、通常界磁制御と共にパルス幅変調制御を行う制御方式、弱め界磁制御と共に過変調パルス幅変調制御(不連続パルス幅変調制御)を行う制御方式、弱め界磁制御と共に矩形波制御を行う制御方式など、3つ以上の制御方式を選択可能に構成されていてもよい。しかし、インバータ制御装置20は、少なくとも、通常界磁制御と共にパルス幅変調制御を行う制御方式(パルス幅変調制御(PWM))と、弱め界磁制御と共に矩形波制御を行う制御方式(矩形波制御(AFR+1P))との2つの制御方式を選択的に実行可能であればよい。
 本実施形態でも、インバータ制御装置20は、回転電機駆動装置1に故障が生じた場合に、回転電機80の動作を制限すべく、フェールセーフ制御を実施する。そして、本実施形態では、インバータ制御装置20は、回転電機駆動装置1に故障が生じた際に実行中の変調制御方式に応じて、フェールセーフ制御の制御方式を決定する。上述したように、インバータ制御装置20は、電気角の一周期においてデューティーの異なる複数のパルスが出力される制御方式であるパルス幅変調制御(PWM)と、回転電機80の界磁を弱める方向に調整する弱め界磁制御と共に実施され、電気角の一周期において1つのパルスが出力される制御方式である矩形波制御(AFR+1P)との少なくとも2つの変調制御方式を選択的に実行する。インバータ制御装置20は、矩形波制御(AFR+1P)の実行中に回転電機駆動装置1に故障が生じた場合にはアクティブショートサーキット制御(ASC)を実行し、パルス幅変調制御(PWM)の実行中に回転電機駆動装置1に故障が生じた場合にはシャットダウン制御(SD)を実行する。
 図12は、本実施形態における回転電機の回転速度とトルクとの関係を示すトルクマップを例示している。トルクマップにおける符号Bは、変調制御方式の境界を示している。境界としてB1及びB2が例示されているが、これは直流リンク電圧Vdcの違いによるものである。相対的に、境界B1は、境界B2に対して、直流リンク電圧Vdcが高い場合の境界を示している。本実施形態において、境界B1は、直流リンク電圧Vdcが定格範囲内の最大値VHの場合を例示しており、境界B2は、直流リンク電圧Vdcが定格範囲内の最小値VLの場合を例示している。直流リンク電圧Vdcが高い場合には、より高い逆起電圧に対して耐性を有しているため、より高い回転速度領域まで、パルス幅変調制御(PWM)を実行することができる。
 ところで、インバータ制御装置20は、変調制御方式に応じて選択されたアクティブショートサーキット制御(ASC)及びシャットダウン制御(SD)のいずれか一方のフェールセーフ制御の実行中に、回転電機80の回転速度に基づいて、アクティブショートサーキット制御(ASC)及びシャットダウン制御(SD)のいずれか他方へフェールセーフ制御の制御方式を遷移させる。フェールセーフ制御の実行中にも回転電機80の回転速度は変化する。回転速度に応じて、逆起電力の大きさも異なるから、一度選択した制御方式でフェールセーフ制御が実行されていても、回転電機80の回転状態に応じてフェールセーフ制御の制御方式を遷移させることが好適である。但し、フェールセーフ制御が開始された後は、通常の変調制御は実行されていない。従って、変調制御方式に基づいてフェールセーフ制御の制御方式を再選択することはできない。一方、回転電機80の逆起電力は、回転電機80の回転速度に依存する。従って、フェールセーフ制御が開始された後は、回転電機80の回転速度に基づいて、フェールセーフ制御の制御方式が選択されると好適である。
 図12において、符号ωsdは、シャットダウン制御の実行を許容する最大回転速度(SD最大回転速度)を示している。ここで、回転速度がこのSD最大回転速度ωsdよりも高い領域(或いはSD最大回転速度ωsd以上の領域)を高回転速度領域と称する。これに対応し、高回転速度領域よりも低回転速度側の領域、つまり、回転速度がSD最大回転速度ωsdより低い領域(或いはSD最大回転速度ωsd以下の領域)を低回転速度領域と称する。尚、フェールセーフ制御の実行中に、実行中の制御方式から他の制御方式へフェールセーフ制御の制御方式を遷移させる際には、ヒステリシス区間(遷移区間Tsw)が設けられている。例えば、シャットダウン制御(SD)からアクティブショートサーキット制御(ASC)に移行する際には、高回転速度領域と低回転速度領域との境界は、SD最大回転速度ωsdに設定される。一方、アクティブショートサーキット制御(ASC)からシャットダウン制御(SD)に移行する際には、当該境界はより低回転速度側のASC最小回転速度ωascに設定される。ASC最小回転速度ωascは、回転電機80の回転速度がアクティブショートサーキット制御(ASC)の実行を許容する最小回転速度である。この場合、回転速度がこのASC最小回転速度ωascよりも高い領域(或いはASC最小回転速度ωasc以上の領域)が高回転速度領域である。また、この高回転速度領域よりも低回転速度側の領域、つまり、回転速度がASC最小回転速度ωascより低い領域(或いはASC最小回転速度ωasc以下の領域)が低回転速度領域である。尚、「以上/以下」、「より高い/より低い(未満)」等の境界条件は適宜設定可能であり、フェールセーフ制御の構成を限定するものではない。以下の説明において他の境界を示す場合も同様である。
 上述したように、インバータ制御装置20は、シャットダウン制御の実行中に、回転電機80の回転速度に応じて、フェールセーフ制御の制御方式を遷移させる。具体的には、インバータ制御装置20は、シャットダウン制御の実行中に、回転電機80の回転速度がSD最大回転速度ωsd以上に上昇した場合(高回転速度領域まで上昇した場合)には、制御方式をアクティブショートサーキット制御に遷移させる。一方、インバータ制御装置20は、アクティブショートサーキット制御の実行中に、回転電機80の回転速度がASC最小回転速度ωasc以下まで低下した場合(低回転速度領域まで低下した場合)には、制御方式をシャットダウン制御に遷移させる。
 ここで、図13の状態遷移図も参照して、本実施形態におけるフェールセーフ制御の状態遷移について説明する。図中の通常制御は、コンタクタ9がオフ状態とされておらず、また、車両、回転電機80、変速装置90、インバータ10等にも故障が生じておらず、通常の制御が実行されている状態を示している。この通常制御中に、回転電機駆動装置1に何らかの故障が生じた場合、故障が発生したという情報“fail”がインバータ制御装置20に伝達される(#1)。インバータ制御装置20は、この情報“fail”に応答して、インバータ10の変調制御方式に基づき、フェールセーフ制御の制御方式を判定する。インバータ10の変調制御方式が矩形波制御(AFR+1P)であった場合には、アクティブショートサーキット制御(ASC)が選択される(#2a)。一方、変調制御方式がパルス幅変調制御(PWM)であった場合には、シャットダウン制御(SD)が選択される(#2s)。
 フェールセーフ制御の実行が開始された後は、回転速度ωに応じてフェールセーフ制御の制御方式が遷移される。アクティブショートサーキット制御(ASC)の実行中に、回転速度ωがASC最小回転速度ωascを下回ると(回転速度ωが低回転速度領域まで低下すると)、制御方式がシャットダウン制御(SD)に遷移される(#3)。一方、シャットダウン制御(SD)の実行中に、回転速度ωがSD最大回転速度ωsdよりも高くなると(回転速度ωが高回転速度領域まで上昇すると)、制御方式がアクティブショートサーキット制御(ASC)に遷移される(#4)。尚、フェールセーフ制御を実行中に、回転速度ωが高くなるケースとしては、坂道や段差を下ることによって車輪Wの回転速度が上昇し、その回転速度の上昇が回転電機80に伝達された場合などが想定される。
 フェールセーフ制御の実行を続けていると、基本的には次第に回転電機80の回転速度が低下してくる。従って、制御方式はシャットダウン制御(SD)に収束していく。シャットダウン制御(SD)の実行中に回転速度ωがゼロとなると、インバータ制御装置20は、回転電機80が安全に停止したことを上位の制御装置である車両ECU100に伝達する。車両ECU100は、車両のイグニッションキー(IGキー)をオフ状態とする(#5:IG-OFF)。或いは、車両ECU100は、乗員に対してイグニッションキーの操作を促す報知を行い、乗員によってイグニッションキーがオフ状態に操作される。
 ところで、インバータ制御装置20は、変調制御方式に応じて選択されたフェールセーフ制御の実行中に、回転電機80の回転速度だけではなく、直流リンク電圧Vdcにも基づいて、実行中の制御方式から他の制御方式へフェールセーフ制御の制御方式を遷移させてもよい。図12に示すように、直流リンク電圧Vdcの値が異なると、変調制御方式を変更する境界Bも異なる。図12に示すように、SD最大回転速度ωsd及びASC最小回転速度ωascは、この境界Bに連動して設定されている。従って、図13に示した状態遷移図における判定基準(SD最大回転速度ωsd及びASC最小回転速度ωasc)は、直流リンク電圧Vdcに対応した値が用いられているといえる。つまり、SD最大回転速度ωsd及びASC最小回転速度ωascは、直流リンク電圧Vdcに応じて設定されるものであり、SD最大回転速度ωsd及びASC最小回転速度ωascは、直流リンク電圧Vdcが小さいほど小さい値に設定される。尚、SD最大回転速度ωsd、及び、ASC最小回転速度ωascの設定のための考え方については、上記第一の実施形態において説明したとおりであるので、ここでは説明を省略する。
3.第三の実施形態
 次に、第三の実施形態として、上述した第一の実施形態又は第二の実施形態に係るインバータ制御装置を備えた車両用制御装置の実施形態について説明する。図14に示すように、この車両用制御装置50は、少なくとも回転電機(MG:Motor/Generator)80と変速装置90とを備えた車両用駆動装置60と、上述したインバータ10を備えた回転電機駆動装置1(INV)とを制御対象とする。このため、回転電機駆動装置1を制御するための上記インバータ制御装置20を含んで構成されている。本実施形態では、車両用駆動装置60は、いわゆるパラレル方式のハイブリッド駆動装置であり、車輪Wの駆動力源として内燃機関70及び回転電機80を備えている。即ち、本実施形態では、車両用駆動装置60は、内燃機関70と回転電機80と変速装置90とを備えている。そして、内燃機関70と回転電機80とは、内燃機関分離クラッチ75を介して駆動連結されている。図14に示すように、車両用駆動装置60には、内燃機関70と車輪Wとを結ぶ動力伝達経路に、内燃機関70の側から順に、内燃機関分離クラッチ75、回転電機80、変速装置90が設けられている。そして、この車両用制御装置50は、フェールセーフ制御としてアクティブショートサーキット制御(ASC)が実行された場合に、変速比が小さくなる方向へ変速装置90を制御するフェールセーフ変速制御を実行する。以下では、本実施形態に係る車両用制御装置50について、上記第一の実施形態及び第二の実施形態において説明しなかった点を中心として説明する。なお、特に説明しない点については、上記第一の実施形態又は第二の実施形態と同様とすることができる。
 上記のとおり、本実施形態では、変速装置90は、遊星歯車機構等の歯車機構及び複数の係合装置を備えた有段変速機構を有するものであるが、変速装置90の構成はこれに限らない。つまり、変速装置90は、複数の摩擦係合要素の係合状態(係合又は解放)に応じて複数の変速段が形成され、入力軸の回転速度を各変速段の変速比で変速して出力軸に伝達する変速機構(有段変速機構)には限らない。例えば、変速装置90は、2つのプーリー(滑車)にベルトやチェーンを通し、プーリーの径を変化させることで連続的な変速を可能にする変速機構(無段変速機構(CVT:Continuously Variable Transmission))を有するものでもよい。即ち、変速装置90は、入力軸の回転を変速して出力軸に伝達すると共にその変速比が変更可能に構成された変速機構を有していれば、その方式はどのようなものであってもよい。
 図14に示すように、車両用駆動装置60は、車両の最も上位の制御装置の1つである車両ECU(Electronic Control Unit)100による統合制御(走行制御)により、内燃機関制御装置40、インバータ制御装置20、変速制御装置41を介して制御される。内燃機関制御装置40は、不図示の燃料供給装置、給気排気機構、点火装置などの制御を含めて、内燃機関70を駆動制御する。回転電機80は、直流電源(後述する高圧バッテリ11)に接続されると共に交流の回転電機80に接続されて、直流と複数相の交流との間で電力変換を行うインバータ10を備えた回転電機駆動装置1を介して駆動される。インバータ制御装置20は、この回転電機駆動装置1を制御する回転電機制御装置として機能する。具体的には、インバータ制御装置20は、図1等を参照して既に説明したインバータ10を構成するスイッチング素子3をスイッチング制御して、回転電機80を駆動制御する。変速制御装置41は、例えば油圧制御装置85を介して変速装置90の有する不図示の変速機構を制御する。尚、本実施形態では、変速制御装置41は、油圧制御装置85を介して内燃機関分離クラッチ75も制御する。
 このように、車両用制御装置50は、車両用駆動装置60及び回転電機駆動装置1を制御対象とする制御装置である。本実施形態においては、少なくとも、インバータ制御装置20及び変速制御装置41により、車両用制御装置(車両用駆動装置の制御装置)50が構成されている。当然ながら、車両用制御装置50は、内燃機関制御装置40、インバータ制御装置20、及び変速制御装置41により構成されていてもよい。
 図14においても、符号17は回転電機80の温度を検出する温度センサ、符号18はインバータ10の温度(スイッチング素子3の温度)を検出する温度センサを例示している。温度センサ17、18の検出結果は、車両用制御装置50(インバータ制御装置20や変速制御装置41)に伝達される。また、符号13は回転電機80のロータの回転(速度・方向・角速度など)を検出する回転センサ、符号93は変速装置90の出力軸の回転を検出する回転センサである。温度センサ17、18と同様に、回転センサ13,93の検出結果は、車両用制御装置50(インバータ制御装置20や変速制御装置41)に伝達される。尚、図14では、内燃機関70を始動するためのスタータ装置や、各種オイルポンプ(電動式及び機械式)は、省略している。
