WO2016056379A1 - フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体 - Google Patents

フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体 Download PDF

Info

Publication number
WO2016056379A1
WO2016056379A1 PCT/JP2015/076651 JP2015076651W WO2016056379A1 WO 2016056379 A1 WO2016056379 A1 WO 2016056379A1 JP 2015076651 W JP2015076651 W JP 2015076651W WO 2016056379 A1 WO2016056379 A1 WO 2016056379A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
film
separator
divided
information
Prior art date
Application number
PCT/JP2015/076651
Other languages
English (en)
French (fr)
Inventor
功士 加集
佑介 今
坂本 達哉
剣 王
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US15/517,729 priority Critical patent/US10355256B2/en
Priority to CN201580054773.0A priority patent/CN106796183B/zh
Priority to KR1020177010258A priority patent/KR101759468B1/ko
Priority to JP2016520129A priority patent/JP6017093B2/ja
Publication of WO2016056379A1 publication Critical patent/WO2016056379A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/02Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a stationary cutting member
    • B26D1/03Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a stationary cutting member with a plurality of cutting members
    • B26D1/035Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a stationary cutting member with a plurality of cutting members for thin material, e.g. for sheets, strips or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/14Means for treating work or cutting member to facilitate cutting by tensioning the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/26Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
    • B26D7/2614Means for mounting the cutting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H16/00Unwinding, paying-out webs
    • B65H16/10Arrangements for effecting positive rotation of web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H26/00Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms
    • B65H26/02Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/894Pinholes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • G03B1/02Moving film strip by pull on end thereof
    • G03B1/04Pull exerted by take-up spool
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • G03B1/42Guiding, framing, or constraining film in desired position relative to lens system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • G03B1/56Threading; Loop forming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/28Locating light-sensitive material within camera
    • G03B17/30Locating spools or other rotatable holders of coiled film
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/42Interlocking between shutter operation and advance of film or change of plate or cut-film
    • G03B17/425Interlocking between shutter operation and advance of film or change of plate or cut-film motor drive cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/32Details specially adapted for motion-picture projection
    • G03B21/321Holders for films, e.g. reels, cassettes, spindles
    • G03B21/328Means for fixing the film on the periphery of a reel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/60Details of processes or procedures
    • B65H2557/62Details of processes or procedures for web tracking, i.e. retrieving a certain position of a web
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N2021/8924Dents; Relief flaws
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/24Details of cameras or camera bodies; Accessories therefor with means for separately producing marks on the film
    • G03B2217/242Details of the marking device
    • G03B2217/243Optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a film manufacturing method, a film manufacturing apparatus, a film, and a film winding body.
  • a defect inspection apparatus for sheet-like products having an optical film is known (Patent Document 1).
  • This defect inspection apparatus uses the defect information obtained from the protective film inspection unit as code data (two-dimensional code, QR code (registered trademark)) together with its position information and manufacturing identification information on one end surface of the PVA film original fabric. It is formed at a predetermined pitch.
  • any film among the plurality of films obtained by cutting the sheet-like product along the longitudinal direction in the slit process includes the defect.
  • the film which does not have a fault can be manufactured by giving appropriate measures, such as excising the location which has a fault, with respect to a film with a fault.
  • any film among the plurality of films has a defect. Whether it is contained cannot be specified accurately, and it is determined that the film is a non-defective film even though it is a defective film having defects. As a result, an appropriate measure cannot be applied to the defective film, and in some cases, the defective film flows out as a non-defective film.
  • An object of the present invention is to provide a film manufacturing method, a film manufacturing apparatus, a film, and a film winding that reduce a risk of determining a film having a defect as a non-defective film when a film is obtained by cutting the film raw material. To provide a body.
  • a film manufacturing method includes a defect information acquisition step of acquiring defect information including position information of defects in a film original, and a slit along the longitudinal direction of the film original.
  • a slit process in which a plurality of films are obtained by slitting in a line, and a defect determination of the film after slitting is performed based on the defect information regarding one defect, so that the film actually including the defect and the film are adjacent to the film.
  • the film actually including the defect is determined not only as the defective film but also as another film adjacent to the film as a defective film. To do.
  • the film that should originally contain the defect does not contain the defect, and another film adjacent to the film contains the defect. Even in this case, it is possible to reduce the risk of erroneously determining a film having a defect as a non-defective film.
  • the defect information acquisition step as the defect information, information on the presence / absence of defects for each divided region obtained by dividing the surface area of the film original fabric into a plurality of regions arranged in the width direction.
  • the determination step a film obtained by including the divided region having the defect and another film adjacent to the film based on the defect information related to the one divided region having the defect is a defective film. It may be a manufacturing method to be determined.
  • the original film in the slit process, is slit with a slit line along the boundary line of the divided area.
  • the boundary line of the divided area having the defect is formed. The manufacturing method which determines the said another film obtained including the division area adjacent to this division area as a defective film through this may be sufficient.
  • the defect When slitting the original film with a slit line along the boundary line of the divided area having a defect, the defect is likely to be included in another film adjacent to the film that should originally contain the defect due to the shift of the slit position.
  • the film obtained by slitting the original film with a slit line along the boundary line of the divided area and including the divided area adjacent to the divided area having a defect as a defective film can be appropriately determined as a defective film, and the risk of erroneously determining a film having a defect as a non-defective film can be reduced.
  • the original film in the slitting process, is slit with a slit line along a boundary line of the divided region so as to obtain each film corresponding to a plurality of the divided regions,
  • a divided region adjacent to the divided region is provided through a boundary line of the divided region located at an end portion of the plurality of divided regions corresponding to each of the films.
  • the manufacturing method which determines the said another film obtained by including as a defective film may be sufficient.
  • the film adjacent to the film corresponding to the divided area having a defect is likely to contain defects, and both adjacent films are regarded as defective films. It is necessary to judge.
  • the original film in the slitting process, is slit with a slit line along a boundary line of the divided areas so as to obtain the films corresponding to the three divided areas.
  • a divided region adjacent to the divided region is provided via a boundary line of the divided region located at an end of the three divided regions corresponding to the films and having the defect.
  • the manufacturing method which determines the said another film obtained by including as a defective film may be sufficient.
  • the film adjacent to the film corresponding to the three divided regions has a defect. Is not included, and it is not necessary to determine the film on both sides as a defective film. As a result, it is possible to reduce the number of films that are judged as defective films even though no defects are actually included.
  • the film original fabric is slit by a slit line that divides the divided area, and in the determination process, an area formed by dividing the divided area having the defect is obtained.
  • the manufacturing method which determines the two films obtained by including it as a defective film may be sufficient.
  • the two films obtained including the area obtained by dividing the divided area having defects are likely to contain defects.
  • the said two films with high possibility of including a defect can be determined as a defective film, and the risk of erroneously determining a film having a defect as a non-defective film is reduced. Can do.
  • the defect information acquisition step as the defect information, a first divided region and a second divided region wider than the first divided region are alternately arranged. Information on the presence or absence of defects is obtained, and in the slitting process, the original film is slit with a slit line that divides the first divided area.
  • the first divided area having the defect is The manufacturing method which determines two films obtained including the area
  • the film manufacturing method which concerns on this invention is the defect information acquisition process which acquires the defect information containing the positional information on the defect in a film original fabric, and the said film original fabric in a longitudinal direction.
  • the defect information acquisition process which acquires the defect information containing the positional information on the defect in a film original fabric, and the said film original fabric in a longitudinal direction.
  • the two films divided by the slit line are determined as defective films.
  • the film is likely to be included in another film adjacent to the film that should originally contain defects due to the shift of the slit position.
  • two films adjacent to each other are judged as defective films, so that the film that should originally contain defects does not contain any defects, and another film adjacent to the films contains defects.
  • the risk of erroneously determining a film having a defect as a non-defective film can be reduced.
  • one film obtained including the divided area is determined as a defective film.
  • a divided region having a defect is not slit by a slit line, even if the slit position is shifted, the possibility that the defect is included in another film adjacent to the film that should originally include the defect is low. Therefore, by determining that one film obtained including a divided region is a defective film, it is possible to reduce the number of films that are determined to be defective even though no defect is actually included.
  • the film manufacturing method according to the present invention may be a manufacturing method including a defect information recording step for recording the defect information for each unit region having a predetermined length in the longitudinal direction of the film original fabric.
  • the defect information for each unit area can be recorded collectively, and the manufacturing process can be simplified.
  • the film manufacturing method according to the present invention may be a manufacturing method in which in the defect information recording step, information on the presence or absence of the defect for each of the divided regions in the unit region is recorded.
  • the unit area can be further divided into divided areas and recorded together as information on the presence or absence of defects in each divided area, and the amount of information to be recorded can be reduced.
  • the defect information recording step according to the number of defects in the unit area, as the defect information, information on the number of defects in the unit area, position information on each defect, and each A first mode for recording at least one information selected from the group consisting of defect size information, and the defect information for each of the divided areas in the unit area are recorded as the defect information. It may be a manufacturing method for switching between the second mode.
