JP7112240B2 - 電力変換システム及び電力変換方法 - Google Patents

電力変換システム及び電力変換方法 Download PDF

Info

Publication number
JP7112240B2
JP7112240B2 JP2018083954A JP2018083954A JP7112240B2 JP 7112240 B2 JP7112240 B2 JP 7112240B2 JP 2018083954 A JP2018083954 A JP 2018083954A JP 2018083954 A JP2018083954 A JP 2018083954A JP 7112240 B2 JP7112240 B2 JP 7112240B2
Authority
JP
Japan
Prior art keywords
motor
safety function
safety
connection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083954A
Other languages
English (en)
Other versions
JP2019191928A (ja
Inventor
孝亮 林
祐介 荒尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2018083954A priority Critical patent/JP7112240B2/ja
Priority to EP18915971.8A priority patent/EP3786729A4/en
Priority to PCT/JP2018/046068 priority patent/WO2019207837A1/ja
Priority to CN201880092337.6A priority patent/CN112041763A/zh
Priority to US17/046,758 priority patent/US11442415B2/en
Publication of JP2019191928A publication Critical patent/JP2019191928A/ja
Application granted granted Critical
Publication of JP7112240B2 publication Critical patent/JP7112240B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42268Safety, excess in error
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42309Excess in speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50198Emergency stop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Electric Motors In General (AREA)
  • Inverter Devices (AREA)
  • Safety Devices In Control Systems (AREA)