 インバータ制御装置20は、図1に示すように、インバータ10を備えた回転電機駆動装置1を制御対象とし、回転電機駆動装置1を介して回転電機80を駆動制御する。そして、上記のとおり、インバータ制御装置20は、インバータ10を構成するスイッチング素子3をスイッチング制御すると共に、回転電機駆動装置1に故障が生じた場合に後述するフェールセーフ制御を実行する。
 上述したように、インバータ制御装置20は、車両の車輪Wの駆動力源となる回転電機80と車輪Wとを結ぶ動力伝達経路に変速装置90を備えた車両用駆動装置60と、高圧バッテリ11に接続されると共に交流の回転電機80に接続されて、直流と複数相の交流との間で電力変換を行うインバータ10を備えた回転電機駆動装置1と、を制御対象とする。そして、インバータ制御装置20は、変速装置90の出力軸の回転速度に対する変速装置90の入力軸の回転速度の比である変速比を設定して変速装置90を制御する変速制御、及び、インバータ10を構成するスイッチング素子3をスイッチング制御するインバータ制御を実行すると共に、回転電機駆動装置1に故障が生じた場合に、上記のフェールセーフ制御を実行する。
 車両用制御装置50は、フェールセーフ制御としてアクティブショートサーキット制御が実行された場合には、変速比が小さくなる方向へ変速装置90を制御して、回転電機80の回転速度を低回転速度領域まで低下させるフェールセーフ変速制御を実行する。図15は、フェールセーフ制御とフェールセーフ変速制御との関係を示している。回転電機80が回転速度“ωf”で回転する時刻t1において回転電機駆動装置1に故障が生じた場合、車両用制御装置50(インバータ制御装置20)は、フェールセーフ制御としてアクティブショートサーキット制御を実行する。アクティブショートサーキット制御の開始に伴い、回転電機80の回転速度は低下し始める。車両用制御装置50(変速制御装置41)は、フェールセーフ制御としてアクティブショートサーキット制御の実行が開始されたので、変速比が小さくなる方向へ変速装置90を制御するフェールセーフ変速制御を実行する(時刻t2)。ここでは、回転電機80の回転速度を低回転速度領域まで低下させるために(回転電機80の回転速度がASC最小回転速度ωasc未満となるように)、変速比が設定され、当該変速比に対応する変速段が形成される。図15では、第3速段(3rd)から第6速段(6th)に変速段が変更される例を示している。時刻t3において、回転電機80の回転速度がASC最小回転速度ωasc未満となると、フェールセーフ制御の制御方式がシャットダウン制御に遷移する。
 上述したように、インバータ制御装置20は、フェールセーフ制御の実行中(変速中)或いは実行後(変速後)に、回転電機80の回転速度に応じて、フェールセーフ制御の制御方式を遷移させる。例えば、シャットダウン制御の実行中に、回転電機80の回転速度が高回転速度領域まで上昇すると、制御方式はアクティブショートサーキット制御に遷移する。フェールセーフ制御を実行中に、回転電機80の回転速度が高くなるケースとしては、坂道や段差を下ることによって車輪Wの回転速度が上昇し、その回転速度の上昇が回転電機80に伝達された場合が想定される。また、内燃機関分離クラッチ75が解放されていない場合には、内燃機関70による駆動力の伝達によって、回転電機80の回転速度が上昇することがある。つまり、乗員によってアクセルペダルが操作されたようなケースがこれに相当する。車両になんらかの故障が生じている場合には、そのことが乗員にも報知されている。しかし、例えば車両が高速道路を走行中であれば、乗員が、路肩ではなく、最寄りのサービスエリアで車両を停止させようとしてアクセルペダルを操作する可能性がある。
 このように、回転電機80の回転速度が上昇し、シャットダウン制御からアクティブショートサーキット制御に遷移した場合(或いは、遷移すると判定された場合)には、変速段が最高段に達していなければ、さらに変速比が小さくなる方向へ変速装置90が制御されると好適である。図16は、フェールセーフ変速制御の実行後に回転速度が上昇する場合の一例を示している。時刻t1から時刻t3までの変化については、図15を参照して上述した通りであるから説明を省略する。時刻t3を過ぎた後、即ち、制御方式がシャットダウン制御に遷移した後、再び回転電機80の回転速度が上昇に転じている。時刻t5には、回転電機80の回転速度は、制御方式がアクティブショートサーキット制御に遷移するSD最大回転速度ωsdに達し、高回転速度領域まで上昇する。車両用制御装置50は、回転電機80の回転速度が高回転速度領域まで上昇すると判定した場合には、フェールセーフ変速制御を実行して、さらに変速比が小さくなる方向へ変速装置90を制御する。図16に示す例では、6速段(6th)から7速段(7th)へと変速段が変更されている。
 変速段が6速段(6th)から7速段(7th)になると、再び回転電機80の回転速度は低下する。従って、回転電機80の回転速度は低回転速度領域に留まり、フェールセーフ制御の制御方式は、アクティブショートサーキット制御に遷移することなく、シャットダウン制御が維持される。その後、再び回転電機80の回転速度が高回転速度領域まで上昇すると判定された場合には、再びフェールセーフ変速制御が実行され、さらに変速比が小さくなる方向へ変速装置90が制御される(時刻t7)。図16に示す例では、7速段(7th)から8速段(8th)へと変速段が変更されている。図16に示すように、変速段が7速段(7th)から8速段(8th)になると、再び回転電機80の回転速度は低下して低回転速度領域に留まり、シャットダウン制御が維持される。
 尚、図16に示した例では、図4を参照して説明したように、低回転速度領域と高回転速度領域との間に設けられたヒステリシス区間(遷移区間Tsw)を適用して、フェールセーフ変速制御が実行される形態を示した。しかし、フェールセーフ変速制御の実行に際しては、ヒステリシスを考慮せずに変速比を低下させてもよい。図17は、そのようなヒステリシスを考慮しない形態を例示している。時刻t1から時刻t3までの変化については、図15及び図16と同様である。そして、図16と同様に、時刻t3を過ぎた後、即ち、制御方式がシャットダウン制御に遷移した後、再び回転電機80の回転速度が上昇に転じている。ヒステリシスを考慮する図16の形態では、時刻t5にて回転電機80の回転速度がSD最大回転速度ωsdに達して高回転速度領域まで上昇することを、フェールセーフ変速制御実行の判定基準としていた。しかし、ヒステリシスを考慮しない図17の形態では、回転電機80の回転速度がASC最小回転速度ωascまで上昇することを、フェールセーフ変速制御実行の判定基準としている。
 同じ時刻から同じ上昇率で回転電機80の回転速度が上昇を始めた場合、回転速度がASC最小回転速度ωascに達する時刻t4は、回転速度がSD最大回転速度ωsdに達する時刻t5よりも早い。回転速度がASC最小回転速度ωascに達しても、高回転速度領域には達していないので、直ちに制御方式がアクティブショートサーキット制御に遷移することもない。従って、図17の形態では、余裕を持ってフェールセーフ変速制御を実行して、変速比を低下させることができる。詳細な説明は省略するが、図17の形態では、時刻t4において変速段が6速段(6th)から7速段(7th)に変更され、時刻t6において変速段が7速段(7th)から8速段(8th)に変更されている。
 ここで、図18の状態遷移図も参照して、本実施形態におけるフェールセーフ制御の状態遷移について説明する。図中の通常制御は、コンタクタ9がオフ状態とされておらず、また、車両、回転電機80、変速装置90、インバータ10等にも故障が生じておらず、通常の制御が実行されている状態を示している。この通常制御中に、回転電機駆動装置1に何らかの故障が生じた場合、故障が発生したという情報“fail”がインバータ制御装置20に伝達される(#1)。インバータ制御装置20は、この情報“fail”に応答して、回転電機80の回転速度に基づき、フェールセーフ制御の制御方式を判定する。回転速度ωが、SD最大回転速度ωsdよりも高い場合には、アクティブショートサーキット制御(ASC)が選択される(#2a)。一方、回転速度ωが、SD最大回転速度ωsdよりも低い場合には、シャットダウン制御(SD)が選択される(#2s)。つまり、フェールセーフ制御の開始に際しては、SD最大回転速度ωsdを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域である。回転速度ωが遷移区間Tswに含まれる場合には、本実施形態ではシャットダウン制御(SD)が選択される。
 本実施形態では、フェールセーフ制御としてアクティブショートサーキット制御(ASC)が実行された場合、変速比が小さくなる方向へ変速装置90を制御して、回転電機80の回転速度を低回転速度領域まで低下させるフェールセーフ変速制御(upshift)が実行される。アクティブショートサーキット制御(ASC)の実行中に、回転速度ωがASC最小回転速度ωascを下回ると、制御方式がシャットダウン制御(SD)に遷移される(#3)。図4を参照して上述したように、アクティブショートサーキット制御(ASC)が実行されると、ASC最小回転速度ωascを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域となる。図15~図17を参照して上述したように、アクティブショートサーキット制御(ASC)と共にフェールセーフ変速制御(upshift)が実行された場合には(ASC+upshift)、回転電機80の回転速度が低下し、制御方式がシャットダウン制御(SD)に遷移される。
 一方、シャットダウン制御(SD)の実行中に、回転速度ωがSD最大回転速度ωsdよりも高くなると、制御方式がアクティブショートサーキット制御(ASC)に遷移される(#4)。この場合には、SD最大回転速度ωsdを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域である。上述したように、フェールセーフ制御の実行中に、回転速度ωが高くなるケースとしては、坂道や段差を下ることによって車輪Wの回転速度が上昇し、その回転速度の上昇が回転電機80に伝達された場合などが想定される。また、内燃機関分離クラッチ75が解放されていない場合には、内燃機関70による駆動力の伝達によって、回転電機80の回転速度が上昇することがある。
 フェールセーフ制御の実行を続けていると、基本的には次第に回転電機80の回転速度が低下してくる。従って、制御方式はシャットダウン制御(SD)に収束していく。シャットダウン制御(SD)の実行中に回転速度ωがゼロとなると、インバータ制御装置20は、回転電機80が安全に停止したことを上位の制御装置である車両ECU100に伝達する。車両ECU100は、車両のイグニッションキー(IGキー)をオフ状態とする(#5:IG-OFF)。或いは、車両ECU100は、乗員に対してイグニッションキーの操作を促す報知を行い、乗員によってイグニッションキーがオフ状態に操作される。
 ところで、フェールセーフ制御が実行されるような場合、車両になんらかの故障が生じていることは、乗員にも報知されている。そして、フェールセーフ制御が実行されると、図18を参照して上述したように、車両の速度は次第に低下していく。但し、乗員は、高速道路のサービスエリアなど、所望の場所まで車両を移動させた上で、車両を停車させて故障の確認をしたり、救援を待ったりしたい場合がある。その場合には、単純に車輪Wの回転速度が低下して車両が停止してしまうと好ましくはない。例えば、故障が生じていない内燃機関70の駆動力を用いてある程度車両を進行させられることが望まれる。フェールセーフ変速制御が実行されることによって、回転電機80の回転速度を低速に留めた状態で、車輪Wの回転速度をある程度高い値に保つことができる。その結果、乗員が、所望の場所まで車両を移動できる可能性が高くなる。尚、車両の停止は、制動装置を利用して行うことが可能である。
 ところで、回転電機駆動装置1に故障が生じた場合に実行されるフェールセーフ制御の制御方式の決定は、回転電機80の回転速度に基づく形態に限定されるものではない。例えば、インバータ10の変調制御方式に応じてフェールセーフ制御の制御方式が決定されてもよい。例えば、インバータ制御装置20は、インバータ10を構成するスイッチング素子3のスイッチングパターンの形態(電圧波形制御の形態)として、少なくともパルス幅変調(PWM:Pulse Width Modulation)制御と矩形波制御(1パルス制御(1P))との2つの制御形態(変調方式)を有している。また、インバータ制御装置20は、回転電機80のステータの界磁制御の形態として、ステータコイル8を流れる電流に対して最大トルクを出力する最大トルク制御や、モータ電流に対して最大効率でモータを駆動する最大効率制御などの通常界磁制御、及び、界磁電流(弱め界磁電流)を流して界磁磁束を弱める弱め界磁制御(自動界磁調整制御(AFR:Automatic Field Regulate))を有している。
 本実施形態では、インバータ制御装置20は、少なくとも、通常界磁制御と共に実行されるパルス幅変調制御と、弱め界磁制御と共に実行される矩形波制御(1パルス制御(1P))との2つの制御形態により、インバータ10をスイッチング制御する。1つの態様として、インバータ制御装置20は、回転電機駆動装置1に故障が生じた際に実行されているスイッチング制御の制御方式に応じて、フェールセーフ制御の制御方式を決定することができる。例えば、インバータ制御装置20は、図12に示すように、弱め界磁制御と共に矩形波制御の実行中に回転電機駆動装置1に故障が生じた場合にはアクティブショートサーキット制御(ASC)を実行し、パルス幅変調制御の実行中に回転電機駆動装置1に故障が生じた場合にはシャットダウン制御(SD)を実行する。上記第二の実施形態において既に詳細な説明は行ったが、一般的には、通常界磁制御と共に実行されるパルス幅変調制御は回転電機80の回転速度が相対的に低速の場合に適用され、弱め界磁制御と共に実行される矩形波制御は回転速度が相対的に高速の場合に適用される。従って、インバータ10の変調制御方式に基づいてフェールセーフ制御の制御方式を決定する構成も、広義では、回転電機80の回転速度に基づいてフェールセーフ制御の制御方式を決定するものであるということができる。尚、パルス幅変調制御及び矩形波制御については、上記第二の実施形態において既に説明したのでここでは説明を省略する。