  • the first mode for recording detailed defect information and the second mode for recording simple information can be switched according to the number of defects, the amount of information that can be recorded is increased.
  • appropriate defect information can be recorded under the restriction of the information amount.
  • a first mark indicating the position of the defect is given to the film that actually includes the defect, and a second mark is provided at a position corresponding to the first mark in the another film. It may be a manufacturing method including a defect mark applying step for applying a mark.
  • the film manufacturing method provides, based on the defect information, a first mark indicating the position of the defect at a position corresponding to the film that actually includes the defect in the original film, and the film. Including the original defect defect applying step of applying the second mark to the position corresponding to the other film on the original fabric and moved in the width direction from the position of the first mark, the slit step Then, the manufacturing method which slits the said film original fabric provided with the said 1st mark and the said 2nd mark may be sufficient.
  • a mark in order to give a mark with respect to the film raw material before a slit, compared with the case where a mark is provided with respect to the film after a slit, a mark can be provided to an exact position. .
  • the film manufacturing method according to the present invention may be a manufacturing method in which the first mark and the second mark are applied so as not to overlap the slit line in the raw fabric defect mark applying step.
  • the film manufacturing method according to the present invention may be a manufacturing method including a defect excision step of excising a part of the defective film based on the defect information.
  • the film manufacturing apparatus which concerns on this invention has the defect information acquisition part which acquires the defect information containing the positional information on the defect in a film original fabric, and the said film original fabric in a longitudinal direction.
  • a slit part that slits along a slit line along which a plurality of films are obtained, and a defect determination of the film after slitting based on the defect information related to one defect described above, the film actually including the defect and the film
  • a determination unit that determines another adjacent film as a defective film.
  • the film manufacturing apparatus which concerns on this invention has the defect information acquisition part which acquires the defect information containing the positional information on the defect in a film original fabric, and the said film original fabric in a longitudinal direction.
  • the defect information acquisition part includes the defect information, Information on the presence or absence of a defect for each divided region obtained by dividing the surface area of the original film into a plurality of regions arranged in the width direction is obtained, and the determination unit overlaps the divided region where the defect exists with the slit line. If not, one film obtained including the divided area is determined as a defective film, and the divided area where the defect exists or its boundary line is the slit line. If the overlap is characterized by determining the two films being separated by the slit line as defective film.
  • the film which concerns on this invention is the several film obtained corresponding to every area
  • the film is obtained corresponding to a region adjacent to the region including the defect through the boundary line, and a mark is provided at a position facing the defect through the boundary line. It is characterized by.
  • the film winding body according to the present invention is characterized in that the film is wound into a roll shape.
  • the film is easy to handle and the position of the defect when the film is unwound. Can be recognized.
  • FIG. 1 is a schematic diagram illustrating a cross-sectional configuration of a lithium ion secondary battery according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the detailed structure of the lithium ion secondary battery shown by FIG.
  • FIG. It is a schematic diagram which shows the other structure of the lithium ion secondary battery shown by FIG.
  • It is a schematic diagram for demonstrating the defect detection process and defect information recording process of the defect marking method of the said separator raw fabric.
  • It is a figure for demonstrating the structure of the base-material defect inspection apparatus in the said defect detection process.
  • It is a figure for demonstrating the structure of the coating defect inspection apparatus in the said defect detection process.
  • FIG. 1 It is a schematic diagram which shows the structure of the slit apparatus which slits the said separator. It is an enlarged view, a side view, and a front view showing the configuration of the cutting device of the slit device shown in FIG. It is a schematic diagram for demonstrating the reading process of the said defect position identification method of the said separator, a mark provision process, and a winding-up process. It is a schematic diagram for demonstrating the mark detection process of the said defect position identification method of a separator, and a defect removal process. It is a schematic diagram for demonstrating the defect detection process and defect information recording process of the defect marking method of the separator original fabric which concerns on Embodiment 2.
  • FIG. 1 It is a schematic diagram which shows the structure of the slit apparatus which slits the said separator. It is an enlarged view, a side view, and a front view showing the configuration of the cutting device of the slit device shown in FIG. It is a schematic diagram for demonstrating the reading process of the said defect
  • FIG. 1 It is a schematic diagram for demonstrating the reading process of the said defect position identification method of the said separator, a mark provision process, and a winding-up process.
  • FIG. 2 It is a top view of the separator original fabric for demonstrating the position which records a defect code
  • FIG. It is a figure which illustrates the relationship between the division area containing a defect, a slit line, and a defect separator.
  • Embodiment 1 As an example of the film according to the present invention, a separator for a battery such as a lithium ion secondary battery and a heat resistant separator will be described. Moreover, a separator manufacturing method and a separator manufacturing apparatus are demonstrated in order as an example of the film manufacturing method and film manufacturing apparatus which concern on this invention.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density, and are therefore currently used for mobile devices such as personal computers, mobile phones, personal digital assistants, automobiles, airplanes, etc.
  • As a battery it is widely used as a stationary battery that contributes to the stable supply of electric power.
  • FIG. 1 is a schematic diagram showing a cross-sectional configuration of a lithium ion secondary battery 1.
  • the lithium ion secondary battery 1 includes a cathode 11, a separator 12, and an anode 13.
  • An external device 2 is connected between the cathode 11 and the anode 13 outside the lithium ion secondary battery 1. Then, electrons move in the direction A when the lithium ion secondary battery 1 is charged, and in the direction B when the lithium ion secondary battery 1 is discharged.
  • the separator 12 is disposed between the cathode 11 that is the positive electrode of the lithium ion secondary battery 1 and the anode 13 that is the negative electrode thereof so as to be sandwiched between them.
  • the separator 12 is a porous film that allows lithium ions to move between the cathode 11 and the anode 13 while separating them.
  • the separator 12 includes, for example, polyolefin such as polyethylene and polypropylene as its material.
  • FIG. 2 is a schematic diagram showing a detailed configuration of the lithium ion secondary battery 1 shown in FIG. 1, where (a) shows a normal configuration, and (b) shows a temperature rise of the lithium ion secondary battery 1. (C) shows a state when the temperature of the lithium ion secondary battery 1 is rapidly increased.
  • the separator 12 is provided with a large number of holes P.
  • the lithium ions 3 of the lithium ion secondary battery 1 can come and go through the holes P.
  • the lithium ion secondary battery 1 may be heated due to an overcharge of the lithium ion secondary battery 1 or a large current caused by a short circuit of an external device.
  • the separator 12 is melted or softened, and the hole P is closed. Then, the separator 12 contracts. Thereby, since the traffic of the lithium ion 3 stops, the above-mentioned temperature rise is also stopped.
  • the separator 12 when the temperature of the lithium ion secondary battery 1 is rapidly increased, the separator 12 is rapidly contracted. In this case, as shown in FIG. 2C, the separator 12 may be broken. And since the lithium ion 3 leaks from the destroyed separator 12, the traffic of the lithium ion 3 does not stop. Therefore, the temperature rise continues.
  • FIG. 3 is a schematic diagram showing another configuration of the lithium ion secondary battery 1 shown in FIG. 1, where (a) shows a normal configuration, and (b) shows that the lithium ion secondary battery 1 is abruptly changed. The state when the temperature is raised is shown.
  • the lithium ion secondary battery 1 may further include a heat resistant layer 4.
  • the heat-resistant layer 4 and the separator 12 form a heat-resistant separator 12a (separator).
  • the heat-resistant layer 4 is laminated on one surface of the separator 12 on the cathode 11 side.
  • the heat-resistant layer 4 may be laminated on one surface of the separator 12 on the anode 13 side, or may be laminated on both surfaces of the separator 12.
  • the heat-resistant layer 4 is also provided with holes similar to the holes P.
  • the lithium ions 3 come and go through the holes P and the holes of the heat-resistant layer 4.
  • the heat resistant layer 4 includes, for example, wholly aromatic polyamide (aramid resin) as a material thereof.
  • the heat-resistant layer 4 assists the separator 12.
  • the shape of is maintained. Therefore, the separator 12 is melted or softened, and the hole P is only blocked. Thereby, since the traffic of the lithium ion 3 stops, the above-mentioned overdischarge or overcharge is also stopped. Thus, destruction of the separator 12 is suppressed.
  • the manufacture of the heat-resistant separator 12a of the lithium ion secondary battery 1 is not particularly limited, and can be performed using a known method. In the following description, it is assumed that the separator 12 mainly contains polyethylene as its material. However, even when the separator 12 includes other materials, the heat-resistant separator 12a can be manufactured by the same manufacturing process.
  • the separator 12 is a polyolefin separator formed from a polyethylene resin containing ultrahigh molecular weight polyethylene, the separator 12 can be manufactured by the following method.
  • This method is (1) kneading to obtain a polyethylene resin composition by kneading ultrahigh molecular weight polyethylene and an inorganic filler (for example, calcium carbonate, silica) or a plasticizer (for example, low molecular weight polyolefin, liquid paraffin).
