WO2020174671A1 - モータ駆動装置および空気調和機 - Google Patents
モータ駆動装置および空気調和機 Download PDFInfo
- Publication number
- WO2020174671A1 WO2020174671A1 PCT/JP2019/007881 JP2019007881W WO2020174671A1 WO 2020174671 A1 WO2020174671 A1 WO 2020174671A1 JP 2019007881 W JP2019007881 W JP 2019007881W WO 2020174671 A1 WO2020174671 A1 WO 2020174671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor drive
- current
- motor
- control unit
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/14—Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/02—Compressor arrangements of motor-compressor units
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present invention relates to a motor drive device and an air conditioner that perform drive control of a motor.
- One of the motor drive devices that drives a motor is a device that includes an inverter that converts DC power into AC power and supplies AC power to the motor, and an inverter control device that controls the operation of the inverter.
- this motor drive device it is desired to drive the motor stably.
- the motor driving device described in Patent Document 1 monitors a DC voltage during motor driving, and reflects the monitoring result in motor control.
- the present invention has been made in view of the above, and an object thereof is to obtain a motor drive device that can suppress power consumption.
- the motor drive device of the present invention uses a power supply unit that converts electric power supplied from a commercial power supply into DC power, and electric power supplied from the power supply generation unit.
- An inverter output unit that drives the motor and a voltage detection unit that detects the voltage value of the DC voltage applied to the inverter output unit by the power supply generation unit.
- the motor drive device of the present invention includes a current detection unit that detects the current value of the current supplied from the inverter output unit to the motor, and a bus line that connects the power generation unit and the inverter output unit and the voltage detection unit.
- the motor drive control unit When driving the motor, the motor drive control unit sends the voltage of the bus bar to the voltage detection unit via the current changeover switch by turning on the current changeover switch, and within the first period during driving of the motor. When the current value changes less than the first threshold value, the current changeover switch is turned off to send the voltage of the bus bar to the voltage detection unit via the current limiting resistor without passing through the current changeover switch.
- the motor drive device has an effect that power consumption can be suppressed.
- FIG. 3 is a diagram showing an operation timing of the motor drive device according to the first embodiment.
- FIG. 3 is a diagram showing a configuration of a voltage detection unit included in the motor drive device according to the first embodiment.
- 3 is a flowchart showing an operation processing procedure of the motor drive device of the first configuration example according to the first embodiment.
- the flowchart which shows the operation processing procedure of a motor drive device when the motor drive device of the 1st structural example concerning Embodiment 1 receives the change instruction
- FIG. 3 is a flowchart showing an operation processing procedure of the motor drive device of the second configuration example according to the first embodiment.
- the flowchart which shows the operation processing procedure of the motor drive device when the motor drive device of the 2nd structural example concerning Embodiment 1 receives the change instruction
- 6 is a flowchart showing an operation processing procedure of the motor drive device of the first configuration example according to the second embodiment.
- the flowchart which shows the operation
- the figure which shows the 1st hardware structural example of the motor drive control part with which the motor drive device concerning Embodiment 1 or 2 is provided.
- the figure which shows the 2nd hardware structural example of the motor drive control part with which the motor drive device concerning Embodiment 1 or 2 is provided.
- a motor drive device and an air conditioner according to an embodiment of the present invention will be described below in detail with reference to the drawings.
- the present invention is not limited to these embodiments.
- FIG. 1 is a diagram illustrating a first configuration example of a motor drive system including the motor drive device according to the first embodiment.
- the motor drive system 100A according to the first embodiment includes a motor drive device 101A, a motor 13, and a remote controller (hereinafter, referred to as a remote controller) 14.
- a remote controller hereinafter, referred to as a remote controller 14.
- the motor drive device 101A is a device that receives supply of AC power from the commercial power supply 1 and drives the motor 13.
- the motor drive device 101A includes a power supply generation unit 2, a power supply circuit unit 3, a main body control unit 4A, a drive power supply unit 5, an inverter output unit 6 having an inverter circuit, a motor drive control unit 7A, and a current.
- the detection unit 12, the voltage detection unit 8, and the switch unit 10 are provided.
- the power generation unit 2 is connected to the commercial power supply 1.
- the power supply generation unit 2 includes bridge-connected diodes 2a to 2d and a smoothing capacitor 2e to which the DC voltage converted by the diodes 2a to 2d is applied, and the AC voltage applied from the commercial power supply 1 is converted into a DC voltage.
- the drive power for converting and driving the motor 13 is generated.
- the input side of the power supply generation unit 2 is connected to the commercial power supply 1, and the output side is connected to the power supply circuit unit 3, the switch unit 10, the voltage detection unit 8, the current detection unit 12, and the inverter output unit 6 via the busbar 9. To be done.
- the power supply generation unit 2 converts AC power supplied from the commercial power supply 1 into DC power and supplies the DC power to the power supply circuit unit 3 and the inverter output unit 6.
- the power supply circuit unit 3 is connected to the main body control unit 4A and the drive power supply unit 5.
- the power supply circuit unit 3 uses the power generated by the power supply generation unit 2 to generate operating power, and supplies the generated operating power to the main body control unit 4A and the drive power supply unit 5.
- the drive power supply unit 5 is connected to the main body control unit 4A, the inverter output unit 6, and the motor drive control unit 7A.
- the drive power supply unit 5 uses the power supplied from the power supply circuit unit 3 to supply the respective operating powers to the inverter output unit 6 and the motor drive control unit 7A.
- the main body control unit 4A controls the entire motor drive device 101A.
- the main body control unit 4A controls the drive power supply unit 5 and the motor drive control unit 7A.
- the main body control unit 4A controls the drive power supply unit 5 to be ON (ON) or OFF (OFF) according to an instruction from the remote controller 14.
- the main body control unit 4A turns on the drive power supply unit 5
- the drive power supply unit 5 starts supplying power to the inverter output unit 6 and the motor drive control unit 7A, and when the drive power supply unit 5 is turned off, the drive is started.
- the power supply unit 5 stops the power supply to the inverter output unit 6 and the motor drive control unit 7A.
- the main body control unit 4A controls whether or not power is supplied from the drive power supply unit 5 to the inverter output unit 6 and the motor drive control unit 7A.
- the main body control unit 4A is connected to the motor drive control unit 7A by a communication line, and can bidirectionally communicate with the motor drive control unit 7A.
- the voltage detection unit 8 is a voltage detection circuit, and is the voltage of the bus 9 that electrically connects the power supply generation unit 2 and the inverter output unit 6, that is, the DC voltage that the power supply generation unit 2 applies to the inverter output unit 6. To detect.
- the voltage detection unit 8 transmits the voltage value that is the detection result to the motor drive control unit 7A.
- the switch unit 10 is connected between the voltage detection unit 8 and the bus bar 9.
- the switch unit 10 includes a current changeover switch 11a and a current limiting resistor 11b that are connected in parallel between the voltage detection unit 8 and the bus bar 9.
- the current changeover switch 11a turns on or off a short circuit between both ends of the current limiting resistor 11b.
- the current changeover switch 11a is connected to the motor drive control unit 7A and is controlled by the motor drive control unit 7A.
- the inverter output unit 6 has switching elements 81 to 86.
- the switching elements 81 to 83 form an upper arm switching element, and the switching elements 84 to 86 form a lower arm switching element.
- the upper arm switching element 81 and the lower arm switching element 84 are connected in series to form a U-phase switching element pair.
- the upper arm switching element 82 and the lower arm switching element 85 are connected in series to form a V-phase switching element pair
- the upper arm switching element 83 and the lower arm switching element 86 are connected in series. To form a W-phase switching element pair.
- connection points of the switching elements 81 and 84, the connection points of the switching elements 82 and 85, and the connection points of the switching elements 83 and 86 are connected to the motor 13. Further, in the inverter output unit 6, the switching elements 81 to 86 are connected to the current detection unit 12.
- the current detection unit 12 is connected between the power generation unit 2 and the motor drive control unit 7A, and detects the current flowing from the power generation unit 2 to the inverter output unit 6. The current detector 12 sends the detected current value to the motor drive controller 7A.
- the motor drive control unit 7A which is an inverter control device, outputs a signal for driving the motor 13 to the inverter output unit 6 to control the inverter output unit 6.
- the motor drive control unit 7A controls the inverter output unit 6 based on the voltage value detected by the voltage detection unit 8 and controls the current changeover switch 11a based on the current value detected by the current detection unit 12.
- the broken line 50 indicates that the side on which the main body control unit 4A is provided, that is, the secondary side is insulated from the primary side. It shows the boundaries when doing.
- the configuration when the secondary side of the air conditioner is insulated from the primary side (hereinafter referred to as the insulating configuration) will be described later.
- FIG. 2 is a diagram showing operation timing of the motor drive device according to the first embodiment.
- the power supply generation unit 2 When the commercial power supply 1 is connected to the power supply generation unit 2, the power supply generation unit 2 generates a DC voltage, supplies the generated DC voltage to the power supply circuit unit 3, and also supplies the generated DC voltage to the inverter output unit 6 via the bus 9. Supply DC voltage.
- the power supply circuit section 3 receives the DC voltage, it supplies the voltage to each of the main body control section 4A and the driving power supply section 5.
- the main body control section 4A When the main body control section 4A receives a motor drive command from the remote controller 14, the main body control section 4A turns on the drive power supply section 5, and accordingly the motor drive control section 7A also turns on. After a certain period of time has passed, the motor drive control unit 7A turns on the current changeover switch 11a.
- the current changeover switch 11a When the current changeover switch 11a is turned on, the current limiting resistor 11b arranged between the power supply generation unit 2 and the voltage detection unit 8 is short-circuited by the current changeover switch 11a, and the voltage of the bus bar 9 causes the current changeover switch 11a to operate. It is sent to the voltage detection unit 8 via the. As a result, the voltage detection unit 8 can detect the voltage of the bus bar 9.
- the voltage detection unit 8 inputs the detected voltage value to the motor drive control unit 7A.
- the current detector 12 detects the current flowing through the motor 13 and inputs the detected current value to the motor drive controller 7A.
- the main body control unit 4A turns off the drive power supply unit 5 after a lapse of a fixed time after receiving the motor drive stop command from the remote controller 14. At the same time, the motor drive control unit 7A and the current changeover switch 11a are turned off, and the current limiting resistor 11b is connected between the power supply generation unit 2 and the voltage detection unit 8.
- the timing at which the current changeover switch 11a is turned on is after a certain time has elapsed since the motor drive control unit 7A was turned on, but the timing at which the current changeover switch 11a is turned on is at the drive power supply unit 5
- the timing may be the same as the timing when the motor drive control unit 7A is turned on.
- the timing at which the current changeover switch 11a is turned off after the motor driving is stopped is the same as that at which the drive power supply unit 5 is turned off.
- the timing at which the current changeover switch 11a is turned off is the drive power supply unit 5 being turned off. May be before. In this case, the main body control unit 4A notifies the motor drive control unit 7A that the motor drive is stopped.
- the motor drive control unit 7A When the motor drive control unit 7A receives the notification indicating that the motor drive is stopped, the motor drive control unit 7A turns off the current changeover switch 11a.
- the timing at which the drive power supply unit 5 is turned off may be immediately after the main body control unit 4A receives the motor drive stop command.
- FIG. 3 is a diagram showing a configuration of a voltage detection unit included in the motor drive device according to the first embodiment.
- the voltage detection unit 8 includes voltage dividing resistors 24 and 25 connected in series. One end of the voltage dividing resistor 24 is connected to the current changeover switch 11 a and the current limiting resistor 11 b, and the other end thereof is connected to the voltage dividing resistor 25 via the connection point 21.
- the voltage dividing resistor 25 has one end connected to the voltage dividing resistor 24 via the connection point 21 and the other end grounded.
- the voltage detection unit 8 divides the DC voltage generated by the power supply generation unit 2 into a voltage dividing resistor 24 and a voltage dividing resistor 25. By inputting the divided voltage to the motor drive control unit 7A, the voltage of the bus bar 9 is detected.
- the motor drive control unit 7A controls the inverter output unit 6 based on the detection result of the voltage value and the instruction of the target rotation speed from the main body control unit 4A, and adjusts the current flowing to the motor 13.
- the current flowing through the motor 13 is detected by the current detection unit 12, and the detected current value is input to the motor drive control unit 7A.
- the rotation speed of the motor 13 reaches the target rotation speed and the rotation speed stabilizes, the current flowing through the motor 13 becomes constant.
- the motor drive control unit 7A that receives the voltage value from the voltage detection unit 8 controls the inverter output unit 6 based on the voltage value to make the current flowing to the motor 13 constant, The rotation speed of the motor 13 can be stabilized.
- the motor drive control unit 7A keeps the control of the inverter output unit 6 constant and thereby the voltage of the bus line 9 is constant. No detection is needed.
- the current selector switch 11a is turned off to cause a current to flow through the voltage detection unit 8 via the current limiting resistor 11b, thereby suppressing power consumption.
- FIG. 4 is a flowchart showing an operation processing procedure of the motor drive device according to the first configuration example according to the first embodiment.
- the motor drive control unit 7A does not receive the operation power supply (power supply) from the drive power supply unit 5 and therefore stops operating. Since the motor drive control unit 7A has stopped operating, the current changeover switch 11a is also off, and a current flows through the voltage detection unit 8 via the current limiting resistor 11b.
- the remote controller 14 When the user inputs a motor drive start instruction to the remote controller 14, the remote controller 14 sends a motor drive start instruction to the main body control unit 4A. Then, the main body control unit 4A receives a motor drive start instruction from the user (step S1).
- the start instruction input by the user to the remote controller 14 includes an instruction corresponding to the rotation speed of the motor 13.
- the main body control unit 4A turns on the drive power supply unit 5 (step S2).
- the drive power supply unit 5 supplies power to the motor drive control unit 7A and the inverter output unit 6 (step S3).
- the motor drive control unit 7A turns on the current changeover switch 11a (step S4) and starts acquiring the voltage of the bus bar 9. After that, the motor 13 starts driving (step S5).
- step S6 After the motor 13 starts driving, the rotation speed of the motor 13 reaches the rotation speed designated by the user (target rotation speed) (step S6).