 図12は、この場合における回転電機の回転速度とトルクとの関係を示すトルクマップを例示している。トルクマップにおける符号Bは、変調制御方式の境界を示している。境界としてB1及びB2が例示されているが、これは直流リンク電圧Vdcの違いによるものである。相対的に、境界B1は、境界B2に対して、直流リンク電圧Vdcが高い場合の境界を示している。本実施形態において、境界B1は、直流リンク電圧Vdcが定格範囲内の最大値VHの場合を例示しており、境界B2は、直流リンク電圧Vdcが定格範囲内の最小値VLの場合を例示している。直流リンク電圧Vdcが高い場合には、より高い逆起電圧に対して耐性を有しているため、より高い回転速度領域まで、パルス幅変調制御(PWM)を実行することができる。尚、直流リンク電圧Vdcは、DC/DCコンバータ2を有している場合には、昇圧後の直流電圧であり、DC/DCコンバータ2を有していない場合には、高圧バッテリ11の電圧に相当する。
 インバータ制御装置20は、インバータ10の変調制御方式に応じてフェールセーフ制御の制御方式を選択した場合にも、そのフェールセーフ制御の実行中には、回転電機80の回転速度に基づいて、実行中の制御方式から他の制御方式へフェールセーフ制御の制御方式を遷移させる。その遷移の形態については、図4を参照して上述した形態と同様であるので詳細な説明は省略する。即ち、インバータ制御装置20は、シャットダウン制御の実行中に、回転電機80の回転速度に応じて、フェールセーフ制御の制御方式を遷移させる。具体的には、インバータ制御装置20は、シャットダウン制御の実行中に、回転電機80の回転速度がSD最大回転速度ωsd以上に上昇した場合(高回転速度領域まで上昇した場合)には、制御方式をアクティブショートサーキット制御に遷移させる。一方、インバータ制御装置20は、アクティブショートサーキット制御の実行中に、回転電機80の回転速度がASC最小回転速度ωasc以下まで低下した場合(低回転速度領域まで低下した場合)には、制御方式をシャットダウン制御に遷移させる。
 尚、境界B1及び境界B2よりも高回転速度側を高回転速度領域、低回転速度側を低回転速度領域と称することもできる。即ち、回転電機駆動装置1に故障が生じた際には、境界B1及び境界B2に基づいて設定される高回転速度領域及び低回転速度領域に応じて、フェールセーフ制御の制御方式が決定されるということができる。そして、フェールセーフ制御の実行中には、SD最大回転速度ωsd及びASC最小回転速度ωascに基づいて設定される高回転速度領域及び低回転速度領域に応じて、フェールセーフ制御の制御方式が遷移されるということができる。
 図19は、変調制御に基づいてフェールセーフ制御の制御方式を決定する場合の状態遷移図を示している。ステップ#1において、インバータ制御装置20が、回転電機駆動装置1に何らかの故障が発生したという情報“fail”を受け取ると、インバータ制御装置20は、インバータ10の変調制御方式に基づき、フェールセーフ制御の制御方式を判定する。変調制御方式が矩形波制御(AFR+1P)であった場合には、アクティブショートサーキット制御(ASC)が選択される(#2a)。一方、変調制御方式がパルス幅変調制御(PWM)であった場合には、シャットダウン制御(SD)が選択される(#2s)。ステップ#2a及びステップ#2sにおいて、制御方式を決定する条件以外は、図18を参照して上述した内容と重複するので、詳細な説明は省略する。また、SD最大回転速度ωsd、及び、ASC最小回転速度ωascの設定のための考え方については、上記第一の実施形態において説明したとおりであるので、ここでは説明を省略する。
 上記のとおり、アクティブショートサーキット制御の実行を許容する最小回転速度(ASC最小回転速度ωasc)は、アクティブショートサーキット制御の実行中に流れる相電流が、回転電機80の運転が可能な最大の温度において回転電機80の永久磁石の磁力を保持可能な電流の範囲の最大値よりも小さくなる回転速度に設定されていると好適である。この条件に鑑みれば、フェールセーフ変速制御の実行条件に、回転電機80の温度条件を加えることができる。即ち、アクティブショートサーキット制御の実行による回転電機80の温度上昇が許容可能であれば、アクティブショートサーキット制御を継続しても問題はない。従って、フェールセーフ制御の制御方式を急いでシャットダウン制御に遷移させる必要もなく、フェールセーフ変速制御を実行しなくてもよい。従って、フェールセーフ変速制御の実行条件を以下のようにすることも好適である。即ち、フェールセーフ変速制御は、フェールセーフ制御としてアクティブショートサーキット制御が実行され、且つ、回転電機80の温度が予め規定された規制温度以上の場合に実行されるようにすることができる。尚、規制温度は、上述したように、実験やシミュレーションによって得られる各種の値、具体的には、永久磁石の磁力が劣化する温度に達するまでの時間、単位時間当たりの温度上昇率、温度センサの誤差範囲、電流値等に基づいて設定される。
4.上記実施形態の概要
 以下、上記において説明したインバータ制御装置(20)及び車両用制御装置(50)の概要について説明する。
 このインバータ制御装置(20)は、インバータ(10)を備えた回転電機駆動装置(1)を制御対象として、前記インバータ(10)を構成するスイッチング素子(3)をスイッチング制御すると共に、前記回転電機駆動装置に故障が生じた場合にフェールセーフ制御を実行する装置であって、
 前記インバータ(10)は、直流電源(11)に接続されると共に、車両の車輪(W)に駆動連結された交流の回転電機(80)に接続されて直流と複数相交流との間で電力変換を行うものであって、上段側スイッチング素子(31)と下段側スイッチング素子(32)との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子(3)に並列に接続されたフリーホイールダイオード(5)を備えるものであり、
 前記フェールセーフ制御は、複数相全ての前記アームの前記上段側スイッチング素子(31)をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全ての前記アームの前記下段側スイッチング素子(32)をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御(ASC)と、全ての前記スイッチング素子(3)をオフ状態とするシャットダウン制御(SD)と、を選択的に実行するものであり、
 少なくとも前記回転電機(80)の回転速度に応じて、高回転速度領域では前記アクティブショートサーキット制御(ASC)を実行し、前記高回転速度領域よりも低回転速度側の低回転速度領域では前記シャットダウン制御(SD)を実行する点にある。
 回転電機(80)の逆起電力は、回転電機(80)の回転速度に応じて大きくなる。このため、シャットダウン制御(SD)が実行された場合には、回転速度に応じて、充電のために直流電源(11)に流れる直流電源電流(Ib)や、インバータ(10)の直流側の電圧である直流リンク電圧(Vdc)が増加する傾向がある。一方、アクティブショートサーキット制御(ASC)では、低い回転速度で実行した場合に回転電機(80)が大きな負トルクを発生させることがある点や、長時間実行した場合に回転電機(80)の発熱量が大きくなる点で制約がある。しかし、回転電機(80)のステータコイル(8)が持つエネルギーが充電のための電流として直流電源(11)に流れ込まずに、ステータコイル(8)とインバータ(10)との間で還流する。このため、アクティブショートサーキット制御(ASC)では、直流リンク電圧(Vdc)も上昇しない。
 本構成によれば、相対的に回転電機(80)の回転速度が高い高回転速度領域では、フェールセーフ制御としてアクティブショートサーキット制御(ASC)が選択される。従って、直流電源(11)に流れる直流電源電流(Ib)の増加や、直流リンク電圧(Vdc)の上昇が抑制される。一方、アクティブショートサーキット制御(ASC)が実行されると、回転電機(80)に負トルクを生じさせるため、高回転速度領域で回転する回転電機(80)を減速させることができる。また、アクティブショートサーキット制御(ASC)による還流電流は、回転電機(80)のステータコイルの温度を上昇させ、到達する温度によっては永久磁石を減磁させる可能性がある。発明者らの実験やシミュレーションによれば、相対的に回転速度が高い領域では、回転速度が低い領域に比べて、定常電流及び過渡電流の最大ピーク電流(絶対値)は小さい(例えば図11参照)。従って、高回転速度領域においてアクティブショートサーキット制御(ASC)が実行されると、還流電流による温度上昇が生じても、回転電機(80)の永久磁石の磁力を保持することができる。一方、相対的に回転電機(80)の回転速度が低い低回転速度領域では、フェールセーフ制御としてシャットダウン制御(SD)が選択される。従って、回転電機(80)が大きな負トルクを発生させることを抑制できると共にアクティブショートサーキット制御(ASC)を実行する期間も短縮できる。また、低回転速度領域では、シャットダウン制御(SD)による直流電源電流(Ib)や直流リンク電圧(Vdc)の増分は、適切な範囲内に抑制される。このように、本構成によれば、インバータ(10)を備えた回転電機駆動装置(1)に故障が生じた場合に、直流電源を充電する直流電源電流(Ib)や直流リンク電圧(Vdc)の過大な増加を抑制しつつ、適切にフェールセーフ制御を実行することができる。
 ところで、フェールセーフ制御の実行中に回転電機(80)の回転速度が変化する場合がある。例えば、車両が坂道を下っているような場合には車輪(W)に駆動連結された回転電機(80)の回転速度が上昇する場合がある。直流電源(11)を充電する直流電源電流(Ib)や直流リンク電圧(Vdc)の増分が適切な範囲内に抑制されると判断して、シャットダウン制御(SD)を実行していた場合に、回転電機(80)の回転速度が上昇すると、直流電源電流(Ib)や直流リンク電圧(Vdc)が適切な範囲内を超えて上昇する可能性がある。そこで、1つの態様として、インバータ制御装置(20)は、前記シャットダウン制御(SD)の実行中に、前記回転電機(80)の回転速度が前記高回転速度領域まで上昇した場合には、制御方式を前記アクティブショートサーキット制御(ASC)に遷移させると好適である。
 重力等の外力を含め、車輪(W)に対して新たな駆動力が提供されない場合、フェールセーフ制御の実行中に回転電機(80)の回転速度は低下していく。アクティブショートサーキット制御(ASC)は、ステータコイル(8)とインバータ(20)との間で電流を還流させるため、そのエネルギーの多くは、ステータコイル(8)及びインバータ(20)において熱となって消費されることになる。この熱によって、ステータコイル(8)やスイッチング素子(3)が消耗する可能性がある。また、ステータコイル(8)が加熱され、ステータの温度が上昇して永久磁石を減磁させる可能性もある。また、アクティブショートサーキット制御(ASC)を低い回転速度で実行した場合には、回転電機(80)が大きな負トルクを発生させることがある。そして、この負トルクは、減速度となって車両の乗員に挙動変化を感じさせる可能性がある。このため、アクティブショートサーキット制御(ASC)による電流の還流は、適切な時期に終了されることが好ましい。そこで、1つの態様として、前記アクティブショートサーキット制御(ASC)の実行中に、前記回転電機(80)の回転速度が前記低回転速度領域まで低下した場合には、制御方式を前記シャットダウン制御(SD)に遷移させると好適である。
 インバータ(80)は、オフ状態で電力の供給を遮断する電源スイッチ(9)を介して直流電源(11)に接続されている場合、回生電力は、電源スイッチ(9)がオン状態において直流電源(11)を充電する。一方、電源スイッチ(9)がオフ状態においては、直流電源(11)との接続が遮断されているため、回生電力は、直流リンク電圧(Vdc)を上昇させる。このため、アクティブショートサーキット制御(ASC)及びシャットダウン制御(SD)のいずれかの制御方式を選択するための基準となる回転電機(80)の回転速度は、電源スイッチ(9)のオンオフの状態に応じて設定されていると好適である。即ち、1つの態様として、前記インバータ(80)は、オフ状態で電力の供給を遮断する電源スイッチ(9)を介して前記直流電源(11)に接続され、前記シャットダウン制御(SD)の実行を許容する最大回転速度(ωsd)は、前記電源スイッチ(9)がオン状態の場合には直流電源電圧に応じて、前記回転電機(80)の回転速度に応じた直流電源電流(Ib)及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定されていると好適である。また、前記最大回転速度(ωsd)は、前記電源スイッチ(9)がオフ状態の場合には、3相の線間における逆起電力のピーク値が、前記回転電機駆動装置(1)において許容される最大定格電圧よりも小さくなる回転速度に、最大回転速度(ωsd)が設定されていると好適である。
 尚、直流電源(11)の電圧である直流電源電圧が定格範囲内の下限値である場合には、回転電機(80)によって発電される電圧との電位差が大きくなり、直流電源電流(Ib)及び回生電力も大きくなる傾向がある。従って、上述したように、電源スイッチ(9)がオン状態の場合には、直流電源電圧が定格範囲内の下限値である場合の、回転電機(80)の回転速度に対する直流電源電流(Ib)及び回生電力の特性に基づいて、最大回転速度(ωsd)が設定されると好適である。
 また、前記電源スイッチ(9)がオフ状態の場合には、さらに、前記最大回転速度(ωsd)は、前記インバータ(10)の直流側の電圧である直流リンク電圧(Vdc)を平滑化する平滑コンデンサ(4)の容量に応じて、前記シャットダウン制御(SD)の実行中に前記回転電機(80)から供給される電荷により上昇する前記平滑コンデンサ(4)の電圧が、許容される最大値よりも小さくなるように設定されていると好適である。一般的に、インバータ(10)の直流側には、平滑コンデンサ(4)が備えられていることが多い。電源スイッチ(9)がオフ状態の場合には、直流電源(11)を充電するための電流が遮断されるために、当該電流が平滑コンデンサ(4)を充電し、直流リンク電圧(Vdc)を上昇させる。回転電機駆動装置(1)を構成する電子部品の内、平滑コンデンサ(4)の耐圧は最も低いことが多い。また、回転電機駆動装置(1)の小型化等のために、平滑コンデンサ(4)の容量の低下を進めると、平滑コンデンサ(4)の端子間電圧(即ち、直流リンク電圧(Vdc))の上昇速度も速くなる傾向がある。従って、上述したように平滑コンデンサ(4)の許容値に応じて最大回転速度(ωsd)が設定されていると好適である。