  • a step, (2) a rolling step of forming a film using the polyethylene resin composition, (3) a removal step of removing the inorganic filler or plasticizer from the film obtained in step (2), and (4) It includes a stretching step of stretching the film obtained in the step (3) to obtain the separator 12.
  • the said process (4) can also be performed between the said processes (2) and (3).
  • a large number of micropores are provided in the film by the removing process.
  • the micropores of the film stretched by the stretching process become the above-described holes P.
  • the separator 12 which is a polyethylene microporous film having a predetermined thickness and air permeability is formed.
  • 100 parts by weight of ultrahigh molecular weight polyethylene, 5 to 200 parts by weight of a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, and 100 to 400 parts by weight of an inorganic filler may be kneaded.
  • the heat-resistant layer 4 is formed on the surface of the separator 12 in the coating process.
  • an aramid / NMP (N-methyl-pyrrolidone) solution (coating solution) is applied to the separator 12 to form the heat-resistant layer 4 which is an aramid heat-resistant layer.
  • the heat-resistant layer 4 may be provided only on one side of the separator 12 or on both sides. Moreover, you may apply the liquid mixture containing fillers, such as an alumina / carboxymethylcellulose, as the heat-resistant layer 4.
  • a polyvinylidene fluoride / dimethylacetamide solution (coating liquid) is applied to the surface of the separator 12 (coating process) and solidified (coagulation process) to solidify the adhesive layer on the surface of the separator 12.
  • the adhesive layer may be provided only on one side of the separator 12 or on both sides.
  • the method of applying the coating liquid to the separator 12 is not particularly limited as long as it is a method that enables uniform wet coating, and a conventionally known method can be employed.
  • a capillary coating method, a spin coating method, a slit die coating method, a spray coating method, a dip coating method, a roll coating method, a screen printing method, a flexographic printing method, a bar coater method, a gravure coater method, a die coater method, etc. Can do.
  • the thickness of the heat-resistant layer 4 can be controlled by adjusting the thickness of the coating wet film, the solid content concentration represented by the sum of the binder concentration and the filler concentration in the coating solution, and the ratio of the filler to the binder.
  • a resin film, a metal belt, a drum, or the like can be used as a support for fixing or conveying the separator 12 during coating.
  • the heat-resistant separator original fabric 12b which is the separator original fabric 12c on which the heat-resistant layer 4 is laminated, can be manufactured (FIG. 4).
  • the manufactured heat-resistant separator raw fabric 12b is wound around a cylindrical core 53 (FIG. 4).
  • the object manufactured with the above manufacturing method is not limited to the heat-resistant separator raw fabric 12b. This manufacturing method does not need to include a coating process.
  • the object to be manufactured is the separator raw 12c.
  • a heat-resistant separator (film) having a heat-resistant layer as a functional layer will be mainly described as an example, but the same treatment is applied to a separator (film) having no functional layer and a separator original (film original). (Process) can be performed.
  • ⁇ Defect detection process> In the manufacture of a heat-resistant separator used for a lithium ion secondary battery, when a defect is detected by an inspection device in a coating process for forming a heat-resistant separator original film in which a heat-resistant layer is applied to the separator original, the defect is present. A line is drawn with a marker on the original fabric to wind up the heat-resistant separator original fabric. And in the next slit process, the heat-resistant separator raw material is unwound. Thereafter, when the worker visually recognizes the line formed by the marker on the unrolled heat-resistant separator original fabric, the worker stops the unwinding operation of the heat-resistant separator original fabric.
  • the worker visually confirms the position in the width direction of the heat-resistant separator original fabric of the defect corresponding to the line by the marker.
  • a portion of the heat-resistant separator original fabric corresponding to the line formed by the marker is slit along the longitudinal direction by a cutting device to form a plurality of heat-resistant separators.
  • the worker sticks the tape so as to protrude from the heat-resistant separator at a position corresponding to the defect of the heat-resistant separator corresponding to the position in the width direction of the defect corresponding to the line by the marker.
  • the heat-resistant separator stuck so that the said tape may protrude may be wound up by a winding roller.
  • the heat-resistant separator wound around the take-up roller is rewound from the take-up roller to the rewind roller in the rewinding step. Then, if an operator discovers in the middle of rewinding the tape stuck so that it may protrude from the heat-resistant separator, the rewinding operation is stopped. And an operator cuts and removes the location of the heat-resistant separator in which the defect corresponding to the said tape exists along the width direction. Next, the heat-resistant separator on the take-up roller side and the heat-resistant separator on the rewind roller side are joined together. Thereafter, the rewinding operation is restarted, and all the heat-resistant separators are wound around the rewinding roller.
  • FIG. 4 is a schematic diagram for explaining a defect detection step and a defect information recording step of the defect marking method of the heat-resistant separator original fabric 12b
  • FIG. 4 (a) is a front view of both steps.
  • (B) is a plan view of both steps.
  • FIG. 5 is a diagram for explaining the configuration of the substrate defect inspection apparatus 55 in the defect detection process.
  • FIG. 6 is a diagram for explaining the configuration of the coating defect inspection apparatus 57 in the defect detection process.
  • FIG. 7 is a diagram for explaining the configuration of the pinhole defect inspection apparatus 58 in the defect detection process.
  • the heat-resistant separator original fabric 12b in which the heat-resistant layer is applied to the separator original fabric 12c by the coating unit 54 is wound around the core 53.
  • the base material inspection process (defect detection process) for inspecting the defect D of the separator original fabric 12c is a base material defect inspection device 55 (defect detection section, disposed between the feeding process of the separator original fabric 12c and the coating process). Separator manufacturing apparatus).
  • the substrate defect inspection device 55 is arranged such that the light source 55a and the detector 55b sandwich the separator original fabric 12c, and is emitted from the light source 55a in a direction perpendicular to the front and back surfaces of the separator original fabric 12c.
  • the defect D existing in the separator raw 12c is inspected (the position of the defect D is specified) (defect detection step).
  • the defects D present in the separator original fabric 12c include defects related to through holes (pinholes), defects related to film thickness irregularities, and defects related to foreign matters.
  • the coating inspection process (defect detection process) for inspecting the defect D of the heat-resistant layer 4 applied to the separator raw 12 c is a coating defect inspection arranged between the coating process and the winding process by the core 53. It is implemented by the device 57 (defect detection unit, separator manufacturing device).
  • the coating defect inspection device 57 includes a light source 57a and a detector 57b disposed on the heat-resistant layer 4 side of the heat-resistant separator raw 12b.
  • the coating defect inspection device 57 detects the defect D existing in the heat-resistant layer 4 by detecting the reflected light emitted from the light source 57a and reflected by the heat-resistant layer 4 with the detector 57b (the position of the defect D is determined). Identify).
  • the defects D present in the heat-resistant layer 4 include defects related to streaks, defects related to peeling, defects related to flip, and defects related to surface defects.
  • the defect relating to the above-mentioned flipping is that the coating liquid is bounced from the surface of the separator raw 12c due to foreign matter, oil or the like, and the heat-resistant layer 4 is not locally formed, or even if formed, the thin heat-resistant layer 4 Means a defect.
  • the defect related to the surface defect means a defect related to the film thickness defect of the heat-resistant layer 4.
  • a pinhole inspection process (defect detection process) for inspecting defects D due to pinholes occurring in the heat-resistant separator original fabric 12 b is a pinhole defect inspection apparatus disposed between the coating defect inspection apparatus 57 and the defect information recording apparatus 56. 58 (defect detection unit, separator manufacturing apparatus).
  • the pinhole defect inspection apparatus 58 includes a light source 58a disposed on the separator raw fabric 12c side of the heat resistant separator original fabric 12b, and light emitted from the light source 58a in a direction perpendicular to the front and back surfaces of the heat resistant separator original fabric 12b.
  • the defect D due to the pinhole has a diameter of several hundred ⁇ m to several mm.
  • a defect information recording device 56 is disposed between the pinhole defect inspection device 58 and the core 53.
  • the defect information recording device 56 stores a defect code DC in which defect information such as position information of the defect D detected by the substrate defect inspection device 55, the coating defect inspection device 57, and the pinhole defect inspection device 58 is stored.
  • the code data such as a dimension code and a QR code (registered trademark) is recorded on the end portion in the width direction of the heat-resistant separator original fabric 12b corresponding to the position of the defect D in the longitudinal direction of the heat-resistant separator original fabric 12b.
  • the position information represents the position of the defect D in the longitudinal direction and the width direction of the heat-resistant separator raw fabric 12b.
  • the position information may include information that can distinguish the type of the defect D.
  • the type of the defect D is, for example, a structural defect of the base material to be inspected by the base material defect inspection device 55, a defect related to coating to be inspected by the coating defect inspection device 57, or a hole to be inspected by the pinhole defect inspection device 58. It is a flaw related to autumn.
  • the film tension of the separator original fabric 12c and the heat-resistant separator original fabric 12b is usually 200 N / m or less, and preferably 120 N / m or less.