Description

本発明は、電力変換システムに係り、特に安全機能動作に関するものである。
従来、機能安全に対応した電力変換装置において、システム動作の異常や診断エラーを検知した際にシステムを安全方向に移行する安全機能動作が提案されている。(例えば特許文献1)
WO2016/051552号公報
特許文献1に記載の制御方法では、減速度制御等のシステム動作に異常が発生した場合や診断エラー発生を検知した場合は、安全機能動作であるSTO (Safe torque off) 機能によりモータへのトルクを遮断する。一方、安全機能動作の技術動向として、STO動作により遮断するだけでなく、より安全にシステムを制御する技術が普及し始めている。本発明では、異常時のシステムの状況に応じて安全機能動作を動的な設定とすることで、システムの安全性をより向上させる機能を提供する。
本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、モータを駆動するための電力変換装置本体と、安全機能を実行する安全機能部とを備える電力変換装置であって、安全機能部は、安全要求信号を受信したら安全機能動作指示信号を出力し、安全機能動作指示信号により電力変換装置本体はモータを制御し、安全機能部は、モータの状態監視を行い、モータの状態が所定の範囲を超過した場合、予め選択された安全機能動作による閾値超過後処理を行う。
本発明によれば、システム動作の異常や診断エラー発生後という動的な状況において、システムの状況にあわせてモータの駆動を細かく制御できるため、システムの安全性が向上する。
実施例における安全機能を動作させる場合の機能的構成を示すシステムブロック図である。 実施例における電力変換装置と安全機能部の構成および接続時のデータの流れを示す図である。 実施例における電力変換装置と安全機能部の接続処理を説明する回路図である。 実施例における電力変換装置と安全機能部の接続処理を説明するフローチャートである。 実施例における電力変換装置と安全機能部の電源を入れてからモータの運転を開始するまでのフローチャートである。 実施例における電力変換装置がモータ運転中に安全機能部が接続又は接続解除された場合のフローチャートである。 実施例における電力変換装置と安全機能部の構成および安全要求信号受信時のデータの流れを示す図である。 実施例における電力変換装置と安全機能部の構成およびモータ減速時のデータの流れを示す図である。 実施例における安全機能実行部の構成を示す図である。 実施例における動作監視部の処理のフローチャートである。 実施例における安全機能動作判定処理のフローチャートである。 実施例における電力変換装置に搭載された操作部、表示部の表示例を示した図である。 実施例における安全機能動作を説明する図である。 実施例における安全機能動作の処理の流れを説明するフローチャートである。 実施例における安全機能動作の所定の閾値超過後処理を説明するフローチャートである。 実施例における安全機能動作の自動調整処理を説明するフローチャートである。 実施例における安全領域復帰後処理を説明するための図である。
以下、本発明の実施例について図面を用いて説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、以下に説明する各実施例は図示例に限定されるものではない。
図1は、本実施例における安全機能を動作させる場合の機能的構成を示すシステムブロック図である。図1(a)は、電力変換装置で安全機能を動作させる場合の機能的構成を示す。図1(a)においては、電力変換装置10と入出力部30とモータ40と負荷機械50から構成される。モータ40は、電気的なエネルギーを機械的なエネルギーに変換する機器であり、例えば、3相交流モータなどである。
負荷機械50は、例えば、エレベータや工作機械等の産業機械の構成要素で、モータ40に接続されて駆動される。
入出力部30は、負荷機械50を安全な状態にするための緊急停止信号等の安全要求信号を入出力するものである。例えば、負荷機械50に携わる作業員などによって押下されて緊急停止信号を出力する緊急停止スイッチや、あるいは負荷機械50に人が近づいたり進入禁止のドアが開いたりしたことを検知して緊急停止信号を出力するライトカーテンやセーフティドアロックなどである。また、これらの複数の装置と接続されて使用され、装置から緊急事態の通知を受けたら、緊急停止信号を出力するセーフティリレーやセーフティPLCなどでも良い。緊急停止信号は、国際規格IEC61800-5-2で定められている安全機能の実行を要求する安全要求信号の一つである。また、後述する安全機能部20から出力された安全機能動作指示信号を、図示していない外部ブレーキに出力し、外部ブレーキが動作する構成であってもよい。
電力変換装置10は、モータ40を駆動制御するものである。その詳細な構成については後述する。電力変換装置10は、入出力部30から緊急停止信号等の安全要求信号を受信した場合、モータ40を停止するなどの制御を行う。
図1(b)は、電力変換装置に安全機能部を接続して安全機能を動作させる場合の機能的構成を示すブロック図である。図1(b)において、安全機能部20は、電力変換装置10と接続されて動作し、モータ40の緊急停止だけでなく、モータ40を減速して停止したり、一定速度に保ったりする安全機能を実行するように電力変換装置10に制御信号を出す。その詳細な構成については後述する。
このように、電力変換装置10は、それ単体でもモータ40の制御及び安全機能を実行でき、更に安全機能部20を接続すれば、より高度な安全機能が実行できるようになる。なお、電力変換装置10を電力変換装置本体とし、それに接続された安全機能部20とを合わせて新たな電力変換装置11としてもよい。
図2は本実施例における電力変換装置と安全機能部として2重化の構成の例および接続時のデータの流れを示す図である。
図2において、電力変換装置10は、運転管理部101、本体制御部102、駆動部103、電流検出器104、オプション接続部108、109、通信部110、表示部111を含んで構成される。
運転管理部101は、本体制御部102に速度指示を出してモータの駆動制御をする。例えば、CPU(Central Processing Unit)とCPU上で動作するプログラムで構成される。また、表示部111に電力変換装置10の状態を通知するように指示を出したり、外部機器と通信をする際に通信部110に対して通信の指示を出したりする。
本体制御部102は、駆動部103にPWM(Pulse Width Modulation)制御信号を出力する。例えば、CPU上で動作するプログラムである。
駆動部103は、モータ40にトルクを与えるための電力を供給するものである。
電流検出器104は、駆動部103からモータ40に供給される電流を測定するものであり、例えばホール素子で構成される。
オプション接続部108は、安全機能部20と接続するための端子である。安全機能部20と接続された際に、接続完了信号を出力し、安全機能部20と分離された際に、接続解除信号を出力する。例えば、具体的には、接続完了信号を出力するとは、オプション接続部108の端子の電圧が高くなった状態(例えば24V等になった状態)になるということであり、接続解除信号を出力するとは、端子の電圧が低くなった状態(例えば0V等になった状態)になるということである。電力変換装置10の電源が入った状態において、運転管理部101はオプション接続部108の端子電圧を取得することで、安全機能部20と接続されているかどうかを判断できる。オプション接続部109もオプション接続部108と同様である。
図2において、安全機能部20は、通信部210、制御部211、221、安全機能実行部212、222、MCU自己診断部213、223、経路自己診断部107、207、安全機能動作指示部214、224、本体接続部208、209から構成される。なお、本実施例では制御部を211と221の2つとし2重化の構成としているが1重構成でも趣旨は同様である。
また、機能安全用設定ツール70は、安全要求信号受信時に実行される安全機能動作を予め選択、設定する際や、動作パラメータを設定する際に用いる。詳細は図14等の説明時にて後述する。
通信部210は、安全機能部20が他の情報処理装置とデータのやり取りを行う際に用いる。電力変換装置10と情報のやり取りを行う場合にも利用する。また、安全機能部20がインターネットや他の情報処理装置などにアクセスするための通信処理等も行う。また、通信部210は1つのみを使用する場合に限らず、例えば、Bluetooth(登録商標)、無線LAN、CDMA(Code Division Multiple Access)、LTE(Long Term Evolution:登録商標)等の複数の通信方式を利用可能にするために複数備えても良い。また、通信部210および通信部110は、二重化しても良い。二重化することにより、どちらか一方の通信部が故障したとしても、もう一方の通信部を使用して通信が行われるため、装置の安全性が向上する。
制御部211は、例えばCPUで構成され、データの管理や計算、送受信などの処理を行う。制御部221も同様である。
安全機能実行部212は、モータ40の速度を監視したり入出力部30からの安全要求信号を受け付けてSTO等の安全機能動作実行信号を出力したりする。詳細な構成は図9を用いて後述する。安全機能実行部222も同様である。