 アクティブショートサーキット制御(ASC)が実行された場合、回転電機(80)には負トルクが発生し、回転電機(80)に駆動連結された車輪(W)にも当該負トルクが伝達される。この負トルクは制動力として働き、車両の乗員に負の加速度を感じさせる。このような加速度は、乗員に不快感を生じさせない程度に抑制されることが好ましい。従って、1つの態様として、前記アクティブショートサーキット制御(ASC)の実行を許容する最小回転速度(ωasc)は、前記アクティブショートサーキット制御(ASC)の実行中に前記車輪(W)に伝達される負トルクの絶対値が、予め規定された最大許容負トルクの絶対値よりも小さくなる回転速度に設定されていると好適である。
 上述したように、アクティブショートサーキット制御(ASC)では、ステータコイル(8)とインバータ(20)との間で電流を還流させるため、そのエネルギーの多くは、ステータコイル(8)及びインバータ(20)において熱となって消費されることになる。この熱によって回転電機(80)の温度が上昇すると、回転電機(80)に備えられた永久磁石を減磁させる可能性がある。このため、回転電機(80)の温度は、永久磁石が磁力を保持可能な範囲内に抑制する必要がある。そして、この温度の上昇は還流する電流に起因するものであるから、その電流は適切な範囲内に抑制される必要がある。アクティブショートサーキットの際に流れる相電流には、定常電流と過渡電流とがあるが、抑制対象となる電流は定常電流と過渡電流とを含めた瞬時ピーク電流(絶対値)である。1つの態様として、前記アクティブショートサーキット制御(ASC)の実行を許容する最小回転速度(ωasc)は、前記アクティブショートサーキット制御(ASC)の実行中に流れる相電流が、前記回転電機(80)の運転が可能な最大の温度において前記回転電機(80)の永久磁石の磁力を保持可能な電流の範囲の最大値よりも小さくなる回転速度に設定されていると好適である。
 このインバータ制御装置(20)は、インバータ(10)を備えた回転電機駆動装置(1)を制御対象として、前記インバータ(10)を構成するスイッチング素子(3)をスイッチング制御すると共に、前記回転電機駆動装置に故障が生じた場合にフェールセーフ制御を実行する装置であって、
 前記インバータ(10)は、直流電源(11)に接続されると共に、車両の車輪(W)に駆動連結された交流の回転電機(80)に接続されて直流と複数相交流との間で電力変換を行うものであって、上段側スイッチング素子(31)と下段側スイッチング素子(32)との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子(3)に並列に接続されたフリーホイールダイオード(5)を備えるものであり、
 電気角の一周期においてデューティーの異なる複数のパルスが出力される制御方式であるパルス幅変調制御(PWM)と、前記回転電機(80)の界磁を弱める方向に調整する弱め界磁制御と共に実施され、電気角の一周期において1つのパルスが出力される制御方式である矩形波制御(AFR+1P)との少なくとも2つの変調制御方式を選択的に実行すると共に、
 前記フェールセーフ制御は、複数相全ての前記アームの前記上段側スイッチング素子(31)をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全ての前記アームの前記下段側スイッチング素子(32)をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御(ASC)と、全ての前記スイッチング素子(3)をオフ状態とするシャットダウン制御(SD)と、を選択的に実行するものであり、
 前記矩形波制御(AFR+1P)の実行中に前記回転電機駆動装置(1)に故障が生じた場合には前記アクティブショートサーキット制御(ASC)を実行し、前記パルス幅変調制御(PWM)の実行中に前記回転電機駆動装置(1)に故障が生じた場合には前記シャットダウン制御(SD)を実行する点にある。
 矩形波制御(AFR+1P)は、相対的に回転電機(80)の回転速度が高い領域において実行され、パルス幅変調制御(PWM)は、矩形波制御(AFR+1P)に比べて相対的に回転電機(80)の回転速度が低い領域において実行される。本構成によれば、矩形波制御(AFR+1P)の実行中に前記回転電機駆動装置(1)に故障が生じた場合には、フェールセーフ制御としてアクティブショートサーキット制御(ASC)が選択される。従って、直流電源(11)に流れる直流電源電流(Ib)の増加や、直流リンク電圧(Vdc)の上昇が抑制される。また、アクティブショートサーキット制御(ASC)が実行されると、回転電機(80)に負トルクを生じさせるため、相対的に回転速度が高い領域で回転する回転電機(80)を減速させることができる。一方、アクティブショートサーキット制御(ASC)による還流電流は、回転電機(80)のステータコイルの温度を上昇させ、到達する温度によっては永久磁石を減磁させる可能性がある。発明者らの実験やシミュレーションによれば、相対的に回転速度が高い領域では、回転速度が低い領域に比べて、定常電流及び過渡電流の最大ピーク電流(絶対値)は小さい(例えば図11参照)。従って、相対的に回転速度が高い領域においてアクティブショートサーキット制御(ASC)が実行されると、還流電流による温度上昇が生じても、回転電機(80)の永久磁石の磁力を保持することができる。一方、直流電源電流(Ib)の増加や直流リンク電圧(Vdc)の上昇が懸念されるシャットダウン制御(SD)は、パルス幅変調制御(PWM)の実行中に前記回転電機駆動装置(1)に故障が生じた場合に選択される。従って、回転電機(80)が大きな負トルクを発生させることを抑制できると共にアクティブショートサーキット制御(ASC)を実行する期間も短縮できる。また、パルス幅変調制御(PWM)の実行中は、相対的に回転電機(80)の回転速度が低いため、シャットダウン制御(SD)による直流電源電流(Ib)や直流リンク電圧(Vdc)の増分は、適切な範囲内に抑制される。このように、本構成によれば、インバータ(10)を備えた回転電機駆動装置(1)に故障が生じた場合に、直流電源電流(Ib)や直流リンク電圧(Vdc)の過大な増加を抑制しつつ、適切にフェールセーフ制御を実行することができる。
 ここで、インバータ制御装置(20)は、前記変調制御方式に応じて選択された前記アクティブショートサーキット制御(ASC)及び前記シャットダウン制御(SD)のいずれか一方の実行中に、前記回転電機(80)の回転速度に基づいて、前記アクティブショートサーキット制御(ASC)及び前記シャットダウン制御(SD)のいずれか他方へ前記フェールセーフ制御の制御方式を遷移させると好適である。フェールセーフ制御の実行中にも回転電機(80)の回転速度は変化する。回転速度に応じて、逆起電力の大きさも異なるから、一度選択した制御方式の制御が実行されていても、回転電機(80)の回転状態に応じて適切な制御方式に遷移させることが好適である。但し、フェールセーフ制御が開始された後は、通常の変調制御は実行されていない。従って、変調制御方式に基づいてフェールセーフ制御の制御方式を再選択することはできない。一方、回転電機(80)の逆起電力は、回転電機(80)の回転速度に依存する。従って、アクティブショートサーキット制御(ASC)及びシャットダウン制御(SD)のいずれか一方の制御が開始された後は、回転電機(80)の回転速度に基づいて、フェールセーフ制御の制御方式が選択されると好適である。
 上述したように、フェールセーフ制御の実行中に回転電機(80)の回転速度が変化する場合がある。例えば、車両が坂道を下っているような場合には車輪(W)に駆動連結された回転電機(80)の回転速度が上昇する場合がある。直流電源電流(Ib)や直流リンク電圧(Vdc)の増分が適切な範囲内に抑制されると判断して、シャットダウン制御(SD)を実行していた場合に、回転電機(80)の回転速度が上昇すると、直流電源電流(Ib)や直流リンク電圧(Vdc)が適切な範囲内を超えて上昇する可能性がある。そこで、1つの態様として、前記インバータ(10)は、オフ状態で電力の供給を遮断する電源スイッチ(9)を介して前記直流電源(11)に接続され、インバータ制御装置(20)は、前記シャットダウン制御(SD)の実行中に、前記回転電機(80)の回転速度が、前記シャットダウン制御(SD)の実行を許容する最大回転速度(ωsd)以上に上昇した場合には、制御方式を前記アクティブショートサーキット制御(ASC)に遷移させると好適である。そして、前記最大回転速度(ωsd)は、前記電源スイッチ(9)がオン状態の場合には、直流電源電圧に応じて、前記回転電機(80)の回転速度に応じた直流電源電流(Ib)及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定されていると好適である。また、前記最大回転速度(ωsd)は、前記電源スイッチ(9)がオフ状態の場合には、3相の線間における逆起電力のピーク値が、前記回転電機駆動装置(1)において許容される最大定格電圧よりも小さくなる回転速度に、最大回転速度(ωsd)が設定されていると好適である。
 インバータ(80)は、電源スイッチ(9)を介して直流電源(11)に接続されているため、回生電力は、電源スイッチ(9)がオン状態において直流電源(11)を充電する。電源スイッチ(9)がオフ状態においては、直流電源(11)との接続が遮断されているため、回生電力は、直流リンク電圧(Vdc)を上昇させる。このため、フェールセーフ制御の制御方式を選択するための基準となる回転電機(80)の回転速度は、電源スイッチ(9)のオンオフの状態に応じて設定されていると好適である。尚、直流電源(11)の電圧である直流電源電圧が定格範囲内の下限値である場合には、回転電機(80)によって発電される電圧との電位差が大きくなり、直流電源電流(Ib)及び回生電力も大きくなる傾向がある。従って、上述したように、電源スイッチ(9)がオン状態の場合には、直流電源電圧が定格範囲内の下限値である場合の、回転電機(80)の回転速度に対する直流電源電流(Ib)及び回生電力の特性に基づいて、最大回転速度(ωsd)が設定されると好適である。
 また、前記電源スイッチ(9)がオフ状態の場合には、さらに、前記最大回転速度(ωsd)は、前記インバータ(10)の直流側の電圧である直流リンク電圧(Vdc)を平滑化する平滑コンデンサ(4)の容量に応じて、前記シャットダウン制御(SD)の実行中に前記回転電機(80)から供給される電荷により上昇する前記平滑コンデンサ(4)の電圧が、許容される最大値よりも小さくなるように設定されていると好適である。一般的に、インバータ(10)の直流側には、平滑コンデンサ(4)が備えられていることが多い。電源スイッチ(9)がオフ状態の場合には、直流電源(11)を充電するための電流が遮断されるために、当該電流が平滑コンデンサ(4)を充電し、直流リンク電圧(Vdc)を上昇させる。回転電機駆動装置(1)を構成する電子部品の内、平滑コンデンサ(4)の耐圧は最も低いことが多い。また、回転電機駆動装置(1)の小型化等のために、平滑コンデンサ(4)の容量の低下を進めると、平滑コンデンサ(4)の端子間電圧(即ち、直流リンク電圧(Vdc))の上昇速度も速くなる傾向がある。従って、上述したように平滑コンデンサ(4)の許容値に応じて最大回転速度(ωsd)が設定されていると好適である。
 重力等の外力を含め、車輪(W)に対して新たな駆動力が提供されない場合、フェールセーフ制御の実行中に回転電機(80)の回転速度は低下していく。アクティブショートサーキット制御(ASC)は、ステータコイル(8)とインバータ(20)との間で電流を還流させるため、そのエネルギーの多くは、ステータコイル(8)及びインバータ(20)において熱となって消費されることになる。この熱によって、ステータコイル(8)やスイッチング素子(3)が消耗する可能性がある。また、ステータコイル(8)が加熱され、ステータの温度が上昇して永久磁石を減磁させる可能性もある。また、アクティブショートサーキット制御(ASC)を低い回転速度で実行した場合には、回転電機(80)が大きな負トルクを発生させることがある。そして、この負トルクは、減速度となって車両の乗員に挙動変化を感じさせる可能性がある。このため、アクティブショートサーキット制御(ASC)による電流の還流は、適切な時期に終了されることが好ましい。そこで、1つの態様として、前記アクティブショートサーキット制御(ASC)の実行中に、前記回転電機(80)の回転速度が、前記アクティブショートサーキット制御の実行を許容する最小回転速度(ωasc)以下まで低下した場合には、制御方式を前記シャットダウン制御(SD)に遷移させると好適である。
 直流リンク電圧(Vdc)の値が異なると、変調制御方式を変更する境界(B)も異なることになる。そして、最大回転速度(ωsd)及び最小回転速度(ωasc)は、この境界(B)に連動して設定される。従って、フェールセーフ制御が開始された後、フェールセーフ制御の制御方式を変更する際の判定基準(最大回転速度(ωsd)及び最小回転速度(ωasc))も、直流リンク電圧(Vdc)に対応した値が用いられていると好適である。つまり、1つの態様として、前記シャットダウン制御(SD)の実行中に、前記回転電機(80)の回転速度が、前記シャットダウン制御(SD)の実行を許容する最大回転速度(ωsd)以上に上昇した場合には、制御方式を前記アクティブショートサーキット制御(ASC)に遷移させ、前記アクティブショートサーキット制御(ASC)の実行中に、前記回転電機(80)の回転速度が、前記アクティブショートサーキット制御(ASC)の実行を許容する最小回転速度(ωasc)以下まで低下した場合には、制御方式を前記シャットダウン制御(SD)に遷移させるものであり、前記最大回転速度(ωsd)及び前記最小回転速度(ωasc)は、前記インバータ(10)の直流側の電圧である直流リンク電圧(Vdc)に応じて設定され、前記直流リンク電圧(Vdc)が小さいほど、小さい値に設定されると好適である。