  • film tension means the tension in the traveling direction applied per unit length in the width direction of the traveling film. For example, if the film tension is 200 N / m, a force of 200 N is applied to a film width of 1 m. If the film tension is higher than 200 N / m, wrinkles may occur in the running direction of the film and the accuracy of defect inspection may be reduced.
  • the film tension is usually 10 N / m or more, preferably 30 N / m or more. If the film tension is lower than 10 N / m, the film may be slack or meander.
  • a hole P is formed in the separator original fabric 12c and the heat-resistant separator original fabric 12b, and the film tension is smaller than the film tension of a film having no holes such as an optical film. Therefore, the separator original fabric 12c and the heat-resistant separator original fabric 12b have physical properties that are easier to stretch than films without holes such as optical films. For this reason, if the defect code DC is recorded at the end portion in the width direction of the heat-resistant separator original fabric 12b corresponding to the position of the defect D in the longitudinal direction of the heat-resistant separator original fabric 12b, The position in the longitudinal direction of the defect D and the position in the longitudinal direction of the defect code DC do not substantially deviate. Therefore, even if the heat-resistant separator raw fabric 12b extends in the longitudinal direction, the position of the defect D in the longitudinal direction can be easily specified.
  • the heat-resistant separator original fabric 12b on which the defect code DC is recorded at the end is wound around the core 53.
  • the core 53 on which the heat-resistant separator raw fabric 12b is wound is carried to the next slitting process.
  • the defect information recording device 56 (FIG. 4) has a defect code DC representing the position information of the defect D at the end in the width direction of the heat-resistant separator original 12b corresponding to the position of the defect D in the longitudinal direction of the heat-resistant separator original 12b. Record.
  • the distance LMD along the longitudinal direction between the defect D and the defect code DC is, for example, preferably 100 mm or less, and more preferably 30 mm or less.
  • the distance L TD between the defect code DC and the end in the width direction of the heat-resistant separator original fabric 12b is, for example, preferably 100 mm or less, more preferably 30 mm or less.
  • the distance LTD is 10 mm or more.
  • a heat-resistant separator 12a (hereinafter referred to as “separator”) formed from a heat-resistant separator original fabric 12b (hereinafter referred to as “separator original fabric”) or a separator 12 formed from a separator original fabric 12c is applied to a lithium ion secondary battery 1 or the like.
  • a width suitable for the product (hereinafter referred to as “product width”) is preferable.
  • the separator web is manufactured such that its width is equal to or greater than the product width. Then, once manufactured, the separator stock is cut (slit) into the product width to form a separator.
  • the “separator width” means the length of the separator in a direction parallel to the plane in which the separator extends and perpendicular to the longitudinal direction of the separator.
  • a slit means cut
  • the term “cut” means that the separator raw fabric or the separator is cut along a transverse direction (TD).
  • the transverse direction (TD) means a direction (width direction) that is substantially perpendicular to the longitudinal direction (MD) and the thickness direction of the separator.
  • FIG. 8 is a schematic diagram showing the configuration of the slit device 6 for slitting the separator original fabric 12b, where (a) shows the entire configuration, and (b) shows the configuration before and after slitting the separator original fabric 12b. .
  • the slitting device 6 includes a cylindrical unwinding roller 61, rollers 62 to 65, and a plurality of winding rollers 69 that are rotatably supported.
  • the slit device 6 is further provided with a cutting device 7 (FIG. 9) described later.
  • a cylindrical core 53 around which the separator raw fabric 12 b is wound is fitted on the unwinding roller 61.
  • the separator web 12 b is unwound from the core 53 to the path U or L.
  • the unrolled separator blank 12b passes through the roller 63 and is conveyed to the roller 64 at a speed of 100 m / min, for example.
  • the separator raw 12b is slit along the longitudinal direction in the plurality of separators 12a.
  • a part of the plurality of separators 12a is wound around each core 81 (bobbin) fitted to the plurality of winding rollers 69, respectively.
  • the other part of the plurality of separators 12 a is wound around each core 81 (bobbin) fitted to the plurality of winding rollers 69.
  • the separator wound up in a roll shape is referred to as a “separator wound body (film wound body)”.
  • FIG. 9 is a view showing the configuration of the cutting device 7 (slit portion) of the slit device 6 shown in FIG. 8A, wherein FIG. 9A is a side view of the cutting device 7, and FIG. It is a front view of the cutting device.
  • the cutting device 7 includes a holder 71 and a blade 72.
  • the holder 71 is fixed to a housing or the like provided in the slit device 6.
  • the holder 71 holds the blade 72 so that the positional relationship between the blade 72 and the separator original fabric 12b to be conveyed is fixed.
  • the blade 72 slits the raw material of the separator with a sharp edge.
  • FIG. 10 is a schematic diagram for explaining a reading process (defect information acquiring process), a determining process, a mark applying process, and a winding process of the defect position specifying method of the separator 12a.
  • the separator web 12b is unwound from the core 53 (FIG. 8) at a constant speed (for example, 80 m / min).
  • the reading unit 73 (defect information acquisition unit) acquires defect information in the separator original fabric 12b by reading the defect code DC recorded at the end in the width direction of the separator original fabric 12b (defect information acquisition step).
  • the determination device 75 determines that the separator having the defect D among the separators is a defective separator (defect film) based on the defect code DC read by the reading unit 73 (determination step). .
  • the mark applying device 74 applies a mark L to a position corresponding to the defect D of the separator 12a determined by the determining device 75 as a defective separator (defect mark applying step).
  • the determination device 75 determines that the plurality of separators 12a are defective separators.
  • examples of the preferable mark L include a label
  • examples of the preferable mark applying device 74 include a labeler.
  • the mark L may be a mark drawn by a pen instead of a label, or a mark applied by an injector.
  • the mark L may be a thermo label printed by heating the separator 12a made of resin, or the mark L may be formed by making a hole in the separator 12a with a laser.
  • the plurality of separators 12a slit by the cutting device 7 are respectively wound around the plurality of cores 81 (winding step).
  • the mark imparting device 74 uses the positional information in the length direction of the separator raw fabric 12b of the defect D represented by the defect code DC as the defect code DC2, and the outermost peripheral portion 86 around which the one specified separator 12a is wound up. And / or recorded in the core 81.
  • FIG. 11 is a schematic diagram for explaining a mark detection step and a defect removal step of the defect position specifying method of the separator 12a
  • FIG. 11 (a) is a schematic diagram for explaining the mark detection step
  • FIG. 11B is a schematic diagram for explaining the defect removal step.
  • the mark detection device 83 detects the mark L
  • the mark detection device 83 stops the rewinding operation of the separator 12a.
  • the defect removal device 84 removes the defect D from the separator 12a by cutting the upstream and downstream portions of the separator 12a corresponding to the mark L along the width direction (defect removal step).
  • Such a defect removal step may be performed manually by an operator instead of the defect removal apparatus 84.
  • the joining device 85 joins the cut separators 12a (joining step). Such a joining process may be performed manually by an operator instead of the joining device 85.
  • the joining device 85 restarts the rewinding operation of the separator 12a. Then, the rewinding of the separator 12a from the core 81 to the core 82 is completed.
  • the separator 12a divided into two parts may be wound around different cores without being connected. That is, the portion before being cut may be wound around the core 82, and the portion after being cut may be wound around a core other than the core 82.
  • FIG. 12 is a schematic diagram for explaining a defect detection step and a defect information recording step of the defect marking method for the separator original fabric 12b according to the second embodiment.
  • FIG. 13 is a schematic diagram for explaining a reading process, a mark applying process, and a winding process of the defect position specifying method of the separator 12a.
  • the same reference numerals are assigned to the components described in the first embodiment. Therefore, detailed description of these components will not be repeated.
  • the defect information recording device 56a (defect information recording unit, separator raw material manufacturing device) is the separator raw material 12c / 12b detected by the substrate defect inspection device 55, the coating defect inspection device 57, and the pinhole defect inspection device 58. Position information indicating the position of the existing defect D in the longitudinal direction and the width direction is recorded in the information storage device 91. Then, the reading unit 73a reads position information of the defect D in the longitudinal direction and the width direction from the information storage device 91 (reading process).
  • the defect information recording device 56 has been described as recording the defect code DC at a position corresponding to the position of the defect D in the longitudinal direction of the separator blank 12b.
  • the method of recording DC is not limited to this.
  • FIG. 14 is a plan view of the original separator for explaining the position where the defect code DC is recorded.
  • the defect information recording apparatus 56 corresponds to the defect D existing in each unit region 20 for each unit region 20 having a predetermined length in the longitudinal direction of the separator raw fabric 12 b.
  • a defect code DC is recorded (formed) (defect information recording step).
  • the length of the unit region 20 in the longitudinal direction of the separator original fabric 12b can be set to, for example, 250 mm.
  • FIG. 14 illustrates six unit regions 20a to 20f arranged in the longitudinal direction of the separator raw fabric 12b, and the defect code DC corresponds to each unit region 20a, 20b, 20d, and 20f including the defect D. Is recorded.
  • the defect information recording device 56 does not record the corresponding defect code DC in the unit area 20 where the defect D does not exist, such as the unit areas 20c and 20e.