MCU自己診断部213は、制御部211が正常に動作しているか否かを診断する。例えば、ウォッチドッグタイマーを用いて制御部211上で実行されるプログラムがハングアップしていないかどうかを定期的に確認する。MCU自己診断部223も同様である。
安全機能動作指示部214は、安全機能実行部212から緊急停止信号等の安全要求信号を受信したら、電力変換装置10に対して安全機能動作指示信号を出力する。安全機能動作指示部224も同様である。
本体接続部208は、電力変換装置10と接続するための端子である。本体接続部209も同様である。
経路自己診断部107は、安全機能実行部212から駆動部103までの間を信号が伝達されるかどうかを診断する。所定の時間間隔でテストパルスを送信し、駆動部103に信号が到達したかどうかを検出する。もし信号が届かなかった場合はエラー発生を運転管理部101に通知する。なお、MCU自己診断部213と経路自己診断部107とは1つのモジュールとして構成されてもよい。経路自己診断部207も同様である。
図2において、電力変換装置10と安全機能部20を接続した際の信号の流れを矢印で示しており、この図を用いて接続処理時のデータの流れを説明する。
図2において、まず、電力変換装置10のオプション接続部108と、安全機能部20の本体接続部208が接続されると、オプション接続部108と本体接続部208はそれぞれ接続完了信号を出力する。また、オプション接続部109と本体接続部209も同様にそれぞれ接続完了信号を出力する。オプション接続部108および109から出力された接続完了信号は、運転管理部101に送信される。さらに、通信部110、通信部210を経由して、制御部211に接続完了信号が送信される。また、本体接続部208および209から出力された接続完了信号は、制御部211に送信される。さらに、通信部210、通信部110を経由して、運転管理部101に送信される。このようにして、電力変換装置10と安全機能部20から出力された接続完了信号がお互いに交換され、合計4つの接続完了信号が出力されることになる。
これらの接続完了信号は、運転管理部101および制御部211で受信される。全ての接続完了信号を受信できた場合は正常に接続が完了したと判断して、表示部111に安全機能部が正常に接続されたことを示すメッセージを表示する。もし、全ての接続完了信号が受信できなかった場合は接続エラーと判断し、接続エラーを示す表示をする。
次に、図3を用いて、オプション接続部と本体接続部の詳細について説明する。図3(a)は、電力変換装置10と安全機能部20を接続しない状態の回路図を示している。オプション接続部108、109は安全機能部20と接続されていない。この状態で電力変換装置10の電源を入れても、オプション接続部108、109の端子の電圧は低い状態(例えば、0V)である。すなわち、オプション接続部108、109から接続解除信号が出力され、運転管理部101がそれを受信する。
図3(b)は、電力変換装置10と安全機能部20が接続された状態の回路図を示している。端子130は電力変換装置10から安全機能部20に電圧を供給するための端子である。端子130は安全機能部20の端子230に接続される。安全機能部20の内部において、端子230と本体接続部208、209は電気的につながっている。そのため、オプション接続部108、109と本体接続部208、209が接続された状態で、電力変換装置10の電源を入れると、オプション接続部108、109および本体接続部208、209の電圧が高くなる(例えば、24Vになる)。すなわち、接続完了信号が出力される。
なお、端子130とオプション接続部108の端子、オプション接続部109の端子は、まとめて一つのコネクタとして構成しても良い。
図3(c)は、電力変換装置10と安全機能部20が接続された状態だが、オプション接続部108と本体接続部208は、接触不良などにより接続されていない状態の回路図を示している。この状態では、電力変換装置10の電源を入れると、オプション接続部109と本体接続部209の電圧は高くなる(例えば、24Vになる)が、オプション接続部108と本体接続部208の電圧は低い状態(例えば、0V)である。すなわち、オプション接続部109と本体接続部209からは接続完了信号が出力され、オプション接続部108と本体接続部208からは接続解除信号が出力される。
このように、オプション接続部および本体接続部の電圧を取得することで接続状態が分かるため、接続状態の変化をすぐに知ることができる。それにより、故障と判断した場合はすぐにモータを停止させる等して、安全を確保することができる。
なお、電力変換装置10に接続用スイッチボタンを備えつけても良い。接続用スイッチボタンは、安全機能部20が接続されているかどうかを示すボタンである。例えば、安全機能部20を接続させた場合に、ユーザがこの接続用スイッチボタンを押して接続中であることを明示的に電力変換装置10に通知する。これにより、電力変換装置10は確実に接続状態を知ることができ、安全を担保できる。
また、電力変換装置10は、接続状態を運転管理部101などに記憶させておいても良い。これにより、運転管理部101は接続状態を確認する際に、オプション接続部108、109から出力される接続完了信号または接続解除信号の他にも、運転管理部101が記憶している接続情報を用いて接続状態を確認できるため、より安全が担保できる。
図4を用いて、電力変換装置10と安全機能部20の接続判定処理フローの詳細を説明する。図4において、まず、オプション接続部と本体接続部が接続されている場合は、オプション接続部108、109が接続完了信号を出力し(ステップS302)、本体接続部208、209も接続完了信号を出力する(ステップS303)。ここで、オプション接続部もしくは本体接続部が正常に動作すれば4つの接続完了信号が出力されるが、いずれかが故障している場合は接続完了信号が4つは出力されない。また、オプション接続部と本体接続部が接続されていない場合は、オプション接続部108、109が接続解除信号を出力し(ステップS304)、本体接続部208、209も接続解除信号を出力する(ステップS305)。
そして、オプション接続部および本体接続部から出力された接続完了信号または接続解除信号を、運転管理部101が受信する(ステップS306)。
次に、タイマーが起動済みかどうかを確認し(ステップS307)、タイマーが起動していない場合は、タイマーを起動する(ステップS308)。このタイマーは、運転管理部が所定の時間内に全ての接続完了信号を受信できない場合は接続エラーであると判断する際に、時間を計測するために利用する。
そして、運転管理部101が接続完了信号または接続解除信号のうちどちらの信号を受信したかを確認し(ステップS309)、接続完了信号を受信した場合は(ステップS309;接続完了信号)、接続中状態に遷移する(ステップS311)。ここで、接続中状態とは、運転管理部101が保持する状態の1つであり、接続完了信号が出力されてくるのを待つ状態である。例えば、実行プログラム中に定義された変数(例えば、state)として状態を保持し、変数stateの値が1の場合は接続中状態を示す。接続解除信号を受信した場合は(ステップS309;接続解除信号)、未接続状態へ遷移する(ステップS310)。未接続状態とは、電力変換装置10に安全機能部20が接続されていないことを示す状態である。接続エラー状態とは異なり、未接続状態でも電力変換装置10はモータの運転を開始できる。
次に、全ての接続完了信号を受信したかどうかを確認する(ステップS312)。全ての接続完了信号を受信できた場合は、接続が正常に行われたと判断して、接続完了状態に遷移する(ステップS317)。もし、まだ全ての接続完了信号を受信できていなかった場合は、タイマーが満了したかどうかを確認し(ステップS313)、まだタイマーが満了していなかったら、ステップS306に戻って信号を受信する処理を実行する。
全ての接続完了信号を受信できないままタイマーが満了した場合、接続中状態かどうかを確認する(ステップS314)。もし接続中状態であった場合は、接続エラーと判断して接続エラー状態に遷移する(ステップS315)。また、もし接続中状態でなかった場合は、未接続状態を維持する(ステップS316)。
そして、表示部111に接続状態に従った内容を表示する(ステップS318)。例えば、接続完了状態であれば「正常に接続が完了しました」や、接続エラー状態であれば「接続エラーです」などと表示する。
また、LEDなどを用いて、接続状態を表示してもよい。正常に接続された際に点灯されるLEDと、接続エラーの際に点灯されるLEDを分けても良いし、1つのLEDで接続状態によって点灯する色を変えてユーザに通知するようにしても良い。これにより、ユーザはそのLEDを見れば接続状態が一目で確認でき、より安全性が向上する。
なお、図4に図示していないが、接続完了信号は制御部211でも受信し、運転管理部101と同様の処理を実行することによって、接続が正常に行われたかエラーが発生したかを知ることができる。
また、電力変換装置10と安全機能部20の接続は、両者の電源がOFFの状態で行う。そして、接続が完了した後に電源をONにして、その後にユーザが運転スタートボタンを押下することで、モータの運転が開始される。その際に、接続が正常に完了していればモータの運転を開始させても良いが、もし接続エラーが発生している場合は、モータを運転させないことが望ましい。