 アクティブショートサーキット制御(ASC)が実行された場合、回転電機(80)には負トルクが発生し、回転電機(80)に駆動連結された車輪(W)にも当該負トルクが伝達される。この負トルクは制動力として働き、車両の乗員に負の加速度を感じさせる。このような加速度は、乗員に不快感を生じさせない程度に抑制されることが好ましい。従って、1つの態様として、前記アクティブショートサーキット制御(ASC)の実行を許容する最小回転速度(ωasc)は、前記アクティブショートサーキット制御(ASC)の実行中に前記車輪(W)に伝達される負トルクの絶対値が、予め規定された最大許容負トルクの絶対値よりも小さくなる回転速度に設定されていると好適である。
 上述したように、アクティブショートサーキット制御(ASC)では、ステータコイル(8)とインバータ(20)との間で電流を還流させるため、そのエネルギーの多くは、ステータコイル(8)及びインバータ(20)において熱となって消費されることになる。この熱によって回転電機(80)の温度が上昇すると、回転電機(80)に備えられた永久磁石を減磁させる可能性がある。このため、回転電機(80)の温度は、永久磁石が磁力を保持可能な範囲内に抑制する必要がある。そして、この温度の上昇は還流する電流に起因するものであるから、その電流は適切な範囲内に抑制される必要がある。アクティブショートサーキットの際に流れる相電流には、定常電流と過渡電流とがあるが、抑制対象となる電流は定常電流と過渡電流とを含めた瞬時ピーク電流(絶対値)である。1つの態様として、前記アクティブショートサーキット制御(ASC)の実行を許容する最小回転速度(ωasc)は、前記アクティブショートサーキット制御(ASC)の実行中に流れる相電流が、前記回転電機(80)の運転が可能な最大の温度において前記回転電機(80)の永久磁石の磁力を保持可能な電流の範囲の最大値よりも小さくなる回転速度に設定されていると好適である。
 以上で説明したインバータ制御装置(20)は、車両用制御装置(50)にも適用できる。この場合、車両用制御装置(50)は、車両の車輪(W)の駆動力源となる回転電機(80)と前記車輪(W)とを結ぶ動力伝達経路に変速装置(90)を備えた車両用駆動装置(60)と、前記インバータ(10)を備えた回転電機駆動装置(1)と、を制御対象とし、上記インバータ制御装置(20)を備えた装置であって、
 前記変速装置(90)の出力軸の回転速度に対する前記変速装置(90)の入力軸の回転速度の比である変速比を設定して前記変速装置(90)を制御する変速制御、及び、
 前記インバータ(10)を構成するスイッチング素子(3)をスイッチング制御するインバータ制御を実行すると共に、
 前記フェールセーフ制御として前記アクティブショートサーキット制御(ASC)が実行された場合に、前記変速比が小さくなる方向へ前記変速装置(90)を制御するフェールセーフ変速制御(upshift)を実行する点にある。
 この構成によれば、回転電機駆動装置(1)に故障が生じた場合に、相対的に回転電機(80)の回転速度が高い高回転速度領域であった場合又は矩形波制御の実行中であった場合には、フェールセーフ制御としてアクティブショートサーキット制御(ASC)が選択される。従って、直流電源(11)に流れる直流電源電流(Ib)の増加や、直流リンク電圧(Vdc)の上昇が抑制される。尚、アクティブショートサーキット制御(ASC)が実行されると、回転電機(80)に負トルクを生じさせるため、高回転速度領域で回転する回転電機(80)を減速させる。一方、回転電機駆動装置(1)に故障が生じた場合に、相対的に回転電機(80)の回転速度が低い低回転速度領域であった場合又はパルス幅変調制御の実行中であった場合には、フェールセーフ制御としてシャットダウン制御(SD)が選択される。さらにアクティブショートサーキット制御(ASC)が実行された場合には、フェールセーフ変速制御(upshift)が実行される。これにより、回転電機(80)の回転速度を低下させつつ、車輪(W)の速度低下を抑制することが可能となる。従って、回転電機(80)を駆動源として利用できなくなった状況でも、乗員は例えばサービスエリアなど、所望の場所まで車両を進行させて停車させることができる可能性が高くなる。また、フェールセーフ変速制御(upshift)を実行して変速比を低下させることにより、回転電機(80)の回転速度を低下させるので、アクティブショートサーキット制御(ASC)による環流電流の長時間の継続を抑制しつつ、回転電機(80)に生じる逆起電力を適切に放電することができる。このように、本構成によれば、インバータ(10)を備えた回転電機駆動装置(1)に故障が生じた場合に、直流電源(11)に回生される直流電源電流(Ib)や直流リンク電圧(Vdc)の過大な増加、並びに環流電流の長時間の継続を抑制しつつ、適切にフェールセーフ制御を実行することができる。
 ここで、車両用制御装置(50)は、前記フェールセーフ変速制御(upshift)により、前記変速比が小さくなる方向へ前記変速装置(90)を制御して、前記回転電機(80)の回転速度を前記低回転速度領域まで低下させると好適である。このような低回転速度領域までの回転速度の低下によって、フェールセーフ制御の制御方式をアクティブショートサーキット制御(ASC)からシャットダウン制御(SD)へ移行させることになる。従って、回転電機(80)が大きな負トルクを発生させることを抑制できると共にアクティブショートサーキット制御(ASC)を実行する期間も短縮できる。また、環流電流の長時間の継続による回転電機(80)の加熱も抑制される。その結果、過熱によって回転電機(80)の永久磁石が減磁する可能性も抑制される。
 シャットダウン制御(SD)の実行中に、例えば、車両が坂道や段差を下ることによって車輪(W)の回転速度が上昇し、その回転速度の上昇が回転電機(80)に伝達されて、回転電機(80)の回転速度が上昇する場合がある。回転速度が高回転速度領域まで上昇すると、フェールセーフ制御としてアクティブショートサーキット制御(ASC)が実行される。ここで、フェールセーフ変速制御を実行すると、回転電機(80)の回転速度を低下させることができ、アクティブショートサーキット制御(ASC)の実行を抑制することができる。1つの態様として、車両用制御装置(50)は、前記フェールセーフ変速制御の実行中又は実行後に、前記回転電機(80)の回転速度が前記高回転速度領域まで上昇すると判定した場合には、さらに前記変速比が小さくなる方向へ前記変速装置(90)を制御すると好適である。
 尚、車両用駆動装置(60)が駆動力源としてさらに内燃機関(70)を備えており、内燃機関(70)と車輪(W)との動力伝達が維持されている場合には、回転電機(80)による駆動力が失われている状態でも、内燃機関(70)の駆動力によって車輪(W)を回転させることが可能である。フェールセーフ制御が実行されるような場合には、車両或いは車両用駆動装置(60)になんらかの故障が生じていることは、乗員にも報知されている。しかし、乗員は、例えばサービスエリアなど、所望の場所まで車両を進行させて停車させることを望む場合がある。このような場合に、内燃機関(70)の駆動力を用いると、車輪(W)或いは内燃機関(70)に駆動連結された回転電機(80)の回転速度を上昇させる可能性がある。この際、上述したように、さらに変速比が小さくなる方向へ変速装置(90)が制御されると、例えばシャットダウン制御(SD)を維持した状態で、車両を進行させることが可能となる。その結果、乗員が、所望の場所まで車両を移動できる可能性が高くなる。
 アクティブショートサーキット制御(ASC)では、ステータコイル(8)とインバータ(20)との間で電流を還流させるため、そのエネルギーの多くは、ステータコイル(8)及びインバータ(20)において熱となって消費されることになる。この熱によって回転電機(80)が加熱されると、回転電機(80)に備えられた永久磁石を過熱によって減磁させる可能性がある。このため、回転電機(80)の温度は、永久磁石が磁力を保持可能な範囲内に抑制する必要がある。そして、この温度の上昇は還流する電流に起因するものであるから、その電流は適切な範囲内に抑制される必要がある。逆に、アクティブショートサーキット制御(ASC)の実行による回転電機(80)の温度上昇が許容可能であれば、アクティブショートサーキット制御(ASC)を継続しても問題はない。この点に鑑みれば、フェールセーフ変速制御の実行条件に、回転電機(80)の温度条件を加えることができる。1つの態様として、前記フェールセーフ変速制御(upshift)は、前記フェールセーフ制御として前記アクティブショートサーキット制御(ASC)が実行され、且つ、前記回転電機(80)の温度が予め規定された規制温度以上の場合に実行されると好適である。尚、規制温度は、上述したように、実験やシミュレーションによって得られる各種の値、具体的には、永久磁石の磁力が劣化する温度に達するまでの時間、単位時間当たりの温度上昇率、温度センサの誤差範囲、電流値等に基づいて設定されると好適である。
 インバータ(80)は、オフ状態で電力の供給を遮断する電源スイッチ(9)を介して直流電源(11)に接続されている場合、回生電力は、電源スイッチ(9)がオン状態において直流電源(11)を充電する。電源スイッチ(9)がオフ状態においては、直流電源(11)との接続が遮断されているため、回生電力は、直流リンク電圧(Vdc)を上昇させる。このため、フェールセーフ制御の制御方式を選択するための基準となる回転電機(80)の回転速度は、電源スイッチ(9)のオンオフの状態に応じて設定されていると好適である。即ち、1つの態様として、前記インバータ(10)は、オフ状態で電力の供給を遮断する電源スイッチ(9)を介して前記直流電源(11)に接続され、前記シャットダウン制御(SD)の実行を許容する最大回転速度(ωsd)は、前記電源スイッチ(9)がオン状態の場合には直流電源電圧に応じて、前記回転電機(80)の回転速度に応じた直流電源電流(Ib)及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定されていると好適である。また、前記最大回転速度(ωsd)は、前記電源スイッチ(9)がオフ状態の場合には、3相の線間における逆起電力のピーク値が、前記回転電機駆動装置(1)において許容される最大定格電圧よりも小さくなる回転速度に、最大回転速度(ωsd)が設定されていると好適である。
 尚、直流電源(11)の電圧である直流電源電圧が定格範囲内の下限値である場合には、回転電機(80)によって発電される電圧との電位差が大きくなり、直流電源電流(Ib)及び回生電力も大きくなる傾向がある。従って、上述したように、電源スイッチ(9)がオン状態の場合には、直流電源電圧が定格範囲内の下限値である場合の、回転電機(80)の回転速度に対する直流電源電流(Ib)及び回生電力の特性に基づいて、最大回転速度(ωsd)が設定されると好適である。
 本開示に係る技術は、インバータを備えた回転電機駆動装置を制御対象とするインバータ制御装置に利用することができる。
1    :回転電機駆動装置
3    :スイッチング素子
4    :平滑コンデンサ
5    :ダイオード(フリーホイールダイオード)
9    :コンタクタ(電源スイッチ)
10   :インバータ
11   :高圧バッテリ(直流電源)
20   :インバータ制御装置
31   :上段側スイッチング素子
32   :下段側スイッチング素子
50   :車両用制御装置
60   :車両用駆動装置
80   :回転電機
90   :変速装置
100  :車両ECU
Ib   :バッテリ電流(直流電源電流)
TRQ  :負トルク
Vbemf:モータ線間逆起電圧
Vdc  :直流リンク電圧
Vmax :最大定格電圧
W    :車輪
ωasc :ASC最小回転速度(最小回転速度)
ωsd  :SD最大回転速度(最大回転速度)

Claims (20)

  1.  インバータを備えた回転電機駆動装置を制御対象として、前記インバータを構成するスイッチング素子をスイッチング制御すると共に、前記回転電機駆動装置に故障が生じた場合にフェールセーフ制御を実行するインバータ制御装置であって、
     前記インバータは、直流電源に接続されると共に、車両の車輪に駆動連結された交流の回転電機に接続されて直流と複数相交流との間で電力変換を行うものであって、上段側スイッチング素子と下段側スイッチング素子との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子に並列に接続されたフリーホイールダイオードを備えるものであり、
     前記フェールセーフ制御は、複数相全ての前記アームの前記上段側スイッチング素子をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全ての前記アームの前記下段側スイッチング素子をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御と、全ての前記スイッチング素子をオフ状態とするシャットダウン制御と、を選択的に実行するものであり、
     少なくとも前記回転電機の回転速度に応じて、高回転速度領域では前記アクティブショートサーキット制御を実行し、前記高回転速度領域よりも低回転速度側の低回転速度領域では前記シャットダウン制御を実行するインバータ制御装置。
  2.  前記シャットダウン制御の実行中に、前記回転電機の回転速度が前記高回転速度領域まで上昇した場合には、制御方式を前記アクティブショートサーキット制御に遷移させる請求項1に記載のインバータ制御装置。
  3.  前記アクティブショートサーキット制御の実行中に、前記回転電機の回転速度が前記低回転速度領域まで低下した場合には、制御方式を前記シャットダウン制御に遷移させる請求項1又は2に記載のインバータ制御装置。
  4.  前記インバータは、オフ状態で電力の供給を遮断する電源スイッチを介して前記直流電源に接続され、
     前記シャットダウン制御の実行を許容する最大回転速度は、
      前記電源スイッチがオン状態の場合には直流電源電圧に応じて、前記回転電機の回転速度に応じた直流電源電流及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定され、