- the current detector 12 detects the current flowing through the motor 13 and inputs the detected current value to the motor drive controller 7A (step S7).
- the current detection unit 12 inputs the detected current value to the motor drive control unit 7A every time t1 which is a specific time interval.
- the motor drive control unit 7A stores the input current value.
- the motor drive control unit 7A determines whether or not the difference between the latest current value and the previous current value acquired before the time t2 is the threshold value X1 or more.
- step S8 If the current value has changed by the threshold value X1 or more (step S8, Yes), the motor drive control unit 7A continues to turn on the current changeover switch 11a (step S9) and returns to step S7. On the other hand, if the current value has changed less than the threshold value X1 (step S8, No), the voltage of the bus bar 9 is stable and it is not necessary to monitor the voltage. Therefore, the motor drive control unit 7A uses the current changeover switch 11a. Is turned off (step S10).
- the current detection unit 12 periodically (every time t1) detects the current value of the current flowing through the motor 13 even after the current changeover switch 11a is turned off, and inputs the detected current value to the motor drive control unit 7A. Yes (step S11).
- the motor drive control unit 7A determines that the current value acquired from the current detection unit 12 after the time t2, which is an arbitrary time, has passed from the previously acquired current value (current value acquired before the time t2) to an arbitrary value. It is determined whether or not the threshold value X1 has changed by more than the threshold value X1 (step S12).
- the threshold X1 used in step S12 and the threshold X1 used in step S8 may be different values. Further, the time t2 used in step S12 and the time t2 used in step S8 may be different times.
- the threshold X1 in step S8 is the first threshold
- the threshold X1 in step S12 is the second threshold.
- the time t2 in step S8 is the first period
- the time t2 in step S12 is the second period.
- step S12 If the current value has changed less than the threshold value X1 (step S12, No), the voltage of the bus bar 9 is still stable and there is no need to monitor the voltage. Therefore, the motor drive control unit 7A uses the current changeover switch 11a. The OFF state continues (step S13), and the process returns to step S11.
- step S12 If the current value has changed by the threshold value X1 or more (step S12, Yes), the voltage of the bus bar 9 is in an unstable state, so the motor drive control unit 7A determines that voltage detection is necessary, and The changeover switch 11a is turned on (step S14).
- the motor drive device 101A causes the current to flow through the voltage detection unit 8 via the current limiting resistor 11b by turning off the current changeover switch 11a when voltage detection is unnecessary even when the motor 13 is being driven. Therefore, power consumption can be reduced. Further, the motor drive device 101A can detect the voltage by turning on the current changeover switch 11a when the voltage detection is required.
- the operation of the motor driving device 101A during the motor driving is as described with reference to FIG. 4.
- the target rotational speed is changed by receiving an instruction from the user to change the rotational speed of the motor 13 (instruction to change the rotational speed). There is a case.
- the motor drive device 101A may accept a change instruction of the rotation speed of the motor 13 from the user while the current changeover switch 11a is OFF.
- the operation of the motor drive device 101A in this case that is, the operation of the motor drive device 101A when the instruction to change the rotation speed of the motor 13 is received in a stable state will be described.
- FIG. 5 is a flowchart showing an operation processing procedure of the motor drive device when the motor drive device of the first configuration example according to the first embodiment receives the instruction to change the rotation speed of the motor in a stable state.
- the motor drive control unit 7A turns off the current changeover switch 11a (step S20).
- the process of step S20 corresponds to the process of step S10 described with reference to FIG.
- the remote controller 14 When the user inputs a rotation speed change instruction to the remote controller 14 while the current changeover switch 11a is off, the remote controller 14 sends the rotation speed change instruction to the main body control unit 4A. Then, the main body control unit 4A receives a rotation speed change instruction from the user (step S21).
- the main body control unit 4A outputs a rotation speed change instruction to the motor drive control unit 7A (step S22).
- the motor drive control unit 7A receives the rotation speed change instruction, the motor drive control unit 7A turns on the current changeover switch 11a (step S23).
- the motor drive device 101A returns to step S6 of FIG. 4 and executes the processing of step S6 and thereafter.
- the motor drive device 101A turns on the current selector switch 11a to turn on the motor 13 even when the instruction to change the rotation speed is received from the user while the current selector switch 11a is off. The number can be changed stably.
- the motor drive control unit 7A controls the current changeover switch 11a has been described, but the main body control unit (main body control unit 4B described later) may control the current changeover switch 11a. .. That is, the current changeover switch 11a may be connected to the main body control unit 4B.
- FIG. 6 is a diagram showing a second configuration example of the motor drive system including the motor drive device according to the first embodiment.
- constituent elements shown in FIG. 6 constituent elements that achieve the same functions as those of the motor drive system 100A shown in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.
- a motor drive system 100B which is another configuration example of the motor drive system 100A, includes a motor drive device 101B, a motor 13, and a remote controller 14.
- the motor drive device 101B includes a main body control unit 4B instead of the main body control unit 4A and a motor drive control unit 7B instead of the motor drive control unit 7A, as compared with the motor drive device 101A.
- the body control unit 4B is connected to the current changeover switch 11a.
- the main body controller 4B has a function of controlling ON/OFF of the current changeover switch 11a in addition to the function of the main body controller 4A.
- the motor drive control unit 7B does not control the current changeover switch 11a, but the other functions are the same as those of the motor drive control unit 7A.
- FIG. 7 is a flowchart showing an operation processing procedure of the motor drive device of the second configuration example according to the first embodiment.
- FIG. 7 an operation processing procedure of the motor drive device 101B when the main body control unit 4B controls the current changeover switch 11a will be described. The description of the same operation process as the operation process of the motor driving device 101A may be omitted.
- the motor drive control unit 7B In a state where the motor 13 is not driven, the motor drive control unit 7B has stopped operating because it is not supplied with operating power (power supply) from the driving power supply unit 5. Since the motor drive control unit 7B has stopped operating, the current changeover switch 11a is also turned off, and a current flows through the voltage detection unit 8 via the current limiting resistor 11b.
- the remote controller 14 When the user inputs a motor drive start instruction to the remote controller 14, the remote controller 14 sends a motor drive start instruction to the main body control unit 4B. Then, the main body control unit 4B receives a motor drive start instruction from the user (step S30).
- the start instruction input by the user to the remote controller 14 includes an instruction corresponding to the rotation speed of the motor 13.
- the main body control unit 4B turns on the drive power supply unit 5 (step S31).
- the drive power supply unit 5 supplies power to the motor drive control unit 7B and the inverter output unit 6 (step S32).
- the main body control unit 4B turns on the current changeover switch 11a (step S33) and starts the voltage acquisition of the bus bar 9. After that, the motor 13 starts driving (step S34).
- the rotation speed of the motor 13 reaches the rotation speed (target rotation speed) instructed by the user (step S35).
- the current detector 12 detects the current flowing through the motor 13 and inputs the current value, which is the detection result, to the motor drive controller 7B (step S36).
- the current detection unit 12 inputs the detected current value to the motor drive control unit 7B at each time t1 that is a specific time interval.
- the motor drive controller 7B stores the input current value.
- the motor drive control unit 7B determines whether or not the difference between the latest current value and the previous current value acquired before the time t2 is the threshold value X1 or more.
- step S37 If the current value has changed by the threshold value X1 or more (step S37, Yes), the motor drive control unit 7B transmits a determination result indicating that the current value has changed by the threshold value X1 or more to the main body control unit 4B, and the main body control unit. 4B continues to turn on the current changeover switch 11a (step S38), and returns to step S36.
- step S37, No If the current value has changed less than the threshold value X1 (step S37, No), the motor drive control unit 7B notifies the main body control unit 4B of the determination result indicating that the current value has changed only less than the threshold value X1. Then, the main body controller 4B turns off the current changeover switch 11a (step S39).
- the current detector 12 periodically (every time t1) detects the current value of the current flowing through the motor 13 even after the current changeover switch 11a is turned off, and inputs the detected current value to the motor drive controller 7B. Yes (step S40).
- the motor drive control unit 7B determines that the current value acquired from the current detection unit 12 after the time t2, which is an arbitrary time, elapses from the previously acquired current value (current value acquired before the time t2). It is determined whether or not the threshold value X1 has changed by more than the threshold value X1 (step S41).
- the threshold value X1 used in step S41 and the threshold value X1 used in step S37 may be different values.
- the time t2 used in step S41 and the time t2 used in step S37 may be different times.
- the threshold X1 in step S37 is the first threshold, and the threshold X1 in step S41 is the second threshold.
- the time t2 in step S37 is the first period, and the time t2 in step S41 is the second period.
- step S41 If the current value has changed less than the threshold value X1 (step S41, No), the motor drive control unit 7B transmits a determination result indicating that the current value has changed only less than the threshold value X1 to the main body control unit 4B.
- the body control unit 4B continues to turn off the current changeover switch 11a (step S42) and returns to step S40.
- step S41 If the current value has changed by the threshold value X1 or more (step S41, Yes), the motor drive control unit 7B sends a determination result indicating that the current value has changed by the threshold value X1 or more to the main body control unit 4B, and the main body control unit. 4B turns on the current changeover switch 11a (step S43).
- the operation of the motor driving device 101B while driving the motor is as described with reference to FIG. 7.
- the target driving speed is changed by receiving an instruction from the user to change the rotation speed of the motor 13 (instruction to change the rotation speed). There is a case.
- the motor drive device 101B may receive an instruction to change the rotation speed of the motor 13 from the user while the current changeover switch 11a is off.
- the operation of the motor drive device 101B in this case that is, the operation of the motor drive device 101B when the instruction to change the rotation speed of the motor 13 is received in a stable state will be described.
- FIG. 8 is a flowchart showing an operation processing procedure of the motor drive device when the motor drive device of the second configuration example according to the first embodiment receives the instruction to change the rotation speed of the motor in a stable state.
- the main body control unit 4B turns off the current changeover switch 11a according to the instruction from the motor drive control unit 7B (step S50).
- the process of step S50 corresponds to the process of step S39 described with reference to FIG.
- the remote controller 14 When the user inputs a rotation speed change instruction to the remote controller 14 while the current changeover switch 11a is off, the remote controller 14 sends the rotation speed change instruction to the main body control unit 4B. Then, the main body control unit 4B receives a rotation speed change instruction from the user (step S51).
- the main body control unit 4B outputs a rotation speed change instruction to the motor drive control unit 7B (step S52).
- the motor drive control unit 7B receives the instruction to change the rotation speed, the motor drive control unit 7B turns on the current changeover switch 11a (step S53).
- the motor drive device 101B returns to step S35 of FIG. 7 and executes the processing of step S35 and thereafter.
- the motor drive device 101B turns on the current selector switch 11a to turn on the motor 13 even when the motor selector 101B receives a rotation speed change instruction from the user while the current selector switch 11a is off. The number can be changed stably.
- FIG. 8 the case where the main body control unit 4B turns on the current changeover switch 11a after issuing a rotation speed change instruction to the motor drive control unit 7B has been described.
- the current changeover switch 11a may be turned on at the same time when the instruction to change the rotation speed is issued.
- FIG. 9 is a diagram showing a third configuration example of the motor drive system including the motor drive device according to the first embodiment.
- constituent elements that achieve the same functions as those of the motor drive system 100A shown in FIG. 1 are designated by the same reference numerals, and a duplicate description will be omitted.
- the motor drive system 100C having an insulating configuration includes a motor drive device 101C instead of the motor drive device 101A as compared with the motor drive system 100A.
- the insulating configuration means a configuration that electrically insulates the main body control unit 4A from the components inside the broken line 50, in other words, a configuration that disconnects in a circuit manner.
- the motor driving device 101C includes insulating couplers 15 and 16 in addition to the constituent elements of the motor driving device 101A.
- the insulating couplers 15 and 16 insulate the region surrounded by the broken line 50 from the main body control unit 4A.
- the insulating coupler 15 is arranged between the main body control unit 4A and the drive power supply unit 5, and the insulating coupler 16 is arranged between the main body control unit 4A and the motor drive control unit 7A.
- the main body control unit 4A is electrically connected to the components inside the broken line 50. Can be insulated.
- the insulating couplers 15 and 16 may be arranged for the motor driving device 101B of FIG.
- the insulating coupler 15 is arranged between the main body control unit 4B and the drive power supply unit 5
- the insulating coupler 16 is arranged between the main body control unit 4B and the motor drive control unit 7B.
- an insulating coupler is arranged between the main body controller 4B and the current changeover switch 11a.
- the power supply circuit unit 3 is shown on the boundary line of the broken line 50, but this notation indicates that the power supply circuit unit 3 itself has a primary side and a secondary side by using an insulating transformer, for example. Means that it is an isolated power source.
- a flyback converter is exemplified as the power supply circuit unit 3.
- FIG. 9 the difference from FIG. 1 is the presence or absence of the insulating couplers 15 and 16, and the operation processing procedure of the motor driving device 101C is the same as that of the motor driving device 101A shown in FIG. ..
- the current changeover switch 11a is turned off when the voltage detection of the bus bar 9 is unnecessary. Therefore, when the voltage detection of the bus line 9 is unnecessary, the current limiting resistor 11b is used. A current can be passed through the voltage detector 8 via the. Thereby, power consumption can be suppressed.
- the current limiting resistor 11b is connected in parallel with the current changeover switch 11a, the voltage applied to the current changeover switch 11a can be reduced with a simple configuration, and an inexpensive switch can be used as the current changeover switch 11a. it can.
- Embodiment 2 Next, a second embodiment of the present invention will be described with reference to FIGS. 10 to 14.
- the current changeover switch 11a is controlled to be ON or OFF based on the change in the rotation speed of the motor 13.
- FIG. 10 is a diagram showing a first configuration example of a motor drive system including the motor drive device according to the second embodiment.
- the motor drive system 100D according to the second embodiment includes a motor drive device 101D, a motor 13, and a remote controller 14.
- the motor drive device 101D includes a rotation speed detection unit 17 instead of the current detection unit 12 and a motor drive control unit 7D instead of the motor drive control unit 7A, as compared with the motor drive device 101A.
- the rotation speed detection unit 17 is connected to the motor 13 and the motor drive control unit 7D.