次に、図5を用いて、電力変換装置10と安全機能部20の電源を入れてから、モータの運転を開始するまでの処理のフローについて説明する。図5において、まず、ユーザによって電力変換装置10と安全機能部20の電源がONにされると(ステップS401)、図4に記載した接続判定処理を実行する(ステップS402)。これにより、接続状態が接続完了状態、接続エラー状態、接続中状態、未接続状態のいずれかに遷移する。そして、ユーザによってスタートボタンが押下される(ステップS403)。次に、運転管理部101が接続状態を確認する(ステップS404)。接続状態が接続完了状態または未接続状態であれば、モータの運転開始処理を行う(ステップS406)。また、接続状態が接続中状態であれば、接続中である旨を表示部111に表示して(ステップS405)、再びスタートボタン押下の待ち受け状態に戻る。また、接続状態が接続エラー状態であれば、接続エラーである旨を表示部111に表示して(ステップS407)、再びスタートボタン押下の待ち受け状態に戻る。
また、安全機能部20を接続した状態でモータを運転している際に、何らかの原因で接続が外れた場合は、すぐにモータの運転を停止させることが望ましい。逆に、安全機能部20を接続しないで電力変換装置10単体でモータを運転している際に、安全機能部20が接続された場合は、意図しない接続と判断して、すぐにモータの運転を停止させることが望ましい。
図6を用いて、モータの運転中に接続解除または接続された場合の電力変換装置10の処理のフローを説明する。図6において、まず、運転管理部101が本体制御部102に速度指示を出してモータの駆動制御をする(ステップS500)。
次に、オプション接続部108、109から、接続が解除されたことを示す接続解除信号または接続されたことを示す接続完了信号が出力されたか否かを確認する(ステップS501)。もし、信号が出力されなかった場合は、再びモータ駆動制御を行う(ステップS500)。もし、信号が出力された場合は、接続状態を取得して確認する(ステップS502)。そして、信号の種類と接続状態との組合せにより、実行する処理内容を決める(ステップS503)。
例えば、接続完了状態で接続解除信号が出力された場合は、安全機能部20が取外されたか接続不良が発生したか誤動作と判断し、モータを安全な状態にしなくてはならない。たとえば、運転管理部が本体制御部へモータを停止するよう指示するSTOを実行するよう設定されている場合は、モータを安全に停止する旨を表示し、STOを実行する。
また、未接続状態で接続完了信号が出力された場合は、安全機能部20が取り付けられたと判断し、運転中に安全機能部20を取り付けてもモータの運転に影響はないが安全機能や安全度は向上しないことをユーザに通知する表示を行う。この場合、STO等の安全機能動作は実行しなくても良い。
また、接続完了状態であるのに接続完了信号が出力された場合、もしくは、未接続状態であるのに接続解除信号が出力された場合は、機器が正常に動作していれば起こり得ない組合せなので、オプション接続部108、109が故障している可能性があると判断して、故障の可能性をユーザに通知する表示を行い、STO等を実行する。
このように、オプション接続部108、109が出力した信号の種類と、接続状態との組合せにより表示部111に表示する内容と、安全機能動作を実行するか否か等を決定する。
そして、ユーザに通知すべき内容があれば表示部111にその内容を表示する(ステップS504)。
その後、安全機能動作を実行する必要があれば、安全機能動作を実行し(ステップS506)、接続エラー状態に遷移する(ステップS507)。安全機能動作実行の必要がなければ、再びモータ駆動制御を行う(ステップS500)。
次に、例として、安全要求信号として緊急停止信号を受け付け、安全機能動作としてSTOを実行するよう設定されている場合において、入出力部から緊急停止信号が出力されてから、駆動部103にSTO信号が入力されるまでの動作を説明する。
まず、図7を用いて、入出力部から緊急停止信号が出力され電力変換装置に通知する際の処理の流れの概要を説明する。図7において、まず、入出力部30から緊急停止信号が出力されると、当該信号が安全機能実行部212、222に入り、後述する動作パラメータを付加して安全機能動作指示部214、224に出力される。そして、通信部210、110を介して運転管理部101に送信される。
次に、図8を用いて、モータ40を減速させる際に安全機能実行部がモータ40の速度を監視する処理の流れを説明する。図8において、運転管理部101は減速の指示を受けると、本体制御部102に減速度などのパラメータと共に減速の指示を出す。これを受けて本体制御部102は、駆動部103にPWM制御信号を出力し、モータ40を減速する。
そして、本体制御部102は電流検出器104から出力されるモータ速度(出力周波数)を推測するための電流値を取得する。更に、安全機能実行部212、222も電流検出器104から電流値を取得する。この値を用いて、安全機能実行部212、222はモータ40の速度監視を開始する。その後、モータ40の速度が何らかの要因で所定の閾値を超過すると、安全機能実行部212、222は通信部210、110を経由してSTO等の安全機能動作指示信号を駆動部103に対して出力する。
安全機能動作信号は、運転管理部101、本体制御部102を介して駆動部103に入力される。そして、駆動部103はモータ40に発生するトルクをオフにする。
このようにして、入出力部から緊急停止信号が出力された際にモータ40の速度を減速して停止することができ、安全機能が拡張できる。なお、モータ40の速度が所定の閾値を超過した際にどのような安全機能動作を実行するかは、予め機能安全用設定ツール70などを用いてユーザの選択を受け付けることにより設定されて良い。
ここで、図9を用いて、安全機能実行部212の詳細な構成について説明する。安全機能実行部222も同様の構成である。図9において、安全機能実行部212は、動作パラメータ記憶部2122、動作監視部2123、モータ速度推測部2125、時間監視部2126から構成される。
動作パラメータ記憶部2122は、減速度や速度の閾値などといった動作パラメータを記憶する。例えば、RAMなどで構成される。
モータ速度推測部2125は、電流検出器104が出力する電流値などを基にして、モータ40の速度を推測する。モータ40に給電される電流の大きさや周波数からモータ40に発生するトルクを計算し、モータ40の回転速度に変換する。なお、モータに付加してモータの回転数を出力するエンコーダを使っても良い。これにより、より正確なモータの速度が分かり、安全機能が向上する。
時間監視部2126は、緊急停止信号等の安全要求信号を受信してからの経過時間を計測する。所定の時間間隔で経過時間を動作監視部2123に出力する。
動作監視部2123は、モータ40の速度および経過時間を取得して、所定の閾値に達したか否かを監視する。もし、所定の閾値に達した場合は、設定されているSTO等の安全機能動作信号を出力する。
図10を用いて、安全要求信号として緊急停止信号を受信した場合の動作監視部2123の処理の流れを説明する。図10において、まず、入出力部から緊急停止信号が出力され、当該信号を安全機能実行部212の動作監視部2123が受信すると、動作パラメータ記憶部2122から動作パラメータを取得する(ステップS100)。動作パラメータの設定方法に関しては図14の説明時にて後述する。次に、動作監視部2123は、取得した動作パラメータを安全機能動作指示部214に出力し、安全機能動作指示部214が減速指示を出力する(ステップS101)。その後、安全機能動作指示部214は運転管理部101から減速開始信号を受信したかどうかを判定する(ステップS102)。もし、減速開始信号を受信していなかった場合、減速指示信号を再度出力する(ステップS104)。そして、緊急停止信号を受信してから所定の時間が経過していない場合、処理は再びステップS102に戻る。もし、所定の時間が経過していた場合は、電力変換装置10に何かしらのエラーが発生したと判断して、STO等の安全機能動作指示信号を出力する(ステップS106)。
減速指示を出力した後に減速開始信号が受信できた場合は、安全機能動作判定処理を実行する(ステップS103)。そして、安全機能動作判定処理が終了すると、動作監視部2123がSTO等の安全機能動作指示信号を出力する(ステップS106)。
ここで、図11を用いて、安全機能動作判定処理の詳細な流れを説明する。図11において、安全機能動作判定処理は、まず、動作監視部2123が動作パラメータ記憶部2122から動作パラメータを取得する(ステップS201)。ここで、動作パラメータとは、減速度や安全機能動作指示信号(STO等)を出力する閾値となる速度などであり、その詳細については図13を用いて後述する。次に、モータの初速度が取得済か否かを確認し(ステップS202)、取得済みでなかった場合、モータの速度を取得して(ステップS203)、取得した速度をモータの初速度として動作パラメータ記憶部2122に記憶する(ステップS204)。モータの初速度が取得済であった場合、そのままモータの速度と時刻を取得し(ステップS205)、モータ速度の閾値を計算する(ステップS206)。そして、モータ速度が閾値を超えているか否かを判断し(ステップS207)、もし閾値を超えていた場合、安全機能動作判定処理を終了して、安全機能動作指示信号出力(図10のステップS106)を行う。もし閾値を超えていなかった場合、ステップS205に戻って処理を実行する。