      前記電源スイッチがオフ状態の場合には、3相の線間における逆起電力のピーク値が、前記回転電機駆動装置において許容される最大定格電圧よりも小さくなる回転速度に設定されている請求項1から3の何れか一項に記載のインバータ制御装置。
  5.  前記電源スイッチがオフ状態の場合には、さらに、前記最大回転速度は、前記インバータの直流側の電圧である直流リンク電圧を平滑化する平滑コンデンサの容量に応じて、前記シャットダウン制御の実行中に前記回転電機から供給される電荷により上昇する前記平滑コンデンサの電圧が、許容される最大値よりも小さくなるように設定されている請求項4に記載のインバータ制御装置。
  6.  前記アクティブショートサーキット制御の実行を許容する最小回転速度は、前記アクティブショートサーキット制御の実行中に前記車輪に伝達される負トルクの絶対値が、予め規定された最大許容負トルクの絶対値よりも小さくなる回転速度に設定されている請求項1から5の何れか一項に記載のインバータ制御装置。
  7.  前記アクティブショートサーキット制御の実行を許容する最小回転速度は、前記アクティブショートサーキット制御の実行中に流れる相電流が、前記回転電機の運転が可能な最大の温度において前記回転電機の永久磁石の磁力を保持可能な電流の範囲の最大値よりも小さくなる回転速度に設定されている請求項1から6の何れか一項に記載のインバータ制御装置。
  8.  インバータを備えた回転電機駆動装置を制御対象として、前記インバータを構成するスイッチング素子をスイッチング制御すると共に、前記回転電機駆動装置に故障が生じた場合にフェールセーフ制御を実行するインバータ制御装置であって、
     前記インバータは、直流電源に接続されると共に、車両の車輪に駆動連結された交流の回転電機に接続されて直流と複数相交流との間で電力変換を行うものであって、上段側スイッチング素子と下段側スイッチング素子との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子に並列に接続されたフリーホイールダイオードを備えるものであり、
     電気角の一周期においてデューティーの異なる複数のパルスが出力される制御方式であるパルス幅変調制御と、前記回転電機の界磁を弱める方向に調整する弱め界磁制御と共に実施され、電気角の一周期において1つのパルスが出力される制御方式である矩形波制御との少なくとも2つの変調制御方式を選択的に実行すると共に、
     前記フェールセーフ制御は、複数相全ての前記アームの前記上段側スイッチング素子をオン状態とする上段側アクティブショートサーキット制御、及び、複数相全ての前記アームの前記下段側スイッチング素子をオン状態とする下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御と、全ての前記スイッチング素子をオフ状態とするシャットダウン制御と、を選択的に実行するものであり、
     前記矩形波制御の実行中に前記回転電機駆動装置に故障が生じた場合には前記アクティブショートサーキット制御を実行し、前記パルス幅変調制御の実行中に前記回転電機駆動装置に故障が生じた場合には前記シャットダウン制御を実行するインバータ制御装置。
  9.  前記変調制御方式に応じて選択された前記アクティブショートサーキット制御及び前記シャットダウン制御のいずれか一方の実行中に、前記回転電機の回転速度に基づいて、前記アクティブショートサーキット制御及び前記シャットダウン制御のいずれか他方へ前記フェールセーフ制御の制御方式を遷移させる請求項8に記載のインバータ制御装置。
  10.  前記インバータは、オフ状態で電力の供給を遮断する電源スイッチを介して前記直流電源に接続され、
     前記シャットダウン制御の実行中に、前記回転電機の回転速度が、前記シャットダウン制御の実行を許容する最大回転速度以上に上昇した場合には、制御方式を前記アクティブショートサーキット制御に遷移させるものであり、
     前記最大回転速度は、
      前記電源スイッチがオン状態の場合には、前記直流電源電圧に応じて、前記回転電機の回転速度に応じた直流電源電流及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定され、
      前記電源スイッチがオフ状態の場合には、3相の線間における逆起電力のピーク値が、前記回転電機駆動装置において許容される最大定格電圧よりも小さくなる回転速度に設定されている請求項9に記載のインバータ制御装置。
  11.  前記電源スイッチがオフ状態の場合には、さらに、前記最大回転速度は、前記インバータの直流側の電圧である直流リンク電圧を平滑化する平滑コンデンサの容量に応じて、前記シャットダウン制御の実行中に前記回転電機から供給される電荷により上昇する前記平滑コンデンサの電圧が、許容される最大値よりも小さくなるように設定されている請求項10に記載のインバータ制御装置。
  12.  前記アクティブショートサーキット制御の実行中に、前記回転電機の回転速度が、前記アクティブショートサーキット制御の実行を許容する最小回転速度以下まで低下した場合には、制御方式を前記シャットダウン制御に遷移させる請求項9から11の何れか一項に記載のインバータ制御装置。
  13.  前記アクティブショートサーキット制御の実行中に、前記回転電機の回転速度が、前記アクティブショートサーキット制御の実行を許容する最小回転速度以下まで低下した場合には、制御方式を前記シャットダウン制御に遷移させるものであり、
     前記最大回転速度及び前記最小回転速度は、前記インバータの直流側の電圧である直流リンク電圧に応じて設定され、前記直流リンク電圧が小さいほど小さい値に設定される請求項10又は11に記載のインバータ制御装置。
  14.  前記アクティブショートサーキット制御の実行を許容する最小回転速度は、前記アクティブショートサーキット制御の実行中に前記車輪に伝達される負トルクの絶対値が、予め規定された最大許容負トルクの絶対値よりも小さくなる回転速度に設定されている請求項12又は13に記載のインバータ制御装置。
  15.  前記アクティブショートサーキット制御の実行を許容する最小回転速度は、前記アクティブショートサーキット制御の実行中に流れる相電流が、前記回転電機の運転が可能な最大の温度において前記回転電機の永久磁石の磁力を保持可能な電流の範囲の最大値よりも小さくなる回転速度に設定されている請求項12から14の何れか一項に記載のインバータ制御装置。
  16.  車両の車輪の駆動力源となる回転電機と前記車輪とを結ぶ動力伝達経路に変速装置を備えた車両用駆動装置と、前記インバータを備えた回転電機駆動装置と、を制御対象とし、請求項1から15の何れか一項に記載のインバータ制御装置を備えた車両用制御装置であって、
     前記変速装置の出力軸の回転速度に対する前記変速装置の入力軸の回転速度の比である変速比を設定して前記変速装置を制御する変速制御、及び、
     前記インバータを構成するスイッチング素子をスイッチング制御するインバータ制御を実行すると共に、
     前記フェールセーフ制御として前記アクティブショートサーキット制御が実行された場合に、前記変速比が小さくなる方向へ前記変速装置を制御するフェールセーフ変速制御を実行する車両用制御装置。
  17.  前記フェールセーフ変速制御は、前記変速比が小さくなる方向へ前記変速装置を制御して、前記回転電機の回転速度を前記低回転速度領域まで低下させる請求項16に記載の車両用制御装置。
  18.  前記フェールセーフ変速制御の実行中又は実行後に、前記回転電機の回転速度が前記高回転速度領域まで上昇すると判定した場合には、さらに前記変速比が小さくなる方向へ前記変速装置を制御する請求項16又は17に記載の車両用制御装置。
  19.  前記フェールセーフ変速制御は、前記フェールセーフ制御として前記アクティブショートサーキット制御が実行され、且つ、前記回転電機の温度が予め規定された規制温度以上の場合に実行される請求項16から18の何れか一項に記載の車両用制御装置。
  20.  前記インバータは、オフ状態で電力の供給を遮断する電源スイッチを介して前記直流電源に接続され、
     前記シャットダウン制御の実行を許容する最大回転速度は、
      前記電源スイッチがオン状態の場合には直流電源電圧に応じて、前記回転電機の回転速度に応じた直流電源電流及び回生電力が、許容される最大定格値よりも小さくなる回転速度に設定され、
      前記電源スイッチがオフ状態の場合には、3相の線間における逆起電力のピーク値が、前記回転電機駆動装置において許容される最大定格電圧よりも小さくなる回転速度に設定されている請求項16から19の何れか一項に記載の車両用制御装置。
PCT/JP2015/082037 2014-11-14 2015-11-13 インバータ制御装置及び車両用制御装置 WO2016076429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015004320.9T DE112015004320T5 (de) 2014-11-14 2015-11-13 Wechselrichtersteuerungsvorrichtung und fahrzeugsteuerungsvorrichtung
CN201580061618.1A CN107112937B (zh) 2014-11-14 2015-11-13 逆变器控制装置以及车辆用控制装置
JP2016559124A JP6296169B2 (ja) 2014-11-14 2015-11-13 インバータ制御装置及び車両用制御装置
US15/517,753 US10351002B2 (en) 2014-11-14 2015-11-13 Inverter control device and vehicle control device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014231910 2014-11-14
JP2014231911 2014-11-14
JP2014-231909 2014-11-14
JP2014-231910 2014-11-14
JP2014231909 2014-11-14
JP2014-231911 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016076429A1 true WO2016076429A1 (ja) 2016-05-19

Family

ID=55954504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082037 WO2016076429A1 (ja) 2014-11-14 2015-11-13 インバータ制御装置及び車両用制御装置

Country Status (5)

Country Link
US (1) US10351002B2 (ja)
JP (1) JP6296169B2 (ja)
CN (2) CN107112937B (ja)
DE (1) DE112015004320T5 (ja)
WO (1) WO2016076429A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163728A (ja) * 2016-03-10 2017-09-14 三菱電機株式会社 モータ駆動装置
WO2018092435A1 (ja) * 2016-11-21 2018-05-24 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
WO2018173591A1 (ja) * 2017-03-22 2018-09-27 日本電産株式会社 モータ駆動装置、電動アシスト装置、および電動車両
WO2018198651A1 (ja) * 2017-04-27 2018-11-01 株式会社デンソー 回転電機制御装置及び制御システム
CN109412118A (zh) * 2017-08-17 2019-03-01 比亚迪股份有限公司 用于电机控制器的保护装置、电机控制器及电动汽车
WO2019066021A1 (ja) * 2017-09-29 2019-04-04 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
JP2019122238A (ja) * 2018-01-05 2019-07-22 パナソニックIpマネジメント株式会社 モータ制御装置およびモータ制御装置の制御方法
CN110311619A (zh) * 2019-06-24 2019-10-08 深圳市麦格米特驱动技术有限公司 一种电机控制电路及电动汽车
DE112018000264T5 (de) 2017-03-22 2019-10-10 Aisin Aw Co., Ltd. Fahrzeugfahrsteuerungsvorrichtung
JP2019191928A (ja) * 2018-04-25 2019-10-31 株式会社日立産機システム 電力変換システム及び電力変換方法
CN110546879A (zh) * 2017-04-18 2019-12-06 株式会社电装 旋转电机控制装置及电源系统
JP2020102985A (ja) * 2018-12-25 2020-07-02 トヨタ自動車株式会社 電動機の制御装置
WO2020174671A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 モータ駆動装置および空気調和機
CN111919127A (zh) * 2018-01-17 2020-11-10 罗伯特·博世有限公司 用于在进行旋转的机器中测试输出级的电桥的方法
US10889289B2 (en) * 2018-02-23 2021-01-12 Honda Motor Co., Ltd. Vehicle and control method for vehicle
CN112448656A (zh) * 2019-09-03 2021-03-05 北京新能源汽车股份有限公司 一种电机控制器工作模式切换方法、装置及电动汽车
KR20210063091A (ko) * 2019-11-22 2021-06-01 엘지전자 주식회사 과전류에 의한 스위칭 소자의 손상을 방지할 수 있는 전력 변환 장치