- the rotation speed detection unit 17 detects the rotation speed of the motor 13 and inputs the rotation speed as a detection result to the motor drive control unit 7D. Thereby, the motor drive control unit 7D grasps the rotation speed of the motor 13.
- the motor drive control unit 7D which is an inverter control device, outputs a signal for driving the motor 13 to the inverter output unit 6 to control the inverter output unit 6.
- the motor drive control unit 7D controls the inverter output unit 6 based on the voltage value detected by the voltage detection unit 8 and controls the current changeover switch 11a based on the rotation speed detected by the rotation speed detection unit 17.
- the power supply generation unit 2 When the commercial power supply 1 is connected to the power supply generation unit 2, the power supply generation unit 2 generates a DC voltage, supplies the generated DC voltage to the power supply circuit unit 3, and also supplies the generated DC voltage to the inverter output unit 6 via the bus 9. Supply DC voltage.
- the power supply circuit section 3 receives the DC voltage, it supplies the voltage to each of the main body control section 4A and the driving power supply section 5.
- the main body control unit 4A When the main body control unit 4A receives a motor drive command from the remote controller 14, the main body control unit 4A turns on the drive power supply unit 5, and accordingly turns on the motor drive control unit 7D. After a certain period of time has passed, the motor drive control unit 7D turns on the current changeover switch 11a. As a result, the current limiting resistor 11b arranged between the power supply generation unit 2 and the voltage detection unit 8 is short-circuited by the current changeover switch 11a, and the voltage detection unit 8 can detect the voltage of the bus bar 9.
- the rotation speed detection unit 17 detects the rotation speed of the motor 13 and inputs the rotation speed as a detection result to the motor drive control unit 7D.
- the main body control unit 4A turns off the drive power supply unit 5 after a lapse of a fixed time after receiving the motor drive stop command from the remote controller 14.
- the motor drive control unit 7D and the current changeover switch 11a are turned off, and the current limiting resistor 11b is connected between the power supply generation unit 2 and the voltage detection unit 8.
- FIG. 11 is a flowchart showing an operation processing procedure of the motor drive device of the first configuration example according to the second embodiment.
- the motor drive control unit 7D In a state where the motor 13 is not driven, the motor drive control unit 7D is not receiving the supply of operating power (power supply) from the driving power supply unit 5 and therefore stops operating. Since the motor drive control unit 7D is stopped, the current changeover switch 11a is also turned off, and the current flows through the voltage detection unit 8 via the current limiting resistor 11b.
- the remote controller 14 When the user inputs a motor drive start instruction to the remote controller 14, the remote controller 14 sends a motor drive start instruction to the main body control unit 4A. Then, the main body control unit 4A receives a motor drive start instruction from the user (step S60).
- the start instruction input by the user to the remote controller 14 includes an instruction corresponding to the rotation speed of the motor 13.
- the main body control unit 4A turns on the drive power supply unit 5 (step S61).
- the drive power supply unit 5 supplies power to the motor drive control unit 7D and the inverter output unit 6 (step S62).
- the motor drive control unit 7D turns on the current changeover switch 11a (step S63) and starts acquiring the voltage of the bus bar 9. Then, the motor 13 starts driving (step S64).
- the rotation speed of the motor 13 After the motor 13 starts driving, the rotation speed of the motor 13 reaches the rotation speed (target rotation speed) instructed by the user (step S65).
- the rotation speed detection unit 17 detects the rotation speed of the motor 13 and inputs the rotation speed that is the detection result to the motor drive control unit 7D (step S66).
- the rotation speed detection unit 17 inputs the detected rotation speed to the motor drive control unit 7D at each time t3 that is a specific time interval.
- the motor drive control unit 7D stores the input rotation speed.
- step S67 If the rotation speed has changed by the threshold value N1 or more (step S67, Yes), the motor drive control unit 7D continues to turn on the current changeover switch 11a (step S68) and returns to step S66. On the other hand, if the rotation speed has changed less than the threshold value N1 (No in step S67), the voltage of the bus bar 9 is stable, and it is not necessary to monitor the voltage. Therefore, the motor drive control unit 7D uses the current changeover switch 11a. Is turned off (step S69).
- the rotation speed detection unit 17 detects the rotation speed of the motor 13 periodically (every time t3) even after the current changeover switch 11a is turned off, and inputs the rotation speed as a detection result to the motor drive control unit 7D ( Step S70).
- the motor drive control unit 7D determines that the rotation speed acquired from the rotation speed detection unit 17 after the lapse of an arbitrary time t4 is arbitrary from the previously acquired rotation speed (the rotation speed acquired before the time t4). It is determined whether the threshold value N1 or more has changed (step S71).
- the threshold N1 used in step S71 and the threshold N1 used in step S67 may be different values. Further, the time t4 used in step S71 and the time t4 used in step S67 may be different times.
- the threshold N1 in step S67 is the first threshold, and the threshold N1 in step S71 is the second threshold.
- the time t4 in step S67 is the first period, and the time t4 in step S71 is the second period.
- step S71 If the number of revolutions has changed less than the threshold value N1 (step S71, No), the voltage of the bus bar 9 is still stable and it is not necessary to monitor the voltage.
- the OFF state is continued (step S72), and the process returns to step S70.
- step S71 If the rotation speed has changed by the threshold value N1 or more (step S71, Yes), the voltage of the bus bar 9 is in an unstable state. Therefore, the motor drive control unit 7D determines that voltage detection is necessary, and switches the current. The switch 11a is turned on (step S73).
- the motor drive device 101D causes the current to flow through the voltage detection unit 8 via the current limiting resistor 11b by turning off the current changeover switch 11a when voltage detection is unnecessary even when the motor 13 is driven. Therefore, power consumption can be reduced. Further, the motor drive device 101D can detect the voltage by turning on the current changeover switch 11a when the voltage detection is required.
- the operation of the motor driving device 101D while the motor is being driven is as described with reference to FIG. 11, but the instruction to change the rotation speed of the motor 13 (rotation speed change instruction) is received from the user and the target rotation speed is changed. There is a case.
- the motor drive device 101D may receive a user instruction to change the rotation speed of the motor 13 while the current changeover switch 11a is OFF.
- the operation of the motor drive device 101D in this case, that is, the operation of the motor drive device 101D when the instruction to change the rotation speed of the motor 13 is received in the stable state is similar to the operation described in FIG. 5 of the first embodiment. ..
- the main body control unit may control the current changeover switch 11a. That is, the current changeover switch 11a may be connected to the main body control unit.
- FIG. 12 is a diagram showing a second configuration example of the motor drive system including the motor drive device according to the second embodiment.
- constituent elements in FIG. 12 constituent elements that achieve the same functions as those of the motor driving system 100B shown in FIG. 6 or the motor driving system 100D shown in FIG. 10 are designated by the same reference numerals, and duplicated description will be omitted.
- a motor drive system 100E which is another configuration example of the motor drive system 100D, includes a motor drive device 101E, a motor 13, and a remote controller 14.
- the motor drive device 101E includes a main body control unit 4B instead of the main body control unit 4A and a motor drive control unit 7E instead of the motor drive control unit 7D, as compared with the motor drive device 101D.
- the main body control unit 4B of the motor drive device 101E has the same function as the main body control unit 4B of the motor drive device 101B and executes the same operation. In the motor drive system 100E, it is not necessary to connect the motor drive controller 7E to the current changeover switch 11a.
- the motor drive control unit 7E does not control the current changeover switch 11a, but the other functions are the same as those of the motor drive control unit 7D.
- FIG. 13 is a flowchart showing an operation processing procedure of the motor drive device of the second configuration example according to the second embodiment.
- FIG. 13 an operation processing procedure of the motor drive device 101E when the main body control unit 4B controls the current changeover switch 11a will be described. The description of the same operation process as that of the motor drive devices 101B and 101D may be omitted.
- the motor drive control unit 7E In a state where the motor 13 is not driven, the motor drive control unit 7E has stopped operating because it is not supplied with operating power (power supply) from the driving power supply unit 5. Since the motor drive control unit 7E has stopped operating, the current changeover switch 11a is also turned off, and a current flows through the voltage detection unit 8 via the current limiting resistor 11b.
- the remote controller 14 When the user inputs a motor drive start instruction to the remote controller 14, the remote controller 14 sends a motor drive start instruction to the main body control unit 4B. Then, the main body control unit 4B receives a motor drive start instruction from the user (step S80).
- the start instruction input by the user to the remote controller 14 includes an instruction corresponding to the rotation speed of the motor 13.
- the main body control unit 4B turns on the drive power supply unit 5 (step S81).
- the drive power supply unit 5 supplies power to the motor drive control unit 7E and the inverter output unit 6 (step S82).
- the main body control unit 4B turns on the current changeover switch 11a (step S83) and starts acquiring the voltage of the bus bar 9. After that, the motor 13 starts driving (step S84).
- the rotation speed of the motor 13 After the motor 13 starts driving, the rotation speed of the motor 13 reaches the rotation speed (target rotation speed) instructed by the user (step S85).
- the rotation speed detection unit 17 detects the rotation speed of the motor 13 and inputs the detection result rotation speed to the motor drive control unit 7E (step S86).
- the rotation speed detection unit 17 inputs the detected rotation speed to the motor drive control unit 7E at each time t3 that is a specific time interval.
- the motor drive control unit 7E stores the input rotation speed.
- the rotation speed acquired from the rotation speed detection unit 17 after the lapse of a time t4, which is an arbitrary time is the rotation speed acquired last time (the rotation speed acquired before the time t4). It is determined whether or not the threshold value has changed by an arbitrary threshold value N1 or more (step S87). That is, the motor drive control unit 7E determines whether or not the difference between the latest rotation speed and the previous rotation speed acquired before the time t4 is the threshold value N1 or more.
- step S87, Yes If the rotation speed has changed by the threshold value N1 or more (step S87, Yes), the motor drive control unit 7E transmits a determination result indicating that the rotation speed has changed by the threshold value N1 or more to the main body control unit 4B, and the main body control unit. 4B continues to turn on the current changeover switch 11a (step S88), and returns to step S86.
- step S87, No If the rotation speed has changed less than the threshold value N1 (step S87, No), the motor drive control unit 7E notifies the main body control unit 4B of the determination result indicating that the rotation speed value has changed less than the threshold value N1. Then, the main body control unit 4B turns off the current changeover switch 11a (step S89).
- the rotation speed detection unit 17 detects the rotation speed of the motor 13 regularly (every time t3) even after the current changeover switch 11a is turned off, and inputs the rotation speed as a detection result to the motor drive control unit 7E ( Step S90).
- the rotation speed acquired from the rotation speed detection unit 17 after the lapse of time t4, which is an arbitrary time is from the rotation speed acquired last time (the rotation speed acquired before time t4). It is determined whether or not the threshold value has changed by an arbitrary threshold value N1 or more (step S91).
- the threshold N1 used in step S91 and the threshold N1 used in step S87 may be different values.
- the time t4 used in step S91 and the time t4 used in step S87 may be different times.
- the threshold N1 in step S87 is the first threshold, and the threshold N1 in step S91 is the second threshold.
- the time t4 in step S87 is the first period, and the time t4 in step S91 is the second period.
- step S91 If the rotation speed has changed less than the threshold value N1 (step S91, No), the motor drive control unit 7E transmits a determination result indicating that the rotation speed has changed only less than the threshold value N1 to the main body control unit 4B.
- the main body control unit 4B continues to turn off the current changeover switch 11a (step S92) and returns to step S90.
- step S91 If the rotation speed has changed by the threshold value N1 or more (step S91, Yes), the motor drive control unit 7E transmits a determination result indicating that the rotation speed has changed by the threshold value N1 or more to the main body control unit 4B, and the main body control unit. 4B turns on the current changeover switch 11a (step S93).
- the motor driving device 101E receives the instruction to change the rotation speed of the motor 13 (rotation speed change instruction) from the user, and changes the target rotation speed, although the operation during motor driving is as described in FIG. There is a case.
- the current changeover switch 11a continues until the target rotation speed after the rotation speed change is reached. Keep ON.
- the motor drive device 101E may receive a user instruction to change the rotation speed of the motor 13 while the current changeover switch 11a is OFF.
- the operation of the motor drive apparatus 101E in this case, that is, the operation of the motor drive apparatus 101E when the instruction to change the rotation speed of the motor 13 is received in the stable state is similar to the operation described in FIG. 8 of the first embodiment. ..
- the main body control unit 4B may turn on the current changeover switch 11a after instructing the motor drive control unit 7E to change the rotation speed.
- the current selector switch 11a may be turned on at the same time when the rotation control unit 7E is instructed to change the rotation speed.
- FIG. 14 is a diagram illustrating a third configuration example of the motor drive system including the motor drive device according to the second embodiment.
- constituent elements of FIG. 14 constituent elements that achieve the same functions as those of the motor driving system 100C shown in FIG. 9 or the motor driving system 100D shown in FIG. 10 are designated by the same reference numerals, and a duplicate description will be omitted.
- the motor drive system 100F having an insulating configuration includes a motor drive device 101F instead of the motor drive device 101D, as compared with the motor drive system 100D.
- the motor driving device 101F includes insulating couplers 15 and 16 in addition to the constituent elements of the motor driving device 101D.
- the insulating couplers 15 and 16 insulate the region surrounded by the broken line 50 from the main body control unit 4A.
- the insulating coupler 15 is arranged between the main body control unit 4A and the drive power supply unit 5, and the insulating coupler 16 is arranged between the main body control unit 4A and the motor drive control unit 7D.
- the main body control unit 4A is electrically connected to the components inside the broken line 50. Can be insulated.
- the insulating couplers 15 and 16 may be arranged for the motor driving device 101E of FIG.
- the insulating coupler 15 is arranged between the main body control unit 4B and the drive power supply unit 5
- the insulating coupler 16 is arranged between the main body control unit 4B and the motor drive control unit 7E.
- an insulating coupler is arranged between the main body controller 4B and the current changeover switch 11a.
- FIG. 14 Note that the difference between FIG. 14 and FIG. 10 is the presence or absence of the insulating couplers 15 and 16, and the operation processing procedure of the motor drive device 101F is the same as that of the motor drive device 101D shown in FIG. ..