図12は、本実施例における電力変換装置に搭載された操作部、表示部の表示例を示した図である。操作部、表示部は、必ずしも電力変換装置に装着されたものに限定される必要はなく、ケーブルなどで電力変換装置から着脱可能な構成のものでもよい。
電力変換装置10には、運転開始ボタン701、運転停止ボタン702、表示部703、OKボタン704、上ボタン705、下ボタン706などのインタフェースを備えている。
エラー発生時には、表示部703にエラーである旨を通知する表示がされる。例えば、エラーの番号“No.001”や、エラーの内容“Connection error.”などという内容が表示される。このように、エラーの内容を表示することで、ユーザはなぜモータ40が停止したのか、などの理由が分かり、使い勝手が向上する。
次に、モータを減速して停止させる動作について説明する。図13は、本実施例における、安全機能動作を説明する図である。なお、ここでは例として、機能安全規格IEC61800-5-2に規定されているSS1(Safety stop 1)に対応する減速停止動作を行うよう設定されている場合について説明する。
図13において、縦軸はモータ速度、横軸は時刻を示している。また、各符号の意味を下記するが、詳細は後述する。
T2-T1:安全要求信号を受信してから減速が開始されるまでの最大時間
T4-T3:所定の閾値超過後、安全領域復帰処理が開始されるまでの最大時間
T6-T3:許容時間
T8-T1:SS1減速時間
T9-T4:安全領域復帰処理の減速時間
T5-T1:最小SS1減速時間
T10-T1:最大SS1減速時間
T7-T4:自動調整SS1減速時間
601:SS1減速時の動作
602:SS1減速時に診断エラー、異常が発生した後の動作
603:異常発生後、ユーザが選択した安全領域復帰処理の減速時間に応じて動作
604:異常発生後、安全領域復帰処理(SS1動作選択時)の減速時間を自動調整して動作
611:SS1最小減速時間(下限閾値)
612:SS1最大減速時間(上限閾値)
P1:異常発生判別点
P2:許容時間以内にモータ速度が許容時間内に戻るかどうかの判別点
P3:安全領域復帰処理(自動調整)にて安全領域にモータ速度が戻ったかどうかの判別点
図13において、まず、モータが速度V0で動作中に、時刻T1に安全要求信号として緊急停止信号を受信したら、モータの減速を開始する。通常、この減速レートは、ユーザが設定した(時刻T8-T1間:SS1減速時間)に従い601のように速度V1まで減速したら(時刻T8)トルクをオフにする。その後、モータは無制御状態となり停止する。
また、減速度に上限、下限を設定しても良い。例えば、点線612を上限、点線611を下限とする所定の閾値内を安全領域として、モータの速度がこの安全領域内に入っていればそのまま減速を続ける。もし、この安全領域をモータの速度が外れた場合は、所定の閾値超過とみなす。所定の閾値超過後の安全機能動作に関しては後述する。
例えば、601のようにSS1で減速停止中になんらかの影響により602のようにモータ速度が612を超えた際の時刻T3(602と612が交わる点:P1)が所定の閾値を超過した時刻となる。
なお、所定の閾値とは、SS1の場合は、上下限閾値のことで、予め機能安全用設定ツール70で設定したSS1最小減速時間及び、SS1最大減速時間によって定まる閾値のことである。図13における(611、612)である。
ここでは、SS1最小減速時間の定義をT5-T1とし、最大減速時間の定義をT10-T1としている。なお、減速時間の設定始点をT1としているが、緊急停止信号(ここではSS1信号)を受信してから減速が開始されるまでの最大時間であるT2経過後からで定義しても良い。
また、緊急停止信号受信時に実行される安全機能動作としてSS1でなくSLS(Safety Limited Speed)が設定されている場合は、所定の閾値とは上限閾値のことで、予め機能安全用設定ツール70で設定した周波数リミット値で定まる閾値のことである。また、SDI(Safe Direction)の場合は、0速度が閾値となる。正転を許可している場合は、逆転方向が所定の閾値を超過することになり、逆転を許可している場合は、正転方向が所定の閾値を超過することになる。
所定の閾値超過時は、モータへのトルクを遮断する機能STO、モータを減速停止させてからSTOを実行する機能SS1、外部ブレーキ制御用に安全出力信号を出す機能SBC(Safe Brake Control)の何れかの機能を実行するかが予めユーザによって選択、設定されており、その選択された機能に従って停止する。
このように、所定の閾値超過時、予め選択されたSTO/SS1/SBC等の何れかの安全機能動作が、それぞれの機能仕様に従って動作することでモータの減速をより細かく制御でき、安全性が向上する。
これらの安全機能を実現するためには、安全機能実行部212の動作パラメータ記憶部2122に、安全要求信号が入力された際に実行する安全機能の種類を示すパラメータを保持しておく。具体的には、プログラム上の変数を用意しておき、例えば、当該変数の値が1であればSS1を実行し、2であればSLSを実行する、といった制御を安全機能実行部212が行う。更に、各安全機能に関する動作パラメータを動作パラメータ記憶部2122に保持しておく。
なお、ユーザが設定する安全機能動作選択や減速時間、許容時間など安全関連機能のパラメータ設定は、例えば、機能安全用設定ツール70から行われる。機能安全用設定ツール70でのパラメータ設定方法は、例えば、通信部110と接続して安全機能実行部212の動作パラメータ記憶部2122に書き込む。書き込むルートは通信部110に限らずに、最終的に動作パラメータ記憶部2122に書き込めていれば良い。この機能安全用設定ツール70を用いてユーザは、安全関連機能のパラメータを予め設定する。
安全関連機能のパラメータは動作パラメータ記憶部2122に保持される。なお、安全機能実行部222の動作パラメータ記憶部にも同様に保持される。
ここで、図14を用いて、安全機能動作処理の詳細な流れを説明する。なお、図14の指示された安全機能動作は、例えば、IEC61800-5-2記載の安全機能動作SS1/SLS/SDIなどである。このような、緊急停止信号受信時や所定の速度閾値超過時に実行される安全機能動作についても、機能安全用設定ツール70から設定されることとしてよい。
図14において、安全機能動作処理は、予め設定された動作パラメータの取得を行う (ステップS600) 。例えば、指示された安全機能動作としてSS1が予め設定された場合、指示された安全機能動作の実行が行われた際、予め設定された動作パラメータのSS1減速時間に従い減速を開始する(ステップS601)。そして、モータ速度が安全領域内であるか否かを判断し(ステップS602)、もし安全領域から外れた場合、所定の閾値超過後処理(ステップS605)に遷移する。所定の閾値超過後処理に関しては後述する。
安全領域内の場合、予め設定した所定の時間(ここでは、SS1減速時間)を経過したかを判別し(ステップS603)、もし所定の時間を経過していなかった場合、ステップS602に戻り、モータ速度が安全領域内にあるかどうかの監視に戻り処理を実行する。所定時間を経過した場合(ステップS603)、安全機能動作信号(ここではSS1信号)出力(ステップS604)を行う。
図15は、ステップS602で安全領域内から外れたと判断した場合に実行する安全機能動作に関する所定の閾値超過後処理を示したフローチャートである。図15の安全領域復帰処理は、所定の閾値超過(ステップS605)後に実行される安全機能動作STO/SS1/SBCなどがある。
図15において、安全領域を外れたと判断した場合、安全領域復帰処理を実行する。この安全領域復帰処理は、予め機能安全用設定ツール70でSTO/SS1/SBCの何れかを設定し、その設定された安全機能動作を実行する(ステップS700)。
安全領域復帰処理で、STOを設定していた場合(ステップS701)、STO信号を出力する。
安全領域復帰処理で、SBCを設定していた場合(ステップS702)、外部ブレーキ制御用に安全出力信号(SBC信号)を出力する。
なお、安全領域復帰処理でSBCを設定していた場合、STOを実行後SBC、SBCを実行後STO、SS1を実行後STOを実行してSBC、SS1実行後SBCを実行してSTO、のように、すぐさまSBC信号を出力するのではなく、他の安全機能動作の実行後にSBC信号を出力することもできる。
安全領域復帰処理でSS1を設定していた場合、予め自動調整を選択していた場合と、通常どおり、予め設定していた安全領域復帰処理のSS1減速時間設定に従い動作する場合、のどちらを実行するかを判別する(ステップS703)。
通常処理(ステップS706)に遷移した場合は、予め設定していた安全領域復帰処理のSS1減速時間設定に従い、図13の603のように減速し、V1の速度まで減速したらSTOが実行されて緊急停止する。
なお、ここでは、603の安全機能動作SS1の減速時間は、予め機能安全用設定ツール70で設定した安全領域復帰処理のSS1減速時間(T9-T4)である。減速レートとしては、T4時点のモータ速度からT9時点のモータ速度(V1)まで減速するレートで減速する。また、減速時間、減速レートをT1時点からなど他の基準で算出することとしても良い。