  • the defect information recording device 56 records one defect code DC representing the position information of the plurality of defects D in the unit area 20 where the plurality of defects D exist, such as the unit areas 20a and 20b.
  • defect code DC representing the positional information of the plurality of defects D for each unit region 20
  • recording is performed as compared with the case where one defect code DC is recorded for one defect D.
  • the number of defect codes DC can be reduced, and the manufacturing process can be simplified.
  • the defect information recording device 56 includes detailed information such as information on the number of defects D existing in the unit area 20, the type of the defect D, coordinates indicating the position of the defect D on the surface of the separator raw 12b, and the size of the defect D.
  • the defect code DC including the is recorded.
  • the defect information recording device 56 divides the unit area 20 into a plurality of divided areas 21 arranged in the width direction of the separator raw fabric 12b, and incorporates simple information such as the presence or absence of the defect D in each divided area 21. DC may be recorded.
  • the unit region 20d including three defects D is divided into divided regions 21a to 21d arranged in the width direction of the separator raw fabric 12b, and the divided regions 21a to 21d are divided into the divided regions 21a to 21d.
  • a defect code DC including information on the presence or absence of the defect D is recorded.
  • the divided region 21a does not include the defect D
  • the divided region 21b includes the defect D
  • the divided region 21c does not include the defect D
  • the divided region 21d includes the defect D. Records a defect code DC including simple information that the defect D is not included.
  • the amount of information included in the defect code DC can be reduced.
  • 14 is merely an example, and the number of the divided regions 21 arranged in the width direction of the separator raw fabric 12b and the width of each divided region 21 can be set as appropriate.
  • the defect information recording device 56 records the first mode for recording the defect code DC including the detailed information and the defect code DC including the simple information according to the number of the defects D existing in the unit area 20.
  • the second mode may be switched.
  • defect code DC when there is a restriction on the amount of information that can be included in the defect code DC, it is possible to record the defect code DC including appropriate information under the restriction of the information amount.
  • the determination device 75 (determination unit) has been described as specifying one defective separator based on one defect D.
  • the determination process by the determination device 75 of the present embodiment is as follows. This is different from the determination step by the determination device 75 of the first and second embodiments.
  • the reading unit 73 reads the defect code DC recorded on the separator original fabric 12b, the slit device 6 slits the separator original fabric 12b with a slit line along the longitudinal direction, and the determination device 75 is 1 Based on one defect D, the separator 12a that actually includes the defect D and another separator 12a adjacent to the separator 12a are determined as defective separators (defect determination).
  • the mark provision apparatus 74 gives the mark L1 (1st mark) which shows the position of this defect D to the separator 12a which actually contains the defect D, and the mark L1 in another separator 12a adjacent to this separator 12a.
  • a mark L2 (second mark) is applied to a position corresponding to (defect mark applying step).
  • the other separator 12a is a separator obtained corresponding to a region formed by partitioning the surface of the separator raw fabric 12b with slit lines (boundary lines) along the longitudinal direction.
  • a mark L2 is provided at a position opposite to.
  • the slit device 6 slits the original separator 12b at a position shifted from a desired slit position, so that the separator 12a that should originally contain the defect D does not contain the defect D and is adjacent to the separator 12a. Even when the defect D is included in another separator 12a, the other separator 12a is determined as a defective separator 12a, and the outflow of the separator 12a having the defect D can be suppressed.
  • the reading unit 73 reads the defect code DC including the simple information on the presence / absence of the defect for each divided region, and the determination device 75 is based on the divided region 21 having at least one defect D.
  • the separator 12a obtained by including the divided region 21 having the defect D and another separator 12a adjacent to the separator 12a may be determined as a defective separator.
  • the defect removing device 84 may cut out the defective portion of the defective separator based on the marks L1 and L2 (defect cutting step).
  • FIG. 15 is a diagram exemplifying a relationship between a divided region including a defect, a slit line, and a defective separator.
  • FIG. 15A is a diagram showing a slit line in which one divided region corresponds to one separator.
  • B shows a case where the separator raw material is slit by a slit line in which two divided regions correspond to one separator, and
  • c shows three divided regions corresponding to one separator.
  • the case where the separator original fabric is slit by such a slit line is shown, and (d) shows the case where the separator original fabric is slit by a slit line dividing the divided region.
  • the display of the defect code DC is omitted.
  • the crosses in FIG. 15 indicate positions where the defect D included in the divided region may exist in the separator after the slit.
  • the defect information recording device 56 records the defect code DC including the simple information in each of the divided regions 21a to 21d having a width equal to the width of the separator 12a.
  • the reading unit 73 reads the defect code DC.
  • the slitting device 6 obtains separators 12aa to 12ad corresponding to the divided regions 21a to 21d by slitting the separator raw sheet 12b with slit lines along the boundary lines of the divided regions 21a to 21d.
  • the determination device 75 determines that the separator 12a obtained including the divided region 21 having the defect D is a defective separator, and adjacent divided regions via the boundary line of the divided region 21 having the defect D. Another separator 12a obtained by including 21 is determined as a defective separator.
  • the determination device 75 determines that the separator 12ac obtained including the divided region 21c is a defective separator, The separator 12ab obtained including the divided area 21b adjacent through the boundary line of the divided area 21c and the separator 12ad obtained including the divided area 21d are determined as defective separators.
  • the separator 12a that is likely to include a defect due to the shift of the slit position can be appropriately determined as a defective separator. Therefore, it is possible to reduce the risk of erroneously determining a defective separator as a good product separator.
  • the defect information recording device 56 records a defect code DC including simple information in each of the divided regions 21aa to 21db having a width that is 1 ⁇ 2 of the width of the separator 12a.
  • the reading unit 73 reads the defect code DC.
  • the slit device 6 slits the separator raw sheet 12b with a slit line along one of the boundary lines of the divided regions 21aa to 21db. Thereby, the separator 12aa is obtained corresponding to the divided areas 21aa and 21ab, the separator 12ab is obtained corresponding to the divided areas 21ba and 21bb, and the separator 12ac is obtained corresponding to the divided areas 21ca and 21cb.
  • a separator 12ad is obtained corresponding to 21da ⁇ 21db.
  • the determination device 75 determines that the separator 12a obtained including the divided region 21 having the defect D is a defective separator, and also determines the divided region 21 adjacent to the divided region 21 having the defect D via the boundary line. Another separator 12a obtained by including is determined as a defective separator.
  • the determination device 75 determines that the separator 12ac obtained including the divided area 21ca is a defective separator, Another separator 12ab obtained including the divided area 21bb adjacent to the divided area 21ca via the boundary line of the divided area 21ca is determined as a defective separator.
  • one of the separators 12ab and 12ad adjacent to the separator 12ac obtained by including the divided region 21ca having the defect D one of the separators 12ad has the defect D. Is not included, and it is not necessary to determine the separator 12ad as the defective separator 12. Accordingly, it is possible to reduce the number of separators 12a that are determined to be defective separators 12 even though the defect D is not actually included.
  • the defect information recording device 56 records the defect code DC including the simple information in each of the divided regions 21aa to 21dc having a width of 1/3 of the width of the separator 12a.
  • the reading unit 73 reads the defect code DC.
  • the slitting device 6 slits the separator raw material 12b with slit lines along the boundary lines of two of the boundary lines of the divided regions 21aa to 21dc.
  • separators 12aa are obtained corresponding to the divided areas 21aa, 21ab, 21ac
  • separators 12ab are obtained corresponding to the divided areas 21ba, 21bb, 21bc
  • separators 12ac are obtained corresponding to the divided areas 21ca, 21cb, 21cc.
  • separator 12ad corresponding to the divided areas 21da, 21db, and 21dc.
  • the determination device 75 of the present embodiment determines that the separator 12a obtained including the divided region 21 having the defect D is a defective separator, and is adjacent to the divided region 21 having the defect D via the boundary line. Another separator 12a obtained by including 21 is determined as a defective separator.
  • the determination device 75 determines that the separator 12ad obtained including the divided region 21da is a defective separator, Another separator 12ac obtained by including the divided area 21cc adjacent to the divided area 21da via the boundary line of the divided area 21da is determined as a defective separator. In other words, when the defect D is included in the divided region 21da, the determination device 75 determines that the two separators 12ac and 12ad divided by the slit line overlapping the boundary line of the divided region 21da are defective separators.
  • the separator raw fabric 12b is slit so as to obtain one separator 12a corresponding to the two divided regions 21, it corresponds to the divided region 21 having the defect D.
  • the separator 12a adjacent to the separator 12a is likely to include the defect D, and the adjacent separator 12a needs to be determined as a defective separator.
  • two separators 12a are determined to be defective separators for one defect D.
  • the separator 12ab adjacent to the separator 12aa obtained including the divided area 21ab includes the defect D. It is difficult to determine that the separator 12ab is a defective separator 12. Accordingly, it is possible to reduce the number of separators 12a that are determined to be defective separators 12 even though the defect D is not actually included.