WO2021261265A1 (ja) * 2020-06-25 2021-12-30 株式会社デンソー 電力変換器の制御回路
CN114435137A (zh) * 2022-01-21 2022-05-06 岚图汽车科技有限公司 电机控制器的主动短路控制方法、装置、设备及介质
US20220289042A1 (en) * 2021-03-12 2022-09-15 Dana Tm4 Inc. Modulated active short circuit braking
DE102022108091A1 (de) 2021-04-09 2022-10-13 Nidec Elesys Corporation Wechselrichtervorrichtung und motorvorrichtung umfassend selbigen
JP2023067350A (ja) * 2021-11-01 2023-05-16 三菱電機株式会社 電動機制御装置および電動機駆動システム

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460989A4 (en) * 2016-05-17 2020-01-22 Microspace Corporation MOTOR DRIVE CONTROL DEVICE AND ELECTRIC DEVICE
JP6921687B2 (ja) * 2017-08-31 2021-08-18 株式会社ミツバ ワイパ装置
CN107696868A (zh) * 2017-09-29 2018-02-16 北京新能源汽车股份有限公司 电动汽车超速故障的处理方法、装置及车载设备
DE102017123348A1 (de) 2017-10-09 2019-04-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wechselrichter für ein Elektroauto
CN107910852B (zh) * 2017-11-08 2019-10-11 上海金脉电子科技有限公司 车用电机转矩安全关断系统及其方法
CN109955846B (zh) * 2017-12-22 2021-03-26 比亚迪股份有限公司 混合动力汽车及其电机的控制方法和装置
DE102018133248B4 (de) * 2018-01-05 2022-08-11 Panasonic Intellectual Property Management Co., Ltd. Motorsteuervorrichtung und Steuerverfahren für Motorsteuervorrichtung
DE102018203579A1 (de) * 2018-03-09 2019-09-12 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Betreiben eines Antriebssystems und Antriebssystem für ein Fahrzeug
WO2019180972A1 (ja) * 2018-03-23 2019-09-26 三菱電機株式会社 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
CN108696226B (zh) * 2018-06-01 2020-07-07 阳光电源股份有限公司 一种电机控制器
CN112166050A (zh) * 2018-06-01 2021-01-01 日产自动车株式会社 逆变器控制方法及逆变器控制系统
DE102018209582A1 (de) * 2018-06-14 2019-12-19 Bombardier Transportation Gmbh Verfahren zum Betreiben eines elektrisch angetriebenen Fahrzeugs und elektrisch angetriebenes Fahrzeug
US10978934B2 (en) 2018-08-27 2021-04-13 General Electric Company Engine with a permanent magnet electric machine
DE102018123206A1 (de) * 2018-09-20 2020-03-26 Valeo Siemens Eautomotive Germany Gmbh Steuerungseinrichtung für einen Wechselrichter, Wechselrichter für eine Asynchronmaschine, Fahrzeug und Verfahren zum Betreiben eines Wechselrichters
FR3091052B1 (fr) * 2018-12-20 2021-05-21 Valeo Equip Electr Moteur Système de commande d’un convertisseur de tension
JP7120062B2 (ja) * 2019-02-07 2022-08-17 トヨタ自動車株式会社 組電池の充放電制御装置および組電池の充放電制御方法
JP6722417B1 (ja) * 2019-02-07 2020-07-15 双葉電子工業株式会社 モーター駆動装置
JP6989574B2 (ja) * 2019-09-25 2022-01-05 本田技研工業株式会社 制御装置、車両システム及び制御方法
CN111619351B (zh) * 2019-02-28 2022-04-12 北京新能源汽车股份有限公司 一种安全状态控制方法、装置及汽车
JP2020162254A (ja) 2019-03-26 2020-10-01 日本電産株式会社 インバータ装置
CN110126624A (zh) * 2019-04-16 2019-08-16 北京长城华冠汽车科技股份有限公司 一种根据碰撞信号切断高压继电器的方法及系统
CN110474297B (zh) * 2019-08-30 2021-07-30 合肥巨一动力系统有限公司 一种电机控制器的主动保护回路
CN110829949A (zh) * 2019-11-01 2020-02-21 中国第一汽车股份有限公司 一种电驱动系统故障保护方法、装置、车辆及存储介质
DE102019130334A1 (de) * 2019-11-11 2021-05-12 Audi Ag Temperaturabhängiges Derating einer PSM
CN112829587A (zh) * 2019-11-25 2021-05-25 上海汽车变速器有限公司 用于低压电故障时的电机控制器主动放电系统
CN111654272B (zh) * 2019-12-25 2024-06-18 联合汽车电子有限公司 驱动控制电路
DE102020200925A1 (de) 2020-01-27 2021-07-29 Kuka Deutschland Gmbh Verfahren zum Steuern wenigstens eines Servomotors, zugehörige Steuervorrichtung, Roboter und Computerprogrammprodukt
US11332029B2 (en) * 2020-01-31 2022-05-17 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
US11167644B2 (en) 2020-01-31 2021-11-09 Lear Corporation Method and system for notification of an active short circuit condition in an electric motor of a hybrid electric vehicle
US11462920B2 (en) 2020-01-31 2022-10-04 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
CN113276679B (zh) * 2020-01-31 2024-06-18 李尔公司 用于在电动机中产生主动短路状况的方法和系统
US11996793B2 (en) * 2020-02-20 2024-05-28 Mitsubishi Electric Corporation Air conditioning apparatus
CN113300327A (zh) * 2020-02-20 2021-08-24 博世汽车部件(苏州)有限公司 欠压保护设备及方法
CN113346804B (zh) * 2020-03-02 2023-06-13 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
JP7475936B2 (ja) * 2020-04-03 2024-04-30 三菱重工サーマルシステムズ株式会社 システム、車両、放電方法及びプログラム
DE102020112940A1 (de) 2020-05-13 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Synchronmaschine
DE102020206478A1 (de) * 2020-05-25 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Steuervorrichtung für einen Stromrichter, elektrisches Antriebssystem und Verfahren zum Einstellen eines sicheren Betriebszustandes
TWI759774B (zh) * 2020-06-20 2022-04-01 國立成功大學 應用於馬達驅動之電路系統與控制方法
CN112572151A (zh) * 2020-10-30 2021-03-30 深圳市禾望电气股份有限公司 电机的主动短路保护方法、控制器以及电机控制系统
CN112627994A (zh) * 2020-12-21 2021-04-09 苏州绿控传动科技股份有限公司 一种利用主动短路实现发动机降速调速的方法
DE102021208438A1 (de) * 2021-08-04 2023-02-09 Zf Friedrichshafen Ag Verfahren zur Steuerung des Betriebs einer elektrischen Maschine eines Kraftfahrzeugs
CN115981443A (zh) 2021-10-15 2023-04-18 台达电子工业股份有限公司 程序刻录装置及其电流保护检测方法
KR102672600B1 (ko) * 2021-12-03 2024-06-07 주식회사 현대케피코 상시 전원 공급 라인의 단선 감지 시스템 및 이를 이용한 상시 전원 공급 라인의 단선 감지 방법
DE102021214224A1 (de) * 2021-12-13 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Betrieb eines Wechselrichters
KR20230089192A (ko) * 2021-12-13 2023-06-20 현대모비스 주식회사 모터 구동 시스템 및 그 제어방법
KR102701198B1 (ko) * 2022-07-14 2024-08-29 현대트랜시스 주식회사 모터 구동용 인버터의 스위치 제어 회로 및 방법
US12081152B2 (en) 2022-10-27 2024-09-03 Ford Global Technologies, Llc Transient current management of electric machine in an electrified vehicle
US20240181887A1 (en) 2022-12-01 2024-06-06 Mercedes-Benz Group AG Configurable power inverter
CN116232174B (zh) * 2023-03-29 2024-01-30 小米汽车科技有限公司 电机控制方法、装置、介质及车辆
TWI845372B (zh) * 2023-07-07 2024-06-11 亞福儲能股份有限公司 馬達驅動裝置
CN118316355A (zh) * 2024-06-07 2024-07-09 比亚迪股份有限公司 电机控制系统、方法以及存储介质、新能源车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774095A (en) * 1972-09-20 1973-11-20 Westinghouse Air Brake Co System for blending regenerative and dynamic and friction braking
JP2002017098A (ja) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd 電動機制御装置
JP2009201333A (ja) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp 電源回生コンバータ
JP2012050333A (ja) * 2008-04-23 2012-03-08 Mitsubishi Electric Corp 永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539345A1 (de) * 1995-10-23 1997-04-24 Bayerische Motoren Werke Ag ABS- und/oder ASC-Regelsystem für Kraftfahrzeuge
JP3780898B2 (ja) 2001-10-16 2006-05-31 富士電機デバイステクノロジー株式会社 パワーデバイスの駆動回路
JP4757815B2 (ja) * 2007-03-05 2011-08-24 本田技研工業株式会社 電動機の制御装置および車両
JP4609474B2 (ja) * 2007-10-10 2011-01-12 株式会社デンソー 回転電機装置