- the current changeover switch 11a is turned off when the voltage detection of the bus bar 9 is unnecessary. Therefore, when the voltage detection of the bus line 9 is unnecessary, the current limiting resistor 11b is used. A current can be passed through the voltage detector 8 via the. Thereby, power consumption can be suppressed.
- Embodiment 3 Next, a third embodiment of the invention will be described with reference to FIGS.
- the motor drive systems 100A to 100F are applied to an air conditioner.
- FIG. 15 is a diagram illustrating a configuration example of the air conditioner according to the third embodiment.
- the air conditioner 200 is a device that heats or cools the room to perform air conditioning by transferring heat between the outside air and the air in the room via a refrigerant.
- the air conditioner 200 includes an outdoor unit 210 and an indoor unit 220.
- the outdoor unit 210 and the indoor unit 220 form a refrigeration cycle device.
- the outdoor unit 210 includes any one of the motor driving devices 101A to 101F described in the first or second embodiment.
- the case where the outdoor unit 210 includes the motor driving device 101A will be described.
- the outdoor unit 210 includes a motor drive device 101A, a compressor 211, an outdoor heat exchanger 212, a four-way valve 213, a pressure reducing section 214, a refrigerant storage section 215, and a fan 216.
- the compressor 211 includes a compression mechanism 217 that compresses the refrigerant and a motor 13 that operates the compression mechanism 217.
- the indoor unit 220 includes a load side heat exchanger 221 and a fan 222.
- the outdoor unit 210 and the indoor unit 220 are connected by a refrigerant pipe to form a refrigerant circuit in which the refrigerant circulates.
- the pipe through which the vapor-phase refrigerant flows is the gas pipe 300
- the pipe through which the liquid-phase refrigerant flows is the liquid pipe 400. Note that a gas-liquid two-phase refrigerant may flow through the liquid pipe 400.
- the compression mechanism 217 compresses the drawn refrigerant and discharges it.
- the refrigerant storage unit 215 stores the refrigerant.
- the four-way valve 213 switches the flow of the refrigerant between the cooling operation and the heating operation based on an instruction from a control device (not shown).
- the outdoor heat exchanger 212 exchanges heat between the refrigerant and the outdoor air.
- the outdoor heat exchanger 212 functions as an evaporator during the heating operation, and heat-exchanges between the low-pressure refrigerant flowing from the liquid pipe 400 and the outdoor air to evaporate and evaporate the refrigerant.
- the outdoor heat exchanger 212 functions as a condenser during the cooling operation, and performs heat exchange between the refrigerant that has been compressed by the compression mechanism 217 that has flowed in from the four-way valve 213 side and the outdoor air to transfer the refrigerant. Condensate and liquefy.
- the outdoor heat exchanger 212 is provided with a fan 216 in order to increase the efficiency of heat exchange between the refrigerant and the outdoor air.
- the decompression unit 214 adjusts the pressure of the refrigerant by changing the opening.
- the load side heat exchanger 221 exchanges heat between the refrigerant and the indoor air.
- the load-side heat exchanger 221 functions as a condenser, performs heat exchange between the refrigerant flowing from the gas pipe 300 and the indoor air, condenses and liquefies the refrigerant, and the liquid pipe 400 side. Drain to.
- the load-side heat exchanger 221 acts as an evaporator during the cooling operation, performs heat exchange between the refrigerant that has been brought to a low pressure state by the decompression unit 214 and the indoor air, and causes the refrigerant to remove heat of the air. Are vaporized and flowed out to the gas pipe 300 side.
- the fan 222 regulates the flow of air with which the load side heat exchanger 221 exchanges heat.
- the air conditioner 200 determines the operation mode and the amount of heat exchange required in the refrigeration cycle according to the user's operation with the remote controller 14 or the like. At this time, the outdoor unit 210 determines the rotation speed of the compression mechanism 217, the operation of the four-way valve 213, and the rotation speed of the fan 216, and the indoor unit 220 determines the rotation speed of the fan 222 in accordance with the operation on the remote controller 14. To do. The rotation speed of the compression mechanism 217 is determined by the motor driving device 101A.
- the motor drive device 101A turns off the current changeover switch 11a when the voltage detection of the bus bar 9 is not necessary. Therefore, when the voltage detection of the bus bar 9 is unnecessary, the voltage detection unit is connected via the current limiting resistor 11b. Current can be passed through 8. Thereby, the air conditioner 200 can suppress power consumption.
- FIG. 16 is a diagram illustrating a first hardware configuration example of a motor drive control unit included in the motor drive device according to the first or second embodiment. Since the motor drive control units 7A, 7B, 7D, 7E have the same hardware configuration, the hardware configuration of the motor drive control unit 7A will be described here.
- the functions of some or all of the constituent elements of the motor drive control unit 7A can be realized by the processor 301 and the memory 302.
- Examples of the processor 301 are a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, also called a DSP (Digital Signal Processor)) or a system LSI (Large Scale Integration).
- Examples of the memory 302 are RAM (Random Access Memory) and ROM (Read Only Memory).
- the motor drive control unit 7A is realized by the processor 301 reading out and executing a control program stored in the memory 302 for executing the operation of the motor drive control unit 7A. It can also be said that this control program causes a computer to execute the procedure or method of the motor drive control unit 7A.
- the memory 302 is also used as a temporary memory when the processor 301 executes various processes.
- FIG. 17 is a diagram illustrating a second hardware configuration example of the motor drive control unit included in the motor drive device according to the first or second embodiment.
- the functions of some or all of the constituent elements of the motor drive control unit 7A can be realized by the processing circuit 303.
- the processing circuit 303 is dedicated hardware.
- the processing circuit 303 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Is.
- the functions of the motor drive control unit 7A may be partially implemented by dedicated hardware and partially implemented by software or firmware. That is, a part of the functions of the motor drive controller 7A may be realized by the processor 301 and the memory 302 shown in FIG. 16, and the remaining functions may be realized by the dedicated processing circuit 303 shown in FIG.
- main body control units 4A and 4B described in the first or second embodiment also have the same hardware configuration as the motor drive control unit 7A, so description thereof will be omitted.
