WO2016076286A1 - 水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法 - Google Patents

水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法 Download PDF

Info

Publication number
WO2016076286A1
WO2016076286A1 PCT/JP2015/081538 JP2015081538W WO2016076286A1 WO 2016076286 A1 WO2016076286 A1 WO 2016076286A1 JP 2015081538 W JP2015081538 W JP 2015081538W WO 2016076286 A1 WO2016076286 A1 WO 2016076286A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
ink
printing plate
lithographic printing
ink repellent
Prior art date
Application number
PCT/JP2015/081538
Other languages
English (en)
French (fr)
Inventor
久世康典
飯原明宏
村瀬清一郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580060842.9A priority Critical patent/CN107073987B/zh
Priority to ES15858988T priority patent/ES2898174T3/es
Priority to KR1020177011982A priority patent/KR20170084056A/ko
Priority to US15/519,065 priority patent/US20170232775A1/en
Priority to JP2015556306A priority patent/JP6686436B2/ja
Priority to EP15858988.7A priority patent/EP3219504B1/en
Publication of WO2016076286A1 publication Critical patent/WO2016076286A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • B41N1/14Lithographic printing foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/06Lithographic printing
    • B41M1/08Dry printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/003Printing plates or foils; Materials therefor with ink abhesive means or abhesive forming means, such as abhesive siloxane or fluoro compounds, e.g. for dry lithographic printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/14Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by macromolecular organic compounds, e.g. binder, adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/02Positive working, i.e. the exposed (imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/16Waterless working, i.e. ink repelling exposed (imaged) or non-exposed (non-imaged) areas, not requiring fountain solution or water, e.g. dry lithography or driography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/262Phenolic condensation polymers, e.g. novolacs, resols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0081After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams

Definitions

  • the present invention relates to a waterless lithographic printing plate precursor and a method for producing a printed material by UV printing using the waterless lithographic printing plate.
  • Printing methods using lithographic printing plates include printing with water that repels ink by forming a thin layer of water in advance on the plate surface during printing, and waterless printing that repels ink with silicone rubber instead of this water There is.
  • Patent Document 1 UV printing using UV ink in which ink is instantaneously cured by irradiation with ultraviolet rays has been proposed, and a short delivery time and low cost are being achieved.
  • a non-absorbent material such as a plastic sheet or surface-treated paper
  • UV ink is often used for food packaging, etc., but fountain solution is used for printing with water. There is a problem that a part of the print is transferred from the front surface of the printed material to the back surface of the printed material directly contacting the printed material.
  • inks with little or no low-polarity components such as UV ink tend to adhere to non-image areas, and the types of ink that can be used are limited, and the temperature of the printing environment is limited. When it rises, there is a problem that ink begins to adhere to the non-image area and the effect of ink repulsion is not sustained.
  • the present invention sufficiently repels even an ink that easily adheres to a non-image area such as UV ink, and the waterless lithographic printing plate precursor in which the repelling effect continues, and the water It is an object of the present invention to provide a printing method using a waterless lithographic printing plate obtained from a lithographic printing plate precursor.
  • the printing plate of the present invention has the following configuration.
  • a lithographic printing plate precursor having at least a heat-sensitive layer and an ink repellent layer, wherein the ink repellent layer contains an ink repellent liquid, and the boiling point at 1 atm of the liquid is 150 ° C. or higher Original edition.
  • Preferred embodiments for the printing plate include the following.
  • the lithographic printing plate precursor as described above, wherein the novolac resin / organic complex compound mass ratio in the heat-sensitive layer is 2 or more and 6 or less.
  • the invention of a method for producing a lithographic printing plate and preferred embodiments thereof include the following.
  • a method for producing a lithographic printing plate comprising: a step of exposing the lithographic printing plate precursor according to any of the above according to an image; and a step of developing the exposed original plate to remove an ink repellent layer .
  • a method for producing a printed matter comprising: a step of attaching ink to a surface of any one of the lithographic printing plates; and a step of transferring the ink to a printing medium directly or via a blanket.
  • the method for producing any one of the printed materials further comprising a step of irradiating the ink transferred to the printing material with an active energy ray.
  • the invention of the method for producing a printing plate and preferred embodiments thereof include the following.
  • a method for producing a printed material comprising a step of transferring an ink to a printing medium using a lithographic printing plate and then irradiating the printing medium with ultraviolet rays, wherein the lithographic printing plate comprises a heat-sensitive layer and an ink repulsion
  • a lithographic printing plate precursor having a layer is obtained by a step of exposing according to an image, a step of developing the exposed original plate and removing an ink repellent layer, wherein the printing plate precursor is a substrate
  • the ink repellent layer includes at least an ink repellent layer, and the ink repellent liquid contained in the ink repellent layer has a surface tension of 30 mN / m or less, and the ink contains 10% by mass to 50% by mass of a photosensitive component.
  • a waterless lithographic printing plate precursor that sufficiently repels even an ink that easily adheres to a non-image portion of a waterless lithographic printing plate such as UV ink and maintains its repelling effect.
  • the waterless planographic printing plate precursor of the present invention will be described below.
  • the waterless lithographic printing plate precursor of the present invention is a lithographic printing plate precursor having at least a heat-sensitive layer and an ink repellent layer, the ink repellent layer containing an ink repellent liquid, and the liquid at 1 atm.
  • the boiling point is 150 ° C. or higher.
  • the ink repellent liquid is preferably a liquid that inhibits adhesion of ink to the ink repellent layer when the liquid is present on the surface of the ink repellent layer in the absence of the liquid. It is considered that the ink repellent layer is covered with a thin liquid film on the surface of the ink repellent layer to inhibit adhesion to the ink repellent layer.
  • the waterless planographic original plate of the present invention has a substrate as necessary. When there is a substrate, it has at least a heat-sensitive layer and an ink repellent layer on or above the substrate. Either the heat-sensitive layer or the ink repellent layer may be present near the substrate, but it is preferable that the substrate, the heat-sensitive layer, and the ink repellent layer be in this order.
  • Examples of the substrate that can be used in the present invention include conventionally known paper, metal, glass, film, etc., which are conventionally used as a printing plate substrate and have little dimensional change in the printing process.
  • paper, paper laminated with plastic polyethylene, polypropylene, polystyrene, etc.
  • aluminum including aluminum alloy
  • zinc, copper and other metal plates soda lime, quartz and other glass plates, silicon wafers
  • plastic films such as cellulose acetate, polyethylene terephthalate, polyethylene, polyester, polyamide, polyimide, polystyrene, polypropylene, polycarbonate, and polyvinyl acetal, and paper or plastic film on which the above metal is laminated or vapor-deposited.
  • the plastic film may be transparent or opaque. From the viewpoint of plate inspection, an opaque film is preferable.
  • an aluminum plate is particularly preferable because it has little dimensional change in the printing process and is inexpensive.
  • a polyethylene terephthalate film is particularly preferable as a flexible substrate for light printing.
  • the thickness of the substrate is not particularly limited, and a thickness corresponding to a printing machine used for lithographic printing may be selected.
  • thermosensitive layer that can be preferably used in the present invention will be described.
  • the heat-sensitive layer has the function of converting the laser light used for drawing into heat (photothermal conversion), and at least the surface of the heat-sensitive layer is decomposed by the generated heat, or is soluble in the developer. Is preferably increased or the adhesive strength with the ink repellent layer is decreased.
  • a heat-sensitive layer can contain, for example, the following composition.
  • a composition comprising a polymer having active hydrogen, a crosslinking agent, and a photothermal conversion substance.
  • B A composition comprising a polymer having active hydrogen, an organic complex compound, and a photothermal conversion substance.
  • thermosensitive layer can be prepared by applying and drying a solution or dispersion containing these compositions. Drying may be performed at room temperature or by heating.
  • the heat-sensitive layer produced in this manner is composed of a polymer having active hydrogen and a cross-linking agent due to heat generated from the photothermal conversion material by irradiating laser light.
  • the crosslinked structure composed of the polymer and the organic complex compound is decomposed.
  • examples of the polymer having active hydrogen preferably used in the heat-sensitive layer include a polymer having a structural unit having active hydrogen.
  • the structural unit having active hydrogen include —OH, —SH, —NH 2 , —NH—, —CO—NH 2 , —CO—NH—, —OC ( ⁇ O) —NH—, —NH—CO.
  • —NH—, —CO—OH, —CS—OH, —CO—SH, —CS—SH, —SO 3 H, —PO 3 H 2 , —SO 2 —NH 2 , —SO 2 —NH—, — CO—CH 2 —CO— and the like can be mentioned.
  • Examples of the polymer having active hydrogen that can be used in the compositions (A) and (B) include the following.
  • a homopolymer or copolymer of a monomer containing a carboxyl group such as (meth) acrylic acid, a (meth) acrylic acid ester containing a hydroxyl group such as hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate
  • Homopolymer or copolymer Homopolymer or copolymer, N-alkyl (meth) acrylamide, homopolymer or copolymer of (meth) acrylamide, homopolymer of a reaction product of amines with glycidyl (meth) acrylate or allyl glycidyl or Homopolymers or copolymers of ethylenically unsaturated monomers having active hydrogen such as copolymers, homopolymers or copolymers of p-hydroxystyrene
  • polymer which has a structural unit which has an active hydrogen in a principal chain as a polymer which has a structural unit which has an active hydrogen is also mentioned.
  • polymers include polyurethanes, polyureas, polyamides, epoxy resins, polyalkyleneimines, novolac resins, resole resins, and cellulose derivatives. Two or more of these may be contained.
  • a polymer having an alcoholic hydroxyl group, a phenolic hydroxyl group, or a carboxyl group is preferable, and a polymer having a phenolic hydroxyl group (a homopolymer or copolymer of p-hydroxystyrene, a novolac resin, a resole resin, etc.) is more preferable.
  • a resin is more preferable.
  • novolak resins include phenol novolac resins and cresol novolac resins.
  • the content of the polymer having active hydrogen is preferably 20% by mass or more in the heat-sensitive layer from the viewpoint of accelerating development by decomposing the heat-sensitive layer surface with heat or changing it to be easily soluble in a developer. 30 mass% or more is more preferable. Moreover, 95 mass% or less is preferable at the point of the toughness of a thermosensitive layer, and 80 mass% or less is more preferable.
  • polymer having active hydrogen and a film forming ability (hereinafter referred to as “other polymer X”) together with the polymer having active hydrogen.
  • polymers X include homopolymers or copolymers of (meth) acrylic acid esters such as polymethyl (meth) acrylate and polybutyl (meth) acrylate, and homopolymers of styrene monomers such as polystyrene and ⁇ -methylstyrene.
  • various synthetic rubbers such as copolymers, isoprene and styrene-butadiene, homopolymers such as vinyl esters such as polyvinyl acetate, copolymers such as vinyl acetate-vinyl chloride, and various condensation polymers such as polyester and polycarbonate Etc.
  • the total content of these other polymers X is preferably 5% by mass or more, more preferably 10% by mass or more in the thermosensitive layer in order to improve the coating property of the thermosensitive layer composition solution.
  • the content is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total solid content of the heat-sensitive layer.
  • thermosensitive layer composition (A) examples include polyfunctional compounds having a plurality of functional groups reactive with the active hydrogen of the polymer.
  • the organic complex compound contained in the composition (B) of the thermosensitive layer is composed of a metal and an organic compound. This functions as a crosslinker to the polymer with active hydrogen.
  • the heat-sensitive layer may further contain the aforementioned crosslinking agent.
  • organic complex compounds include organic complex salts in which an organic ligand is coordinated to a metal, organic inorganic complex salts in which an organic ligand and an inorganic ligand are coordinated to a metal, and a metal and an organic molecule through oxygen. Examples thereof include metal alkoxides that are covalently bonded.
  • the metal chelate compound in which the ligand has two or more donor atoms and forms a ring containing a metal atom the stability of the organic complex compound itself, the stability of the thermosensitive layer composition solution, etc. It is preferably used from the aspect of.
  • the main metals forming the organic complex compounds are Al (III), Ti (IV), Mn (II), Mn (III), Fe (II), Fe (III), Co (II), Co (III ), Ni (II), Ni (IV), Cu (I), Cu (II), Zn (II), Ge, In, Sn (II), Sn (IV), Zr (IV), Hf (IV) Is preferred.
  • Al (III) is particularly preferable from the viewpoint that the effect of improving the sensitivity is easily obtained, and Ti (IV) is particularly preferable from the viewpoint that resistance to the printing ink and the ink cleaning agent is easily exhibited.
  • the compound which has a coordination group which has oxygen, nitrogen, sulfur, etc. as a donor atom is mentioned.
  • the compounds preferably used include Al (III), Ti (IV), Fe (II), Fe (III), and Mn (III). , Co (II), Co (III), Ni (II), Ni (IV), Cu (I), Cu (II), Zn (II), Ge, In, Sn (II), Sn (IV), Examples thereof include complex compounds of metals such as Zr (IV) and Hf (IV) with ⁇ -diketones, amines, alcohols and carboxylic acids, and Al (III), Fe (II) and Fe (III). Ti (IV), acetylacetone complex of Zr (IV), acetoacetate complex and the like are particularly preferable complex compounds.
  • Such compounds include the following compounds.
  • Such an organic complex compound acts as a polymer crosslinking agent.
  • the amount is preferably 0.5% by mass or more in the heat-sensitive layer. Moreover, 50 mass% or less is preferable at the point which maintains the printing durability of a printing plate.
  • the mass ratio of the novolak resin / organic complex compound is preferably 2 or more, more preferably 2.5 or more, from the viewpoint of increasing the image reproduction. More preferably, 3 or more.
  • the novolak resin / organic complex compound mass ratio is preferably 6 or less, more preferably 5.5 or less, and even more preferably 5 or less, from the viewpoint that the cross-linked structure of the novolak resin is densely formed and the hardness of the thermosensitive layer is increased. .
  • the mass ratio of the novolak resin / organic complex compound As described above, the hardness of the heat sensitive layer becomes higher, and when the upper ink repellent layer is pressed by the ink roller during printing, the ink repellent layer is deformed. It becomes easy. For this reason, the ink repellent liquid is likely to appear on the surface of the ink repellent layer, and the ink repellent property is improved.
  • the photothermal conversion substance that can be contained in the composition (A) and the composition (B) of the heat sensitive layer the light energy is converted into kinetic energy of atoms and molecules by absorbing laser light
  • Those having a function of thermally decomposing the crosslinked structure of the heat sensitive layer by generating heat of 200 ° C. or more instantaneously on the surface of the heat sensitive layer are preferable.
  • Particularly preferred are pigments and dyes that absorb infrared rays or near infrared rays.
  • black pigments such as carbon black, carbon graphite, aniline black, cyanine black, phthalocyanine, naphthalocyanine-based green pigment, crystal water-containing inorganic compounds, iron, copper, chromium, bismuth, magnesium, aluminum, titanium, zirconium, cobalt Metal powders such as vanadium, manganese, and tungsten, or sulfides, hydroxides, silicates, sulfates, phosphates, diamine compound complexes, dithiol compound complexes, phenolthiol compound complexes, mercaptophenol compound complexes of these metals, etc. Can be mentioned.
  • dyes that absorb infrared rays or near infrared rays they are dyes for electronics and recording, and cyanine dyes, azurenium dyes, squarylium dyes, croconium dyes, azo dyes having a maximum absorption wavelength in the range of 700 nm to 1500 nm.
  • Disperse dyes bisazostilbene dyes, naphthoquinone dyes, anthraquinone dyes, perylene dyes, phthalocyanine dyes, naphthalocyanine metal complex dyes, polymethine dyes, dithiol nickel complex dyes, indoaniline metal complex dyes, molecules Intercalated CT dyes, benzothiopyran spiropyrans, nigrosine dyes and the like are preferably used.
  • is preferably 1 ⁇ 10 4 L / (mol ⁇ cm) or more, and more preferably 1 ⁇ 10 5 L / (mol ⁇ cm) or more. If ⁇ is 1 ⁇ 10 4 L / (mol ⁇ cm) or more, the initial sensitivity can be further improved.
  • the coefficient here is relative to the active energy ray to be irradiated. If a specific wavelength is shown, attention should be paid to 780 nm, 830 nm, or 1064 nm.
  • Two or more of these photothermal conversion substances may be contained.
  • two or more kinds of photothermal conversion substances having different absorption wavelengths it is possible to cope with two or more kinds of lasers having different emission wavelengths.
  • carbon black dyes that absorb infrared rays or near infrared rays are preferable from the viewpoints of photothermal conversion, economic efficiency, and handleability.
  • the content of these photothermal conversion substances is preferably 0.1% by mass to 70% by mass in the heat sensitive layer, and more preferably 0.5% by mass to 40% by mass.
  • the sensitivity with respect to a laser beam can be improved more by making content of a photothermal conversion substance into 0.1 mass% or more.
  • the content is 70% by mass or less, high printing durability of the printing plate can be maintained.
  • the heat-sensitive layer may contain various additives as necessary.
  • a silicone surfactant or a fluorine surfactant may be contained in order to improve the coating property.
  • a silane coupling agent, a titanium coupling agent, or the like may be contained.
  • the content of these additives varies depending on the purpose of use, but is generally 0.1% by mass to 30% by mass in the total solid content of the heat-sensitive layer.
  • a silicone rubber layer that is a crosslinked product of polyorganosiloxane can be preferably used as the ink repellent layer.
  • a layer obtained by applying an addition reaction type silicone rubber layer composition or a condensation reaction type silicone rubber layer composition, or a layer obtained by applying and drying a solution of these compositions may be mentioned.
  • the addition reaction type silicone rubber layer composition contains at least a vinyl group-containing organopolysiloxane, a SiH group-containing compound having a plurality of hydrosilyl groups (hereinafter referred to as “addition reaction type crosslinking agent”) and a curing catalyst. preferable. Furthermore, you may contain reaction inhibitor.
  • the vinyl group-containing organopolysiloxane has a structure represented by the following general formula (I) and has a vinyl group at the end of the main chain or in the main chain. Of these, those having a vinyl group at the end of the main chain are preferred. Two or more of these may be contained.
  • n represents an integer of 2 or more.
  • R 1 and R 2 represent a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms.
  • the hydrocarbon group may be linear, branched or cyclic and may contain an aromatic ring.
  • R 1 and R 2 may be the same or different.
  • a plurality of R 1 present in the polysiloxane of the general formula (I) may be the same or different from each other.
  • a plurality of R 2 present in the polysiloxane of the general formula (I) may be the same or different from each other.
  • 50% or more of R 1 and R 2 are preferably methyl groups from the viewpoint of ink repellency of the printing plate. Further, from the viewpoints of handleability, ink repellency of the printing plate, and scratch resistance, the weight average molecular weight of the vinyl group-containing organopolysiloxane is preferably 10,000 to 600,000.
  • SiH group-containing compound examples include organohydrogenpolysiloxanes and organic polymers having diorganohydrogensilyl groups, with organohydrogenpolysiloxanes being preferred. Two or more of these may be contained.
  • the organohydrogenpolysiloxane can have a linear, cyclic, branched or network molecular structure.
  • Polymethylhydrogensiloxane blocked with trimethylsiloxy groups at both ends of the molecular chain dimethylsiloxane / methylhydrogensiloxane copolymer blocked with trimethylsiloxy groups at both ends of the molecular chain, and trimethylsiloxy groups at both ends of the molecular chain
  • An organopolysiloxane copolymer comprising a siloxane unit represented by the formula: R 3 SiO 1/2 , a siloxane unit represented by the formula: R 2 HSiO 1/2 and a siloxane unit represented by the formula: SiO 4/2 ,
  • An organopolysiloxane copolymer comprising a siloxane unit represented by R 2 HSiO 1/2 and a siloxane unit represented by formula: SiO 4/2 , a siloxane unit represented by formula: RHSiO 2/2 and formula: RSiO 3/2
  • An organopolysiloxane copolymer comprising a siloxane unit represented by the formula: and a siloxane unit represented by the formula: HSiO 3/2 .
  • each R is independently a monovalent hydrocarbon group other than an alkenyl group, and may be substituted.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group; benzyl group, phenethyl group, etc.
  • Aralkyl group; halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group and the like can be mentioned.
  • Examples of the organic polymer having a diorganohydrogensilyl group include the following.
  • Dimethylhydrogensilyl group-containing (meth) acrylic monomers such as dimethylhydrogensilyl (meth) acrylate, dimethylhydrogensilylpropyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, (meth ) Oligomer obtained by copolymerization with monomers such as butyl acrylate, ethylhexyl (meth) acrylate, lauryl (meth) acrylate, styrene, ⁇ -methylstyrene, maleic acid, vinyl acetate, allyl acetate.
  • Dimethylhydrogensilyl group-containing (meth) acrylic monomers such as dimethylhydrogensilyl (meth) acrylate, dimethylhydrogensilylpropyl (meth) acrylate, methyl (meth) acrylate, eth
  • the content of the SiH group-containing compound is preferably 0.5% by mass or more and more preferably 1% by mass or more in the silicone rubber layer composition from the viewpoint of curability for forming a silicone rubber layer. Moreover, 20 mass% or less is preferable from the ease of control of a cure rate, and 15 mass% or less is more preferable.
  • reaction inhibitor examples include nitrogen-containing compounds, phosphorus compounds and unsaturated alcohols, and acetylene group-containing alcohols are preferably used. Two or more of these may be contained. By containing these reaction inhibitors, the curing rate of the silicone rubber layer can be adjusted.
  • the content of the reaction inhibitor is preferably 0.01% by mass or more and more preferably 0.1% by mass or more in the silicone rubber layer composition from the viewpoint of the stability of the silicone rubber layer composition and the solution thereof. Further, from the viewpoint of curability of the silicone rubber layer, the content is preferably 20% by mass or less, and more preferably 15% by mass or less in the silicone rubber layer composition.
  • the curing catalyst can be selected from known ones. Preferred are platinum compounds, and specific examples include platinum alone, platinum chloride, chloroplatinic acid, olefin coordinated platinum, platinum alcohol-modified complexes, platinum methylvinylpolysiloxane complexes, and the like. Two or more of these may be contained.
  • the content of the curing catalyst is preferably 0.001% by mass or more and more preferably 0.01% by mass or more in the silicone rubber layer composition from the viewpoint of curability of the silicone rubber layer. Further, from the viewpoint of the stability of the silicone rubber layer composition and the solution thereof, the content is preferably 20% by mass or less, and more preferably 15% by mass or less in the silicone rubber layer composition.
  • silane coupling agent alkoxysilanes, acetoxysilanes, ketoximinosilanes and the like are preferable, and those in which a vinyl group or an allyl group is directly bonded to a silicon atom are preferable.
  • the condensation reaction type silicone rubber layer composition is preferably made from at least a hydroxyl group-containing organopolysiloxane, a crosslinking agent and a curing catalyst.
  • the hydroxyl group-containing organopolysiloxane has a structure represented by the general formula (I) and has a hydroxyl group at the end of the main chain or in the main chain. Of these, those having a hydroxyl group at the end of the main chain are preferred. Two or more of these may be contained.
  • the crosslinking agent contained in the condensation reaction type silicone rubber layer composition includes a deacetic acid type, a deoxime type, a dealcohol type, a deacetone type, a deamid type, a dehydroxylation represented by the following general formula (II):
  • a silicon compound such as an amine type may be mentioned.
  • R 3 4-m SiX m
  • m represents an integer of 2 to 4
  • R 3 may be the same or different, and represents a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 or more carbon atoms, or a combination thereof.
  • Show. X may be the same or different and represents a hydrolyzable group.
  • hydrolyzable groups examples include acyloxy groups such as acetoxy group, ketoxime groups such as methylethylketoxime group, alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group, alkenyloxy groups such as isopropenoxy group, acetylethylamino group And an aminoxy group such as a dimethylaminoxy group.
  • the number m of hydrolyzable groups is preferably 3 or 4.
  • the compound include the following. Acetoxysilanes such as methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, allyltriacetoxysilane, phenyltriacetoxysilane, tetraacetoxysilane, vinylmethylbis (methylethylketoximino) silane, methyltris (methylethylketoximino) Ketoximinosilanes such as silane, ethyltris (methylethylketoximino) silane, vinyltris (methylethylketoximino) silane, allyltris (methylethylketoximino) silane, phenyltris (methylethylketoximino) silane, tetrakis (methylethylketoximino) silane, methyl Trimethoxysilane, methyltriethoxysilane, ethyltrimeth
  • acetoxysilanes and ketoximinosilanes are preferred from the viewpoints of the curing speed of the silicone rubber layer, handling properties, and the like. Two or more of these may be contained.
  • the crosslinking agent When the crosslinking agent is mixed with a hydroxyl group-containing organopolysiloxane, the crosslinking agent may react with the silanol group to form an organosiloxane in which the crosslinking agent is bonded in place of the silanol group. Therefore, in the silicone rubber composition, there are organosiloxanes to which a crosslinking agent is bonded, but there are cases in which there are no organosiloxanes having silanol groups.
  • the addition amount of the crosslinking agent in the condensation reaction type silicone rubber layer composition is preferably 0.5% by mass or more, preferably 1% by mass in the silicone rubber layer composition from the viewpoint of the stability of the silicone rubber layer composition or its solution. The above is more preferable. Further, from the viewpoint of the strength of the silicone rubber layer and the scratch resistance of the printing plate, the content is preferably 20% by mass or less, more preferably 15% by mass or less in the silicone rubber layer composition.
  • Curing catalysts contained in the condensation reaction type silicone rubber layer composition include organic carboxylic acids, acids, alkalis, amines, metal alkoxides, metal diketenates, tin, lead, zinc, iron, cobalt, calcium, manganese and other metals.
  • Organic acid salt etc. are mentioned. Specific examples include dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, zinc octylate, and iron octylate. Two or more of these may be contained.
  • the content of the curing catalyst in the condensation reaction type silicone rubber layer composition is preferably 0.001% by mass or more, preferably 0.01% by mass in the silicone rubber layer composition from the viewpoint of curability and adhesiveness of the silicone rubber layer.
  • the above is more preferable.
  • it is preferably 15% by mass or less, more preferably 10% by mass or less in the silicone rubber layer composition.
  • the ink repellent layer of the waterless planographic printing plate precursor in the present invention contains an ink repellent liquid for the purpose of improving the ink repellent property. It is preferable that the boiling point of this liquid at 1 atm is 150 ° C. or higher. When the printing plate surface is pressurized during printing, the ink repellent liquid appears on the surface of the ink repellent layer, and the ink repellent property is improved by assisting the peeling of the ink. If the boiling point is 150 ° C. or higher, the waterless lithographic printing plate precursor is less likely to volatilize during production, and the ink repellent effect obtained by the addition of this liquid is not lost.
  • the boiling point here is defined as the temperature at which the mass loss after standing for 1 hour in an environment of 1 atm is 0.5 mass% or more. In other words, this liquid has a mass loss of less than 0.5% by mass after standing at 150 ° C. and 1 atmosphere for 1 hour. If so, there is little loss of the ink repellent effect due to the addition of this liquid.
  • the surface tension at 25 ° C. of the ink repellent liquid is preferably 15 mN / m or more and 30 mN / m or less. If the surface tension is 15 mN / m or more, the affinity with other ink repellent layer compositions will be higher, and the stability of the ink repellent layer composition solution will be improved. If the surface tension is 30 mN / m or less, the ink is easily peeled off, and the ink resilience can be further improved.
  • the content in the ink repellent layer is preferably 10% by mass or more in that the ink repellent liquid is sufficiently extruded onto the surface of the ink repellent layer and the ink repellent property is remarkably improved. Further, the content in the ink repellent layer is preferably 30% by mass or less, and more preferably 25% by mass or less, from the viewpoint of maintaining the film strength of the ink repellent layer.
  • the ink repellent liquid is preferably a silicone compound, and more preferably silicone oil.
  • the silicone oil referred to in the present invention refers to a free polysiloxane component that does not participate in crosslinking of the ink repellent layer. Therefore, dimethyl silicone oils such as terminal dimethylpolydimethylsiloxane, cyclic polydimethylsiloxane, terminal dimethyl-polydimethyl-polymethylphenylsiloxane copolymer, terminal dimethyl-polydimethyl-polydiphenylsiloxane copolymer, alkyl-modified silicone oil, fluorine-modified Silicone oil, polyether modified silicone oil, alcohol modified silicone oil, amino modified silicone oil, epoxy modified silicone oil, epoxy polyether modified silicone oil, phenol modified silicone oil, carboxy modified silicone oil, mercapto modified silicone oil, amide modified silicone oil , Carbana modified silicone oil, higher fatty acid modified silicone oil, etc. Modified silicone oils obtained by introducing various organic groups to a
  • the molecular weight of these silicone oils can be measured by gel permeation chromatography (GPC) using polystyrene as a standard, and those having a weight average molecular weight Mw of 1,000 to 100,000 are preferable.
  • GPC gel permeation chromatography
  • the plate modulus is preferably 4 MPa or more and 12 MPa or less.
  • Plate elastic modulus is calculated by using a nanoindentation method and pressing a diamond conical indenter into the surface of the ink repellent layer of the printing plate precursor and obtaining a load-indentation depth diagram to calculate the elastic modulus against the load. .