DE102009047616A1 (de) * 2009-12-08 2011-06-09 Robert Bosch Gmbh Wechselrichteranordnung zum Betreiben eines Elektromotors
WO2012063287A1 (ja) * 2010-11-10 2012-05-18 国産電機株式会社 回転電機の制御装置
US8432118B2 (en) * 2011-05-02 2013-04-30 Deere & Company Inverter and a method for controlling an electric machine
DE102011081173A1 (de) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Betriebszustandsschaltung für Wechselrichter und Verfahren zum Einstellen von Betriebszuständen eines Wechselrichters
JP5449429B2 (ja) * 2012-02-24 2014-03-19 三菱電機株式会社 交流回転機の制御装置及びその方法、電動パワーステアリング装置
CN103066556B (zh) * 2012-12-04 2017-03-29 联合汽车电子有限公司 高压直流系统的过压保护方法
CN103253150B (zh) * 2012-12-25 2015-11-18 联合汽车电子有限公司 车用永磁同步电机控制系统失效响应控制方法
JP2014241690A (ja) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 車両
US9948219B2 (en) * 2014-12-25 2018-04-17 Aisin Aw Co., Ltd. Rotating electrical machine control device
JP6365502B2 (ja) * 2015-10-21 2018-08-01 トヨタ自動車株式会社 ハイブリッド車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774095A (en) * 1972-09-20 1973-11-20 Westinghouse Air Brake Co System for blending regenerative and dynamic and friction braking
JP2002017098A (ja) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd 電動機制御装置
JP2009201333A (ja) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp 電源回生コンバータ
JP2012050333A (ja) * 2008-04-23 2012-03-08 Mitsubishi Electric Corp 永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163728A (ja) * 2016-03-10 2017-09-14 三菱電機株式会社 モータ駆動装置
US11299062B2 (en) 2016-03-10 2022-04-12 Mitsubishi Electric Corporation Motor drive device
WO2018092435A1 (ja) * 2016-11-21 2018-05-24 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
US10886867B2 (en) 2016-11-21 2021-01-05 Aisin Aw Co., Ltd. Inverter control device
DE112017004726T5 (de) 2016-11-21 2019-06-13 Aisin Aw Co., Ltd. Invertersteuerungsvorrichtung
WO2018173591A1 (ja) * 2017-03-22 2018-09-27 日本電産株式会社 モータ駆動装置、電動アシスト装置、および電動車両
US10840845B2 (en) 2017-03-22 2020-11-17 Aisin Aw Co., Ltd. Vehicle drive control device
DE112018000264T5 (de) 2017-03-22 2019-10-10 Aisin Aw Co., Ltd. Fahrzeugfahrsteuerungsvorrichtung
CN110546879A (zh) * 2017-04-18 2019-12-06 株式会社电装 旋转电机控制装置及电源系统
CN110546879B (zh) * 2017-04-18 2022-11-11 株式会社电装 旋转电机控制装置及电源系统
WO2018198651A1 (ja) * 2017-04-27 2018-11-01 株式会社デンソー 回転電機制御装置及び制御システム
JP2018186674A (ja) * 2017-04-27 2018-11-22 株式会社デンソー 回転電機制御装置及び制御システム
CN109412118A (zh) * 2017-08-17 2019-03-01 比亚迪股份有限公司 用于电机控制器的保护装置、电机控制器及电动汽车
CN109412118B (zh) * 2017-08-17 2020-07-10 比亚迪股份有限公司 用于电机控制器的保护装置、电机控制器及电动汽车
CN111108681A (zh) * 2017-09-29 2020-05-05 爱信艾达株式会社 逆变器控制装置
CN111108681B (zh) * 2017-09-29 2023-12-19 株式会社爱信 逆变器控制装置
JPWO2019066021A1 (ja) * 2017-09-29 2020-07-09 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
WO2019066021A1 (ja) * 2017-09-29 2019-04-04 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
JP2019122238A (ja) * 2018-01-05 2019-07-22 パナソニックIpマネジメント株式会社 モータ制御装置およびモータ制御装置の制御方法
CN111919127B (zh) * 2018-01-17 2024-05-24 罗伯特·博世有限公司 用于在进行旋转的机器中测试输出级的电桥的方法
CN111919127A (zh) * 2018-01-17 2020-11-10 罗伯特·博世有限公司 用于在进行旋转的机器中测试输出级的电桥的方法
US10889289B2 (en) * 2018-02-23 2021-01-12 Honda Motor Co., Ltd. Vehicle and control method for vehicle
JP7112240B2 (ja) 2018-04-25 2022-08-03 株式会社日立産機システム 電力変換システム及び電力変換方法
JP2019191928A (ja) * 2018-04-25 2019-10-31 株式会社日立産機システム 電力変換システム及び電力変換方法
JP2020102985A (ja) * 2018-12-25 2020-07-02 トヨタ自動車株式会社 電動機の制御装置
JP7290026B2 (ja) 2018-12-25 2023-06-13 株式会社デンソー 電動機の制御装置
WO2020174671A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 モータ駆動装置および空気調和機
JPWO2020174671A1 (ja) * 2019-02-28 2021-09-13 三菱電機株式会社 モータ駆動装置および空気調和機
JP7038893B2 (ja) 2019-02-28 2022-03-18 三菱電機株式会社 モータ駆動装置および空気調和機
CN110311619B (zh) * 2019-06-24 2021-04-27 深圳市麦格米特驱动技术有限公司 一种电机控制电路及电动汽车
CN110311619A (zh) * 2019-06-24 2019-10-08 深圳市麦格米特驱动技术有限公司 一种电机控制电路及电动汽车
CN112448656A (zh) * 2019-09-03 2021-03-05 北京新能源汽车股份有限公司 一种电机控制器工作模式切换方法、装置及电动汽车
KR20210063091A (ko) * 2019-11-22 2021-06-01 엘지전자 주식회사 과전류에 의한 스위칭 소자의 손상을 방지할 수 있는 전력 변환 장치
KR102318940B1 (ko) * 2019-11-22 2021-10-28 엘지전자 주식회사 과전류에 의한 스위칭 소자의 손상을 방지할 수 있는 전력 변환 장치
WO2021261265A1 (ja) * 2020-06-25 2021-12-30 株式会社デンソー 電力変換器の制御回路
JP2022007119A (ja) * 2020-06-25 2022-01-13 株式会社デンソー 電力変換器の制御回路
JP7363681B2 (ja) 2020-06-25 2023-10-18 株式会社デンソー 電力変換器の制御回路
US20220289042A1 (en) * 2021-03-12 2022-09-15 Dana Tm4 Inc. Modulated active short circuit braking
US11760210B2 (en) * 2021-03-12 2023-09-19 Dana Tm4 Inc. Modulated active short circuit braking
US11791758B2 (en) 2021-04-09 2023-10-17 Nidec Elesys Corporation Inverter device and motor device comprising same
DE102022108091A1 (de) 2021-04-09 2022-10-13 Nidec Elesys Corporation Wechselrichtervorrichtung und motorvorrichtung umfassend selbigen
JP7285901B2 (ja) 2021-11-01 2023-06-02 三菱電機株式会社 電動機制御装置および電動機駆動システム
JP2023067350A (ja) * 2021-11-01 2023-05-16 三菱電機株式会社 電動機制御装置および電動機駆動システム
CN114435137A (zh) * 2022-01-21 2022-05-06 岚图汽车科技有限公司 电机控制器的主动短路控制方法、装置、设备及介质
CN114435137B (zh) * 2022-01-21 2023-05-30 岚图汽车科技有限公司 电机控制器的主动短路控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN107112937B (zh) 2019-06-21
CN110098779A (zh) 2019-08-06
JPWO2016076429A1 (ja) 2017-06-01
US10351002B2 (en) 2019-07-16
DE112015004320T5 (de) 2017-07-27
CN107112937A (zh) 2017-08-29
US20170305274A1 (en) 2017-10-26
JP6296169B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6296169B2 (ja) インバータ制御装置及び車両用制御装置
JP6705555B2 (ja) 車両用駆動制御装置
US9948219B2 (en) Rotating electrical machine control device
CN111108681B (zh) 逆变器控制装置
US10886867B2 (en) Inverter control device
US10003295B2 (en) Inverter control device
US8796960B2 (en) Control device for motor drive system and vehicle incorporating the same
EP2244370B1 (en) Motor drive apparatus, hybrid drive apparatus and method for controlling motor drive apparatus
WO2011161811A1 (ja) モータ駆動装置およびそれを搭載する車両
EP3651353B1 (en) Inverter control device
JP2010195081A (ja) 電動車両のモータ制御方法及びその装置
JP6755388B2 (ja) 多群多相回転電機の駆動装置
JP2019134590A (ja) インバータ制御装置
JP2017175772A (ja) インバータ制御装置
JP2018164380A (ja) インバータ制御装置
JP6935715B2 (ja) インバータ制御装置
CN112930648A (zh) 电力转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559124

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517753

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004320

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858161

Country of ref document: EP

Kind code of ref document: A1