なお、通常処理を選択しても、安全領域復帰処理のSS1減速時間の設定を受け付けていなかった場合においては、自動調整処理(ステップS704)を行っても良い。
図16は、自動調整開始の場合実行される自動調整処理(ステップS704)を示したフローチャートである。図16において、自動調整処理監視後、反応時間(ステップS800)経過しているかを判別する。もし、反応時間が経過していない場合は、反応時間が経過されるまでは前処理の機能安全動作を継続している状態である。反応時間を経過した場合は、安全領域復帰処理を実行(ステップS801)、図16では自動調整処理に関する説明となるため、安全領域復帰処理でSS1を設定した場合となる。
図16の自動調整処理に関して、図13も用いて自動調整の処理の流れを説明する。所定の閾値超過と判断する時刻T3から安全領域復帰処理が実行されるT4までの時間(T4-T3)が安全領域復帰処理実行されるまでの反応時間である。反応時間が経過していない場合、ステップS800に戻る。反応時間経過後、安全領域復帰処理を実行する(ステップS801)。
図13において、所定の閾値超過と判断する時刻T3からT6までの時間(T6-T3)を許容時間と定めている。なお、この許容時間は、予め機能安全用設定ツール70から設定される。この設定された許容時間以内にモータ速度が安全領域内に戻るかを判別する(ステップS802)。
許容時間以内にモータ速度が安全領域内に戻ると判断された場合、機能安全用設定ツール70で設定した安全領域復帰処理のSS1減速時間に従い減速停止する(ステップS803)。
もし、許容時間以内にモータ速度が安全領域内に戻らないと判断された場合、自動調整が実行される(ステップS804)。
許容時間以内にモータ速度が安全領域内に戻るかの判別方法は、T4の安全領域復帰処理実行時点において、予め設定されている許容時間及び、安全領域を決めている上限閾値の交点P2(T6と612が交わる点)を予め設定している安全領域復帰処理のSS1減速時間設定通りに減速停止した場合にT6の時刻にて、この交点P2をモータ速度が下回り安全領域に戻るかを時刻T4時点におけるモータ速度、許容時間、上限閾値から判別する。
ここでは、安全領域をモータ速度が上回ったため、上限閾値を判別方法の条件に使用するが、安全領域をモータ速度が下回った場合には、下限閾値を判別方法の条件に使用する。
なお、ここでは、SS1の場合を例にしているため、上限閾値、下限閾値が安全領域を決めている。よって、安全領域をモータ速度が外れるかを判別するのは、これら上限閾値、下限閾値である。つまり、安全領域を定める閾値がT4時点において、安全領域以内にモータ速度が戻るかを判別する判別条件に使用される。
なお、指示された安全機能動作でSLSを選択していた場合、安全領域は、予め機能安全用設定ツール70から設定された周波数リミットが上限閾値となり、この設定された周波数以下が安全領域となる。安全領域を外れた後は、所定の閾値超過後処理(S605)に遷移し、SS1と同様に安全領域にモータ速度を戻すように安全機能動作を実行する。
なお、指示された安全機能動作でSDIを選択していた場合、回転方向制限機能なので、安全領域は、逆転方向を禁止している場合は正転方向が安全領域である。正転方向を禁止している場合は、逆転方向が安全領域となる。
なお、ここでいう自動調整とは、T4時点で予め設定されていた安全領域復帰処理のSS1減速時間を採用せずに、T4時点という動的な状況において、モータ速度、許容時間、上限閾値から、例えば、T6時点において交点P2をモータ速度が下回るような安全領域復帰処理のSS1減速時間を予め設定されていた値を採用せずに、安全領域内にモータ速度が戻るように、安全領域復帰処理のSS1減速時間を変更することである。
また、自動調整した安全領域復帰処理のSS1減速時間を動作パラメータ記憶部(2122)で記憶しておき、別途、安全動作2のSS1減速時間を設定者が決める際の参考値として使用しても良い。
なお、安全領域復帰処理のSS1減速時間を所定の時間ごとに見直しをかけて実行し、より動的な状況での制御を細かく行っても良い。
T4時点で、予め設定された安全領域復帰処理のSS1減速時間を採用して減速停止を行うと、予め設定していた安全領域復帰処理のSS1減速時間が設定者が想定していた減速停止となれば良いが、誤って設定していた場合、例えば、安全領域復帰処理のSS1減速時間を長くとっていた場合など、すぐに安全領域内にモータ速度が戻らず、所定の閾値を超過するモータ速度で運転していることになる。例えば、図13では603の減速レートで減速停止することになり、P2時点においてモータ速度が安全領域を上回っている。
自動調整機能を採用することで、所定の閾値超過後、安全領域復帰処理が実行されるT4の時点という動的な状況において、許容時間以内にモータ速度が安全領域内に戻すことができ、運転状況に応じてモータの減速時間を制御できるため、よりシステムの安全性を高めることができる。例えば、図13では604の減速レートで減速停止することになり、P2時点においてモータ速度が安全領域内に戻っている。なお、この自動調整時のSS1減速時間は、本実施例ではT7-T4で定義しているが、他の基準で算出することとしても良い。
S804での自動調整実行後、もし、万一、許容時間内でモータ速度が安全領域内に戻らない場合はSTOでモータへのトルクを遮断するなど、予め設定しておいて良い。
次に、図15において、S704での自動調整処理終了後、モータ速度が安全領域内に戻ってきた後の安全領域復帰後処理(S705)について説明する。安全領域復帰後処理は、自動調整処理終了後、モータ速度が安全領域内に戻ってきた時点(604と612の交点P3)から停止までの安全機能動作を選択できる処理である。安全領域復帰後処理は、P3時点から停止までの安全機能動作を予め機能安全用設定ツール70から設定し、自動調整処理を行った場合に、安全領域内にモータ速度が戻った際に実行される。
図17は、安全領域復帰後処理を説明するための図である。図17において、モータ速度が安全領域に戻ってきて上限閾値612と交わる時点P3以降の処理については、機能安全用設定ツール70により設定する際に、例えば、以下の4つの選択肢が与えられる。安全領域復帰処理選択(1):自動調整処理にて、T4時点で変更採用した安全領域復帰処理のSS1減速時間のままの604の減速レートで減速停止する。安全領域復帰処理選択(2):指示された安全機能動作のSS1減速時間に従い減速レート601で減速停止する。安全領域復帰処理選択(3):予め設定した安全領域復帰処理のSS1減速時間設定に従った603の減速レートに従い減速停止する。安全領域復帰処理選択(4):閾値内で制御(安全領域復帰処理をSS1に設定時は上下限閾値の中央値で減速するSS1減速時間に従い減速レート601で減速停止する。上下限閾値の中央値までモータ速度が下がるまでの安全領域復帰処理の減速時間は、安全領域復帰処理選択1と同様である。)。
なお、安全領域復帰後処理は、上記の選択肢以外の処理でも良い。例えば、指示された安全機能動作でSLSを設定していた場合では、許容時間内に自動調整により安全領域に復帰した際は、減速停止せずに、リミット値を超えないモータ速度で運転を継続させるなどの選択でも良い。
このように、安全領域復帰処理を加えることで、所定の閾値超過後の機能安全動作によりシステムの安全性を向上させることができる。
なお、安全領域復帰処理実行中においても、再び安全領域を外れる場合は、所定の閾値超過後処理(ステップS605)を実行することで安全領域内にモータ速度を戻す。
また、表示部111に、自動調整実行(ステップS804)で安全機能動作を行ったことを通知する旨を表示する。例えば、自動調整実行(ステップS804)の際に安全領域復帰処理のSS1減速時間を変更(自動調整)したのをトリガとして、自動調整実行中信号を通信部210及び通信部110を経由して運転管理部101に送信し、自動調整実行中信号を受信した運転管理部101は、表示部111に自動調整実施中であることを通知する。そして、例えば、「自動調整で安全領域復帰処理(SS1)を実行しました」などと表示する。表示するタイミングは、自動調整を1回でも実行した際に表示や、停止後に設定ツールで設定したSS1減速時間ではなく、自動調整値を使用して停止した旨を表示するなどでも良い。
以上のように、本実施例では、システム動作の異常や診断エラー発生後に、STO動作により遮断するだけでなく、予め選択された安全機能動作によってモータの減速等をシステムの状況にあわせてより細かく制御でき、安全性が向上する。
また、システム動作の異常や診断エラー発生後という動的な状況において、たとえば安全機能動作としてSS1が設定されている場合は、減速時間の設定値を自動的に変更し、許容時間以内に安全領域内に復帰するように速度制御することでシステムの安全性を向上させることができる。
10:電力変換装置、20:安全機能部、30:入出力部、40:モータ、50:負荷機械、70:機能安全用設定ツール、101:運転管理部、102:本体制御部、103:駆動部、104:電流検出器、107:経路自己診断部、108,109:オプション接続部、110,210:通信部、111:表示部、208,209:本体接続部、211,221:制御部、212,222:安全機能実行部、213,223:MCU自己診断部、214,224:安全機能動作指示部