  • the plate elastic modulus was defined as the elastic modulus when a load of 1400 N / m 2 was applied to the printing plate precursor surface. The detailed measurement method will be described in the example column.
  • the plate modulus is preferably 4 MPa or more, more preferably 5 MPa or more, and even more preferably 7 MPa or more.
  • the ink repellent liquid can be leached into the surface of the ink repellent layer and re-incorporated into the ink repellent layer, or the liquid component in the ink can be absorbed into the surface of the ink repellent layer to maintain ink repellent properties.
  • the plate elastic modulus is preferably 12 MPa or less. Furthermore, 11 MPa or less is more preferable, and 10 MPa or less is more preferable. In particular, when the plate elastic modulus is 10 MPa or less, the ink resilience is remarkably improved.
  • the waterless planographic printing plate precursor of the present invention may have a protective film and / or a slip sheet on the surface of the ink repellent layer for the purpose of protecting the ink repellent layer.
  • the protective film a film having a thickness of 100 ⁇ m or less that transmits light of the exposure light source wavelength well is preferable.
  • Typical examples include polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, cellophane, and the like.
  • various light absorbers, photochromic substances, and photobleachable substances as described in Japanese Patent No. 2938886 may be provided on the protective film.
  • the interleaving paper preferably has a weight of 30 to 120 g / m 2 , more preferably 30 to 90 g / m 2 . If the weight is 30 g / m 2 or more, the mechanical strength is sufficient, and if it is 120 g / m 2 or less, not only is it economically advantageous, but the water-less lithographic printing plate precursor and paper laminate become thin, Workability becomes advantageous.
  • interleaving paper examples include, for example, information recording base paper 40 g / m 2 (manufactured by Nagoya Pulp Co., Ltd.), metal interleaving paper 30 g / m 2 (manufactured by Nagoya Pulp Co., Ltd.), unbleached kraft paper 50 g / m.
  • the method for producing a waterless lithographic printing plate comprises the step of exposing the waterless lithographic printing plate precursor according to the image (exposure process), applying physical stimulation to the exposed waterless lithographic printing plate precursor and removing the ink repellent layer in the exposed area. Step (development step).
  • the waterless planographic printing plate precursor of the present invention is exposed according to an image.
  • the waterless lithographic printing plate precursor has a protective film, it may be exposed from above the protective film, or may be exposed after peeling off the protective film.
  • the light source used in the exposure step include those having an emission wavelength region in the range of 300 nm to 1500 nm.
  • a semiconductor laser or a YAG laser having an emission wavelength region near the near infrared region is preferably used.
  • laser light having wavelengths of 780 nm, 830 nm, and 1064 nm is preferably used for exposure from the viewpoint of conversion efficiency to heat.
  • the ink repellent layer in the exposed area is removed.
  • a method of wiping the plate surface with a non-woven fabric impregnated with a developer, absorbent cotton, cloth, sponge, etc. and pre-treating the plate surface with a developer and then showering tap water or the like.
  • a method of rubbing with a rotating brush a method of injecting high-pressure water, warm water, or water vapor onto the plate surface.
  • a pretreatment in which a plate is immersed in a pretreatment solution for a certain period of time may be performed.
  • a solvent containing at least one kind of water water obtained by adding a polar solvent such as alcohol, ketone, ester or carboxylic acid, aliphatic hydrocarbons, aromatic hydrocarbons, etc.
  • a polar solvent added or a polar solvent is used.
  • a known surfactant can be added to the developer composition.
  • the surfactant those having a pH of 5 to 8 when made into an aqueous solution are preferable from the viewpoint of safety and cost for disposal.
  • the content of the surfactant is preferably 10% by mass or less of the developer.
  • Such a developer has high safety and is preferable from the viewpoint of economy such as disposal cost.
  • it is preferable to use a glycol compound or glycol ether compound as a main component and it is more preferable that an amine compound coexists.
  • the developer for example, water, alcohol or paraffin hydrocarbon can be used.
  • a mixture of propylene glycol derivatives such as propylene glycol, dipropylene glycol, triethylene glycol, polypropylene glycol, and alkylene oxide adducts to polypropylene glycol and water can also be used.
  • Specific examples of the developer include HP-7N and WH-3 (both manufactured by Toray Industries, Inc.).
  • a liquid containing a polyethylene ether diol and a diamine compound having two or more primary amino groups as described in Japanese Patent No. 483987 can be used.
  • the pretreatment liquid examples include PP-1, PP-3, PP-F, PP-FII, PTS-1, CP-1, CP-Y, NP-1, and DP-1 (all of which are Toray Industries, Inc. ) Made).
  • a dye such as crystal violet, Victoria pure blue, or Astrazone red is added to the pretreatment liquid or developer to simultaneously develop the image area.
  • the ink receiving layer can also be dyed. Furthermore, it can also dye
  • Some or all of the above development process can be automatically performed by an automatic processor.
  • the following apparatuses can be used as an automatic developing machine.
  • Specific examples of such an automatic developing machine include TWL-650 series, TWL-860 series, TWL-1160 series (both manufactured by Toray Industries, Inc.), and the like as described in JP-A-5-6000.
  • a waterless lithographic printing plate is a lithographic printing plate that can be printed without using dampening water.
  • the layer derived from the heat-sensitive layer becomes the ink receiving layer, which becomes the image area.
  • the ink repellent layer becomes a non-image area. It can be said that the ink receiving layer and the ink repellent layer have only steps on the order of microns and are substantially in the same plane.
  • the printing medium refers to all the printed media such as thin paper, thick paper, film, and label, and is not particularly limited. Further, the transfer of the ink may be performed directly from the printing plate to the printing medium, or may be performed via a blanket.
  • an ink that can be cured by active energy rays can be used.
  • an ink that is cured by ultraviolet irradiation usually a photosensitive monomer or reactive oligomer, a photopolymerization initiator and, if necessary, a photosensitizer capable of undergoing a polymerization reaction by ultraviolet rays.
  • the photosensitive component is preferably contained in an amount of 10% by mass to 50% by mass. If the mass is small, the curing speed becomes slow, and the printed materials are stacked with the UV ink being poorly cured. On the other hand, as the proportion of the photosensitive component increases, the ink resilience decreases, and when the mass is large, the ink residue tends to remain in the non-image area.
  • UV ink containing an acrylic ester or methacrylic ester having a linear alkyl group may be used.
  • the investigation alkyl group those having 9 or more carbon atoms are preferred.
  • Specific examples of the acrylate ester having a linear alkyl group include nonyl acrylate, decyl acrylate, undecyl acrylate, dodecyl acrylate, tridecyl acrylate, tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, heptadecyl acrylate, Examples include octadecyl acrylate and isooctadecyl acrylate.
  • methacrylic acid ester having a linear alkyl group examples include nonyl methacrylate, decyl methacrylate, undecyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, tetradecyl methacrylate, pentadecyl methacrylate, hexadecyl methacrylate, heptadecyl methacrylate, Examples include octadecyl methacrylate.
  • the acrylic acid ester or methacrylic acid ester having a linear alkyl group is preferably 0.5% by mass or more, more preferably 1% by mass or more with respect to the total amount of UV ink in terms of improving ink resilience. Moreover, 15 mass% or less is preferable at the point which accelerates
  • any active energy ray that irradiates UV ink can be used as long as it has excitation energy necessary for the curing reaction, and for example, ultraviolet rays and electron beams are preferably used.
  • an electron beam irradiation apparatus capable of emitting an electron beam of 100 to 500 eV is preferably used.
  • ultraviolet irradiation devices such as a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, and an LED can be used, but are not particularly limited.
  • the ink can be cured by irradiation with ultraviolet rays within 2 seconds, more preferably Within 1 second. If it can be cured by ultraviolet irradiation within 2 seconds, the drying process can be shortened without settling, and can be further shortened within 1 second.
  • the ink repellency of the printing plate can be evaluated by measuring the scumming start temperature.
  • the background stain means that the ink remains on the non-image area of the printing plate, and the ink is transferred to a portion of the printing medium where the ink is not originally intended to adhere. In waterless printing, background stains are more likely to occur as the plate temperature increases. If the background is not soiled, stable printing is possible.
  • the plate surface temperature at which this soiling starts to occur is called the soiling start temperature. The higher this temperature, the easier the printing.
  • the soil start temperature is preferably 30 ° C. or higher, more preferably 32 ° C. or higher, although it depends on the printing environment. If it is 30 ° C.
  • printing can be performed without soiling in an air-conditioned normal working environment, and if it is 32 ° C. or higher, strict temperature control is not required, and printing becomes easier. Further, in order to evaluate the persistence of ink repulsion, there is a method in which continuous printing is continued at the scumming start temperature and the number of printing durability until the scumming deteriorates is evaluated.
  • the printing durability is preferably 10,000 or more, and more preferably 50,000 or more.
  • the printing durability number correlates with the plate surface elastic modulus, and when the plate elastic modulus is less than 10 MPa, the printing durability number increases.
  • “Daiso Isodap” registered trademark (manufactured by Daiso Corporation), which is a polymer that does not have photocurability, is appropriately added, and kneaded well with three rolls.
  • UV ink was used.
  • the mass of the composition obtained by removing “Daiso isopap”, pigment and polymerization inhibitor from the UV ink is the mass of the photosensitive component, and the ratio of the mass of the photosensitive component contained in the total amount of the obtained UV ink is the photosensitive component ratio. It was.
  • the ink repellent liquid has a boiling point of 150 ° C. or higher. It is defined as less than 5% by mass.
  • 2 g of the liquid was weighed into an aluminum cup having a diameter of 50 mm and left to stand in an oven at 150 ° C. for 1 hour, and the mass reduction was measured. From the mass loss ratio, it was confirmed that the boiling point of the liquid was 150 ° C. or higher.
  • CP-Y manufactured by Toray Industries, Inc.
  • tap water is used as a developer
  • the exposed original plate is passed through an automatic processor TWL-1160F (manufactured by Toray Industries, Inc.) at a speed of 80 cm / min. A lithographic printing plate was produced.
  • UV printing A printing tester was prepared in which an ultraviolet irradiation device incorporating a variable speed conveyor was connected to the paper discharge unit of a sheet-fed printing machine "Oliver 266EPZ" (manufactured by Sakurai Graphic Systems Co., Ltd.).
  • the waterless lithographic printing plate produced in (3) above was mounted on the printing tester, and a printing test was performed using the UV ink prepared in (1) above or a commercially available ink.
  • Ink was supplied to the printing plate by an ink roller, the printing plate and the blanket were brought into contact, and the ink was transferred from the printing plate to the blanket. Subsequently, an offset printing method was used in which the ink on the blanket was transferred to a thin coated paper that was the printing medium.
  • the supply amount of the UV ink was controlled so that the reflection density of the solid printing portion was 1.8 (black), and the printed matter was obtained by irradiating the UV-transferred paper with ultraviolet rays.
  • a metal halide lamp with an output of 120 W / cm 2 was used, the irradiation distance was changed with the focal length of 150 mm, the width of the lamp house in the flow direction of 100 mm, and the conveyor speed was varied, thereby changing the ultraviolet irradiation time.
  • a waterless planographic printing plate precursor was prepared by the following method.
  • the following heat insulating layer composition solution was applied on a 0.24 mm thick degreased aluminum substrate (Mitsubishi Aluminum Co., Ltd.) and dried at 200 ° C. for 90 seconds to provide a heat insulating layer having a thickness of 6.0 ⁇ m.
  • the heat insulation layer composition solution was obtained by stirring and mixing the following components at room temperature.
  • thermosensitive layer composition solution was applied onto the heat insulating layer and dried by heating at 140 ° C. for 90 seconds to provide a heat-sensitive layer having a thickness of 1.5 ⁇ m.
  • the thermosensitive layer composition solution was obtained by stirring and mixing the following components at room temperature.
  • ⁇ Thermosensitive layer composition solution-1> Infrared absorbing dye: “PROJET” 825LDI (manufactured by Avecia): 16.0 parts by mass (b) Organic complex compound: titanium-n-butoxide bis (acetylacetonate): “Narsem” (registered trademark) titanium ( Manufactured by Nippon Chemical Industry Co., Ltd., concentration: 73% by mass, n-butanol as solvent: 27% by mass): 15.0 parts by mass (c) phenol formaldehyde novolac resin: “Sumilite Resin” (registered trademark) PR53195 (Sumitomo Bakelite Co., Ltd.): 60 parts by mass (d) Polyurethane: “Nipporan” (registered trademark) 5196 (manufactured by Nippon Polyurethane Co., Ltd., concentration: 30% by mass, methyl ethyl ketone as solvent: 35% by mass, cyclohex
  • ⁇ Ink repellent layer composition solution-1> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 80.0 parts by mass (b) Silicone oil: KF-96-50cs (both terminal methyl groups) Blocked polydimethylsiloxane, weight average molecular weight: 3780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 10.0 parts by mass (c) methylhydrogensiloxane HMS305 ( GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning Co., Ltd.): 6.17 parts by mass ( f) Isoparaffin hydrocarbon solvent “Isopar”
  • Example 2 A printing test was performed in the same manner as in Example 1 except that UV ink having a photosensitive component ratio of 30% by mass was used. The ink curing time was 1 second, and the background stain start temperature was 32 ° C., showing very good results.
  • Example 3 A printing test was conducted in the same manner as in Example 1 except that UV ink having a photosensitive component ratio of 50% by mass was used. The ink curing time was 0.5 seconds, and the background stain start temperature was 31 ° C., showing good results.
  • Example 4 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-2.
  • ⁇ Ink repellent layer composition solution-2> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 75.0 parts by mass (b) Silicone oil: KF-96-50cs (weight average) Molecular weight: 3,780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 15.0 parts by mass (c) methyl hydrogen siloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 parts by mass The obtained waterless lithographic printing
  • Example 5 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-3.
  • ⁇ Ink repellent layer composition solution-3> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: “TF” 22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 65.0 parts by mass (b) Silicone oil: KF-96-50cs (Weight average molecular weight: 3,780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 25.0 parts by mass (c) methyl hydrogen siloxane HMS305 (GELES Inc.
  • Example 6 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-4.
  • ⁇ Ink repellent layer composition solution-4> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: “TF” 22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 60.0 parts by mass (b) Silicone oil: KF-96-50cs (Weight average molecular weight: 3,780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 30.0 parts by mass (c) Methylhydrogensiloxane HMS305 (GELES Inc.
  • Example 7 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-5.
  • ⁇ Ink repellent layer composition solution-5> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 70.0 parts by mass (b) Silicone oil: KF-96-10cs (weight average) Molecular weight: 1,250, surface tension: 20.1 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 20.0 parts by mass (c) methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 parts by weight The obtained waterless lithographic
  • Example 8 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-6.
  • ⁇ Ink repellent layer composition solution-6> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 70.0 parts by mass (b) Silicone oil: KF-96-60000cs (weight average) Molecular weight: 116,500, surface tension: 21.3 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 20.0 parts by mass (c) methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 parts by
  • Example 9 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-7.
  • ⁇ Ink repellent layer composition solution-7> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 70.0 parts by mass (b) Fluoro-modified silicone oil: FL-100-100cs ( Weight average molecular weight: 5,970, Boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 20.0 parts by mass (c) Methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d ) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) "Isopar” E (Esso Chemical Co., Ltd.) ): 900 parts by mass The obtained
  • Example 10 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-8.
  • ⁇ Ink repellent layer composition solution-8> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 70.0 parts by mass (b) Hydrocarbon solvent: “Solvesso” (registered trademark) 100 (surface tension: 29 mN / m, boiling point:> 150 ° C., manufactured by ExxonMobil): 20.0 parts by mass (c) methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) vinyl tris ( Methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 Part by weight The obtained waterless lithographic printing plate was subject
  • Example 11 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-9.
  • ⁇ Ink repellent layer composition solution-9> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 70.0 parts by mass (b) Hydrocarbon solvent: “Solvesso” 200 (surface tension) : 36 mN / m, Boiling point:> 150 ° C., manufactured by ExxonMobil): 20.0 parts by mass (c) Methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) Silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (Toray Dow Corning Co., Ltd.): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 parts by mass A waterless lithographic printing plate was subjected to a printing test by the
  • Example 12 Example 1 except that the heat-sensitive layer composition solution-1 was changed to the following heat-sensitive layer composition solution-2, and the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-10. Similarly, a waterless lithographic printing plate precursor was obtained.
  • ⁇ Thermosensitive layer composition solution-2> Infrared absorbing dye: “PROJET” 825LDI (manufactured by Avecia): 16.0 parts by mass (b) Organic complex compound: titanium-n-butoxide bis (acetylacetonate): “Narsem” (registered trademark) titanium ( Manufactured by Nippon Chemical Industry Co., Ltd., concentration: 73% by mass, n-butanol as solvent: 27% by mass): 20.5 parts by mass (c) phenol formaldehyde novolac resin: “Sumilite Resin” (registered trademark) PR53195 (Sumitomo Bakelite Co., Ltd.): 60 parts by mass (d) Polyurethane: “Nipporan” (registered trademark) 5196 (manufactured by Nippon Polyurethane Co., Ltd., concentration: 30% by mass, methyl ethyl ketone as solvent: 35% by mass, cyclohex
  • Example 13 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 12 except that the ink repellent layer composition solution-10 was changed to the following ink repellent layer composition solution-11.
  • Example 14 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 12 except that the ink repellent layer composition solution-10 was changed to the following ink repellent layer composition solution-12.
  • ⁇ Ink repellent layer composition solution-12> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 85.0 parts by mass (b) Silicone oil: KF-96-50cs (weight average) Molecular weight: 3,780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 5.0 parts by mass (c) methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 mass parts About the obtained waterless planographic
  • Example 15 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 12 except that the ink repellent layer composition solution-10 was changed to the following ink repellent layer composition solution-13.
  • ⁇ Ink repellent layer composition solution-13> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 50.0 parts by mass (b) Silicone oil: KF-96-50cs (weight average) Molecular weight: 3,780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 40.0 parts by mass (c) methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 mass parts About the
  • Example 16 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 12 except that the ink repellent layer composition solution-10 was changed to the ink repellent layer composition solution-1.
  • the plate elastic modulus was measured and found to be 10.0 MPa.
  • the scumming start temperature was 34 ° C.
  • the printing durability was 90000. It was.
  • Example 17 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 12 except that the ink repellent layer composition solution-10 was changed to the following ink repellent layer composition solution-14.
  • ⁇ Ink repellent layer composition solution-14> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 70.0 parts by mass (b) Silicone oil: KF-96-50cs (weight average) Molecular weight: 3,780, surface tension: 20.8 mN / m, boiling point:> 150 ° C., manufactured by Shin-Etsu Chemical Co., Ltd.): 20.0 parts by mass (c) methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (e) Platinum catalyst SRX212 (manufactured by Toray Dow Corning): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 parts by mass When the plate surface elastic modul
  • Example 18 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 17 except that the heat sensitive layer composition solution-2 was changed to the following heat sensitive layer composition solution-3.
  • Example 19 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 17 except that the heat sensitive layer composition solution-2 was changed to the following heat sensitive layer composition solution-4.
  • ⁇ Thermosensitive layer composition solution-4> Infrared absorbing dye: “PROJET” 825LDI (manufactured by Avecia): 16.0 parts by mass (b) Organic complex compound: titanium-n-butoxide bis (acetylacetonate): “Narsem” (registered trademark) titanium ( Manufactured by Nippon Chemical Industry Co., Ltd., concentration: 73% by mass, n-butanol as solvent: 27% by mass): 14.9 parts by mass (c) phenol formaldehyde novolac resin: “Sumilite Resin” (registered trademark) PR53195 (Sumitomo Bakelite Co., Ltd.): 60 parts by mass (d) Polyurethane: “Nipporan” (registered trademark) 5196 (manufactured by Nippon Polyurethane Co., Ltd., concentration: 30% by mass, methyl ethyl ketone as solvent: 35% by mass, cyclohex
  • Example 20 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 12 except that the ink repellent layer composition solution-10 was changed to the ink repellent layer composition solution-4.
  • the plate elastic modulus was measured and found to be 7.0 MPa.
  • the background stain start temperature was 36 ° C.
  • the printing durability was 80000. It was.
  • Example 21 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 20 except that the heat-sensitive layer composition solution-2 was changed to the following heat-sensitive layer composition solution-5.
  • Example 22 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 16 except that the heat-sensitive layer composition solution-2 was changed to the following heat-sensitive layer composition solution-6.
  • Example 23 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 20 except that the heat sensitive layer composition solution-2 was changed to the following heat sensitive layer composition solution-7.
  • ⁇ Thermosensitive layer composition solution-7> Infrared absorbing dye: “PROJET” 825LDI (manufactured by Avecia): 16.0 parts by mass (b) Organic complex compound: titanium-n-butoxide bis (acetylacetonate): “Narsem” (registered trademark) titanium ( Manufactured by Nippon Chemical Industry Co., Ltd., concentration: 73% by mass, n-butanol as solvent: 27% by mass): 54.8 parts by mass (c) phenol formaldehyde novolak resin: “Sumilite Resin” (registered trademark) PR53195 (Manufactured by Sumitomo Bakelite Co., Ltd.): 40 parts by mass (d) Polyurethane: “Nipporan” (registered trademark) 5196 (manufactured by Nippon Polyurethane Co., Ltd., concentration: 30% by mass, methyl ethyl ketone as a solvent: 35% by
  • Example 24 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 16 except that the heat sensitive layer composition solution-2 was changed to the following heat sensitive layer composition solution-8.
  • ⁇ Thermosensitive layer composition solution-8> Infrared absorbing dye: “PROJET” 825LDI (manufactured by Avecia): 16.0 parts by mass (b) Organic complex compound: titanium-n-butoxide bis (acetylacetonate): “Narsem” (registered trademark) titanium ( Manufactured by Nippon Chemical Industry Co., Ltd., concentration: 73% by mass, n-butanol as solvent: 27% by mass): 12.6 parts by mass (c) phenol formaldehyde novolac resin: “Sumilite Resin” (registered trademark) PR53195 (Sumitomo Bakelite Co., Ltd.): 60 parts by mass (d) Polyurethane: “Nipporan” (registered trademark) 5196 (manufactured by Nippon Polyurethane Co., Ltd., concentration: 30% by mass, methyl ethyl ketone as solvent: 35% by mass, cyclohex
  • Example 25 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 24 except that the ink repellent layer composition solution-1 was changed to the ink repellent layer composition solution-14.
  • the plate elastic modulus was measured and found to be 11.5 MPa.
  • the soil start temperature was 35 ° C.
  • the number of printed sheets was 30000.
  • Example 26 About the waterless lithographic printing plate obtained in Example 17, a printing test was conducted by the above method using UV ink “UV171CT TW” -M (manufactured by T & K TOKA Co., Ltd.) to which dodecyl acrylate was added in an amount of 10% by mass. As a result, the background contamination start temperature was 38 ° C., and the printing durability was 100,000.
  • Example 27 The waterless lithographic printing plate obtained in Example 17 was used except that oil-based ink “Alpo GT SOYA” -M (manufactured by T & K TOKA Co., Ltd.) was used as the ink containing no photosensitive component, and was blown and dried instead of ultraviolet irradiation.
  • oil-based ink “Alpo GT SOYA” -M manufactured by T & K TOKA Co., Ltd.
  • the background stain start temperature was 38 ° C.
  • the printing durability was 100,000.
  • Example 1 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-15.
  • ⁇ Ink repellent layer composition solution-15> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning): 90.0 parts by mass (b) Methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.) : 2.95 parts by mass (c) Vinyltris (methylethylketooxyimino) silane: 0.88 parts by mass (d) Platinum catalyst SRX212 (manufactured by Dow Corning Toray): 6.17 parts by mass (e) “Isopar” E (manufactured by Esso Chemical Co., Ltd.): 900 parts by mass Using the obtained waterless lithographic printing plate using an oil-based ink “Alpo GT SOYA” -M (manufactured by T & K TOKA Co., Ltd.) as an ink not containing a photosensitive component, When the printing test was conducted by the
  • Example 2 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 1 except that the ink repellent layer composition solution-1 was changed to the ink repellent layer composition solution-12.
  • the obtained waterless lithographic printing plate was printed by the above method except that oil-based ink “Alpo GT SOYA” -M (manufactured by T & K TOKA Co., Ltd.) was used as an ink not containing a photosensitive component, and air drying was performed instead of ultraviolet irradiation.
  • oil-based ink “Alpo GT SOYA” -M manufactured by T & K TOKA Co., Ltd.
  • air drying was performed instead of ultraviolet irradiation.
  • the ink curing time was 1 hour or more
  • the background stain start temperature was 34 ° C.
  • a sufficient ink curing rate was not obtained.
  • Example 3 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 24 except that the ink repellent layer composition solution-1 was changed to the ink repellent layer composition solution-15.
  • the plate elastic modulus was measured and found to be 12.5 MPa.
  • the ink stain resilience was not sustained, with a scumming start temperature of 28 ° C. and a printing durability of 5000 sheets. It was.
  • Example 4 A waterless lithographic printing plate precursor was obtained in the same manner as in Example 24 except that the ink repellent layer composition solution-1 was changed to the following ink repellent layer composition solution-16.
  • ⁇ Ink repellent layer composition solution-16> (A) ⁇ , ⁇ -divinylpolydimethylsiloxane: TF22 (weight average molecular weight 100,000, manufactured by Toray Dow Corning Co., Ltd.): 85.0 parts by mass (b) Octane (surface tension: 21.1 mN / m, Boiling point: 125 ° C., manufactured by Wako Pure Chemical Industries, Ltd.): 5.0 parts by mass (c) Methylhydrogensiloxane HMS305 (manufactured by GELEST Inc.): 2.95 parts by mass (d) Vinyltris (methylethylketooxyimino) silane : 0.88 parts by mass (e) Platinum catalyst SRX212 (Toray Dow Corning Co., Ltd.): 6.17 parts by mass (f) “Isopar” E (Esso Chemical Co., Ltd.): 900 parts by mass was obtained.
  • the plate surface elasticity of the waterless lithographic printing plate was measured and found to be 12.5 MPa.
  • a printing test was performed by the above method using the UV ink “UV171CT TW” -M (manufactured by T & K TOKA Co., Ltd.), the ink stain resilience was not sustained, with a background stain starting temperature of 28 ° C. and a printing durability of 5000 sheets. It was.
  • Comparative Example 5 The waterless lithographic printing plate obtained in Comparative Example 4 was used except that oil-based ink “Alpo GT SOYA” -M (manufactured by T & K TOKA Co., Ltd.) was used as the ink containing no photosensitive component, and was blown and dried instead of ultraviolet irradiation.
  • oil-based ink “Alpo GT SOYA” -M manufactured by T & K TOKA Co., Ltd.
  • the background stain start temperature was 30 ° C.
  • the printing durability was 5000 sheets
  • the ink resilience was not sustained.
  • Tables 1 and 2 show the composition of the ink, the ink repellent layer, and the heat-sensitive layer, and the printing performance.