- 1 commercial power supply 2 power supply generation unit, 3 power supply circuit unit, 4A, 4B main body control unit, 5 drive power supply unit, 6 inverter output unit, 7A, 7B, 7D, 7E motor drive control unit, 8 voltage detection unit, 9 Bus bar, 10 switch section, 11a current selector switch, 11b current limiting resistance, 12 current detecting section, 13 motor, 14 remote controller, 15,16 insulating coupler, 17 rotation speed detecting section, 21 connection point, 24, 25 voltage dividing resistance, 81-86 switching element, 100A-100F motor drive system, 101A-101F motor drive device, 200 air conditioner, 210 outdoor unit, 211 compressor, 220 indoor unit, 301 processor, 302 memory, 303 processing circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
モータ駆動装置(101A)が、電源生成部(2)から供給される電力でモータ(13)を駆動するインバータ出力部(6)と、電源生成部(2)がインバータ出力部(6)に印加する直流電圧の電圧値を検出する電圧検出部(8)と、モータ(13)へ供給されている電流の電流値を検出する電流検出部(12)と、母線(9)と電圧検出部(8)との間に並列に接続された、電流制限抵抗(11b)および電流切替スイッチ(11a)と、電圧値に基づいてインバータ出力部(6)を制御するとともに、電流値に基づいて電流切替スイッチのオンおよびオフを制御するモータ駆動制御部(7A)と、を備え、モータ駆動制御部(7A)は、モータ(13)を駆動する際には、電流切替スイッチ(11a)をオンし、モータ(13)の駆動中の第1の期間内に電流値が第1の閾値未満しか変化しなかった場合には、電流切替スイッチ(11a)をオフする。
Description
本発明は、モータの駆動制御を行うモータ駆動装置および空気調和機に関する。
モータを駆動するモータ駆動装置の1つに、直流電力を交流電力に変換し交流電力をモータに供給するインバータと、インバータの動作を制御するインバータ制御装置とを備える装置がある。このモータ駆動装置では、モータを安定して駆動することが望まれる。特許文献1に記載のモータ駆動装置は、安定したモータ駆動を実現するために、モータ駆動時に直流電圧をモニタし、そのモニタ結果をモータ制御に反映している。
しかしながら、上記特許文献1の技術では、モータの停止時も常に電圧検出回路およびインバータ制御装置が動作しているので、モータが駆動していない場合に電力が無駄に消費されていた。このため、消費電力が増大するという問題があった。
本発明は、上記に鑑みてなされたものであって、消費電力を抑制することができるモータ駆動装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明のモータ駆動装置は、商用電源から供給された電力を直流電力に変換する電源生成部と、電源生成部から供給される電力を使用してモータを駆動するインバータ出力部と、電源生成部がインバータ出力部に印加する直流電圧の電圧値を検出する電圧検出部とを備える。また、本発明のモータ駆動装置は、インバータ出力部からモータへ供給されている電流の電流値を検出する電流検出部と、電源生成部およびインバータ出力部を接続する母線と電圧検出部との間に並列に接続された、電流制限抵抗および電流制限抵抗の両端間の短絡をオンまたはオフに切替える電流切替スイッチと、電圧検出部の検出結果に基づいてインバータ出力部を制御するとともに、電流値に基づいて電流切替スイッチのオンおよびオフを制御するモータ駆動制御部と、を備える。モータ駆動制御部は、モータを駆動する際には、電流切替スイッチをオンすることによって、母線の電圧を、電流切替スイッチを介して電圧検出部に送り、モータの駆動中の第1の期間内に電流値が第1の閾値未満しか変化しなかった場合には、電流切替スイッチをオフすることによって、母線の電圧を、電流切替スイッチを介さず電流制限抵抗を介して電圧検出部に送る。
本発明にかかるモータ駆動装置は、消費電力を抑制することができるという効果を奏する。
以下に、本発明の実施の形態にかかるモータ駆動装置および空気調和機を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1にかかるモータ駆動装置を備えたモータ駆動システムの第1の構成例を示す図である。実施の形態1に係るモータ駆動システム100Aは、モータ駆動装置101Aと、モータ13と、リモートコントローラ(以下、リモコンという)14とを備えている。
図1は、実施の形態1にかかるモータ駆動装置を備えたモータ駆動システムの第1の構成例を示す図である。実施の形態1に係るモータ駆動システム100Aは、モータ駆動装置101Aと、モータ13と、リモートコントローラ(以下、リモコンという)14とを備えている。
モータ駆動装置101Aは、商用電源1から交流電力の供給を受けてモータ13を駆動する装置である。モータ駆動装置101Aは、電源生成部2と、電源回路部3と、本体制御部4Aと、駆動電源供給部5と、インバータ回路を有したインバータ出力部6と、モータ駆動制御部7Aと、電流検出部12と、電圧検出部8と、スイッチ部10とを備えている。
電源生成部2は、商用電源1に接続される。電源生成部2は、ブリッジ接続されるダイオード2a~2dと、ダイオード2a~2dによって変換された直流電圧が印加される平滑コンデンサ2eとを備え、商用電源1から印加される交流電圧を直流電圧に変換してモータ13を駆動するための駆動電力を生成する。
電源生成部2の入力側は商用電源1に接続され、出力側は母線9を介して、電源回路部3、スイッチ部10、電圧検出部8、電流検出部12、およびインバータ出力部6に接続される。電源生成部2は、商用電源1から供給される交流電力を直流電力に変換し、直流電力を電源回路部3およびインバータ出力部6に供給する。
電源回路部3は、本体制御部4Aおよび駆動電源供給部5に接続されている。電源回路部3は、電源生成部2が生成した電力を使用して動作電力を生成し、生成した動作電力を本体制御部4Aおよび駆動電源供給部5に供給する。
駆動電源供給部5は、本体制御部4A、インバータ出力部6、およびモータ駆動制御部7Aに接続されている。駆動電源供給部5は、電源回路部3から供給される電力を使用してインバータ出力部6およびモータ駆動制御部7Aにそれぞれの動作電力を供給する。
本体制御部4Aは、モータ駆動装置101Aの全体を制御する。本体制御部4Aは、駆動電源供給部5およびモータ駆動制御部7Aを制御する。本体制御部4Aは、リモコン14からの指示に従って、駆動電源供給部5をON(オン)またはOFF(オフ)に制御する。
本体制御部4Aが、駆動電源供給部5をONすると、駆動電源供給部5は、インバータ出力部6およびモータ駆動制御部7Aへの給電を開始し、駆動電源供給部5をOFFにすると、駆動電源供給部5は、インバータ出力部6およびモータ駆動制御部7Aへの給電を停止する。これにより、本体制御部4Aは、駆動電源供給部5からのインバータ出力部6およびモータ駆動制御部7Aへの電力供給の有無を制御する。また、本体制御部4Aは、モータ駆動制御部7Aと通信線で接続されており、モータ駆動制御部7Aとは双方向に相互に通信を行うことができる。
電圧検出部8は、電圧検出回路であり、電源生成部2とインバータ出力部6との間を電気的に接続する母線9の電圧、すなわち電源生成部2がインバータ出力部6に印加する直流電圧を検出する。電圧検出部8は、検出結果である電圧値をモータ駆動制御部7Aに送信する。
スイッチ部10は、電圧検出部8と母線9との間に接続されている。スイッチ部10は、電圧検出部8と母線9との間に並列接続された、電流切替スイッチ11aおよび電流制限抵抗11bを備えている。電流切替スイッチ11aは、電流制限抵抗11bの両端間の短絡をオンまたはオフに切替える。電流切替スイッチ11aは、モータ駆動制御部7Aに接続されており、モータ駆動制御部7Aによって制御される。
インバータ出力部6は、スイッチング素子81~86を有する。スイッチング素子81~83は上アームのスイッチング素子を構成し、スイッチング素子84~86は下アームのスイッチング素子を構成する。上アームのスイッチング素子81と下アームのスイッチング素子84は、直列に接続されてU相のスイッチング素子対を構成する。以下同様に、上アームのスイッチング素子82と下アームのスイッチング素子85は、直列に接続されてV相のスイッチング素子対を構成し、上アームのスイッチング素子83と下アームのスイッチング素子86は、直列に接続されてW相のスイッチング素子対を構成する。
スイッチング素子81,84の接続点、スイッチング素子82,85の接続点、およびスイッチング素子83,86の接続点がモータ13に接続される。また、インバータ出力部6では、スイッチング素子81~86が電流検出部12に接続されている。
電流検出部12は、電源生成部2とモータ駆動制御部7Aとの間に接続されており、電源生成部2からインバータ出力部6に流れる電流を検出する。電流検出部12は、検出した電流値をモータ駆動制御部7Aに送信する。
インバータ制御装置であるモータ駆動制御部7Aは、モータ13を駆動する信号をインバータ出力部6へ出力してインバータ出力部6を制御する。モータ駆動制御部7Aは、電圧検出部8が検出した電圧値に基づいてインバータ出力部6を制御し、電流検出部12が検出した電流値に基づいて電流切替スイッチ11aを制御する。
なお、図1において、商用電源1に電気的に接続されている側を一次側とするときに、破線50は、本体制御部4Aが設けられる側すなわち二次側を一次側と絶縁する構成とするときの境界を示している。空気調和機の二次側を一次側と絶縁するときの構成(以下絶縁構成という)については後述する。
つぎに、モータ駆動装置101Aがモータ13を駆動する際の、モータ駆動装置101Aの動作タイミングについて説明する。図2は、実施の形態1にかかるモータ駆動装置の動作タイミングを示す図である。
電源生成部2に商用電源1が接続されると、電源生成部2が、直流電圧を生成し、生成した直流電圧を電源回路部3に供給するとともに、母線9を介してインバータ出力部6に直流電圧を供給する。電源回路部3は、直流電圧を受け取ると本体制御部4Aおよび駆動電源供給部5のそれぞれに対して電圧を供給する。
本体制御部4Aは、リモコン14からモータ駆動指令を受けると、駆動電源供給部5をONし、これに伴いモータ駆動制御部7AもONする。一定時間が経過した後に、モータ駆動制御部7Aによって電流切替スイッチ11aがONされる。電流切替スイッチ11aがONされると、電源生成部2と電圧検出部8との間に配置されている電流制限抵抗11bが電流切替スイッチ11aによって短絡され、母線9の電圧が電流切替スイッチ11aを介して電圧検出部8に送られる。これにより、電圧検出部8は、母線9の電圧の検出が可能となる。一方、電流切替スイッチ11aがOFFされると、母線9の電圧が電流切替スイッチ11aを介さず、電流制限抵抗11bを介して電圧検出部8に送られるので、電圧検出部8の消費電力が下がる。
母線9の電圧が振れると電圧に応じてモータ13の回転が振れてしまうので、モータ13を安定的に駆動させるためには母線9の電圧を検出することが必要となる。電圧検出部8は、検出した電圧値をモータ駆動制御部7Aに入力する。また、モータ13が駆動を開始すると、電流検出部12が、モータ13に流れる電流を検出し、検出結果である電流値をモータ駆動制御部7Aに入力する。
モータ駆動の停止の際には、本体制御部4Aが、リモコン14からモータ駆動停止指令を受けた後、一定時間の経過後に駆動電源供給部5をOFFする。これと同時にモータ駆動制御部7Aおよび電流切替スイッチ11aがOFFし、電源生成部2と電圧検出部8の間に電流制限抵抗11bが接続される。
なお、ここでは、電流切替スイッチ11aがONするタイミングを、モータ駆動制御部7AがONしてから一定時間が経過した後としたが、電流切替スイッチ11aがONするタイミングは、駆動電源供給部5およびモータ駆動制御部7AがONするタイミングと同時でもよい。また、モータ駆動が停止後の電流切替スイッチ11aがOFFするタイミングを、駆動電源供給部5をOFFしたと同時としたが、電流切替スイッチ11aがOFFするタイミングは、駆動電源供給部5をOFFする前としてもよい。この場合、本体制御部4Aがモータ駆動制御部7Aにモータ駆動の停止を通知する。モータ駆動制御部7Aは、モータ駆動の停止を示す通知を受信すると、電流切替スイッチ11aをOFFする。また、駆動電源供給部5をOFFするタイミングは、本体制御部4Aがモータ駆動の停止指令を受信した直後であってもよい。
ここで、電圧検出部8の構成および動作について詳細に説明する。図3は、実施の形態1にかかるモータ駆動装置が備える電圧検出部の構成を示す図である。電圧検出部8は、直列に接続された分圧抵抗24,25を備えている。分圧抵抗24は、一方の端部が、電流切替スイッチ11aおよび電流制限抵抗11bに接続されており、他方の端部が接続点21を介して分圧抵抗25に接続されている。分圧抵抗25は、一方の端部が、接続点21を介して分圧抵抗24に接続されており、他方の端部が、接地されている。
モータ駆動時に、電流切替スイッチ11aによって電流制限抵抗11bが短絡されると、電圧検出部8は、電源生成部2にて生成された直流電圧を分圧抵抗24と分圧抵抗25とに分圧し、分圧した電圧をモータ駆動制御部7Aに入力することで母線9の電圧を検出している。
電圧検出部8によって検出された電圧値(検出結果)の用途について説明する。モータ駆動制御部7Aは、電圧値の検出結果と本体制御部4Aからの目標回転数の指示に基づいて、インバータ出力部6を制御し、モータ13に流す電流を調整する。モータ13に流れた電流は電流検出部12によって検出され、検出結果である電流値がモータ駆動制御部7Aに入力される。モータ13の回転数が目標回転数に到達し回転数が安定すると、モータ13に流れる電流は一定となる。仮に母線9の電圧が変動しても電圧検出部8から電圧値を受け取ったモータ駆動制御部7Aは、電圧値に基づいてインバータ出力部6を制御することでモータ13に流す電流を一定にし、モータ13の回転数を安定させることができる。
モータ13の回転数を安定させて制御するためには母線9の電圧を把握することが必要となるが、モータ13が停止している時は母線9の電圧を把握する必要はない。このため、モータ13が停止している時に電圧検出部8が電圧を検出すると、電力を無駄に消費することとなる。また、モータ13の回転数が安定しており、かつ母線9の電圧が安定している場合にも、モータ駆動制御部7Aは、インバータ出力部6の制御を一定とすることによって母線9の電圧検出は不要となる。実施の形態1では、母線9の電圧検出が不要である場合に、電流切替スイッチ11aをOFFすることで電流制限抵抗11bを介して電圧検出部8に電流を流し、これにより消費電力を抑える。
図4は、実施の形態1にかかる第1の構成例のモータ駆動装置の動作処理手順を示すフローチャートである。モータ13が駆動していない状態では、モータ駆動制御部7Aは、駆動電源供給部5から動作電力の供給(電源供給)を受けていないので動作を停止している。モータ駆動制御部7Aが動作停止しているので、電流切替スイッチ11aもOFFしており、電流制限抵抗11bを介して電圧検出部8に電流が流れる。
ユーザが、リモコン14に、モータ駆動の開始指示を入力すると、リモコン14は、モータ駆動の開始指示を本体制御部4Aに送る。そして、本体制御部4Aが、ユーザからモータ駆動の開始指示を受け付ける(ステップS1)。ユーザが、リモコン14に入力する開始指示には、モータ13の回転数に対応する指示が含まれている。
これにより、本体制御部4Aは、駆動電源供給部5をONする(ステップS2)。駆動電源供給部5は、モータ駆動制御部7Aとインバータ出力部6に電源を供給する(ステップS3)。モータ駆動制御部7Aは、電流切替スイッチ11aをONし(ステップS4)、母線9の電圧取得を開始する。その後、モータ13は、駆動を開始する(ステップS5)。