  • ⁇ Slit line that divides the divided area> 15 (a) to 15 (c) is an example in which the slit device 6 slits the separator raw material 12b with slit lines along the boundary lines of the divided areas 21, but the boundary lines of the divided areas 21 are not shown.
  • the positional relationship between the slit line and the slit line is not limited to this.
  • the defect information recording device 56 includes narrow divided areas 21aa, 21ba, 21ca, 21da, and 21ea (first divided areas) and wide divided areas 21ab that are alternately arranged.
  • a defect code DC including simple information in 21bb, 21cb, and 21db (second divided area) is recorded.
  • the reading unit 73 reads the defect code DC.
  • the slit device 6 slits the separator web 12b with a slit line that divides a narrow divided area, thereby corresponding to each wide divided area and two divided narrow divided areas. Get ⁇ 12ad.
  • the two separators 12a obtained including the region in which the divided region having the defect D is divided are highly likely to include the defect D. .
  • the determination device 75 of the present embodiment determines that the two separators 12a obtained including the region where the divided region having the defect D is divided are defective separators. In other words, when the defect D is included in the divided area that overlaps the slit line, the determination device 75 determines that the two separators 12a that overlap the divided area are defective separators. Further, when the defect D is included in the wide divided area, one separator 12a obtained including the wide divided area is determined as a defective separator.
  • the determination device 75 when the defect D is included in the divided area 21da, the determination device 75 includes two separators 12ac obtained including the area obtained by dividing the divided area 21da. ⁇ Determine 12ad as a defective separator. In other words, when the defect D is included in the divided region 21da, the determination device 75 determines that the two separators 12ac and 12ad divided by the slit line overlapping the divided region 21da are defective separators. Further, when the defect D is included in the divided region 21ab, the determination device 75 determines that one separator 12aa obtained including the divided region 21ab is a defective separator.
  • the separator 12a that is likely to include defects can be appropriately determined as a defective separator. Therefore, it is possible to reduce the risk of erroneously determining a defective separator as a good product separator.
  • the separator original fabric 12b is slit by the slit line that divides the narrow divided region, compared to the case where the separator original fabric 12b is slit by the slit line that divides the wide divided region, the divided region is divided. Since the possibility that defects are included is low, it is possible to reduce the number of separators that are determined as defective separators even though no defects are actually included.
  • FIG. 16 is a schematic diagram for explaining a reading step, a mark applying step, and a winding step of the defect position specifying method of the separator 12a.
  • the manufacturing method of the third embodiment is a manufacturing method in which the slit process and the mark imparting process are processed in this order, but the order of these processes is not limited to this.
  • the manufacturing method of this embodiment is different from the manufacturing method of Embodiment 3 in that the mark applying step and the slitting step are processed in this order. This will be described in more detail below.
  • the reading unit 73 reads the defect code DC recorded on the separator original fabric 12b (defect information acquisition step), and the determination device 75 is based on the defect code DC after the slit in the separator original fabric 12b. A portion that becomes a defective separator is specified (determination step), and the mark applying device 74 applies a mark L to a portion that becomes a defective separator with respect to the separator original fabric 12b (raw fabric defect mark applying step).
  • the defect D in the separator original fabric 12b is affected by the positional deviation in the width direction of the separator 12a in the slit process.
  • the position may not correspond to the position of the defect D in the separator 12a after the slit, and the position of the mark L applied to the defect D may be shifted.
  • the mark L is given to the accurate position corresponding to the defect D by giving the mark L to the separator blank 12b before the slit based on the position information of the defect D in the separator blank 12b. be able to.
  • the mark L1 and the mark L2 are preferably provided so as not to overlap the slit line. Thereby, it is possible to prevent the marks L1 and L2 from being cut in the slitting process and making it difficult to determine a defective separator.
  • FIG. 17 is a perspective view showing a separator raw material or a separator provided with a mark at a position corresponding to a defect.
  • FIG. 17A shows an original slit line with a broken line, and FIG. The slit line shifted from the position is illustrated by a broken line.
  • FIG. 17 shows a defect code DC in which the defect information recording device 56 incorporates simple information in narrow divided areas and wide divided areas arranged alternately as shown in FIG. Is an example of a separator raw 12b on which is recorded.
  • the determination device 75 is obtained including the region obtained by dividing the divided region 21ba.
  • the two separators 12ab and 12aa are determined as defective separators.
  • the mark imparting device 74 imparts a mark L1 to a portion corresponding to the separator 12ab determined to be a defective separator in the original separator 12b, and also applies a mark L2 to a portion corresponding to the separator 12aa determined to be a defective separator. .
  • the marks L1 and L2 are provided around the corresponding defect D.
  • the slit device 6 slits the separator web 12b to which the marks L1 and L2 are applied.
  • the mark provision apparatus 74 is applied to separator 12aa.
  • a mark L2 is given.
  • the mark L1 is given to the part corresponding to the separator 12ab but also the mark L2 is given to the part corresponding to the separator 12aa.
  • the mark L1 is given to the separator 12ab after the slit, and the mark L2 is given to the separator 12aa.
  • a method for manufacturing a separator web according to the present invention includes a forming process for forming a separator web, and a defect detection process for detecting defects present in the separator web formed by the forming process. And a defect information recording step of recording defect information including positional information of the defects in the width direction of the separator original fabric.
  • the “separator raw fabric” means a wide separator before being slit.
  • the defect information including the position information of the defect in the width direction of the separator raw material is recorded, the defect existing in the separator raw material can be easily identified based on the recorded position information. Can do. Therefore, the defect which exists in a separator original fabric can be removed easily.
  • the defect information further includes position information of the defect in the longitudinal direction of the separator original.
  • the “longitudinal direction of the separator original fabric” corresponds to the direction in which the manufacturing object is conveyed in the manufacturing process of the separator.
  • the defect can be easily found when the separator raw is unwound from the wound separator original based on the positional information of the defect in the longitudinal direction.
  • the defect information is recorded at a location corresponding to the position of the defect in the longitudinal direction of the separator original.
  • the position of the defect in the longitudinal direction of the separator original based on the position where the defect information is recorded.
  • defect information is recorded at a location corresponding to the position of the defect in the longitudinal direction of the separator original fabric, even if the separator original fabric extends in the longitudinal direction, the longitudinal position between the defect and the defect information is substantially Don't slip. Therefore, even if the separator raw fabric extends in the longitudinal direction, the position in the longitudinal direction of the defect can be easily specified.
  • a separator manufacturing method includes a forming step of forming a separator original fabric, a defect detecting step of detecting defects present in the separator original fabric formed by the forming step, A defect information recording step for recording defect information including positional information of the defect in the width direction of the separator original, and a separator original having a defect in which the position information is recorded by the defect information recording step A cutting process for forming a plurality of separators cut along the longitudinal direction, a reading process for reading the position information, and a plurality of separators cut by the cutting process based on the position information read by the reading process. And at least one of them includes a mark providing step for providing a mark for specifying the position of the defect.
  • the separator since the mark for identifying the position of the defect is given to at least one of the plurality of separators cut by the cutting process based on the position information read by the reading process, the separator The defect part of the separator containing the said defect among the some separator which slit the original fabric can be removed easily.
  • the winding step of winding up at least one of the plurality of separators provided with the mark for specifying the position of the defect by the mark applying step and the winding step.
  • the defect removing step includes cutting the separator on both sides in the longitudinal direction of the defect along the width direction to remove the defect from the separator, and then cutting the separator. Are preferably joined together.
  • the defect information recording step records the position information on an end portion of the separator original fabric in the width direction.
  • the defective part can be recognized by reading the end of the separator in the width direction.
  • the defect information recording step may record the position information in an information storage device.
  • the defective part can be recognized by reading the information recorded in the information storage device.
  • the mark applying step is performed by attaching a label.
  • the separator raw according to the present invention is characterized in that position information in the width direction of its own defect is recorded at the end in the width direction.