Abstract

非画線部に付着しやすいインキでも十分に反発させ、その反発効果が持続するインキ反発層を有する水なし平版印刷版原版、および前記水なし平版印刷版原版を用いた印刷方法を提供する。 少なくとも感熱層とインキ反発層を有する平版印刷版原版であって、前記インキ反発層中にインキ反発性の液体を含有し、前記液体の1気圧における沸点が150℃以上である平版印刷版原版である。また、平版印刷版を用いて被印刷体に感光性成分を10質量%以上50質量%以下含むインキを転写した後、該被印刷体に紫外線を照射する工程を含む印刷物の製造方法であって、前記平版印刷版の印刷版原版が、基板上に少なくともインキ反発層を有し、該インキ反発層中に含まれるインキ反発性の液体の表面張力が30mN/m以下である、印刷物の製造方法である。

Description

水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法
 本発明は、水なし平版印刷版原版、および水なし平版印刷版を用いたUV印刷による印刷物の製造方法に関する。
 平版印刷版を用いた印刷法としては、印刷時に版表面に予め水の薄層を形成することで、インキを反発する水あり印刷と、この水に代わりシリコーンゴムでインキを反発する水なし印刷がある。
 両者は従来から油性インキ(酸化重合型のインキ)による油性印刷が一般的に行われてきたが、油性インキの乾燥には時間がかかるため、印刷物を乾燥スペースまで搬送し風乾する必要があり、生産期間や納期の短縮には制限があった。また加熱乾燥する場合は装置が大規模となり、エネルギーコストも高くなるという問題も有していた。
 このようなことから、水あり印刷では紫外線の照射によってインキの硬化が瞬間的に行われるUVインキを用いるUV印刷が提案され、短納期・低コスト化がはかられている(特許文献1)。しかしながら、プラスチックシート、表面処理紙等の非吸収性素材に水あり印刷を行う場合、一般的な紙を使用した場合に比べ湿し水の調節が難しいことが知られている。また、食品パッケージ等にもUVインキが使用されることは多いが、水あり印刷では湿し水を使用することから、印刷後に印刷物を重ねて保管しておいた場合に、湿し水の成分の一部が印刷物表面から、その上に重ねた印刷物の食品に直接接触する裏面に裏移りする問題があった。
 一方、水なし印刷では湿し水を使用しないため、原理的にこれらの問題が発生することはない。水なし印刷はインキ中の炭化水素など低極性成分が、非画線部のインキ反発層に取り込まれ、印刷時に該インキ反発層が加圧され、低極性成分を押し出すことで、インキ反発層の表面に低極性成分の液膜を作り、インキを剥離・反発すると考えられている。
特開2011-225751号
 しかしながら、水なし印刷では、例えばUVインキのような低極性成分の少ない、あるいは含まないインキは非画線部に付着しやすく、使用できるインキの種類に限りがある、また、印刷環境の温度が上昇すると非画線部にインキが付着し始め、インキ反発の効果が持続しなくなるという問題があった。
 本発明はかかる従来技術の欠点を改良するために、UVインキのような非画線部に付着しやすいインキでも十分に反発させ、その反発効果が持続する水なし平版印刷版原版、および前記水なし平版印刷版原版から得られる水なし平版印刷版を用いた印刷方法を提供することを目的とする。
 本発明の印刷版は、以下の構成からなる。
・ 少なくとも感熱層とインキ反発層とを有する平版印刷版原版であって、前記インキ反発層中にインキ反発性の液体を含有し、前記液体の1気圧における沸点が150℃以上である平版印刷版原版。
印刷版として好ましい態様として以下のものがある。
(2)前記液体の25℃における表面張力が15mN/m以上30mN/m以下である前記平版印刷版原版。
(3)前記液体が前記インキ反発層中に10質量%以上30質量%以下含まれる前記いずれかの平版印刷版原版。
(4)感熱層がノボラック樹脂を含有する前記いずれかの平版印刷版原版。
(5)感熱層がノボラック樹脂を20質量%以上95質量%以下含有する前記平版印刷版原版。
(6)感熱層が有機錯化合物を含有する前記いずれかの平版印刷版原版。
(7)感熱層中のノボラック樹脂/有機錯化合物の質量比が2以上6以下である前記いずれかの平版印刷版原版。
(8)表面に1400N/mの荷重を加えたときの版面弾性率が4MPa以上12MPa以下である前記いずれかの平版印刷版原版。
(9)前記いずれかの平版印刷版原版に対して、像に従って露光する工程、
露光された原版を現像して、インキ反発層を除去する工程
から得られる平版印刷版。
 そして平版印刷版の製造方法の発明およびその好ましい態様として以下のものがある。
(10)前記のいずれかに記載の平版印刷版原版に対して、像に従って露光する工程、および
露光された原版を現像して、インキ反発層を除去する工程、を有する平版印刷版の製造方法。
(11)前記いずれかの平版印刷版の表面にインキを付着させる工程と、前記インキを直接またはブランケットを介して被印刷体に転写する工程とを含む印刷物の製造方法。
(12)さらに、被印刷体に転写されたインキに活性エネルギー線を照射する工程を含む前記いずれかの印刷物の製造方法。
 また印刷版の製造方法の発明およびその好ましい態様として以下のものがある。
(13)平版印刷版を用いて被印刷体にインキを転写した後、該被印刷体に紫外線を照射する工程を含む印刷物の製造方法であって、前記平版印刷版が、感熱層およびインキ反発層を有する平版印刷版原版に対して、像に従って露光する工程、さらに露光された原版を現像して、インキ反発層を除去する工程によって得られたものであって、前記印刷版原版が、基板上に少なくともインキ反発層を有し、該インキ反発層中に含まれるインキ反発性の液体の表面張力が30mN/m以下であって
前記インキが感光性成分を10質量%以上50質量%以下含むものである、
印刷物の製造方法。
(14)前記液体が、1気圧における沸点が150℃以上である前記印刷物の製造方法
(15)前記液体がシリコーン化合物である前記いずれかの印刷物の製造方法。
(16)前記液体が前記インキ反発層中に10質量%以上25質量%以下含まれる前記いずれかの印刷物の製造方法。
(17)前記インキが直鎖アルキル基を有するアクリル酸エステルまたはメタクリル酸エステルを0.5質量%以上15質量%以下含む前記いずれかの印刷物の製造方法。
 本発明によれば、UVインキのような水なし平版印刷版の非画線部に付着しやすいインキでも十分に反発させ、その反発効果が持続する水なし平版印刷版原版を得ることができる。
 本発明の水なし平版印刷版原版について、以下に説明する。
 本発明の水なし平版印刷版原版は、少なくとも感熱層とインキ反発層を有する平版印刷版原版であって、前記インキ反発層中に、インキ反発性の液体を含有し、前記液体の1気圧における沸点が150℃以上である。
 ここでインキ反発性の液体としては、この液体がない状態のインキ反発層の表面にこの液体が存在したときに、インキ反発層へのインキの付着を阻害する液体であることが好ましい。インキ反発層の表面を、インキ反発性の液体が薄い液膜状に覆うことでインキ反発層への付着を阻害していると考えている。
 本発明の水なし平版原版は、必要に応じて基板を有する。基板がある場合、基板の上または上方に少なくとも感熱層およびインキ反発層を有する。基板の近くに感熱層およびインキ反発層のいずれがあってもいいが、基板、感熱層およびインキ反発層の順にあることが好ましい。
 本発明に用いることができる基板としては、従来印刷版の基板として用いられ、印刷工程において寸法的な変化の少ない公知の紙、金属、ガラス、フィルムなどが挙げられる。具体的には、紙、プラスチック(ポリエチレン、ポリプロピレン、ポリスチレンなど)がラミネートされた紙、アルミニウム(アルミニウム合金も含む)、亜鉛、銅などの金属板、ソーダライム、石英などのガラス板、シリコンウエハー、セルロースアセテート、ポリエチレンテレフタレート、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタールなどのプラスチックのフィルム、上記金属がラミネートまたは蒸着された紙またはプラスチックフィルムなどが挙げられる。プラスチックフィルムは透明でも不透明でもよい。検版性の観点からは、不透明のフィルムが好ましい。
 これら基板のうち、アルミニウム板は印刷工程において寸法的な変化が少なく、しかも安価であるので特に好ましい。また、軽印刷用の柔軟な基板としては、ポリエチレンテレフタレートフィルムが特に好ましい。
 基板の厚みは特に限定されず、平版印刷に使用される印刷機に対応した厚みを選択すればよい。
 次に、本発明に好ましく用いることができる感熱層について説明する。感熱層としては、描き込みに使用されるレーザー光を熱に変換(光熱変換)する機能を有し、さらに、発生した熱によって、感熱層の少なくとも表面が分解し、もしくは現像液への溶解性が高まる、またはインキ反発層との接着力が低下するものであることが好ましい。このような感熱層は例えば以下のような組成物を含有することができる。
(A)活性水素を有するポリマー、架橋剤、および光熱変換物質を含む組成物。
(B)活性水素を有するポリマー、有機錯化合物、および光熱変換物質を含む組成物。
 前記感熱層は、これらの組成物を含有する溶液または分散液を塗布、乾燥して作製することができる。乾燥は常温で行っても、加熱して行ってもよい。このように作製された感熱層は、レーザー光を照射することで、光熱変換物質から発生した熱により、(A)に示した組成物においては、活性水素を有するポリマーと架橋剤とで構成されていた架橋構造、(B)に示した組成物においては、当該ポリマーと有機錯化合物とで構成されていた架橋構造が分解される。
 本発明において、感熱層に好ましく用いられる活性水素を有するポリマーとしては、活性水素をもつ構造単位を有するポリマーを挙げることができる。活性水素をもつ構造単位としては例えば、-OH、-SH、-NH、-NH-、-CO-NH、-CO-NH-、-OC(=O)-NH-、-NH-CO-NH-、-CO-OH、-CS-OH、-CO-SH、-CS-SH、-SOH、-PO、-SO-NH、-SO-NH-、-CO-CH-CO-などが挙げられる。
 上記組成物(A)および(B)で使用できる活性水素を有するポリマーとしては以下のものが例示される。
(メタ)アクリル酸などのカルボキシル基を含有するモノマーの単独重合体もしくは共重合体、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基を含有する(メタ)アクリル酸エステルの単独重合体もしくは共重合体、N-アルキル(メタ)アクリルアミド、(メタ)アクリルアミドの単独重合体もしくは共重合体、アミン類と(メタ)アクリル酸グリシジルまたはアリルグリシジルとの反応物の単独重合体もしくは共重合体、p-ヒドロキシスチレン、ビニルアルコールの単独重合体もしくは共重合体などの活性水素を有するエチレン性不飽和モノマーの単独重合体もしくは共重合体(共重合モノマー成分としては、活性水素を有する他のエチレン性不飽和モノマーでもよく、活性水素を含有しないエチレン性不飽和モノマーでもよい。)が挙げられる。
 また、活性水素をもつ構造単位を有するポリマーとして主鎖に活性水素をもつ構造単位を有する重合体も挙げられる。このようなポリマーとしては例えば、ポリウレタン類、ポリウレア類、ポリアミド類、エポキシ樹脂類、ポリアルキレンイミン類、ノボラック樹脂類、レゾール樹脂類、セルロース誘導体類などが挙げられる。これらを2種以上含有してもよい。
中でも、アルコール性水酸基、フェノール性水酸基、カルボキシル基を有するポリマーが好ましく、フェノール性水酸基を有するポリマー(p-ヒドロキシスチレンの単独重合体もしくは共重合体、ノボラック樹脂、レゾール樹脂など)がより好ましく、ノボラック樹脂がさらに好ましい。ノボラック樹脂としてはフェノールノボラック樹脂やクレゾールノボラック樹脂が挙げられる。
 活性水素を有するポリマーの含有量は、熱により感熱層表面を分解する、あるいは現像液に対し易溶解性に変化させることにより、現像を促進させる点で、感熱層中20質量%以上が好ましく、30質量%以上がより好ましい。また、感熱層の靱性の点で95質量%以下が好ましく、80質量%以下がより好ましい。
 活性水素を有するポリマーとともに、活性水素を有しない、フィルム形成能を有するポリマー(以下「他のポリマーX」と称する)を含有することも好ましい。
 他のポリマーXとしては、ポリメチル(メタ)アクリレート、ポリブチル(メタ)アクリレートなどの(メタ)アクリル酸エステルの単独重合体もしくは共重合体、ポリスチレン、α-メチルスチレンなどのスチレン系モノマーの単独重合体もしくは共重合体、イソプレン、スチレン-ブタジエンなどの各種合成ゴム類、ポリ酢酸ビニルなどのビニルエステルなどの単独重合体もしくは酢酸ビニル-塩化ビニルなどの共重合体、ポリエステル、ポリカーボネートなどの縮合系各種ポリマーなどが挙げられる。
 これら他のポリマーXの合計の含有量は、感熱層組成物溶液の塗工性を向上させるため、感熱層中5質量%以上が好ましく、より好ましくは10質量%以上である。画像再現を高精細化させるため、感熱層の全固形分中50質量%以下が好ましく、より好ましくは30質量%以下である。
 感熱層の組成物(A)に含まれる架橋剤としては、上記ポリマーが有する活性水素と反応性を有する官能基を複数有する多官能性化合物が挙げられる。例えば、多官能イソシアネート、多官能ブロックドイソシアネート、多官能エポキシ化合物、多官能(メタ)アクリレート化合物、多官能アルデヒド、多官能メルカプト化合物、多官能アルコキシシリル化合物、多官能アミン化合物、多官能カルボン酸、多官能ビニル化合物、多官能ジアゾニウム塩、多官能アジド化合物、ヒドラジンなどが挙げられる。
 感熱層の組成物(B)に含まれる有機錯化合物は、金属と有機化合物とからなるものである。これは活性水素を有するポリマーへの架橋剤として機能する。感熱層にさらに前述の架橋剤を含有してもよい。このような有機錯化合物としては、金属に有機配位子が配位した有機錯塩、金属に有機配位子および無機配位子が配位した有機無機錯塩、金属と有機分子が酸素を介して共有結合している金属アルコキシド類などが挙げられる。これらの中でも、配位子が2個以上のドナー原子を有し、金属原子を含む環を形成するような金属キレート化合物が、有機錯化合物自身の安定性や感熱層組成物溶液の安定性などの面から好ましく用いられる。
 有機錯化合物を形成する主な金属としては、Al(III)、Ti(IV)、Mn(II)、Mn(III)、Fe(II)、Fe(III)、Co(II)、Co(III)、Ni(II)、Ni(IV)、Cu(I)、Cu(II)、Zn(II)、Ge、In、Sn(II)、Sn(IV)、Zr(IV)、Hf(IV)が好ましい。Al(III)は感度向上効果が得られやすい点から特に好ましく、Ti(IV)は印刷インキやインキ洗浄剤に対する耐性が発現しやすい点から特に好ましい。
 また、配位子としては、酸素、窒素、硫黄などをドナー原子として有する配位基を有する化合物が挙げられる。配位基の具体例としては、酸素をドナー原子とするものとしては、-OH(アルコール、エノールおよびフェノール)、-COOH(カルボン酸)、>C=O(アルデヒド、ケトン、キノン)、-O-(エーテル)、-COOR(エステル、R:脂肪族または芳香族炭化水素を表す)、-N=O(ニトロソ化合物)、-NO(ニトロ化合物)、>N-O(N-オキシド)、-SOH(スルホン酸)、-PO(亜リン酸)など、窒素をドナー原子とするものとしては、-NH(1級アミン、ヒドラジン)、>NH(2級アミン、ヒドラジン)、>N-(3級アミン)、-N=N-(アゾ化合物、複素環化合物)、=N-OH(オキシム)、-NO(ニトロ化合物)、-N=O(ニトロソ化合物)、>C=N-(シッフ塩基、複素環化合物)、>C=NH(アルデヒド、ケトンイミン、エナミン類)、-NCS(イソチオシアナト)など、硫黄をドナー原子とするものとしては、-SH(チオール)、-S-(チオエーテル)、>C=S(チオケトン、チオアミド)、=S-(複素環化合物)、-C(=O)-SH、-C(=S)-OH、-C(=S)-SH(チオカルボン酸)、-SCN(チオシアナート)などが挙げられる。
 上記のような金属と配位子から形成される有機錯化合物のうち、好ましく用いられる化合物としては、Al(III)、Ti(IV)、Fe(II)、Fe(III)、Mn(III)、Co(II)、Co(III)、Ni(II)、Ni(IV)、Cu(I)、Cu(II)、Zn(II)、Ge、In、Sn(II)、Sn(IV)、Zr(IV)、Hf(IV)などの金属のβ-ジケトン類、アミン類、アルコール類、カルボン酸類との錯化合物が挙げられ、さらにはAl(III)、Fe(II)、Fe(III)、Ti(IV)、Zr(IV)のアセチルアセトン錯体、アセト酢酸エステル錯体などが特に好ましい錯化合物として挙げられる。
 このような化合物の具体例としては、例えば以下のような化合物を挙げることができる。
アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(プロピルアセトアセテート)、アルミニウムトリス(ブチルアセトアセテート)、アルミニウムトリス(ヘキシルアセトアセテート)、アルミニウムトリス(ノニルアセトアセテート)、アルミニウムトリス(ヘキサフルオロペンタジオネート)、アルミニウムトリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムビス(アセチルアセトネート)モノ(エチルアセトアセテート)、アルミニウムビス(プロピルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムビス(ブチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムビス(ヘキシルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムビス(プロピルアセトアセテート)モノ(エチルアセトアセテート)、アルミニウムビス(ブチルアセトアセテート)モノ(エチルアセトアセテート)、アルミニウムビス(ヘキシルアセトアセテート)モノ(エチルアセトアセテート)、アルミニウムビス(ノニルアセトアセテート)モノ(エチルアセトアセテート)、アルミニウムジブトキシドモノ(アセチルアセトネート)、アルミニウムジイソプロポキシドモノ(アセチルアセトネート)、アルミニウムジイソプロポキシドモノ(エチルアセトアセテート)、アルミニウム-s-ブトキシドビス(エチルアセトアセテート)、アルミニウムジ-s-ブトキシドモノ(エチルアセトアセテート)、アルミニウムジイソプロポキシドモノ(-9-オクタデセニルアセトアセテート)、チタニウムトリイソプロポキシドモノ(アリルアセトアセテート)、チタニウムジイソプロポキシドビス(トリエタノールアミン)、チタニウムジ-n-ブトキシドビス(トリエタノールアミン)、チタニウムジイソプロポキシドビス(アセチルアセトネート)、チタニウムジ-n-ブトキシドビス(アセチルアセトネート)、チタニウムジイソプロポキシドビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジ-n-ブトキシドビス(エチルアセトアセテート)、チタニウムトリ-n-ブトキシドモノ(エチルアセトアセテート)、チタニウムトリイソプロポキシドモノ(メタクリルオキシエチルアセトアセテート)、チタニウムオキサイシドビス(アセチルアセトネート)、チタニウムテトラ(2-エチル-3-ヒドロキシヘキシルオキサイド)、チタニウムジヒドロキシビス(ラクテート)、チタニウム(エチレングリコーレート)ビス(ジオクチルフォスフェート)、ジルコニウムジ-n-ブトキシドビス(アセチルアセトネート)、ジルコニウムテトラキス(ヘキサフルオロペンタンジオネート)、ジルコニウムテトラキス(トリフルオロペンタンジオネート)、ジルコニウムトリ-n-プロポキシドモノ(メタクリルオキシエチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムテトラキス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、トリグリコラートジルコン酸、トリラクテートジルコン酸、鉄(III)アセチルアセトネート、ジベンゾイルメタン鉄(II)、トロポロン鉄、トリストロポロノ鉄(III)、ヒノキチオール鉄、トリスヒノキチオロ鉄(III)、アセト酢酸エステル鉄(III)、鉄(III)ベンゾイルアセトネート、鉄(III)ジフェニルプロパンジオネート、鉄(III)テトラメチルヘプタンジオネート、鉄(III)トリフルオロペンタンジオネート。これらを2種以上含有してもよい。
 このような有機錯化合物は、ポリマーの架橋剤として働く。その料は感熱層中0.5質量%以上が好ましい。また、印刷版の耐刷性を維持する点で50質量%以下が好ましい。
 また、感熱層の組成物に含まれるポリマーとしてノボラック樹脂を用いる場合、画像再現を高精細化する点で、ノボラック樹脂/有機錯化合物の質量比は2以上が好ましく、2.5以上がより好ましく、3以上がさらに好ましい。また、ノボラック樹脂の架橋構造が密に形成され、感熱層の硬度が高まる点で、ノボラック樹脂/有機錯化合物の質量比は6以下が好ましく、5.5以下がより好ましく、5以下がさらに好ましい。上記のようなノボラック樹脂/有機錯化合物の質量比にすることで、感熱層の硬度がより高くなり、印刷時にインキローラーによって上層のインキ反発層が加圧された時に、インキ反発層が変形しやすくなる。そのため、インキ反発性液体がインキ反発層表面に出やすくなりインキ反発性が向上する。
 本発明において、感熱層の組成物(A)および組成物(B)が含むことができる光熱変換物質としては、レーザー光を吸収することにより、光エネルギーを原子・分子の運動エネルギーに変換し、瞬間的に感熱層表面で200℃以上の熱を発生させることで、感熱層の架橋構造を熱分解する機能を有するものが好ましい。特に赤外線または近赤外線を吸収する顔料、染料が好ましい。例えば、カーボンブラック、カーボングラファイト、アニリンブラック、シアニンブラックなどの黒色顔料、フタロシアニン、ナフタロシアニン系の緑色顔料、結晶水含有無機化合物、鉄、銅、クロム、ビスマス、マグネシウム、アルミニウム、チタニウム、ジルコニウム、コバルト、バナジウム、マンガン、タングステンなどの金属粉、またはこれら金属の硫化物、水酸化物、珪酸塩、硫酸塩、燐酸塩、ジアミン化合物錯体、ジチオール化合物錯体、フェノールチオール化合物錯体、メルカプトフェノール化合物錯体などを挙げることができる。
 また、赤外線または近赤外線を吸収する染料としては、エレクトロニクス用や記録用の染料で、最大吸収波長が700nm~1500nmの範囲にあるシアニン系染料、アズレニウム系染料、スクアリリウム系染料、クロコニウム系染料、アゾ系分散染料、ビスアゾスチルベン系染料、ナフトキノン系染料、アントラキノン系染料、ペリレン系染料、フタロシアニン系染料、ナフタロシアニン金属錯体系染料、ポリメチン系染料、ジチオールニッケル錯体系染料、インドアニリン金属錯体染料、分子間型CT染料、ベンゾチオピラン系スピロピラン、ニグロシン染料などが好ましく使用される。
 これらの染料のなかでも、モル吸光係数εの大きなものが好ましく使用される。具体的には、εは1×10L/(mol・cm)以上が好ましく、より好ましくは1×10L/(mol・cm)以上である。εが1×10L/(mol・cm)以上であれば、初期感度をより向上させることができる。ここでの係数は照射する活性エネルギー線に対してである。具体的な波長を示すのであれば780nm、830nmまたは1064nmに注目するのがよい。
 これらの光熱変換物質を2種以上含有してもよい。吸収波長の異なる2種以上の光熱変換物質を含有することにより、発信波長の異なる2種以上のレーザーに対応させることができる。
 これらのなかでも、光熱変換率、経済性および取り扱い性の面から、カーボンブラック、赤外線または近赤外線を吸収する染料が好ましい。
 これら光熱変換物質の含有量は、感熱層中0.1質量%~70質量%が好ましく、より好ましくは0.5質量%~40質量%である。光熱変換物質の含有量を0.1質量%以上とすることで、レーザー光に対する感度をより向上させることができる。一方、70質量%以下とすることで、印刷版の高い耐刷性を維持することができる。
 また、本発明の水なし平版印刷版原版において、感熱層は必要に応じて各種の添加剤を含有してもよい。例えば、塗布性を改良するためにシリコーン系界面活性剤やフッ素系界面活性剤などを含有してもよい。また、インキ反発層との接着性を強化するためにシランカップリング剤、チタンカップリング剤などを含有してもよい。これら添加剤の含有量はその使用目的によって異なるが、一般的には感熱層の全固形分中0.1質量%~30質量%である。
 本発明において用いられる水なし平版印刷版原版において、インキ反発層としては、ポリオルガノシロキサンの架橋物であるシリコーンゴム層が好ましく使用できる。その中でも付加反応型シリコーンゴム層組成物もしくは縮合反応型シリコーンゴム層組成物を塗布して得られる層、またはこれらの組成物の溶液を塗布、乾燥して得られる層が挙げられる。
 付加反応型のシリコーンゴム層組成物は、少なくともビニル基含有オルガノポリシロキサン、複数のヒドロシリル基を有するSiH基含有化合物(以下、「付加反応型架橋剤」と称する。)および硬化触媒を含むことが好ましい。さらに、反応抑制剤を含有してもよい。
 ビニル基含有オルガノポリシロキサンは、下記一般式(I)で表される構造を有し、主鎖末端もしくは主鎖中にビニル基を有するものである。中でも主鎖末端にビニル基を有するものが好ましい。これらを2種以上含有してもよい。
-(SiR-O-)-    (I)
 一般式(I)中、nは2以上の整数を示す。RおよびRは炭素数1~50の飽和または不飽和の炭化水素基を表す。炭化水素基は直鎖状でも枝分かれ状でも環状でもよく、芳香環を含んでいてもよい。RおよびRは同じであっても異なっていてもよい。一般式(I)のポリシロキサンに複数存在するRは相互に同じであっても異なっていてもよい。また 一般式(I)のポリシロキサンに複数存在するR2は相互に同じであっても異なっていてもよい。 上記一般式(I)中、RおよびRは全体の50%以上がメチル基であることが、印刷版のインキ反発性の面で好ましい。また、取扱い性や印刷版のインキ反発性、耐傷性の観点から、ビニル基含有オルガノポリシロキサンの重量平均分子量は1万~60万が好ましい。
 SiH基含有化合物としては、例えば、オルガノハイドロジェンポリシロキサン、ジオルガノハイドロジェンシリル基を有する有機ポリマーが挙げられ、好ましくはオルガノハイドロジェンポリシロキサンである。これらを2種以上含有してもよい。
 オルガノハイドロジェンポリシロキサンは、直鎖状、環状、分岐状、網状の分子構造をもつことができる。例えば以下のものが例示される。
分子鎖両末端がトリメチルシロキシ基で封鎖されたポリメチルハイドロジェンシロキサン、分子鎖両末端がトリメチルシロキシ基で封鎖されたジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端がトリメチルシロキシ基で封鎖されたジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖が両末端がジメチルハイドロジェンシロキシ基で封鎖されたジメチルポリシロキサン、分子鎖両末端がジメチルハイドロジェンシロキシ基で封鎖されたジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖が両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン。