Claims (4)

  1. モータを駆動するための電力変換装置本体と、安全機能を実行する安全機能部とを備える電力変換システムであって、
    前記安全機能部は、安全要求信号を受信したら安全機能動作指示信号を出力し、該安全機能動作指示信号により前記電力変換装置本体はモータを制御し、
    前記安全機能部は、モータの状態監視を行い、前記モータの状態が所定の範囲を超過した場合、予め選択された安全機能動作による閾値超過後処理を行ない、
    前記安全機能部は、前記モータの速度監視を行い、前記モータの速度が所定の値を超過した場合に前記閾値超過後処理を行ない、
    前記安全機能部は、前記モータの速度が前記所定の値を超過した時点から該所定の値に許容時間以内に復帰するように、前記モータの減速レートを自動調整することを特徴とする電力変換システム。
  2. 請求項1に記載の電力変換システムにおいて、
    前記閾値超過後処理はSS1であって、
    前記自動調整により前記モータの速度が前記所定の値に戻った後、前記自動調整にて採用した前記モータの減速レートのままで減速停止するか、前記閾値超過後処理での減速レートで減速停止するか、予め設定した前記自動調整の減速レートに従い減速停止するか、前記所定の値を上限閾値としたとき下限閾値との間で減速する減速レートで減速停止するか、を選択可能とすることを特徴とする電力変換システム。
  3. モータを駆動するための電力変換装置本体と、安全機能を実行する安全機能部とを備える電力変換システムの電力変換方法であって、
    安全要求信号の受信により安全機能動作指示信号を出力し、該安全機能動作指示信号により前記モータを制御し、前記モータの状態が所定の範囲を超過した場合、予め選択された安全機能動作による閾値超過後処理を行ない、
    前記安全機能部は、前記モータの速度監視を行い、前記モータの速度が所定の値を超過した場合に前記閾値超過後処理を行ない、
    前記モータの速度が前記所定の値を超過した時点から該所定の値に許容時間以内に復帰するように、前記モータの減速レートを自動調整することを特徴とする電力変換方法
  4. 請求項3に記載の電力変換方法において、
    前記閾値超過後処理はSS1であって、前記自動調整により前記モータの速度が前記所定の値に戻った後、前記自動調整にて採用した前記モータの減速レートのままで減速停止するか、前記閾値超過後処理での減速レートで減速停止するか、予め設定した前記自動調整の減速レートに従い減速停止するか、前記所定の値を上限閾値としたとき下限閾値との間で減速する減速レートで減速停止するか、を選択可能とすることを特徴とする電力変換方法。
JP2018083954A 2018-04-25 2018-04-25 電力変換システム及び電力変換方法 Active JP7112240B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018083954A JP7112240B2 (ja) 2018-04-25 2018-04-25 電力変換システム及び電力変換方法
EP18915971.8A EP3786729A4 (en) 2018-04-25 2018-12-14 POWER CONVERSION SYSTEM AND POWER CONVERSION METHOD
PCT/JP2018/046068 WO2019207837A1 (ja) 2018-04-25 2018-12-14 電力変換システム及び電力変換方法
CN201880092337.6A CN112041763A (zh) 2018-04-25 2018-12-14 电力转换系统和电力转换方法
US17/046,758 US11442415B2 (en) 2018-04-25 2018-12-14 Power conversion system and power conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083954A JP7112240B2 (ja) 2018-04-25 2018-04-25 電力変換システム及び電力変換方法