  • a separator raw fabric manufacturing apparatus includes a forming portion that forms a separator raw fabric, and a defect detection portion that detects a defect present in the separator raw fabric formed by the forming portion. And a defect information recording unit that records defect information including position information of the defect in the width direction of the separator original.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Forests & Forestry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Winding Of Webs (AREA)
  • Laminated Bodies (AREA)

Abstract

 セパレータ原反(12b)における欠陥(D)の位置情報を含む欠陥情報を取得する欠陥情報取得工程と、セパレータ原反(12b)をスリットして複数のセパレータ(12a)を得るスリット工程と、1つの欠陥(D)に関する欠陥情報に基づいて、実際に欠陥(D)を含むセパレータ(12a)および該セパレータ(12a)に隣接する別のセパレータ(12a)を不良セパレータと判定する判定工程と、を含む。

Description

フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体
 本発明は、フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体に関する。
 光学フィルムを有するシート状製品の欠点検査装置が知られている(特許文献1)。この欠点検査装置は、保護フィルム検査部から得られた欠点の情報をその位置情報、製造識別情報と共にコードデータ(2次元コード、QRコード(登録商標))として、PVAフィルム原反の片端面に所定ピッチで形成する。
 これにより、シート状製品の欠点の位置情報を取得した後、スリット工程においてシート状製品を長手方向に沿って切断することによって得られた複数のフィルムのうち、何れのフィルムに欠点が含まれているかを特定することができる。これにより、欠点のあるフィルムに対して、欠点がある箇所を切除するなどの適切な処置を施すことによって、欠点を有しないフィルムを製造することができる。
日本国公開特許公報「特開2008-116437号公報(2008年5月22日公開)」
 しかしながら、フィルム原反としてのシート状製品の欠陥の位置情報を取得しても、スリット工程において所望のスリット位置でフィルム原反を切断できなかった場合、複数のフィルムのうち何れのフィルムに欠陥が含まれているかを正確に特定することができず、欠陥を有する不良フィルムであるにも関わらず良品フィルムであると判定してしまう。その結果、不良フィルムに対して適切な処置を施すことができず、場合によっては不良フィルムが良品フィルムとして流出してしまう。
 本発明の目的は、フィルム原反を切断することによってフィルムを得る場合において、欠陥を有するフィルムを良品フィルムと判定してしまうリスクを低減したフィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体を提供することにある。
 上記の課題を解決するために、本発明に係るフィルム製造方法は、フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得工程と、上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット工程と、1つの上記欠陥に関する上記欠陥情報に基づいてスリット後のフィルムの不良判定を行うことにより、実際に上記欠陥を含むフィルムおよび該フィルムに隣接する別のフィルムを不良フィルムと判定する判定工程と、を含むことを特徴とする。
 上記の製造方法によれば、スリット後のフィルムの不良判定を行うことにより、結果的に、実際に欠陥を含むフィルムを不良フィルムのみならず、該フィルムに隣接する別のフィルムも不良フィルムと判定する。これにより、所望のスリット位置からずれた位置でフィルム原反をスリットすることによって本来欠陥が含まれるはずのフィルムに欠陥が含まれず、該フィルムに隣接する別のフィルムに欠陥が含まれることとなった場合であっても、欠陥を有するフィルムを誤って良品フィルムと判定してしまうリスクを低減することができる。
 本発明に係るフィルム製造方法は、上記欠陥情報取得工程では、上記欠陥情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、上記判定工程では、上記欠陥を有する1つの上記分割領域に関する上記欠陥情報に基づいて、上記欠陥を有する上記分割領域を含んで得られるフィルムおよび該フィルムに隣接する別のフィルムを不良フィルムと判定する製造方法であってもよい。
 上記の製造方法によれば、フィルム原反における分割領域ごとの欠陥の有無の情報を取得し、実際に欠陥を含むフィルムに隣接する別のフィルムを不良フィルムと判定する。このように、各分割領域における欠陥の有無に関する簡易な情報に基づいて、上記別フィルムを不良フィルムと判定するため、欠陥を有するフィルムを誤って良品フィルムと判定してしまうリスクを低減することができる。
 本発明に係るフィルム製造方法は、上記スリット工程では、上記分割領域の境界線に沿ったスリットラインで上記フィルム原反をスリットし、上記判定工程では、上記欠陥を有する上記分割領域の境界線を介して該分割領域に隣接する分割領域を含んで得られる上記別のフィルムを不良フィルムと判定する製造方法であってもよい。
 欠陥を有する分割領域の境界線に沿ったスリットラインでフィルム原反をスリットする場合、スリット位置がずれることによって本来欠陥が含まれるはずのフィルムに隣接する別のフィルムに欠陥が含まれ易い。
 上記の製造方法によれば、分割領域の境界線に沿ったスリットラインでフィルム原反をスリットし、欠陥を有する分割領域に隣接する分割領域を含んで得られるフィルムを不良フィルムと判定するため、スリット位置のずれによって欠陥が含まれ易いフィルムを適切に不良フィルムと判定することができ、欠陥を有するフィルムを誤って良品フィルムと判定してしまうリスクを低減することができる。
 本発明に係るフィルム製造方法は、上記スリット工程では、複数の上記分割領域に対応して各上記フィルムを得るように上記分割領域の境界線に沿ったスリットラインで上記フィルム原反をスリットし、上記判定工程では、上記欠陥を有し、かつ、各上記フィルムに対応する上記複数の分割領域のうち端部に位置する上記分割領域の境界線を介して、該分割領域に隣接する分割領域を含んで得られる上記別のフィルムを不良フィルムと判定する製造方法であってもよい。
 一つの分割領域に対応して一つのフィルムを得るようにフィルム原反をスリットする場合、欠陥を有する分割領域に対応するフィルムの両隣のフィルムに欠陥が含まれ易く、両隣のフィルムを不良フィルムと判定する必要がある。
 これに対して、上記の製造方法によれば、複数の分割領域に対応してフィルムを得るようにフィルム原反をスリットするため、欠陥を有する分割領域に対応するフィルムの両隣のフィルムのうち、少なくとも一方のフィルムには欠陥が含まれ難く、上記一方のフィルムを不良フィルムと判定する必要がない。これにより、実際には欠陥が含まれていないにも関わらず不良フィルムと判定するフィルムを減らすことができる。
 本発明に係るフィルム製造方法は、上記スリット工程では、3つの上記分割領域に対応して各上記フィルムを得るように上記分割領域の境界線に沿ったスリットラインで上記フィルム原反をスリットし、上記判定工程では、上記欠陥を有し、かつ、各上記フィルムに対応する上記3つの分割領域のうち端部に位置する上記分割領域の境界線を介して、該分割領域に隣接する分割領域を含んで得られる上記別のフィルムを不良フィルムと判定する製造方法であってもよい。
 上記の製造方法によれば、一つのフィルムに対応する3つの分割領域のうち、真ん中の分割領域が欠陥を有している場合、上記3つの分割領域に対応するフィルムの両隣のフィルムには欠陥が含まれ難く、上記両隣のフィルムを不良フィルムと判定する必要がない。これにより、実際には欠陥が含まれていないにも関わらず不良フィルムと判定するフィルムを減らすことができる。
 本発明に係るフィルム製造方法は、上記スリット工程では、上記分割領域を分断するスリットラインで上記フィルム原反をスリットし、上記判定工程では、上記欠陥を有する上記分割領域が分断されてなる領域を含んで得られる2つのフィルムを不良フィルムと判定する製造方法であってもよい。
 分割領域を分断するスリットラインでフィルム原反をスリットする場合、欠陥を有する分割領域が分断されてなる領域を含んで得られる2つのフィルムは、何れも欠陥を含んでいる可能性が高い。上記の製造方法によれば、欠陥を含んでいる可能性が高い上記2つのフィルムを不良フィルムと判定することができ、欠陥を有するフィルムを誤って良品フィルムと判定してしまうリスクを低減することができる。
 本発明に係るフィルム製造方法は、上記欠陥情報取得工程では、上記欠陥情報として、互いに交互に配列される第1の分割領域と上記第1の分割領域よりも幅広の第2の分割領域との欠陥の有無の情報を取得し、上記スリット工程では、上記第1の分割領域を分断するスリットラインで上記フィルム原反をスリットし、上記判定工程では、上記欠陥を有する上記第1の分割領域が分断されてなる領域を含んで得られる2つのフィルムを不良フィルムと判定する製造方法であってもよい。
 欠陥を有する分割領域が分断されてなる領域を含んで得られる2つのフィルムを不良フィルムと判定する場合において、幅が広い分割領域を分断するよりも、幅が狭い分割領域を分断する方が、分断される分割領域に欠陥が含まれる可能性が低いため、実際には欠陥が含まれていないにも関わらず不良フィルムと判定するフィルムを減らすことができる。
 また、上記の課題を解決するために、本発明に係るフィルム製造方法は、フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得工程と、上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット工程と、上記欠陥情報に基づいてスリット後のフィルムの不良判定を行う判定工程と、を含み、上記欠陥情報取得工程では、上記欠陥情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、上記判定工程では、欠陥が存在する上記分割領域が上記スリットラインに重ならない場合には、該分割領域を含んで得られる1つのフィルムを不良フィルムと判定し、欠陥が存在する上記分割領域またはその境界線が上記スリットラインに重なる場合には、該スリットラインで分断される2つのフィルムを不良フィルムと判定することを特徴とする。