式:RSiO1/2で示されるシロキサン単位と式:RHSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:RHSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:RHSiO2/2で示されるシロキサン単位と式:RSiO3/2で示されるシロキサン単位、および式:HSiO3/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体。
 これらのオルガノポリシロキサンを2種以上用いてもよい。上記式中、Rはそれぞれ独立にアルケニル基以外の一価の炭化水素基であり、置換されていてもよい。例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基などのアルキル基;フェニル基、トリル基、キシリル基、ナフチル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフロロプロピル基などのハロゲン化アルキル基が挙げられる。
 ジオルガノハイドロジェンシリル基を有する有機ポリマーとしては以下のものが例示される。
ジメチルハイドロジェンシリル(メタ)アクレート、ジメチルハイドロジェンシリルプロピル(メタ)アクリレートなどのジメチルハイドロジェンシリル基含有(メタ)アクリル系モノマーと、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸ラウリル、スチレン、α-メチルスチレン、マレイン酸、酢酸ビニル、酢酸アリルなどのモノマーとを共重合したオリゴマー。
 SiH基含有化合物の含有量は、シリコーンゴム層になるための硬化性の観点から、シリコーンゴム層組成物中0.5質量%以上が好ましく、1質量%以上がより好ましい。また、硬化速度の制御しやすさから、20質量%以下が好ましく、15質量%以下がより好ましい。
 反応抑制剤としては、含窒素化合物、リン系化合物、不飽和アルコールなどが挙げられ、アセチレン基含有アルコールが好ましく用いられる。これらを2種以上含有してもよい。これらの反応抑制剤を含有することにより、シリコーンゴム層の硬化速度を調整することができる。反応抑制剤の含有量は、シリコーンゴム層組成物やその溶液の安定性の観点から、シリコーンゴム層組成物中0.01質量%以上が好ましく、0.1質量%以上がより好ましい。また、シリコーンゴム層の硬化性の観点から、シリコーンゴム層組成物中20質量%以下が好ましく、15質量%以下がより好ましい。
 硬化触媒は公知のものから選ぶことができる。好ましくは白金系化合物であり、具体的には白金単体、塩化白金、塩化白金酸、オレフィン配位白金、白金のアルコール変性錯体、白金のメチルビニルポリシロキサン錯体などを挙げることができる。これらを2種以上含有してもよい。硬化触媒の含有量は、シリコーンゴム層の硬化性の観点から、シリコーンゴム層組成物中0.001質量%以上が好ましく、0.01質量%以上がより好ましい。また、シリコーンゴム層組成物やその溶液の安定性の観点から、シリコーンゴム層組成物中20質量%以下が好ましく、15質量%以下がより好ましい。
 また、これらの成分の他に、水酸基含有オルガノポリシロキサンや加水分解性官能基含有シランもしくはこの官能基を含有するシロキサン、ゴム強度を向上させる目的でシリカなどの公知の充填剤、接着性を向上させる目的で公知のシランカップリング剤を含有してもよい。シランカップリング剤としては、アルコキシシラン類、アセトキシシラン類、ケトキシミノシラン類などが好ましく、またビニル基やアリル基がケイ素原子に直結したものが好ましい。
 縮合反応型のシリコーンゴム層組成物は、少なくとも水酸基含有オルガノポリシロキサン、架橋剤および硬化触媒を原料とすることが好ましい。
 水酸基含有オルガノポリシロキサンは、前記一般式(I)で表される構造を有し、主鎖末端もしくは主鎖中に水酸基を有するものである。中でも主鎖末端に水酸基を有するものが好ましい。これらを2種以上含有してもよい。
 縮合反応型のシリコーンゴム層組成物に含まれる架橋剤としては、下記一般式(II)で表される、脱酢酸型、脱オキシム型、脱アルコール型、脱アセトン型、脱アミド型、脱ヒドロキシルアミン型などのケイ素化合物を挙げることができる。
(R4-mSiXm    (II)
 式中、mは2~4の整数を示し、Rは同一でも異なってもよく、炭素数1以上の置換もしくは非置換のアルキル基、アルケニル基、アリール基、またはこれらの組み合わされた基を示す。Xは同一でも異なってもよく、加水分解性基を示す。加水分解性基としては、アセトキシ基などのアシロキシ基、メチルエチルケトオキシム基などのケトオキシム基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、イソプロペノキシ基などのアルケニルオキシ基、アセチルエチルアミノ基などのアシルアルキルアミノ基、ジメチルアミノキシ基などのアミノキシ基などが挙げられる。上記式において、加水分解性基の数mは3または4であることが好ましい。
 具体的な化合物としては以下のものが例示される。
メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシラン、アリルトリアセトキシシラン、フェニルトリアセトキシシラン、テトラアセトキシシランなどのアセトキシシラン類、ビニルメチルビス(メチルエチルケトキシミノ)シラン、メチルトリス(メチルエチルケトキシミノ)シラン、エチルトリス(メチルエチルケトキシミノ)シラン、ビニルトリス(メチルエチルケトキシミノ)シラン、アリルトリス(メチルエチルケトキシミノ)シラン、フェニルトリス(メチルエチルケトキシミノ)シラン、テトラキス(メチルエチルケトキシミノ)シランなどのケトキシミノシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリエトキシシラン、ビニルトリイソプロポキシシランなどのアルコキシシラン類、ビニルトリスイソプロペノキシシラン、ジイソプロペノキシジメチルシラン、トリイソプロペノキシメチルシランなどのアルケニルオキシシラン類、テトラアリロキシシラン。
 これらの中では、シリコーンゴム層の硬化速度、取扱い性などの観点から、アセトキシシラン類、ケトキシミノシラン類が好ましい。これらを2種以上含有してもよい。
 上記架橋剤は、水酸基含有オルガノポリシロキサンと混合することにより、架橋剤とシラノール基とが反応することにより、シラノール基に代わって架橋剤が結合したオルガノシロキサンとなることがある。したがって、シリコーンゴム組成物においては、架橋剤が結合したオルガノシロキサンはあるが、シラノール基を有するオルガノシロキサンはないという場合もある。
 縮合反応型のシリコーンゴム層組成物における架橋剤の添加量は、シリコーンゴム層組成物やその溶液の安定性の観点から、シリコーンゴム層組成物中0.5質量%以上が好ましく、1質量%以上がより好ましい。また、シリコーンゴム層の強度や印刷版の耐傷性の観点から、シリコーンゴム層組成物中20質量%以下が好ましく、15質量%以下がより好ましい。
 縮合反応型のシリコーンゴム層組成物に含まれる硬化触媒としては、有機カルボン酸、酸類、アルカリ、アミン、金属アルコキシド、金属ジケテネート、錫、鉛、亜鉛、鉄、コバルト、カルシウム、マンガンなどの金属の有機酸塩などが挙げられる。具体的には、ジブチル錫ジアセテート、ジブチル錫ジオクテート、ジブチル錫ジラウレート、オクチル酸亜鉛、オクチル酸鉄などを挙げることができる。これらを2種以上含有してもよい。
 縮合反応型のシリコーンゴム層組成物における硬化触媒の含有量は、シリコーンゴム層の硬化性、接着性の観点から、シリコーンゴム層組成物中0.001質量%以上が好ましく、0.01質量%以上がより好ましい。また、シリコーンゴム層組成物やその溶液の安定性の観点から、シリコーンゴム層組成物中15質量%以下が好ましく、10質量%以下がより好ましい。
 本発明における水なし平版印刷版原版のインキ反発層中にはインキ反発性を向上させる目的で、インキ反発性の液体を含有する。この液体の1気圧における沸点が150℃以上であることが好ましい。印刷時に版面が加圧されたとき、インキ反発層表面に前記インキ反発性の液体が表出し、インキの剥離を助けることでインキ反発性を向上させる。沸点が150℃以上であれば、水なし平版印刷版原版を製造時に揮発することが少なく、この液体の添加によって得られるインキ反発性の効果を失うことがない。ここでいう沸点は、1気圧の環境下で1時間静置したのちの質量減少量が、0.5質量%以上になる温度で定義される。言い換えると、この液体は、150℃、1気圧環境下で1時間静置したのちの質量減少が0.5質量%未満である。そうであれば、この液体の添加によるインキ反発性の効果を失うことが少ない。
 また、前記インキ反発性の液体の25℃での表面張力は15mN/m以上30mN/m以下が好ましい。表面張力が15mN/m以上であれば、他のインキ反発層組成物との親和性がより高くなり、インキ反発層組成物溶液の安定性が向上する。表面張力が30mN/m以下であれば、インキが剥離し易くなり、インキ反発性をより向上させることができる。
 前記インキ反発性の液体がインキ反発層表面に十分押し出され、インキ反発性を顕著に向上させる点で、インキ反発層中の含有量は10質量%以上が好ましい。また、インキ反発層の膜強度を維持する点で、インキ反発層中への含有量は30質量%以下が好ましく、25質量%以下であることがより好ましい。
 前記インキ反発性の液体は、シリコーン化合物であることが好ましく、シリコーンオイルがより好ましい。本発明で言うシリコーンオイルとは、インキ反発層の架橋に携わらないフリーのポリシロキサン成分のことを指す。従って、末端ジメチルポリジメチルシロキサン、環状ポリジメチルシロキサン、末端ジメチル-ポリジメチル-ポリメチルフェニルシロキサンコポリマー、末端ジメチル-ポリジメチル-ポリジフェニルシロキサンコポリマーなどのジメチルシリコーンオイル類、またアルキル変性シリコーンオイル、フッ素変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルコール変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、エポキシポリエーテル変性シリコーンオイル、フェノール変性シリコーンオイル、カルボキシ変性シリコーンオイル、メルカプト変性シリコーンオイル、アミド変性シリコーンオイル、カルバナ変性シリコーンオイル、高級脂肪酸変性シリコーンオイルなどの分子中のメチル基の一部に各種有機基を導入した変性シリコーンオイル類が挙げられる。
 これらシリコーンオイルの分子量は、標品にポリスチレンを用いたゲル浸透クロマトグラフィー(GPC)により測定することができ、重量平均分子量Mwが1000~10万のものが好ましい。
 本発明の水なし平版印刷版原版において、版面弾性率は4MPa以上12MPa以下であることが好ましい。版面弾性率はナノインデンテーション法を用いて、ダイヤモンド製円錐圧子を印刷版原版のインキ反発層表面に押し込み、荷重-押し込み深さ線図を取得することで荷重に対する弾性率を算出したものである。版面弾性率は印刷版原版表面に1400N/mの荷重を加えたときの弾性率で定義した。詳細な測定方法は実施例の欄にて説明する。
 インキ反発層の膜強度が向上し、耐刷枚数が増加するという点で、版面弾性率は4MPa以上が好ましく、5MPa以上がより好ましく、7MPa以上がさらに好ましい。また、前記インキ反発性の液体のインキ反発層表面への浸み出しやインキ反発層への再取り込み、あるいはインキ中の液体成分のインキ反発層表面への取り込みを促進し、インキ反発性を持続させる点で、版面弾性率は12MPa以下が好ましい。さらに11MPa以下がより好ましく、10MPa以下がさらに好ましい。特に版面弾性率を10MPa以下にすることで、インキ反発性は顕著に向上する。
 本発明の水なし平版印刷版原版は、インキ反発層を保護する目的で、インキ反発層の表面に保護フィルムおよび/または合紙を有してもよい。
 保護フィルムとしては、露光光源波長の光を良好に透過する厚み100μm以下のフィルムが好ましい。代表例としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタレート、セロファンなどを挙げることができる。また、露光による原版の感光を防止する目的で、種々の光吸収剤,光発色物質、特許第2938886号公報に記載されたような光退色性物質を保護フィルム上に有してもよい。
 合紙としては、秤量30~120g/mのものが好ましく、より好ましくは30~90g/mである。秤量30g/m以上であれば機械的強度が十分であり、120g/m以下であれば経済的に有利であるばかりでなく、水なし平版印刷版原版と紙の積層体が薄くなり、作業性が有利になる。好ましく用いられる合紙の例として、例えば、情報記録原紙40g/m(名古屋パルプ(株)製)、金属合紙30g/m(名古屋パルプ(株)製)、未晒しクラフト紙50g/m(中越パルプ工業(株)製)、NIP用紙52g/m(中越パルプ工業(株)製)、純白ロール紙45g/m(王子製紙(株)製)、クルパック73g/m(王子製紙(株)製)などが挙げられるがこれらに限定されるものではない。
 次に、本発明の水なし平版印刷版原版から水なし平版印刷版を製造する方法について説明する。水なし平版印刷版の製造方法は、上記水なし平版印刷版原版を像に従って露光する工程(露光工程)、露光した水なし平版印刷版原版に物理刺激を与え、露光部のインキ反発層を除去する工程(現像工程)を含む。
 まず、露光工程について説明する。本発明の水なし平版印刷版原版を像に従って露光する。水なし平版印刷版原版が保護フィルムを有する場合、保護フィルム上から露光してもよいし、保護フィルムを剥離して露光してもよい。露光工程で用いられる光源としては、発光波長領域が300nm~1500nmの範囲にあるものが挙げられる。これらの中でも、感熱層の吸収波長として広く用いられることから、近赤外領域付近に発光波長領域が存在する半導体レーザーやYAGレーザーが好ましく用いられる。具体的には、熱への変換効率の観点から780nm、830nm、1064nmの波長のレーザー光が露光に好ましく用いられる。
 次に、現像工程について説明する。露光後の原版に物理刺激を与えることにより、露光部のインキ反発層を除去する。物理刺激を与える方法としては、例えば、(i)現像液を含浸した不織布、脱脂綿、布、スポンジなどで版面を拭き取る方法、(ii)現像液で版面を前処理した後に水道水などをシャワーしながら回転ブラシで擦る方法、(iii)高圧の水や温水、または水蒸気を版面に噴射する方法などが挙げられる。
 現像に先立ち、前処理液中に一定時間版を浸漬する前処理を行ってもよい。前処理液としては、例えば、水や水にアルコールやケトン、エステル、カルボン酸などの極性溶媒を添加したもの、脂肪族炭化水素類、芳香族炭化水素類などの少なくとも1種を含有する溶媒に極性溶媒を添加したもの、あるいは極性溶媒が用いられる。また、上記の現像液組成には、公知の界面活性剤を添加することもできる。界面活性剤としては、安全性、廃棄する際のコストなどの点から、水溶液にしたときにpHが5~8になるものが好ましい。界面活性剤の含有量は現像液の10質量%以下であることが好ましい。このような現像液は安全性が高く、廃棄コストなどの経済性の点でも好ましい。さらに、グリコール化合物あるいはグリコールエーテル化合物を主成分として用いることが好ましく、アミン化合物を共存させることがより好ましい。
 現像液としては、例えば水、アルコールやパラフィン系炭化水素を使用できる。また、プロピレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリプロピレングリコールへのアルキレンオキサイド付加物などのプロピレングリコール誘導体と、水との混合物も使用できる。現像液の具体例としては、HP-7N、WH-3(何れも東レ(株)製)などを挙げることができる。 前処理液としては、例えば特許第4839987号公報に記載されるような、ポリエチレンエーテルジオールおよび1級アミノ基を2個以上有するジアミン化合物を含有するものを用いることができる。前処理液の具体例としては、PP-1、PP-3、PP-F、PP-FII、PTS-1、CP-1、CP-Y、NP-1、DP-1(何れも東レ(株)製)などを挙げることができる。 また、画線部の視認性や網点の計測精度を高める目的から、前処理液または現像液にクリスタルバイオレット、ビクトリアピュアブルー、アストラゾンレッド等の染料を添加して現像と同時に画線部のインキ受容層の染色を行うこともできる。さらには、現像の後に上記の染料を添加した液によって染色することもできる。
 上記現像工程の一部または全部は、自動現像機により自動的に行うこともできる。自動現像機としては以下の装置が使用できる。現像部のみの装置、前処理部および現像部がこの順に設けられた装置、前処理部、現像部、後処理部がこの順に設けられた装置、前処理部、現像部、後処理部、水洗部がこの順に設けられた装置など。このような自動現像機の具体例としては、TWL-650シリーズ、TWL-860シリーズ、TWL-1160シリーズ(共に東レ(株)製)などや、特開平5-6000号公報に記載されるような版の裏面の傷発生を抑制するために受台を曲面状にへこませている自動現像機などが挙げられる。これらを組み合わせて使用してもよい。
 現像処理された水なし平版印刷版を積み重ねて保管する場合に備えて、版面保護の目的で、版と版の間に合紙を挟んでおくことが好ましい。
 次に本発明の水なし平版印刷版から印刷物を製造する方法の例について示す。水なし平版印刷版は湿し水を用いずに印刷が可能な平版印刷版である。感熱層由来の層がインキ受容層となり、それが画線部となる。インキ反発層は非画線部となる。インキ受容層とインキ反発層とはミクロンオーダーの段差があるのみでありほぼ同一平面にあるといっていい。そしてインキ付着性の差異を利用して画線部のみにインキを着肉させた後、被印刷体にインキを転写して印刷する。被印刷体とは薄紙、厚紙、フィルム、ラベルなど印刷される媒体全般を指し、特に限定されるものではない。また、インキの転写は、印刷版から直接被印刷体に行ってもよく、ブランケットを介して行ってもよい。
 本発明の水なし平版印刷版を用いた印刷では、活性エネルギー線により硬化しうるインキを使用することができる。紫外線照射により硬化するインキ(以下、UVインキ)であれば、通常は、反応性モノマーもしくは反応性オリゴマー、光重合開始剤および必要に応じて増感剤、などの紫外線によって重合反応可能な感光性成分が含まれる。水なし平版印刷版を用いたUV印刷では、感光性成分は10質量%以上50質量%以下含まれるのが好ましい。質量少ないと硬化速度が遅くなり、UVインキが硬化不良の状態で被印刷体が積み重ねられるため、裏移りしやすくなる。一方で、感光性成分の割合が増えるに従いインキ反発性は低下し、質量多いと非画線部にインキの残渣が残り易くなる。
 また、インキ反発性を向上させる目的で、直鎖アルキル基を有するアクリル酸エステルまたはメタクリル酸エステルを含有するUVインキを使用しても良い。調査アルキル基としては炭素数9以上のものが好ましい。直鎖アルキル基を有するアクリル酸エステルの具体的な例としては、ノニルアクリレート、デシルアクリレート、ウンデシルアクリレート、ドデシルアクリレート、トリデシルアクリレート、テトラデシルアクリレート、ペンタデシルアクリレート、ヘキサデシルアクリレート、ヘプタデシルアクリレート、オクタデシルアクリレート、イソオクタデシルアクリレート等が挙げられる。直鎖アルキル基を有するメタクリル酸エステルの具体的な例としては、ノニルメタクリレート、デシルメタクリレート、ウンデシルメタクリレート、ドデシルメタクリレート、トリデシルメタクリレート、テトラデシルメタクリレート、ペンタデシルメタクリレート、ヘキサデシルメタクリレート、ヘプタデシルメタクリレート、オクタデシルメタクリレート等が挙げられる。
 直鎖アルキル基を有するアクリル酸エステルまたはメタクリル酸エステルは、インキ反発性を向上させる点でUVインキ全量に対して0.5質量%以上が好ましく、1質量%以上がより好ましい。また、UVインキの硬化性を促進する点で、15質量%以下が好ましく、10質量%以下がより好ましい。
 UVインキを照射する活性エネルギー線としては、硬化反応に必要な励起エネルギーを有するものであればいずれも用いることができるが、例えば紫外線や電子線などが好ましく用いられる。電子線により硬化させる場合は、100~500eVの電子線を放出できる電子線照射装置が好ましく用いられる。紫外線により硬化させる場合は、高圧水銀灯、キセノンランプ、メタルハライドランプ、LED等の紫外線照射装置が利用できるが、特に限定されない。
 紫外線で硬化するUVインキの場合、印刷機の印刷速度、光源の強度・照射面積に依存するが、一般的な印刷条件では、2秒以内の紫外線照射で硬化可能なことが好ましく、より好ましくは1秒以内である。2秒以内の紫外線照射で硬化可能であれば、裏移りなく乾燥工程を短縮化でき、1秒以内であればさらに短縮化できる。
 水なし平版印刷版を用いた印刷では、地汚れ開始温度を測定することにより、印刷版のインキ反発性を評価することができる。地汚れとは、印刷版の非画線部にインキが残り、本来インキの付着を意図していない被印刷体の箇所にインキを転写してしまうことを指す。水なし印刷においては、版面温度が高くなるほど地汚れが発生しやすくなる。地汚れしなければ安定的な印刷が可能となる。この地汚れが発生し始める版面温度を地汚れ開始温度という。この温度が高いほど印刷は容易となる。地汚れ開始温度については印刷環境にもよるが、30℃以上が好ましく、より好ましくは32℃以上である。30℃以上であれば、空調された通常の作業環境では地汚れなく印刷が可能であり、32℃以上であれば厳密な温度管理が不要になるため、より印刷が容易となる。また、インキ反発の持続性を評価するには、地汚れ開始温度で連続印刷を続け、地汚れが悪化するまでの耐刷枚数を評価する方法がある。耐刷枚数は10000枚以上が好ましく、50000枚以上がより好ましい。耐刷枚数は前記版面弾性率と相関があり、版面弾性率が10MPaより小さいとより耐刷枚数は多くなる。
 以下、本発明を実施例によりさらに詳しく説明する。材料の調製および各実施例・比較例における評価は次の方法で行った。
 (1)インキの調製
 以下の方法で本発明の実施例に使用するインキを調製した。この調製方法は、特開平3-39373号公報の実施例に記載されたものである。
 セパラブルフラスコに、ステアリン酸クロライド151gとペンタエリスリトールジアクリレート122gを量り入れ、トルエン273gを添加し溶液とした。前記溶液100質量部に対してさらにp-トルエンスルホン酸1質量部とハイドロキノン0.5質量部を添加し、窒素ガスを流しながら140℃、5時間反応させてアクリルエステルを生成した。次にこのアクリルエステルを20質量部と、ロジン変性エポキシアクリレート(“パンビーム”22C1、ハリマ化成(株)製)60質量部、トリメチロールプロパントリアクリレート(“アロニックス”M309、東亜合成(株)製)10質量部およびアルキッド樹脂(“ハリディップ”116 AM、播磨化成(株)製)10質量を仕込み、オイルバスで100℃にして均一溶解するまで混合攪拌してワニスを得た。次にこのワニスに光重合開始剤(“イルガキュア”(登録商標。以下同じ。)500/“イルガキュア”907=1/1、チバガイギー社製)6質量部、顔料(三菱カーボンMA-7、三菱化学(株)製)22質量部、重合禁止剤(ヒドロキノンモノメチルエーテル)0.1質量部を添加して三本ロールでよく混練りしインキとした。なお前記のアルキッド樹脂とアクリル樹脂は溶液で市販されているため、ここでは760mmHg(1気圧)、1100℃、8時間の条件で溶剤を除去してから使用した。
 インキ中の感光性成分率を変化させるため、光硬化性を有さないポリマーである“ダイソーイソダップ”(登録商標)(ダイソー(株)製)を適宜添加し、三本ロールでよく混練しUVインキとした。UVインキから“ダイソーイソダップ”、顔料および重合禁止剤を除いた組成物の質量を感光性成分の質量とし、得られたUVインキ全量に含まれる感光性成分の質量の比率を感光性成分率とした。
 (2)インキ反発性の液体の沸点測定
 本発明ではインキ反発性の液体の沸点が150℃以上であることを、150℃、1気圧環境下で1時間静置したのちの質量減少が0.5質量%未満であると定義している。実施例で使用した液体の沸点を確認するために、直径50mmのアルミカップに液体2gを量り入れ、150℃のオーブンに1時間静置したのちの質量減少を測定した。その質量減少の比率から、その液体の沸点が150℃またはそれより上であることを確認した。
 (3)水なし平版印刷版の製造
 実施例の水なし平版印刷版原版に対し、CTP用露光機“PlateRite”8800E(大日本スクリーン製造(株)製)を用いて、照射エネルギー:130mJ/cm(ドラム回転数:232rpm)の条件で露光を行った。露光画像は縦550mm×横650mmの水なし平版印刷版原版の中央に、縦20mm×横650mmの帯状のベタ画像を設けた。CP-Y(東レ(株)製)を前処理液として、水道水を現像液として、露光した原版を自動現像機TWL-1160F(東レ(株)製)に速度80cm/分で通し、水なし平版印刷版を製造した。
 (4)UV印刷
 枚葉印刷機“オリバー266EPZ”(桜井グラフィックシステムズ(株)製)の排紙部に速度可変式コンベアを内蔵した紫外線照射装置を連結した印刷試験機を準備した。前記印刷試験器に、上記(3)で製造した水なし平版印刷版を装着し、上記(1)で調製したUVインキ、またはは市販のインキを用いて印刷試験を行った。インキローラーにより印刷版にインキを供給し、印刷版とブランケットとを接触させ、印刷版からブランケットにインキを転写した。続いてブランケット上のインキを被印刷体である薄紙のコート紙に転写するオフセット印刷方式で行った。ベタ印刷部の反射濃度が1.8(墨)になるようにUVインキの供給量を制御し、UVインキが転写した紙に紫外線照射を行うことで印刷物を得た。試験には出力120W/cmのメタルハライドランプを使用し、焦点距離150mm、流れ方向のランプハウスの幅100mmを照射領域とし、コンベア速度を様々に変えることで、紫外線照射時間の変更を行った。
 (5)版面弾性率の測定
 版面弾性率の測定は超微小硬度計“Nano Indenter XP”(MTSシステムズ社製)を用いて行った。25℃大気中でダイヤモンド製円錐圧子(先端曲率半径=50μm)を印刷版表面に押し込み、荷重-押し込み深さ線図を取得した。取得した荷重-押し込み深さ線図から、以下の式(1)を用いて圧子の弾性変形の寄与を含んだ複合弾性率Eを求めた。
 P=4/3・E・R1/2・h3/2  ・・・・・式(1)
ここで、Rは圧子の半径(50μm)、Pは荷重、hは変位を表す。
続いて以下の式(2)を用いて試料の弾性率Eを求めた。
 1/E=(1-ν)/E+(1-ν )/E  ・・・・・式(2)
ここで、ν、Eは試料のポアソン比(0.5)と弾性率、νとEは圧子のポアソン比(0.07)と弾性率(1141GPa)を表す。
本発明の実施例では、1400N/mの荷重を加えたときの弾性率を式(1)および式(2)から計算し、版面弾性率を求めた。
 (6)UVインキの硬化時間確認
 上記(4)の印刷で、ベタ印刷部にセロハンテープ(No.29,日東電工(株)製)を貼り付け、剥がしたときにセロハンテープに転写しなければ硬化していると判断し、インキの最短硬化時間を確認した。
 (7)地汚れ開始温度の測定
 上記(4)の印刷において、チラーを用いてインキローラーの温度を制御し、水なし平版印刷版の版面温度を変更した。版面温度は非接触温度計で測定し、温度ごとに非画線部の地汚れを確認した。