モータ13が駆動を開始した後、モータ13の回転数は、ユーザの指示した回転数(目標回転数)に到達する(ステップS6)。電流検出部12は、モータ13に流れる電流を検出し、検出結果である電流値をモータ駆動制御部7Aに入力する(ステップS7)。電流検出部12は、検出した電流値を、特定の時間間隔である時間t1ごとにモータ駆動制御部7Aに入力する。モータ駆動制御部7Aは、入力された電流値を記憶しておく。
その後、モータ駆動制御部7Aは、任意の時間である時間t2が経過した後に電流検出部12から取得した電流値が、前回取得した電流値(時間t2前に取得した電流値)から、ある任意の閾値X1以上変化したか否かを判定する(ステップS8)。すなわち、モータ駆動制御部7Aは、最新の電流値と、時間t2前に取得した1つ前の電流値との差が閾値X1以上であるか否かを判定する。
電流値が閾値X1以上変化していれば(ステップS8、Yes)、モータ駆動制御部7Aは、電流切替スイッチ11aのONを継続し(ステップS9)、ステップS7へ戻る。一方、電流値が閾値X1未満しか変化していなければ(ステップS8、No)、母線9の電圧が安定しており、電圧を監視する必要はないのでモータ駆動制御部7Aは、電流切替スイッチ11aをOFFする(ステップS10)。
電流検出部12は、電流切替スイッチ11aがOFFされた後もモータ13に流れる電流の電流値を定期的(時間t1ごと)に検出し、検出結果である電流値をモータ駆動制御部7Aに入力する(ステップS11)。
そして、モータ駆動制御部7Aは、任意の時間である時間t2が経過した後に電流検出部12から取得した電流値が、前回取得した電流値(時間t2前に取得した電流値)から、ある任意の閾値X1以上変化したか否かを判定する(ステップS12)。
なお、ステップS12で用いる閾値X1と、ステップS8で用いる閾値X1とは、異なる値であってもよい。また、ステップS12で用いる時間t2と、ステップS8で用いる時間t2とは、異なる時間であってもよい。ステップS8における閾値X1が第1の閾値であり、ステップS12における閾値X1が第2の閾値である。また、ステップS8における時間t2が第1の期間であり、ステップS12における時間t2が第2の期間である。
電流値が閾値X1未満しか変化していなければ(ステップS12、No)、母線9の電圧は引き続き安定しており、電圧を監視する必要はないのでモータ駆動制御部7Aは、電流切替スイッチ11aのOFFを継続し(ステップS13)、ステップS11へ戻る。
電流値が閾値X1以上変化していれば(ステップS12、Yes)、母線9の電圧が不安定な状態であるので、モータ駆動制御部7Aは、電圧の検出が必要であると判断し、電流切替スイッチ11aをONする(ステップS14)。
このように、モータ駆動装置101Aは、モータ13の駆動時であっても電圧検出が不要であるときには電流切替スイッチ11aをOFFすることで電流制限抵抗11bを介して電圧検出部8に電流を流すので、消費電力を低減することができる。また、モータ駆動装置101Aは、電圧検出が必要となったときには、電流切替スイッチ11aをONすることで電圧を検出することができる。
モータ駆動装置101Aは、モータ駆動中の動作は、図4で説明した通りであるが、ユーザからモータ13の回転数を変更する指示(回転数の変更指示)を受け付けて、目標回転数を変更する場合がある。
モータ駆動装置101Aは、例えば、電流切替スイッチ11aがONしている状態でユーザからモータ13の回転数の変更指示を受け付けた場合、回転数変更後の目標回転数に到達するまで電流切替スイッチ11aをONしたまま維持する。
また、モータ駆動装置101Aは、電流切替スイッチ11aがOFFしている状態でユーザからモータ13の回転数の変更指示を受け付ける場合がある。この場合のモータ駆動装置101Aの動作、すなわち安定状態でモータ13の回転数の変更指示を受け付けた場合のモータ駆動装置101Aの動作について説明する。
図5は、実施の形態1にかかる第1の構成例のモータ駆動装置が、安定状態でモータの回転数の変更指示を受け付けた場合のモータ駆動装置の動作処理手順を示すフローチャートである。モータ13の回転数が目標回転数に到達し、安定状態になると、モータ駆動制御部7Aは、電流切替スイッチ11aをOFFする(ステップS20)。このステップS20の処理は、図4で説明したステップS10の処理に対応している。
電流切替スイッチ11aがOFFしている状態でユーザが、リモコン14に、回転数の変更指示を入力すると、リモコン14は、回転数の変更指示を本体制御部4Aに送る。そして、本体制御部4Aが、ユーザから回転数の変更指示を受け付ける(ステップS21)。
これにより、本体制御部4Aは、モータ駆動制御部7Aに回転数の変更指示を出力する(ステップS22)。モータ駆動制御部7Aは、回転数の変更指示を受け付けると、電流切替スイッチ11aをONする(ステップS23)。
その後、モータ駆動装置101Aは、図4のステップS6に戻り、ステップS6以降の処理を実行する。これにより、モータ駆動装置101Aは、電流切替スイッチ11aがOFFしている状態でユーザから回転数の変更指示を受け付けた場合であっても、電流切替スイッチ11aをONすることで、モータ13の回転数の変更を安定的に行うことができる。
なお、図1から図5では、モータ駆動制御部7Aが電流切替スイッチ11aを制御する場合について説明したが、本体制御部(後述する本体制御部4B)が電流切替スイッチ11aを制御してもよい。すなわち、電流切替スイッチ11aを本体制御部4Bに接続していてもよい。
図6は、実施の形態1にかかるモータ駆動装置を備えたモータ駆動システムの第2の構成例を示す図である。図6の各構成要素のうち図1に示すモータ駆動システム100Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
モータ駆動システム100Aの別構成例であるモータ駆動システム100Bは、モータ駆動装置101Bと、モータ13と、リモコン14とを備えている。モータ駆動装置101Bは、モータ駆動装置101Aと比較して、本体制御部4Aの代わりに本体制御部4Bを備え、モータ駆動制御部7Aの代わりにモータ駆動制御部7Bを備えている。
本体制御部4Bは、電流切替スイッチ11aに接続されている。本体制御部4Bは、本体制御部4Aの機能に加えて、電流切替スイッチ11aのオンおよびオフを制御する機能を有している。モータ駆動システム100Bでは、モータ駆動制御部7Bを電流切替スイッチ11aに接続する必要はない。モータ駆動制御部7Bは、電流切替スイッチ11aを制御しないが、それ以外の機能は、モータ駆動制御部7Aと同じである。
図7は、実施の形態1にかかる第2の構成例のモータ駆動装置の動作処理手順を示すフローチャートである。図7では、本体制御部4Bが電流切替スイッチ11aを制御する場合のモータ駆動装置101Bの動作処理手順について説明する。なお、モータ駆動装置101Aの動作処理と同様の動作処理については、その説明を省略する場合がある。
モータ13が駆動していない状態では、モータ駆動制御部7Bは、駆動電源供給部5から動作電力の供給(電源供給)を受けていないので動作を停止している。モータ駆動制御部7Bが動作停止しているので、電流切替スイッチ11aもOFFしており、電流制限抵抗11bを介して電圧検出部8に電流が流れる。
ユーザが、リモコン14に、モータ駆動の開始指示を入力すると、リモコン14は、モータ駆動の開始指示を本体制御部4Bに送る。そして、本体制御部4Bが、ユーザからモータ駆動の開始指示を受け付ける(ステップS30)。ユーザが、リモコン14に入力する開始指示には、モータ13の回転数に対応する指示が含まれている。
これにより、本体制御部4Bは、駆動電源供給部5をONする(ステップS31)。駆動電源供給部5は、モータ駆動制御部7Bとインバータ出力部6に電源を供給する(ステップS32)。本体制御部4Bは、電流切替スイッチ11aをONし(ステップS33)、母線9の電圧取得を開始する。その後、モータ13は、駆動を開始する(ステップS34)。
モータ13が駆動を開始した後、モータ13の回転数は、ユーザの指示した回転数(目標回転数)に到達する(ステップS35)。電流検出部12は、モータ13に流れる電流を検出し、検出結果である電流値をモータ駆動制御部7Bに入力する(ステップS36)。電流検出部12は、検出した電流値を、特定の時間間隔である時間t1ごとにモータ駆動制御部7Bに入力する。モータ駆動制御部7Bは、入力された電流値を記憶しておく。
その後、モータ駆動制御部7Bは、任意の時間である時間t2が経過した後に電流検出部12から取得した電流値が、前回取得した電流値(時間t2前に取得した電流値)から、ある任意の閾値X1以上変化したか否かを判定する(ステップS37)。すなわち、モータ駆動制御部7Bは、最新の電流値と、時間t2前に取得した1つ前の電流値との差が閾値X1以上であるか否かを判定する。
電流値が閾値X1以上変化していれば(ステップS37、Yes)、モータ駆動制御部7Bは、電流値が閾値X1以上変化したことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bが電流切替スイッチ11aのONを継続し(ステップS38)、ステップS36へ戻る。一方、電流値が閾値X1未満しか変化していなければ(ステップS37、No)、モータ駆動制御部7Bは、電流値が閾値X1未満しか変化していないことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bが電流切替スイッチ11aをOFFする(ステップS39)。
電流検出部12は、電流切替スイッチ11aがOFFされた後もモータ13に流れる電流の電流値を定期的(時間t1ごと)に検出し、検出結果である電流値をモータ駆動制御部7Bに入力する(ステップS40)。
そして、モータ駆動制御部7Bは、任意の時間である時間t2が経過した後に電流検出部12から取得した電流値が、前回取得した電流値(時間t2前に取得した電流値)から、ある任意の閾値X1以上変化したか否かを判定する(ステップS41)。
なお、ステップS41で用いる閾値X1と、ステップS37で用いる閾値X1とは、異なる値であってもよい。また、ステップS41で用いる時間t2と、ステップS37で用いる時間t2とは、異なる時間であってもよい。ステップS37における閾値X1が第1の閾値であり、ステップS41における閾値X1が第2の閾値である。また、ステップS37における時間t2が第1の期間であり、ステップS41における時間t2が第2の期間である。
電流値が閾値X1未満しか変化していなければ(ステップS41、No)、モータ駆動制御部7Bは、電流値が閾値X1未満しか変化していないことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bは、電流切替スイッチ11aのOFFを継続し(ステップS42)、ステップS40へ戻る。
電流値が閾値X1以上変化していれば(ステップS41、Yes)、モータ駆動制御部7Bは、電流値が閾値X1以上変化したことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bは、電流切替スイッチ11aをONする(ステップS43)。
モータ駆動装置101Bは、モータ駆動中の動作は、図7で説明した通りであるが、ユーザからモータ13の回転数を変更する指示(回転数の変更指示)を受け付けて、目標回転数を変更する場合がある。
モータ駆動装置101Bは、例えば、電流切替スイッチ11aがONしている状態でユーザからモータ13の回転数の変更指示を受け付けた場合、回転数変更後の目標回転数に到達するまで電流切替スイッチ11aをONしたまま維持する。
また、モータ駆動装置101Bは、電流切替スイッチ11aがOFFしている状態でユーザからモータ13の回転数の変更指示を受け付ける場合がある。この場合のモータ駆動装置101Bの動作、すなわち安定状態でモータ13の回転数の変更指示を受け付けた場合のモータ駆動装置101Bの動作について説明する。
図8は、実施の形態1にかかる第2の構成例のモータ駆動装置が、安定状態でモータの回転数の変更指示を受け付けた場合のモータ駆動装置の動作処理手順を示すフローチャートである。モータ13の回転数が目標回転数に到達し、安定状態になると、本体制御部4Bが、モータ駆動制御部7Bからの指示に従って、電流切替スイッチ11aをOFFする(ステップS50)。このステップS50の処理は、図7で説明したステップS39の処理に対応している。
電流切替スイッチ11aがOFFしている状態でユーザが、リモコン14に、回転数の変更指示を入力すると、リモコン14は、回転数の変更指示を本体制御部4Bに送る。そして、本体制御部4Bが、ユーザから回転数の変更指示を受け付ける(ステップS51)。
これにより、本体制御部4Bは、モータ駆動制御部7Bに回転数の変更指示を出力する(ステップS52)。モータ駆動制御部7Bは、回転数の変更指示を受け付けると、電流切替スイッチ11aをONする(ステップS53)。
その後、モータ駆動装置101Bは、図7のステップS35に戻り、ステップS35以降の処理を実行する。これにより、モータ駆動装置101Bは、電流切替スイッチ11aがOFFしている状態でユーザから回転数の変更指示を受け付けた場合であっても、電流切替スイッチ11aをONすることで、モータ13の回転数の変更を安定的に行うことができる。
図8では、本体制御部4Bが、モータ駆動制御部7Bへ回転数の変更指示を出した後に電流切替スイッチ11aをONする場合について説明したが、本体制御部4Bは、モータ駆動制御部7Bへ回転数の変更指示を出すと同時に電流切替スイッチ11aをONしてもよい。
図1に示した本体制御部4Aは、破線50で囲まれた領域と絶縁されていてもよい。図9は、実施の形態1にかかるモータ駆動装置を備えたモータ駆動システムの第3の構成例を示す図である。図9の各構成要素のうち図1に示すモータ駆動システム100Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
絶縁構成であるモータ駆動システム100Cは、モータ駆動システム100Aと比較して、モータ駆動装置101Aの代わりにモータ駆動装置101Cを備えている。絶縁構成とは、本体制御部4Aを破線50の内部にある構成要素と電気的に絶縁する構成、別言すれば回路的に切り離す構成を意味する。
モータ駆動装置101Cは、モータ駆動装置101Aの構成要素に加えて絶縁カプラ15,16を備えている。絶縁カプラ15,16は、破線50で囲まれた領域と、本体制御部4Aとを絶縁する。絶縁カプラ15は、本体制御部4Aと駆動電源供給部5との間に配置され、絶縁カプラ16は、本体制御部4Aとモータ駆動制御部7Aとの間に配置される。このように、本体制御部4Aと、破線50の内部にある構成要素との間に絶縁カプラ15,16を挿入することで、本体制御部4Aを破線50の内部にある構成要素と電気的に絶縁することができる。
なお、図6のモータ駆動装置101Bに対して絶縁カプラ15,16を配置してもよい。この場合、絶縁カプラ15は、本体制御部4Bと駆動電源供給部5との間に配置され、絶縁カプラ16は、本体制御部4Bとモータ駆動制御部7Bとの間に配置される。また、本体制御部4Bと電流切替スイッチ11aとの間に絶縁カプラが配置される。
なお図1、図6、および図9では電源回路部3を破線50の境界線上に示しているが、この表記は電源回路部3自体が、例えば絶縁トランスの使用により一次側と二次側とが絶縁されている絶縁電源であることを意味している。電源回路部3としてはフライバックコンバータが例示される。
なお、図9において図1との差異は絶縁カプラ15,16の有無であり、モータ駆動装置101Cの動作処理手順は図1に示したモータ駆動装置101Aと同様であるので、その説明は省略する。
このように、実施の形態1によれば、母線9の電圧検出が不要である場合に、電流切替スイッチ11aをOFFするので、母線9の電圧検出が不要である場合には、電流制限抵抗11bを介して電圧検出部8に電流を流すことができる。これにより、消費電力を抑制することができる。
また、電流切替スイッチ11aと並列に電流制限抵抗11bを接続しているので、簡易な構成で電流切替スイッチ11aにかかる電圧を下げることができるとともに、電流切替スイッチ11aに安価なスイッチを用いることができる。
実施の形態2.
つぎに、図10から図14を用いてこの発明の実施の形態2について説明する。実施の形態2では、モータ13の回転数の変化に基づいて、電流切替スイッチ11aをONまたはOFFに制御する。
つぎに、図10から図14を用いてこの発明の実施の形態2について説明する。実施の形態2では、モータ13の回転数の変化に基づいて、電流切替スイッチ11aをONまたはOFFに制御する。
図10は、実施の形態2にかかるモータ駆動装置を備えたモータ駆動システムの第1の構成例を示す図である。図10の各構成要素のうち図1に示す実施の形態1のモータ駆動装置101Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。実施の形態2に係るモータ駆動システム100Dは、モータ駆動装置101Dと、モータ13と、リモコン14とを備えている。