Publications (2)

Publication Number Publication Date
JP2019191928A JP2019191928A (ja) 2019-10-31
JP7112240B2 true JP7112240B2 (ja) 2022-08-03

Family

ID=68294886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083954A Active JP7112240B2 (ja) 2018-04-25 2018-04-25 電力変換システム及び電力変換方法

Country Status (5)

Country Link
US (1) US11442415B2 (ja)
EP (1) EP3786729A4 (ja)
JP (1) JP7112240B2 (ja)
CN (1) CN112041763A (ja)
WO (1) WO2019207837A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648895B2 (en) * 2018-12-27 2023-05-16 GM Global Technology Operations LLC Bounded timing analysis of intra-vehicle communication
WO2024135360A1 (ja) * 2022-12-22 2024-06-27 パナソニックIpマネジメント株式会社 制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229359A (ja) 2010-03-30 2011-11-10 Yaskawa Electric Corp モータ駆動システム及びモータ制御装置
JP2012150618A (ja) 2011-01-18 2012-08-09 Fuji Electric Co Ltd 安全制御システム
WO2016051552A1 (ja) 2014-10-01 2016-04-07 株式会社日立産機システム 電力変換装置、電力変換方法および電力変換システム
WO2016076429A1 (ja) 2014-11-14 2016-05-19 アイシン・エィ・ダブリュ株式会社 インバータ制御装置及び車両用制御装置
JP2017535879A (ja) 2014-11-18 2017-11-30 ムーグ ウンナ ゲゼルシャフト ミット ベシュレンクテル ハフツングMOOG UNNA GmbH 電気機械的駆動システム
JP2018182876A (ja) 2017-04-11 2018-11-15 株式会社安川電機 モータ制御システム、モータ制御装置、及び安全機能設定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290205A (en) * 1991-11-08 1994-03-01 Quinton Instrument Company D.C. treadmill speed change motor controller system
JPH08163702A (ja) * 1994-12-01 1996-06-21 Matsushita Electric Ind Co Ltd モータの制御方法
JP4450682B2 (ja) 2004-06-24 2010-04-14 山洋電気株式会社 サーボモータ制御装置及びその制御方法
JP4137854B2 (ja) * 2004-07-30 2008-08-20 ファナック株式会社 電動機の制御装置
FI119508B (fi) * 2007-04-03 2008-12-15 Kone Corp Vikaturvallinen tehonohjauslaitteisto
WO2013145671A1 (ja) * 2012-03-26 2013-10-03 住友重機械工業株式会社 産業機械
JP6015178B2 (ja) * 2012-07-11 2016-10-26 オムロン株式会社 安全システム
JP5638043B2 (ja) * 2012-09-07 2014-12-10 ファナック株式会社 アラームレベル設定部を有するモータ駆動装置
DE102013220727A1 (de) 2013-10-14 2015-04-16 Schmidhauser Ag Steuergerät
JP6226914B2 (ja) * 2015-06-12 2017-11-08 ファナック株式会社 非常停止時にサーボモータを制御して停止させるサーボモータ停止制御装置
JP6424852B2 (ja) 2016-03-10 2018-11-21 オムロン株式会社 モータ制御装置、制御方法、情報処理プログラム、および記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229359A (ja) 2010-03-30 2011-11-10 Yaskawa Electric Corp モータ駆動システム及びモータ制御装置
JP2012150618A (ja) 2011-01-18 2012-08-09 Fuji Electric Co Ltd 安全制御システム
WO2016051552A1 (ja) 2014-10-01 2016-04-07 株式会社日立産機システム 電力変換装置、電力変換方法および電力変換システム
WO2016076429A1 (ja) 2014-11-14 2016-05-19 アイシン・エィ・ダブリュ株式会社 インバータ制御装置及び車両用制御装置
JP2017535879A (ja) 2014-11-18 2017-11-30 ムーグ ウンナ ゲゼルシャフト ミット ベシュレンクテル ハフツングMOOG UNNA GmbH 電気機械的駆動システム
JP2018182876A (ja) 2017-04-11 2018-11-15 株式会社安川電機 モータ制御システム、モータ制御装置、及び安全機能設定方法

Also Published As

Publication number Publication date
EP3786729A4 (en) 2022-01-19
US20210096516A1 (en) 2021-04-01
CN112041763A (zh) 2020-12-04
JP2019191928A (ja) 2019-10-31
EP3786729A1 (en) 2021-03-03
US11442415B2 (en) 2022-09-13
WO2019207837A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6313463B2 (ja) 電力変換装置、電力変換方法および電力変換システム
CN110745144B (zh) 一种自动驾驶控制系统、控制方法及设备
JP4817084B2 (ja) モータ駆動システム及びモータ制御装置
US8032253B2 (en) Automatic machine system and wireless communication method thereof
CN108695824B (zh) 电机控制系统、电机控制装置以及安全功能设定方法
JP7112240B2 (ja) 電力変換システム及び電力変換方法
EP2956394B1 (en) Elevator safety circuit
JP5260718B2 (ja) 産業用ロボットの可動部の回転軸に接続されたサーボモータを駆動するサーボモータ駆動装置
EP3572194B1 (en) Robot system and robot controller
US20170272025A1 (en) Motor controller
JP7398620B2 (ja) 遮断回路診断装置
JP7014140B2 (ja) 電磁ブレーキ制御装置及び制御装置
CN104030112A (zh) 电梯控制装置以及电梯控制方法
CN111480278A (zh) 用于评估可再充电电池的充电状态的方法
AU2015367705B2 (en) Method for operating an electronic safety system with temporary subscribers
CN107601198B (zh) 电梯
CN109951096B (zh) 电力转换装置
CN107621794B (zh) 控制驱动装置的方法和执行该方法的系统
JP2012006683A (ja) エレベータ
WO2023157365A1 (ja) 機能安全装置
EP1142826A1 (en) Vehicle with running mechanism and lifting mechanism
JP2697540B2 (ja) エレベータ制御装置
KR0167209B1 (ko) 엘리베이터의 구출운전 제어 방법 및 장치
CN114248273A (zh) 一种理疗仪的安全控制方法以及理疗机器人
JP2012221428A (ja) 異常時モータ減速停止制御機能を有する制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7112240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150