 (8)耐刷枚数の計測
 上記(7)の地汚れ開始温度を測定した後、その温度を維持しながら連続印刷を続けた。5000枚毎に印刷物の地汚れ状態を確認し、目視で悪化が確認できるまでの枚数を耐刷枚数とした。
 [実施例1]
 水なし平版印刷版原版を以下の方法で作製した。
 厚み0.24mmの脱脂したアルミ基板(三菱アルミ(株)製)上に下記の断熱層組成物溶液を塗布し、200℃で90秒間乾燥し、厚み6.0μmの断熱層を設けた。なお、断熱層組成物溶液は、下記成分を室温にて撹拌混合することにより得た。
 <断熱層組成物溶液>
(a)活性水素を有するポリマー:エポキシ樹脂:“エピコート”(登録商標)1010(ジャパンエポキシレジン(株)製):35質量部
(b)活性水素を有するポリマー:ポリウレタン:“サンプレン”(登録商標)LQ-T1331D(三洋化成工業(株)製、固形分濃度:20質量%):375質量部
(c)アルミキレート:アルミキレートALCH-TR(川研ファインケミカル(株)製):10質量部
(d)レベリング剤:“ディスパロン”(登録商標)LC951(楠本化成(株)製、固形分:10質量%):1質量部
(e)酸化チタン:“タイペーク”(登録商標)CR-50(石原産業(株)製)のN,N-ジメチルホルムアミド分散液(酸化チタン50質量%):60質量部
(f)N,N-ジメチルホルムアミド:730質量部
(g)メチルエチルケトン:250質量部。
 次いで、下記の感熱層組成物溶液を前記断熱層上に塗布し、140℃で90秒間加熱乾燥し、厚み1.5μmの感熱層を設けた。なお、感熱層組成物溶液は、下記成分を室温にて撹拌混合することにより得た。
 <感熱層組成物溶液-1>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):15.0質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):25質量部
(e)テトラヒドロフラン:1044質量部
 次いで、塗布直前に調製した下記のインキ反発層組成物溶液-1を前記感熱層上に塗布し、140℃で80秒間加熱し、平均膜厚2.5μmのインキ反発層を設けることで水なし平版印刷版原版を得た。なお、インキ反発層組成物溶液-1は、下記成分を室温にて撹拌混合することにより得た。
 <インキ反発層組成物溶液-1>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100000、東レ・ダウコーニング(株)製):80.0質量部
(b)シリコーンオイル:KF-96-50cs(両末端メチル基封鎖のポリジメチルシロキサン。重量平均分子量:3780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):10.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)イソパラフィン系炭化水素溶剤“アイソパー”(登録商標)E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が10質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は2秒、地汚れ開始温度は33℃と良好な結果を示した。
 [実施例2]
 感光性成分率が30質量%のUVインキを用いた以外は、実施例1と同様にして印刷試験を行った。インキ硬化時間は1秒、地汚れ開始温度は32℃と非常に良好な結果を示した。
 [実施例3]
 感光性成分率が50質量%のUVインキを用いた以外は、実施例1と同様にして印刷試験を行った。インキ硬化時間は0.5秒、地汚れ開始温度は31℃と良好な結果を示した。
 [実施例4]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-2に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-2>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):75.0質量部
(b)シリコーンオイル:KF-96-50cs(重量平均分子量:3,780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):15.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が50質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は0.5秒、地汚れ開始温度は33℃と非常に良好な結果を示した。
 [実施例5]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-3に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-3>
(a)α,ω-ジビニルポリジメチルシロキサン:“TF”22(重量平均分子量100,000、東レ・ダウコーニング(株)製):65.0質量部
(b)シリコーンオイル:KF-96-50cs(重量平均分子量:3,780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):25.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が50質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は0.5秒、地汚れ開始温度は35℃と非常に良好な結果を示した。
 [実施例6]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-4に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-4>
(a)α,ω-ジビニルポリジメチルシロキサン:“TF”22(重量平均分子量100,000、東レ・ダウコーニング(株)製):60.0質量部
(b)シリコーンオイル:KF-96-50cs(重量平均分子量:3,780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):30.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が50質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は0.5秒、地汚れ開始温度は36℃と非常に良好な結果を示した。
 [実施例7]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-5に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-5>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):70.0質量部
(b)シリコーンオイル:KF-96-10cs(重量平均分子量:1,250、表面張力:20.1mN/m、沸点:>150℃、信越化学工業(株)製):20.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が30質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は1秒、地汚れ開始温度は34℃と非常に良好な結果を示した。
 [実施例8]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-6に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-6>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):70.0質量部
(b)シリコーンオイル:KF-96-60000cs(重量平均分子量:116,500、表面張力:21.3mN/m、沸点:>150℃、信越化学工業(株)製):20.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が30質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は1秒、地汚れ開始温度は32℃と非常に良好な結果を示した。
 [実施例9]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-7に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-7>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):70.0質量部
(b)フルオロ変性シリコーンオイル:FL-100-100cs(重量平均分子量:5,970、沸点:>150℃、信越化学工業(株)製):20.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が30質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は1秒、地汚れ開始温度は34℃と非常に良好な結果を示した。
 [実施例10]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-8に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-8>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):70.0質量部
(b)炭化水素溶剤:“Solvesso”(登録商標)100(表面張力:29mN/m、沸点:>150℃、エクソンモービル製):20.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が30質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は1秒、地汚れ開始温度は32℃と非常に良好な結果を示した。
 [実施例11]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-9に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-9>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):70.0質量部
(b)炭化水素溶剤:“Solvesso”200(表面張力:36mN/m、沸点:>150℃、エクソンモービル製):20.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分率が30質量%のUVインキを用いて前記方法により印刷試験を行ったところ、インキ硬化時間は1秒、地汚れ開始温度は31℃と良好な結果を示した。
 [実施例12]
 感熱層組成物溶液-1を以下の感熱層組成物溶液-2に変更し、インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-10に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-2>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):20.5質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):30.1質量部
(e)テトラヒドロフラン:807質量部
 <インキ反発層組成物溶液-10>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):85.0質量部
(b)炭化水素溶剤:“Solvesso”200(表面張力:36mN/m、沸点:>150℃、エクソンモービル製):5.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ12.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は30℃、耐刷枚数は10000枚と良好な結果を示した。
 [実施例13]
 インキ反発層組成物溶液-10を以下のインキ反発層組成物溶液-11に変更したこと以外は実施例12と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層(シリコーンゴム層)組成物溶液-11>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):85.0質量部
(b)炭化水素溶剤:“Solvesso”100(表面張力:29mN/m、沸点:>150℃、エクソンモービル製):5.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ12.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は30℃、耐刷枚数は10000枚と良好な結果を示した。
 [実施例14]
 インキ反発層組成物溶液-10を以下のインキ反発層組成物溶液-12に変更したこと以外は実施例12と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-12>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):85.0質量部
(b)シリコーンオイル:KF-96-50cs(重量平均分子量:3,780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):5.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ12.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は32℃、耐刷枚数は10000枚と良好な結果を示した。
 [実施例15]
 インキ反発層組成物溶液-10を以下のインキ反発層組成物溶液-13に変更したこと以外は実施例12と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-13>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):50.0質量部
(b)シリコーンオイル:KF-96-50cs(重量平均分子量:3,780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):40.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ4.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は37℃、耐刷枚数は10000枚と良好な結果を示した。
 [実施例16]
 インキ反発層組成物溶液-10をインキ反発層組成物溶液-1に変更したこと以外は実施例12と同様にして、水なし平版印刷版原版を得た。
 得られた水なし平版印刷版について、版面弾性率を測定したところ10.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は34℃、耐刷枚数は90000枚と非常に良好な結果を示した。
 [実施例17]
 インキ反発層組成物溶液-10を以下のインキ反発層組成物溶液-14に変更したこと以外は実施例12と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-14>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):70.0質量部
(b)シリコーンオイル:KF-96-50cs(重量平均分子量:3,780、表面張力:20.8mN/m、沸点:>150℃、信越化学工業(株)製):20.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ9.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は35℃、耐刷枚数は100000枚と非常に良好な結果を示した。
 [実施例18]
 感熱層組成物溶液-2を以下の感熱層組成物溶液-3に変更したこと以外は実施例17と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-3>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):16.4質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):40質量部
(e)テトラヒドロフラン:801質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ9.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は35℃、耐刷枚数は100000枚と非常に良好な結果を示した。
 [実施例19]
 感熱層組成物溶液-2を以下の感熱層組成物溶液-4に変更したこと以外は実施例17と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-4>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):14.9質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):43.7質量部
(e)テトラヒドロフラン:799質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ10.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は35℃、耐刷枚数は90000枚と非常に良好な結果を示した。
 [実施例20]
 インキ反発層組成物溶液-10をインキ反発層組成物溶液-4に変更したこと以外は実施例12と同様にして、水なし平版印刷版原版を得た。
 得られた水なし平版印刷版について、版面弾性率を測定したところ7.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は36℃、耐刷枚数は80000枚と非常に良好な結果を示した。
 [実施例21]
 感熱層組成物溶液-2を以下の感熱層組成物溶液-5に変更したこと以外は実施例20と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-5>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):8.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):41.1質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):6.7質量部
(e)テトラヒドロフラン:818質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ5.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は36℃、耐刷枚数は40000枚と良好な結果を示した。
 [実施例22]
 感熱層組成物溶液-2を以下の感熱層組成物溶液-6に変更したこと以外は実施例16と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-6>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):13.7質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):46.7質量部
(e)テトラヒドロフラン:797質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ11.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は34℃、耐刷枚数は60000枚と良好な結果を示した。
 [実施例23]
 感熱層組成物溶液-2を以下の感熱層組成物溶液-7に変更したこと以外は実施例20と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-7>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):54.8質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):40質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):13.3質量部
(e)テトラヒドロフラン:809質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ4.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は36℃、耐刷枚数は10000枚と良好な結果を示した。
 [実施例24]
 感熱層組成物溶液-2を以下の感熱層組成物溶液-8に変更したこと以外は実施例16と同様にして、水なし平版印刷版原版を得た。
 <感熱層組成物溶液-8>
(a)赤外線吸収染料:“PROJET”825LDI(Avecia社製):16.0質量部
(b)有機錯化合物:チタニウム-n-ブトキシドビス(アセチルアセトネート):“ナーセム”(登録商標)チタン(日本化学産業(株)製、濃度:73質量%、溶剤としてn-ブタノール:27質量%を含む):12.6質量部
(c)フェノールホルムアルデヒドノボラック樹脂:“スミライトレジン”(登録商標)PR53195(住友ベークライト(株)製):60質量部
(d)ポリウレタン:“ニッポラン”(登録商標)5196(日本ポリウレタン(株)製、濃度:30質量%、溶剤としてメチルエチルケトン:35質量%、シクロヘキサノン:35質量%を含む):49.3質量部
(e)テトラヒドロフラン:795質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ12.0MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は34℃、耐刷枚数は10000枚と良好な結果を示した。
 [実施例25]
 インキ反発層組成物溶液-1をインキ反発層組成物溶液-14に変更したこと以外は実施例24と同様にして、水なし平版印刷版原版を得た。
 得られた水なし平版印刷版について、版面弾性率を測定したところ11.5MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は35℃、耐刷枚数は30000枚と良好な結果を示した。
 [実施例26]
 実施例17で得られた水なし平版印刷版について、ドデシルアクリレートを全量の10質量%になるよう添加したUVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は38℃、耐刷枚数は100000枚と非常に良好な結果を示した。
 [実施例27]
 実施例17で得られた水なし平版印刷版について、感光性成分を含まないインキとして油性インキ“アルポ GT SOYA”-M(株式会社T&K TOKA製)を用い、紫外線照射ではなく送風乾燥した以外は前記方法により印刷試験を行ったところ、地汚れ開始温度は38℃、耐刷枚数は100000枚と非常に良好な結果を示した。
 [比較例1]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-15に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-15>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):90.0質量部
(b)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(c)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(d)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(e)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、感光性成分を含まないインキとして油性インキ“アルポ GT SOYA”-M(株式会社T&K TOKA製)を用い、紫外線照射ではなく送風乾燥した以外は前記方法により印刷試験を行ったところ、インキ硬化時間は1時間以上、地汚れ開始温度は32℃となり、十分なインキ硬化速度は得られなかった。
 [比較例2]
 インキ反発層組成物溶液-1をインキ反発層組成物溶液-12に変更したこと以外は実施例1と同様にして、水なし平版印刷版原版を得た。
 得られた水なし平版印刷版について、感光性成分を含まないインキとして油性インキ“アルポ GT SOYA”-M(株式会社T&K TOKA製)を用い、紫外線照射ではなく送風乾燥した以外は前記方法により印刷試験を行ったところ、インキ硬化時間は1時間以上、地汚れ開始温度は34℃となり、十分なインキ硬化速度は得られなかった。
 [比較例3]
 インキ反発層組成物溶液-1をインキ反発層組成物溶液-15に変更したこと以外は実施例24と同様にして、水なし平版印刷版原版を得た。
 得られた水なし平版印刷版について、版面弾性率を測定したところ12.5MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は28℃、耐刷枚数は5000枚とインキ反発性は持続しなかった。
 [比較例4]
 インキ反発層組成物溶液-1を以下のインキ反発層組成物溶液-16に変更したこと以外は実施例24と同様にして、水なし平版印刷版原版を得た。
 <インキ反発層組成物溶液-16>
(a)α,ω-ジビニルポリジメチルシロキサン:TF22(重量平均分子量100,000、東レ・ダウコーニング(株)製):85.0質量部
(b)オクタン(表面張力:21.1mN/m、沸点:125℃、和光純薬工業(株)製):5.0質量部
(c)メチルハイドロジェンシロキサンHMS305(GELEST Inc.製):2.95質量部
(d)ビニルトリス(メチルエチルケトオキシイミノ)シラン:0.88質量部
(e)白金触媒SRX212(東レ・ダウコーニング(株)製):6.17質量部
(f)“アイソパー”E(エッソ化学(株)製):900質量部
 得られた水なし平版印刷版について、版面弾性率を測定したところ12.5MPaであった。UVインキ“UV171CT TW”-M(株式会社T&K TOKA製)を用いて前記方法により印刷試験を行ったところ、地汚れ開始温度は28℃、耐刷枚数は5000枚とインキ反発性は持続しなかった。
 [比較例5]
 比較例4で得られた水なし平版印刷版について、感光性成分を含まないインキとして油性インキ“アルポ GT SOYA”-M(株式会社T&K TOKA製)を用い、紫外線照射ではなく送風乾燥した以外は前記方法により印刷試験を行ったところ、地汚れ開始温度は30℃、耐刷枚数は5000枚とインキ反発性は持続しなかった。
 インキ、インキ反発層、および感熱層の組成、ならびに印刷性能について表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (17)