モータ駆動装置101Dは、モータ駆動装置101Aと比較して、電流検出部12の代わりに回転数検出部17を備え、モータ駆動制御部7Aの代わりにモータ駆動制御部7Dを備えている。
回転数検出部17は、モータ13およびモータ駆動制御部7Dに接続されている。回転数検出部17は、モータ13の回転数を検出し、検出結果である回転数をモータ駆動制御部7Dに入力する。これにより、モータ駆動制御部7Dは、モータ13の回転数を把握する。
インバータ制御装置であるモータ駆動制御部7Dは、モータ13を駆動する信号をインバータ出力部6へ出力してインバータ出力部6を制御する。モータ駆動制御部7Dは、電圧検出部8が検出した電圧値に基づいてインバータ出力部6を制御し、回転数検出部17が検出した回転数に基づいて電流切替スイッチ11aを制御する。
つぎに、モータ駆動装置101Dがモータ13を駆動する際の、モータ駆動装置101Dの動作タイミングについて説明する。モータ駆動装置101Dの動作タイミングのうち、モータ駆動装置101Aの動作タイミングと同様の動作タイミングについては、その説明を省略する場合がある。
電源生成部2に商用電源1が接続されると、電源生成部2が、直流電圧を生成し、生成した直流電圧を電源回路部3に供給するとともに、母線9を介してインバータ出力部6に直流電圧を供給する。電源回路部3は、直流電圧を受け取ると本体制御部4Aおよび駆動電源供給部5のそれぞれに対して電圧を供給する。
本体制御部4Aは、リモコン14からモータ駆動指令を受けると、駆動電源供給部5をONし、これに伴いモータ駆動制御部7DもONする。一定時間が経過した後に、モータ駆動制御部7Dによって電流切替スイッチ11aがONされる。これにより、電源生成部2と電圧検出部8との間に配置されている電流制限抵抗11bが電流切替スイッチ11aによって短絡され、電圧検出部8は、母線9の電圧の検出が可能となる。モータ13が駆動を開始すると、回転数検出部17が、モータ13の回転数を検出し、検出結果である回転数をモータ駆動制御部7Dに入力する。
モータ駆動の停止の際には、本体制御部4Aが、リモコン14からモータ駆動停止指令を受けた後、一定時間の経過後に駆動電源供給部5をOFFする。これと同時にモータ駆動制御部7Dおよび電流切替スイッチ11aがOFFし、電源生成部2と電圧検出部8の間に電流制限抵抗11bが接続される。
図11は、実施の形態2にかかる第1の構成例のモータ駆動装置の動作処理手順を示すフローチャートである。モータ13が駆動していない状態では、モータ駆動制御部7Dは、駆動電源供給部5から動作電力の供給(電源供給)を受けていないので動作を停止している。モータ駆動制御部7Dが動作停止しているので、電流切替スイッチ11aもOFFしており、電流制限抵抗11bを介して電圧検出部8に電流が流れる。
ユーザが、リモコン14に、モータ駆動の開始指示を入力すると、リモコン14は、モータ駆動の開始指示を本体制御部4Aに送る。そして、本体制御部4Aが、ユーザからモータ駆動の開始指示を受け付ける(ステップS60)。ユーザが、リモコン14に入力する開始指示には、モータ13の回転数に対応する指示が含まれている。
これにより、本体制御部4Aは、駆動電源供給部5をONする(ステップS61)。駆動電源供給部5は、モータ駆動制御部7Dとインバータ出力部6に電源を供給する(ステップS62)。モータ駆動制御部7Dは、電流切替スイッチ11aをONし(ステップS63)、母線9の電圧取得を開始する。その後、モータ13は、駆動を開始する(ステップS64)。
モータ13が駆動を開始した後、モータ13の回転数は、ユーザの指示した回転数(目標回転数)に到達する(ステップS65)。回転数検出部17は、モータ13の回転数を検出し、検出結果である回転数をモータ駆動制御部7Dに入力する(ステップS66)。回転数検出部17は、検出した回転数を、特定の時間間隔である時間t3ごとにモータ駆動制御部7Dに入力する。モータ駆動制御部7Dは、入力された回転数を記憶しておく。
その後、モータ駆動制御部7Dは、任意の時間である時間t4が経過した後に回転数検出部17から取得した回転数が、前回取得した回転数(時間t4前に取得した回転数)から、ある任意の閾値N1(rpm)以上変化したか否かを判定する(ステップS67)。すなわち、モータ駆動制御部7Dは、最新の回転数と、時間t4前に取得した1つ前の回転数との差が閾値N1以上であるか否かを判定する。
回転数が閾値N1以上変化していれば(ステップS67、Yes)、モータ駆動制御部7Dは、電流切替スイッチ11aのONを継続し(ステップS68)、ステップS66へ戻る。一方、回転数が閾値N1未満しか変化していなければ(ステップS67、No)、母線9の電圧が安定しており、電圧を監視する必要はないのでモータ駆動制御部7Dは、電流切替スイッチ11aをOFFする(ステップS69)。
回転数検出部17は、電流切替スイッチ11aがOFFされた後もモータ13の回転数を定期的(時間t3ごと)に検出し、検出結果である回転数をモータ駆動制御部7Dに入力する(ステップS70)。
そして、モータ駆動制御部7Dは、任意の時間である時間t4が経過した後に回転数検出部17から取得した回転数が、前回取得した回転数(時間t4前に取得した回転数)から、任意の閾値N1以上変化したか否かを判定する(ステップS71)。
なお、ステップS71で用いる閾値N1と、ステップS67で用いる閾値N1とは、異なる値であってもよい。また、ステップS71で用いる時間t4と、ステップS67で用いる時間t4とは、異なる時間であってもよい。ステップS67における閾値N1が第1の閾値であり、ステップS71における閾値N1が第2の閾値である。また、ステップS67における時間t4が第1の期間であり、ステップS71における時間t4が第2の期間である。
回転数が閾値N1未満しか変化していなければ(ステップS71、No)、母線9の電圧は引き続き安定しており、電圧を監視する必要はないのでモータ駆動制御部7Dは、電流切替スイッチ11aのOFFを継続し(ステップS72)、ステップS70へ戻る。
回転数が閾値N1以上変化していれば(ステップS71、Yes)、母線9の電圧が不安定な状態であるので、モータ駆動制御部7Dは、電圧の検出が必要である判断し、電流切替スイッチ11aをONする(ステップS73)。
このように、モータ駆動装置101Dは、モータ13の駆動時であっても電圧検出が不要であるときには電流切替スイッチ11aをOFFすることで電流制限抵抗11bを介して電圧検出部8に電流を流すので、消費電力を低減することができる。また、モータ駆動装置101Dは、電圧検出が必要となったときには、電流切替スイッチ11aをONすることで電圧を検出することができる。
モータ駆動装置101Dは、モータ駆動中の動作は、図11で説明した通りであるが、ユーザからモータ13の回転数を変更する指示(回転数の変更指示)を受け付けて、目標回転数を変更する場合がある。
モータ駆動装置101Dは、例えば、電流切替スイッチ11aがONしている状態でユーザからモータ13の回転数の変更指示を受け付けた場合、回転数変更後の目標回転数に到達するまで電流切替スイッチ11aをONしたまま維持する。
また、モータ駆動装置101Dは、電流切替スイッチ11aがOFFしている状態でユーザからモータ13の回転数の変更指示を受け付ける場合がある。この場合のモータ駆動装置101Dの動作、すなわち安定状態でモータ13の回転数の変更指示を受け付けた場合のモータ駆動装置101Dの動作は、実施の形態1の図5で説明した動作と同様である。
なお、図10および図11では、モータ駆動制御部7Dが電流切替スイッチ11aを制御する場合について説明したが、本体制御部が電流切替スイッチ11aを制御してもよい。すなわち、電流切替スイッチ11aを本体制御部に接続していてもよい。
図12は、実施の形態2にかかるモータ駆動装置を備えたモータ駆動システムの第2の構成例を示す図である。図12の各構成要素のうち図6に示すモータ駆動システム100Bまたは図10に示すモータ駆動システム100Dと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
モータ駆動システム100Dの別構成例であるモータ駆動システム100Eは、モータ駆動装置101Eと、モータ13と、リモコン14とを備えている。モータ駆動装置101Eは、モータ駆動装置101Dと比較して、本体制御部4Aの代わりに本体制御部4Bを備え、モータ駆動制御部7Dの代わりにモータ駆動制御部7Eを備えている。
モータ駆動装置101Eの本体制御部4Bは、モータ駆動装置101Bの備える本体制御部4Bと同様の機能を有し、同様の動作を実行する。モータ駆動システム100Eでは、モータ駆動制御部7Eを電流切替スイッチ11aに接続する必要はない。モータ駆動制御部7Eは、電流切替スイッチ11aを制御しないが、それ以外の機能は、モータ駆動制御部7Dと同じである。
図13は、実施の形態2にかかる第2の構成例のモータ駆動装置の動作処理手順を示すフローチャートである。図13では、本体制御部4Bが電流切替スイッチ11aを制御する場合のモータ駆動装置101Eの動作処理手順について説明する。なお、モータ駆動装置101B,101Dの動作処理と同様の動作処理については、その説明を省略する場合がある。
モータ13が駆動していない状態では、モータ駆動制御部7Eは、駆動電源供給部5から動作電力の供給(電源供給)を受けていないので動作を停止している。モータ駆動制御部7Eが動作停止しているので、電流切替スイッチ11aもOFFしており、電流制限抵抗11bを介して電圧検出部8に電流が流れる。
ユーザが、リモコン14に、モータ駆動の開始指示を入力すると、リモコン14は、モータ駆動の開始指示を本体制御部4Bに送る。そして、本体制御部4Bが、ユーザからモータ駆動の開始指示を受け付ける(ステップS80)。ユーザが、リモコン14に入力する開始指示には、モータ13の回転数に対応する指示が含まれている。
これにより、本体制御部4Bは、駆動電源供給部5をONする(ステップS81)。駆動電源供給部5は、モータ駆動制御部7Eとインバータ出力部6に電源を供給する(ステップS82)。本体制御部4Bは、電流切替スイッチ11aをONし(ステップS83)、母線9の電圧取得を開始する。その後、モータ13は、駆動を開始する(ステップS84)。
モータ13が駆動を開始した後、モータ13の回転数は、ユーザの指示した回転数(目標回転数)に到達する(ステップS85)。回転数検出部17は、モータ13の回転数を検出し、検出結果である回転数をモータ駆動制御部7Eに入力する(ステップS86)。回転数検出部17は、検出した回転数を、特定の時間間隔である時間t3ごとにモータ駆動制御部7Eに入力する。モータ駆動制御部7Eは、入力された回転数を記憶しておく。
その後、モータ駆動制御部7Eは、任意の時間である時間t4が経過した後に回転数検出部17から取得した回転数が、前回取得した回転数(時間t4前に取得した回転数)から、ある任意の閾値N1以上変化したか否かを判定する(ステップS87)。すなわち、モータ駆動制御部7Eは、最新の回転数と、時間t4前に取得した1つ前の回転数との差が閾値N1以上であるか否かを判定する。
回転数が閾値N1以上変化していれば(ステップS87、Yes)、モータ駆動制御部7Eは、回転数が閾値N1以上変化したことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bが電流切替スイッチ11aのONを継続し(ステップS88)、ステップS86へ戻る。一方、回転数が閾値N1未満しか変化していなければ(ステップS87、No)、モータ駆動制御部7Eは、回転数値が閾値N1未満しか変化していないことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bが電流切替スイッチ11aをOFFする(ステップS89)。
回転数検出部17は、電流切替スイッチ11aがOFFされた後もモータ13の回転数を定期的(時間t3ごと)に検出し、検出結果である回転数をモータ駆動制御部7Eに入力する(ステップS90)。
そして、モータ駆動制御部7Eは、任意の時間である時間t4が経過した後に回転数検出部17から取得した回転数が、前回取得した回転数(時間t4前に取得した回転数)から、ある任意の閾値N1以上変化したか否かを判定する(ステップS91)。
なお、ステップS91で用いる閾値N1と、ステップS87で用いる閾値N1とは、異なる値であってもよい。また、ステップS91で用いる時間t4と、ステップS87で用いる時間t4とは、異なる時間であってもよい。ステップS87における閾値N1が第1の閾値であり、ステップS91における閾値N1が第2の閾値である。また、ステップS87における時間t4が第1の期間であり、ステップS91における時間t4が第2の期間である。
回転数が閾値N1未満しか変化していなければ(ステップS91、No)、モータ駆動制御部7Eは、回転数が閾値N1未満しか変化していないことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bは、電流切替スイッチ11aのOFFを継続し(ステップS92)、ステップS90へ戻る。
回転数が閾値N1以上変化していれば(ステップS91、Yes)、モータ駆動制御部7Eは、回転数が閾値N1以上変化したことを示す判定結果を本体制御部4Bに送信し、本体制御部4Bは、電流切替スイッチ11aをONする(ステップS93)。
モータ駆動装置101Eは、モータ駆動中の動作は、図13で説明した通りであるが、ユーザからモータ13の回転数を変更する指示(回転数の変更指示)を受け付けて、目標回転数を変更する場合がある。
モータ駆動装置101Eは、例えば、電流切替スイッチ11aがONしている状態でユーザからモータ13の回転数の変更指示を受け付けた場合、回転数変更後の目標回転数に到達するまで電流切替スイッチ11aをONしたまま維持する。
また、モータ駆動装置101Eは、電流切替スイッチ11aがOFFしている状態でユーザからモータ13の回転数の変更指示を受け付ける場合がある。この場合のモータ駆動装置101Eの動作、すなわち安定状態でモータ13の回転数の変更指示を受け付けた場合のモータ駆動装置101Eの動作は、実施の形態1の図8で説明した動作と同様である。
なお、実施の形態2でも、実施の形態1と同様に、本体制御部4Bが、モータ駆動制御部7Eへ回転数の変更指示を出した後に電流切替スイッチ11aをONにしてもよいし、モータ駆動制御部7Eへ回転数の変更指示を出すと同時に電流切替スイッチ11aをONしてもよい。
図10に示した本体制御部4Aは、破線50で囲まれた領域と絶縁されていてもよい。図14は、実施の形態2にかかるモータ駆動装置を備えたモータ駆動システムの第3の構成例を示す図である。図14の各構成要素のうち図9に示すモータ駆動システム100Cまたは図10に示すモータ駆動システム100Dと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
絶縁構成のモータ駆動システム100Fは、モータ駆動システム100Dと比較して、モータ駆動装置101Dの代わりにモータ駆動装置101Fを備えている。また、モータ駆動装置101Fは、モータ駆動装置101Dの構成要素に加えて絶縁カプラ15,16を備えている。絶縁カプラ15,16は、破線50で囲まれた領域と、本体制御部4Aとを絶縁する。絶縁カプラ15は、本体制御部4Aと駆動電源供給部5との間に配置され、絶縁カプラ16は、本体制御部4Aとモータ駆動制御部7Dとの間に配置される。このように、本体制御部4Aと、破線50の内部にある構成要素との間に絶縁カプラ15,16を挿入することで、本体制御部4Aを破線50の内部にある構成要素と電気的に絶縁することができる。
なお、図12のモータ駆動装置101Eに対して絶縁カプラ15,16を配置してもよい。この場合、絶縁カプラ15は、本体制御部4Bと駆動電源供給部5との間に配置され、絶縁カプラ16は、本体制御部4Bとモータ駆動制御部7Eとの間に配置される。また、本体制御部4Bと電流切替スイッチ11aとの間に絶縁カプラが配置される。
なお、図14において図10との差異は絶縁カプラ15,16の有無であり、モータ駆動装置101Fの動作処理手順は図11に示したモータ駆動装置101Dと同様であるので、その説明は省略する。
このように、実施の形態2によれば、母線9の電圧検出が不要である場合に、電流切替スイッチ11aをOFFするので、母線9の電圧検出が不要である場合には、電流制限抵抗11bを介して電圧検出部8に電流を流すことができる。これにより、消費電力を抑制することができる。
実施の形態3.