  1. 少なくとも感熱層とインキ反発層とを有する平版印刷版原版であって、前記インキ反発層中にインキ反発性の液体を含有し、前記液体の1気圧における沸点が150℃以上である平版印刷版原版。
  2. 前記液体の25℃における表面張力が15mN/m以上30mN/m以下である請求項1に記載の平版印刷版原版。
  3. 前記液体が前記インキ反発層中に10質量%以上30質量%以下含まれる請求項1または2に記載の平版印刷版原版。
  4. 感熱層がノボラック樹脂を含有する請求項1~3のいずれかに記載の平版印刷版原版。
  5. 感熱層がノボラック樹脂を20質量%以上95質量%以下含有する請求項4の平版印刷版原版。
  6. 感熱層が有機錯化合物を含有する請求項4または5の平版印刷版原版。
  7. 感熱層中のノボラック樹脂/有機錯化合物の質量比が2以上6以下である請求項6の平版印刷版原版。
  8. 表面に1400N/mの荷重を加えたときの版面弾性率が4MPa以上12MPa以下である請求項1~7いずれかに記載の平版印刷版原版。
  9. 請求項1~8いずれかに記載の平版印刷版原版に対して、像に従って露光する工程、
    露光された原版を現像して、インキ反発層を除去する工程
    から得られる平版印刷版。
  10. 請求項1~8のいずれかに記載の平版印刷版原版に対して、像に従って露光する工程、および
    露光された原版を現像して、インキ反発層を除去する工程、を有する平版印刷版の製造方法。
  11. 請求項9に記載の平版印刷版の表面にインキを付着させる工程と、前記インキを直接またはブランケットを介して被印刷体に転写する工程とを含む印刷物の製造方法。
  12. さらに、被印刷体に転写されたインキに活性エネルギー線を照射する工程を含む請求項10に記載の印刷物の製造方法。
  13. 平版印刷版を用いて被印刷体にインキを転写した後、該被印刷体に紫外線を照射する工程を含む印刷物の製造方法であって、前記平版印刷版が、感熱層およびインキ反発層を有する平版印刷版原版に対して、像に従って露光する工程、さらに露光された原版を現像して、インキ反発層を除去する工程によって得られたものであって、前記印刷版原版が、基板上に少なくともインキ反発層を有し、該インキ反発層中に含まれるインキ反発性の液体の表面張力が30mN/m以下であって
    前記インキが感光性成分を10質量%以上50質量%以下含むものである、
    印刷物の製造方法。
  14. 前記液体が、1気圧における沸点が150℃以上である請求項12に記載の印刷物の製造方法
  15. 前記液体がシリコーン化合物である請求項13または14に記載の印刷物の製造方法。
  16. 前記液体が前記インキ反発層中に10質量%以上25質量%以下含まれる請求項13~15のいずれかに記載の印刷物の製造方法。
  17. 前記インキが直鎖アルキル基を有するアクリル酸エステルまたはメタクリル酸エステルを0.5質量%以上15質量%以下含む請求項11~16のいずれかに記載の印刷物の製造方法。
PCT/JP2015/081538 2014-11-11 2015-11-10 水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法 WO2016076286A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580060842.9A CN107073987B (zh) 2014-11-11 2015-11-10 无水平版印刷版原版、和使用无水平版印刷版的印刷物的制造方法
ES15858988T ES2898174T3 (es) 2014-11-11 2015-11-10 Plancha original de impresión planográfica sin agua y método de fabricación de materia impresa con plancha de impresión planográfica sin agua
KR1020177011982A KR20170084056A (ko) 2014-11-11 2015-11-10 무습수 평판 인쇄판 원판, 및 무습수 평판 인쇄판을 사용한 인쇄물의 제조 방법
US15/519,065 US20170232775A1 (en) 2014-11-11 2015-11-10 Waterless printing plate precursor, and method for manufacturing printed matter using waterless printing plate
JP2015556306A JP6686436B2 (ja) 2014-11-11 2015-11-10 水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法
EP15858988.7A EP3219504B1 (en) 2014-11-11 2015-11-10 Waterless planographic printing original plate, and method for manufacturing printed matter using waterless planographic printing plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-228575 2014-11-11
JP2014228575 2014-11-11
JP2015173516 2015-09-03
JP2015-173516 2015-09-03

Publications (1)

Publication Number Publication Date
WO2016076286A1 true WO2016076286A1 (ja) 2016-05-19

Family

ID=55954370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081538 WO2016076286A1 (ja) 2014-11-11 2015-11-10 水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法

Country Status (8)

Country Link
US (1) US20170232775A1 (ja)
EP (1) EP3219504B1 (ja)
JP (1) JP6686436B2 (ja)
KR (1) KR20170084056A (ja)
CN (1) CN107073987B (ja)
ES (1) ES2898174T3 (ja)
TW (1) TW201629633A (ja)
WO (1) WO2016076286A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204046A1 (ja) * 2016-05-27 2017-11-30 東レ株式会社 平版印刷版原版
JP2019064050A (ja) * 2017-09-29 2019-04-25 理想科学工業株式会社 インクカートリッジ
WO2019203263A1 (ja) 2018-04-19 2019-10-24 東レ株式会社 印刷版、印刷版の製造方法、およびそれを用いた印刷物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593326B2 (ja) * 2015-03-06 2019-10-23 東レ株式会社 平版印刷版原版、それを用いた平版印刷版の製造方法および印刷物の製造方法
ES2909347T3 (es) * 2018-06-27 2022-05-06 Toray Industries Plancha original de impresión litográfica, procedimiento de fabricación de una plancha de impresión litográfica y procedimiento de fabricación de impresiones utilizando la misma
EP3650938A1 (en) * 2018-11-09 2020-05-13 Agfa Nv A lithographic printing plate precursor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196346A (ja) * 1984-03-19 1985-10-04 Toray Ind Inc 水不要性平版材の画像形成用液
JPH1158923A (ja) * 1997-08-19 1999-03-02 Toppan Printing Co Ltd 印刷方法
JPH11344804A (ja) * 1997-08-08 1999-12-14 Dainippon Printing Co Ltd パターン形成体およびパターン形成方法
JP2001508001A (ja) * 1997-01-17 2001-06-19 アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ レーザーで像形成可能な記録材料およびそれから製造される無水オフセット印刷用の印刷版
JP2010131980A (ja) * 2008-11-06 2010-06-17 Toray Ind Inc 印刷版、印刷版原版および印刷方法
JP2012093728A (ja) * 2010-09-30 2012-05-17 Toray Ind Inc 直描型水なし平版印刷版原版

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975352A (en) * 1974-08-13 1976-08-17 Eastman Kodak Company Repellent compositions and elements containing the same
WO1997017208A1 (en) * 1995-11-08 1997-05-15 Toray Industries, Inc. Direct drawing type waterless planographic original form plate
DE69841238D1 (de) * 1997-08-08 2009-11-26 Dainippon Printing Co Ltd Objekt zur erzeugung von mustern, methode zur erzeugung von mustern, sowie deren anwendungen
JP2001232959A (ja) * 2000-02-21 2001-08-28 Toray Ind Inc 直描型水なし平版印刷版原版
DE10018547C2 (de) * 2000-04-14 2003-11-20 Koenig & Bauer Ag Verfahren zur Bebilderung von Druckplatten
JP2008143993A (ja) * 2006-12-08 2008-06-26 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化性水洗浄性平版オフセット印刷インキならびに印刷物
PL2416218T3 (pl) * 2009-03-31 2014-07-31 Toray Industries Prekursor do bezwodnej litograficznej formy drukowej o bezpośrednim typie drukowania i sposób jego wytwarzania
CN103154817B (zh) * 2010-09-30 2015-11-25 东丽株式会社 直接描绘型无水平版印刷版原版
DE102011052991B4 (de) * 2011-08-25 2013-12-24 Gert Sieger Verfahren zur Herstellung einer Druckform für den wasserlosen Offsetdruck

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196346A (ja) * 1984-03-19 1985-10-04 Toray Ind Inc 水不要性平版材の画像形成用液
JP2001508001A (ja) * 1997-01-17 2001-06-19 アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ レーザーで像形成可能な記録材料およびそれから製造される無水オフセット印刷用の印刷版
JPH11344804A (ja) * 1997-08-08 1999-12-14 Dainippon Printing Co Ltd パターン形成体およびパターン形成方法
JPH1158923A (ja) * 1997-08-19 1999-03-02 Toppan Printing Co Ltd 印刷方法
JP2010131980A (ja) * 2008-11-06 2010-06-17 Toray Ind Inc 印刷版、印刷版原版および印刷方法
JP2012093728A (ja) * 2010-09-30 2012-05-17 Toray Ind Inc 直描型水なし平版印刷版原版

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204046A1 (ja) * 2016-05-27 2017-11-30 東レ株式会社 平版印刷版原版
CN109154779A (zh) * 2016-05-27 2019-01-04 东丽株式会社 平版印刷版原版
JPWO2017204046A1 (ja) * 2016-05-27 2019-03-28 東レ株式会社 平版印刷版原版
US10850548B2 (en) 2016-05-27 2020-12-01 Toray Industries, Inc. Lithographic printing precursor
CN109154779B (zh) * 2016-05-27 2021-03-12 东丽株式会社 平版印刷版原版
JP2019064050A (ja) * 2017-09-29 2019-04-25 理想科学工業株式会社 インクカートリッジ
JP7030466B2 (ja) 2017-09-29 2022-03-07 理想科学工業株式会社 インクカートリッジ
WO2019203263A1 (ja) 2018-04-19 2019-10-24 東レ株式会社 印刷版、印刷版の製造方法、およびそれを用いた印刷物の製造方法
JPWO2019203261A1 (ja) * 2018-04-19 2021-03-18 東レ株式会社 インキ着肉層形成用組成物、印刷版、およびそれを用いた印刷物の製造方法
JP7040522B2 (ja) 2018-04-19 2022-03-23 東レ株式会社 インキ着肉層形成用組成物、印刷版、およびそれを用いた印刷物の製造方法

Also Published As

Publication number Publication date
EP3219504A4 (en) 2018-08-01
US20170232775A1 (en) 2017-08-17
EP3219504A1 (en) 2017-09-20
TW201629633A (zh) 2016-08-16
JP6686436B2 (ja) 2020-04-22
ES2898174T3 (es) 2022-03-04
JPWO2016076286A1 (ja) 2017-08-24
CN107073987A (zh) 2017-08-18
EP3219504B1 (en) 2021-08-25
CN107073987B (zh) 2020-03-27
KR20170084056A (ko) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6686436B2 (ja) 水なし平版印刷版原版、および水なし平版印刷版を用いた印刷物の製造方法
JP6753402B2 (ja) 平版印刷版原版
KR102245390B1 (ko) 인쇄물의 제조 방법
JP7371684B2 (ja) 円筒状印刷版および印刷物の製造方法
JP4983975B2 (ja) 水なし平版印刷版原版の製造方法および水なし平版印刷版原版
JP2019152827A (ja) 平版印刷版原版
JP6743979B2 (ja) 平版印刷版原版、平版印刷版の製造方法、およびそれを用いた印刷物の製造方法
JP4983976B2 (ja) 水なし平版印刷版原版
JP6930145B2 (ja) 印刷版用シリコーン組成物、並びに平版印刷版原版、平版印刷版および印刷物の製造方法
JP4983514B2 (ja) 水なし平版印刷版原版
JP2019093613A (ja) 印刷物の製造方法
JP2020026065A (ja) 平版印刷版原版、およびそれを用いた平版印刷版の製造方法、印刷物の製造方法
JP2022119304A (ja) 平版印刷版原版、平版印刷版の製造方法、および印刷物の製造方法
JP2020069759A (ja) 転写フィルムの製造方法およびそれを用いた転写加飾体の製造方法
JP2020049737A (ja) 水圧転写フィルムの製造方法およびそれを用いた水圧転写体の製造方法
JP2020026136A (ja) 平版印刷版原版、平版印刷版の製造方法、およびそれを用いた印刷物の製造方法
JP2022158844A (ja) 平版印刷版原版および平版印刷版の製造方法
JP2007147819A (ja) 水なし平版印刷版原版

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015556306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177011982

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858988

Country of ref document: EP