つぎに、図15から図17を用いてこの発明の実施の形態3について説明する。実施の形態3では、モータ駆動システム100A~100Fを空気調和機に適用する。
つぎに、図15から図17を用いてこの発明の実施の形態3について説明する。実施の形態3では、モータ駆動システム100A~100Fを空気調和機に適用する。
図15は、実施の形態3にかかる空気調和機の構成例を示す図である。空気調和機200は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房または冷房して空気調和を行う装置である。
実施の形態3の空気調和機200は、室外機210および室内機220を備えている。空気調和機200では、室外機210と室内機220とで冷凍サイクル装置が構成されている。室外機210は、実施の形態1または2で説明したモータ駆動装置101A~101Fの何れか1つを備えている。ここでは、室外機210がモータ駆動装置101Aを備える場合について説明する。
室外機210は、モータ駆動装置101A、圧縮機211、室外側熱交換器212、四方弁213、減圧部214、冷媒蓄積部215およびファン216を備えている。圧縮機211は、冷媒を圧縮する圧縮機構217と、圧縮機構217を動作させるモータ13とを備えている。室内機220は、負荷側熱交換器221、およびファン222を備えている。
空気調和機200では、室外機210と室内機220とが冷媒配管で接続されて、冷媒が循環する冷媒回路が構成されている。冷媒配管のうち、気相の冷媒が流れる配管はガス配管300であり、液相の冷媒が流れる配管は液配管400である。なお、液配管400には、気液二相の冷媒を流してもよい。
圧縮機構217は、吸入した冷媒を圧縮して吐出する。冷媒蓄積部215は、冷媒を蓄積する。四方弁213は、不図示の制御装置からの指示に基づいて、冷房運転時と暖房運転時とで冷媒の流れを切り替える。
室外側熱交換器212は、冷媒と室外空気との熱交換を行う。室外側熱交換器212は、暖房運転時には蒸発器の働きをし、液配管400から流入した低圧の冷媒と、室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外側熱交換器212は、冷房運転時には、凝縮器の働きをし、四方弁213側から流入した圧縮機構217で圧縮済の冷媒と、室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。
室外側熱交換器212には、冷媒と室外空気との間の熱交換の効率を高めるために、ファン216が設けられている。減圧部214は、開度を変化させることで、冷媒の圧力を調整する。
負荷側熱交換器221は、冷媒と室内空気との間で熱交換を行う。負荷側熱交換器221は、暖房運転時には、凝縮器の働きをし、ガス配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、液配管400側に流出させる。負荷側熱交換器221は、冷房運転時には蒸発器の働きをし、減圧部214によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて冷媒を気化させ、ガス配管300側に流出させる。ファン222は、負荷側熱交換器221が熱交換を行う空気の流れを調整する。
空気調和機200は、ユーザのリモコン14などによる操作に応じて冷凍サイクルで必要となる運転モードおよび熱交換量を決定する。このとき、リモコン14への操作に応じて、室外機210は、圧縮機構217の回転数、四方弁213の動作およびファン216の回転数を決定し、室内機220はファン222の回転数を決定する。圧縮機構217の回転数は、モータ駆動装置101Aによって決定される。
モータ駆動装置101Aは、母線9の電圧検出が不要である場合に、電流切替スイッチ11aをOFFするので、母線9の電圧検出が不要である場合には、電流制限抵抗11bを介して電圧検出部8に電流を流すことができる。これにより、空気調和機200は、消費電力を抑制することができる。
ここで、モータ駆動制御部7A,7B,7D,7Eのハードウェア構成について説明する。図16は、実施の形態1または2にかかるモータ駆動装置が備えるモータ駆動制御部の第1のハードウェア構成例を示す図である。モータ駆動制御部7A,7B,7D,7Eは、同様のハードウェア構成を有しているので、ここではモータ駆動制御部7Aのハードウェア構成について説明する。
モータ駆動制御部7Aを構成する構成要素の一部又は全部の機能は、プロセッサ301およびメモリ302により実現することができる。
プロセッサ301の例は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)またはシステムLSI(Large Scale Integration)である。メモリ302の例は、RAM(Random Access Memory)、ROM(Read Only Memory)である。
モータ駆動制御部7Aは、プロセッサ301が、メモリ302で記憶されている、モータ駆動制御部7Aの動作を実行するための制御プログラムを読み出して実行することにより実現される。また、この制御プログラムは、モータ駆動制御部7Aの手順または方法をコンピュータに実行させるものであるともいえる。メモリ302は、プロセッサ301が各種処理を実行する際の一時メモリにも使用される。
図17は、実施の形態1または2にかかるモータ駆動装置が備えるモータ駆動制御部の第2のハードウェア構成例を示す図である。モータ駆動制御部7Aを構成する構成要素の一部又は全部の機能は、処理回路303により実現することができる。
処理回路303は、専用のハードウェアである。処理回路303は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。
なお、モータ駆動制御部7Aの機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。すなわち、モータ駆動制御部7Aの一部の機能を図16に示したプロセッサ301およびメモリ302で実現し、残りの機能を図17に示した専用の処理回路303で実現するようにしてもよい。
なお、実施の形態1または2で説明した本体制御部4A,4Bについても、モータ駆動制御部7Aと同様のハードウェア構成を有しているので、その説明を省略する。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 商用電源、2 電源生成部、3 電源回路部、4A,4B 本体制御部、5 駆動電源供給部、6 インバータ出力部、7A,7B,7D,7E モータ駆動制御部、8 電圧検出部、9 母線、10 スイッチ部、11a 電流切替スイッチ、11b 電流制限抵抗、12 電流検出部、13 モータ、14 リモコン、15,16 絶縁カプラ、17 回転数検出部、21 接続点、24,25 分圧抵抗、81~86 スイッチング素子、100A~100F モータ駆動システム、101A~101F モータ駆動装置、200 空気調和機、210 室外機、211 圧縮機、220 室内機、301 プロセッサ、302 メモリ、303 処理回路。
Claims (7)
- 商用電源から供給された電力を直流電力に変換する電源生成部と、
前記電源生成部から供給される電力を使用してモータを駆動するインバータ出力部と、
前記電源生成部が前記インバータ出力部に印加する直流電圧の電圧値を検出する電圧検出部と、
前記インバータ出力部から前記モータへ供給されている電流の電流値を検出する電流検出部と、
前記電源生成部および前記インバータ出力部を接続する母線と前記電圧検出部との間に並列に接続された、電流制限抵抗および前記電流制限抵抗の両端間の短絡をオンまたはオフに切替える電流切替スイッチと、
前記電圧検出部の検出結果に基づいて前記インバータ出力部を制御するとともに、前記電流値に基づいて前記電流切替スイッチのオンおよびオフを制御するモータ駆動制御部と、
を備え、
前記モータ駆動制御部は、
前記モータを駆動する際には、前記電流切替スイッチをオンすることによって、前記母線の電圧を、前記電流切替スイッチを介して前記電圧検出部に送り、
前記モータの駆動中の第1の期間内に前記電流値が第1の閾値未満しか変化しなかった場合には、前記電流切替スイッチをオフすることによって、前記母線の電圧を、前記電流切替スイッチを介さず前記電流制限抵抗を介して前記電圧検出部に送る、
モータ駆動装置。 - 前記電流検出部は、前記電流切替スイッチがオフにされた後、前記モータの駆動中に前記電流値を定期的に検出し、
前記モータ駆動制御部は、前記電流検出部が定期的に検出した電流値を記憶しておき、前記電流検出部が定期的に検出した電流値が第2の期間内に第2の閾値以上変化した場合には、前記電流切替スイッチをオンする、
請求項1に記載のモータ駆動装置。 - 商用電源から供給された電力を直流電力に変換する電源生成部と、
前記電源生成部から供給される電力を使用してモータを駆動するインバータ出力部と、
前記電源生成部が前記インバータ出力部に印加する直流電圧の電圧値を検出する電圧検出部と、
前記モータの回転数を検出する回転数検出部と、
前記電源生成部および前記インバータ出力部を接続する母線と前記電圧検出部との間に並列に接続された、電流制限抵抗および前記電流制限抵抗の両端間の短絡をオンまたはオフに切替える電流切替スイッチと、
前記電圧検出部の検出結果に基づいて前記インバータ出力部を制御するとともに、前記回転数に基づいて前記電流切替スイッチのオンおよびオフを制御するモータ駆動制御部と、
を備え、
前記モータ駆動制御部は、
前記モータを駆動する際には、前記電流切替スイッチをオンすることによって、前記母線の電圧を、前記電流切替スイッチを介して前記電圧検出部に送り、
前記モータの駆動中の第1の期間内に前記回転数が第1の閾値未満しか変化しなかった場合には、前記電流切替スイッチをオフすることによって、前記母線の電圧を、前記電流切替スイッチを介さず前記電流制限抵抗を介して前記電圧検出部に送る、
モータ駆動装置。 - 前記回転数検出部は、前記電流切替スイッチがオフにされた後、前記モータの駆動中に前記回転数を定期的に検出し、
前記モータ駆動制御部は、前記回転数検出部が定期的に検出した回転数を記憶しておき、前記回転数検出部が定期的に検出した回転数が第2の期間内に第2の閾値以上変化した場合には、前記電流切替スイッチをオンする、
請求項3に記載のモータ駆動装置。 - 前記モータ駆動制御部は、前記モータの駆動中に前記モータの回転数を変更する指示を受け付けた場合、前記電流切替スイッチがオフであれば、前記電流切替スイッチをオンする、
請求項1から4の何れか1つに記載のモータ駆動装置。 - 前記電流切替スイッチに接続されるとともに、ユーザからの指示に基づいて前記モータ駆動制御部を制御する本体制御部をさらに備え、
前記モータ駆動制御部は、前記本体制御部に、前記電流切替スイッチのオンおよびオフを制御させる、
請求項1から5の何れか1つに記載のモータ駆動装置。 - 請求項1から6の何れか1つに記載のモータ駆動装置と、
前記モータ駆動装置により駆動されるモータを有した圧縮機と、
を備える空気調和機。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/298,181 US11588427B2 (en) | 2019-02-28 | 2019-02-28 | Motor drive device and air conditioner |
CN201980090301.9A CN113454908B (zh) | 2019-02-28 | 2019-02-28 | 马达驱动装置以及空调机 |
PCT/JP2019/007881 WO2020174671A1 (ja) | 2019-02-28 | 2019-02-28 | モータ駆動装置および空気調和機 |
DE112019006937.3T DE112019006937T5 (de) | 2019-02-28 | 2019-02-28 | Motortreibervorrichtung und Klimaanlage |
JP2021501506A JP7038893B2 (ja) | 2019-02-28 | 2019-02-28 | モータ駆動装置および空気調和機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/007881 WO2020174671A1 (ja) | 2019-02-28 | 2019-02-28 | モータ駆動装置および空気調和機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020174671A1 true WO2020174671A1 (ja) | 2020-09-03 |
Family
ID=72239166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007881 WO2020174671A1 (ja) | 2019-02-28 | 2019-02-28 | モータ駆動装置および空気調和機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11588427B2 (ja) |
JP (1) | JP7038893B2 (ja) |
CN (1) | CN113454908B (ja) |
DE (1) | DE112019006937T5 (ja) |
WO (1) | WO2020174671A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016076429A1 (ja) * | 2014-11-14 | 2016-05-19 | アイシン・エィ・ダブリュ株式会社 | インバータ制御装置及び車両用制御装置 |
JP2016167901A (ja) * | 2015-03-09 | 2016-09-15 | 株式会社日立製作所 | 同期機用制御装置、圧縮機、電気機器およびプログラム |
WO2017077599A1 (ja) * | 2015-11-04 | 2017-05-11 | 三菱電機株式会社 | モータ制御装置、電気掃除機およびハンドドライヤー |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012120409A (ja) | 2010-12-03 | 2012-06-21 | Mitsubishi Heavy Ind Ltd | モータ駆動装置 |
JP5791271B2 (ja) | 2010-12-15 | 2015-10-07 | キヤノン株式会社 | 画像形成装置及び電源装置 |
JP2013071559A (ja) * | 2011-09-27 | 2013-04-22 | Jtekt Corp | パワーステアリング装置 |
JP5590179B2 (ja) | 2012-09-28 | 2014-09-17 | ダイキン工業株式会社 | 消費電力削減装置 |
JP5850069B2 (ja) * | 2012-09-28 | 2016-02-03 | ダイキン工業株式会社 | 消費電力削減装置 |
JP5961121B2 (ja) * | 2013-01-24 | 2016-08-02 | アズビル株式会社 | 電池劣化計測装置および方法 |
JP5505528B1 (ja) * | 2013-02-08 | 2014-05-28 | ダイキン工業株式会社 | 消費電力削減装置 |
EP3367559B1 (en) * | 2015-10-19 | 2023-03-01 | Mitsubishi Electric Corporation | Air conditioner |
CA3009612C (en) * | 2015-12-27 | 2020-01-28 | Typhoon Bicycles Limited | Electric bicycle |
CN108322128A (zh) * | 2018-03-09 | 2018-07-24 | 奥克斯空调股份有限公司 | 一种电机驱动保护装置、过压保护方法、装置及空调器 |
-
2019
- 2019-02-28 DE DE112019006937.3T patent/DE112019006937T5/de active Pending
- 2019-02-28 JP JP2021501506A patent/JP7038893B2/ja active Active
- 2019-02-28 WO PCT/JP2019/007881 patent/WO2020174671A1/ja active Application Filing
- 2019-02-28 CN CN201980090301.9A patent/CN113454908B/zh active Active
- 2019-02-28 US US17/298,181 patent/US11588427B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016076429A1 (ja) * | 2014-11-14 | 2016-05-19 | アイシン・エィ・ダブリュ株式会社 | インバータ制御装置及び車両用制御装置 |
JP2016167901A (ja) * | 2015-03-09 | 2016-09-15 | 株式会社日立製作所 | 同期機用制御装置、圧縮機、電気機器およびプログラム |
WO2017077599A1 (ja) * | 2015-11-04 | 2017-05-11 | 三菱電機株式会社 | モータ制御装置、電気掃除機およびハンドドライヤー |
Also Published As
Publication number | Publication date |
---|---|
US11588427B2 (en) | 2023-02-21 |
CN113454908A (zh) | 2021-09-28 |
JPWO2020174671A1 (ja) | 2021-09-13 |
CN113454908B (zh) | 2024-06-07 |
JP7038893B2 (ja) | 2022-03-18 |
DE112019006937T5 (de) | 2021-11-11 |
US20220103107A1 (en) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101737364B1 (ko) | 공기조화기 | |
KR20160113858A (ko) | 팬 모터 구동장치 및 이를 구비하는 공기조화기 | |
EP2543934A2 (en) | Air-conditioning apparatus | |
KR101759906B1 (ko) | 압축기 구동장치 및 이를 구비하는 공기조화기 | |
JP2007028737A (ja) | モータ駆動装置及び空気調和機 | |
WO2012101902A1 (ja) | 空気調和システム及びその始動制御方法 | |
KR20170018689A (ko) | 전력변환장치 및 이를 구비하는 공기조화기 | |
WO2020174671A1 (ja) | モータ駆動装置および空気調和機 | |
JP6486224B2 (ja) | 二相誘導モータの制御装置およびヒートポンプ機器 | |
KR20170036506A (ko) | 칠러 | |
JP2010175098A (ja) | 空気調和機のデマンド制御システム | |
WO2021140582A1 (ja) | 空気調和機 | |
KR101965180B1 (ko) | 공기조화기 | |
JP6152667B2 (ja) | 空気調和装置 | |
JPWO2021044507A1 (ja) | 冷凍サイクル装置 | |
JP6201354B2 (ja) | 空気調和装置 | |
JP7049521B2 (ja) | 電動機駆動装置および冷凍サイクル装置 | |
JP2019124372A (ja) | 電源システム搭載型空気調和装置 | |
JP2000234787A (ja) | 空気調和装置の運転制御方法と空気調和装置 | |
WO2020053986A1 (ja) | 空気調和システム | |
KR20130070069A (ko) | 공기 조화장치 및 공기 조화장치 제어방법 | |
JP2015201933A (ja) | 単相誘導電動機の制御装置、及びこれを用いた空気調和機 | |
JP2001263759A (ja) | 分離型空気調和装置 | |
JPH05240493A (ja) | 空気調和機 | |
JP5776620B2 (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19917494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021501506 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19917494 Country of ref document: EP Kind code of ref document: A1 |