 上記の製造方法によれば、欠陥が存在する上記分割領域またはその境界線が上記スリットラインに重なる場合には、該スリットラインで分断される2つのフィルムを不良フィルムと判定する。欠陥を有する分割領域に重なるスリットラインでフィルム原反をスリットする場合、スリット位置がずれることによって本来欠陥が含まれるはずのフィルムに隣接する別のフィルムに欠陥が含まれ易いが、スリットラインを挟んで互いに隣接する2つのフィルムを不良フィルムと判定することにより、本来欠陥が含まれるはずのフィルムに欠陥が含まれず、該フィルムに隣接する別のフィルムに欠陥が含まれることとなった場合であっても、欠陥を有するフィルムを誤って良品フィルムと判定してしまうリスクを低減することができる。
 さらに、上記の製造方法によれば、欠陥が存在する上記分割領域が上記スリットラインに重ならない場合には、該分割領域を含んで得られる1つのフィルムを不良フィルムと判定する。欠陥を有する分割領域をスリットラインでスリットしない場合、スリット位置がずれた場合であっても、本来欠陥が含まれるはずのフィルムに隣接する別のフィルムに欠陥が含まれる可能性は低い。そのため、分割領域を含んで得られる1つのフィルムを不良フィルムと判定することにより、実際には欠陥が含まれていないにも関わらず不良フィルムと判定するフィルムを減らすことができる。
 本発明に係るフィルム製造方法は、上記フィルム原反の長手方向に所定長さを有する単位領域ごとの上記欠陥情報を記録する欠陥情報記録工程を含む製造方法であってもよい。
 上記の製造方法によれば、単位領域に複数の欠陥が含まれている場合に、単位領域ごとの欠陥情報としてまとめて記録することができ、製造工程を簡易化することができる。
 本発明に係るフィルム製造方法は、上記欠陥情報記録工程では、上記単位領域における上記分割領域ごとの上記欠陥の有無の情報を記録する製造方法であってもよい。
 上記の製造方法によれば、単位領域をさらに分割領域に分けて分割領域ごとの欠陥の有無の情報としてまとめて記録することができ、記録する情報量を削減することができる。
 本発明に係るフィルム製造方法は、上記欠陥情報記録工程では、上記単位領域における欠陥の個数に応じて、上記欠陥情報として、上記単位領域における欠陥の個数の情報、各欠陥の位置情報、および各欠陥の大きさの情報からなる群より選択される少なくとも何れか1つの情報を記録する第1モードと、上記欠陥情報として、上記単位領域における上記分割領域ごとの上記欠陥の有無の情報を記録する第2モードと、を切り換える製造方法であってもよい。
 上記の製造方法によれば、欠陥の数に応じて、詳細な欠陥情報を記録する第1モードと、簡易な情報を記録する第2モードとを切り換えることができるため、記録可能な情報量に制約がある場合に、情報量の制約の下で適切な欠陥情報を記録することができる。
 本発明に係るフィルム製造方法は、上記実際に欠陥を含むフィルムに該欠陥の位置を示す第1の印を付与するとともに、上記別のフィルムにおける上記第1の印に対応する位置に第2の印を付与する欠陥印付与工程を含む製造方法であってもよい。
 上記の製造方法によれば、後の工程において、不良フィルムにおける欠陥の位置を容易に検知することができる。
 本発明に係るフィルム製造方法は、上記欠陥情報に基づいて、上記フィルム原反における上記実際に欠陥を含むフィルムに対応する位置に上記欠陥の位置を示す第1の印を付与するとともに、上記フィルム原反における上記別のフィルムに対応する位置であって、上記第1の印の位置から幅方向に移動させた位置に第2の印を付与する原反欠陥印付与工程を含み、上記スリット工程では、上記第1の印および上記第2の印が付与された上記フィルム原反をスリットする製造方法であってもよい。
 上記の製造方法によれば、スリット前のフィルム原反に対して印を付与するため、スリット後のフィルムに対して印を付与する場合に比べて、正確な位置に印を付与することができる。
 本発明に係るフィルム製造方法は、上記原反欠陥印付与工程では、上記第1の印および上記第2の印を、上記スリットラインに重ならないように付与する製造方法であってもよい。
 上記の製造方法によれば、スリット工程において印が切断されて不良フィルムの判別が困難になることを防止することができる。
 本発明に係るフィルム製造方法は、上記欠陥情報に基づいて、上記不良フィルムの一部を切除する欠陥切除工程を含む製造方法であってもよい。
 上記の製造方法によれば、不良フィルムの欠陥を切除して良品のフィルムとして利用することができる。
 また、上記の課題を解決するために、本発明に係るフィルム製造装置は、フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得部と、上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット部と、1つの上記欠陥に関する上記欠陥情報に基づいてスリット後のフィルムの不良判定を行うことにより、実際に上記欠陥を含むフィルムおよび該フィルムに隣接する別のフィルムを不良フィルムと判定する判定部と、を備えていることを特徴とする。
 また、上記の課題を解決するために、本発明に係るフィルム製造装置は、フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得部と、上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット部と、上記欠陥情報に基づいてスリット後のフィルムの不良判定を行う判定部と、を含み、上記欠陥情報取得部は、上記欠陥情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、上記判定部では、欠陥が存在する上記分割領域が上記スリットラインに重ならない場合には、該分割領域を含んで得られる1つのフィルムを不良フィルムと判定し、欠陥が存在する上記分割領域またはその境界線が上記スリットラインに重なる場合には、該スリットラインで分断される2つのフィルムを不良フィルムと判定することを特徴とする。
 また、上記の課題を解決するために、本発明に係るフィルムは、欠陥を有するフィルム原反の表面を長手方向に沿った境界線で区画してなる領域ごとに対応して得られる複数のフィルムのうちの一つのフィルムであって、上記境界線を介して上記欠陥が含まれる領域に隣接する領域に対応して得られ、上記境界線を介して上記欠陥に対向する位置に印が付与されていることを特徴とする。
 また、上記の課題を解決するために、本発明に係るフィルム捲回体は、上記フィルムがロール状に巻き取られてなることを特徴とする。
 このように、欠陥に対応する位置に印が付与された状態でフィルムを巻き取ってフィルム捲回体とすることにより、フィルムの取り扱いが容易になるとともに、フィルムを巻き出したときに欠陥の位置を認識することができる。
 本発明によれば、フィルム原反を切断することによってフィルムを得る場合において、欠陥を有するフィルムの流出を抑制したフィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体を提供することができる。
実施形態1に係るリチウムイオン二次電池の断面構成を示す模式図である。 図1に示されるリチウムイオン二次電池の詳細構成を示す模式図である。 図1に示されるリチウムイオン二次電池の他の構成を示す模式図である。 上記セパレータ原反の欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。 上記欠陥検出工程における基材欠陥検査装置の構成を説明するための図である。 上記欠陥検出工程における塗工欠陥検査装置の構成を説明するための図である。 上記欠陥検出工程におけるピンホール欠陥検査装置の構成を説明するための図である。 上記セパレータをスリットするスリット装置の構成を示す模式図である。 図8に示されるスリット装置の切断装置の構成を示す拡大図・側面図・正面図である。 上記セパレータの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 上記セパレータの欠陥位置特定方法の目印検知工程、及び欠陥除去工程を説明するための模式図である。 実施形態2に係るセパレータ原反の欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。 上記セパレータの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 実施形態3に係るセパレータ製造方法において欠陥コードを記録する位置を説明するためのセパレータ原反の平面図である。 欠陥を含む分割領域とスリットラインと不良セパレータとの関係を例示する図である。 実施形態4に係るセパレータ製造方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 欠陥に対応する位置に目印が付与されたセパレータ原反またはセパレータを示す斜視図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施形態1〕
 以下、本発明に係るフィルムの一例として、リチウムイオン二次電池などの電池用のセパレータ及び耐熱セパレータについて説明する。また、本発明に係るフィルム製造方法およびフィルム製造装置の一例として、セパレータ製造方法およびセパレータ製造装置について順に説明する。
 <リチウムイオン二次電池>
 リチウムイオン二次電池に代表される非水電解液二次電池は、エネルギー密度が高く、それゆえ、現在、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器、自動車、航空機等の移動体に用いる電池として、また、電力の安定供給に資する定置用電池として広く使用されている。
 図1は、リチウムイオン二次電池1の断面構成を示す模式図である。図1に示されるように、リチウムイオン二次電池1は、カソード11と、セパレータ12と、アノード13とを備える。リチウムイオン二次電池1の外部において、カソード11とアノード13との間に、外部機器2が接続される。そして、リチウムイオン二次電池1の充電時には方向Aへ、放電時には方向Bへ、電子が移動する。
 <セパレータ>
 セパレータ12は、リチウムイオン二次電池1の正極であるカソード11と、その負極であるアノード13との間に、これらに挟持されるように配置される。セパレータ12は、カソード11とアノード13との間を分離しつつ、これらの間におけるリチウムイオンの移動を可能にする多孔質フィルムである。セパレータ12は、その材料として、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを含む。
 図2は、図1に示されるリチウムイオン二次電池1の詳細構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が昇温したときの様子を示し、(c)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
 図2の(a)に示されるように、セパレータ12には、多数の孔Pが設けられている。通常、リチウムイオン二次電池1のリチウムイオン3は、孔Pを介し往来できる。
 ここで、例えば、リチウムイオン二次電池1の過充電、又は、外部機器の短絡に起因する大電流等により、リチウムイオン二次電池1は、昇温することがある。この場合、図2の(b)に示されるように、セパレータ12が融解又は柔軟化し、孔Pが閉塞する。そして、セパレータ12は収縮する。これにより、リチウムイオン3の往来が停止するため、上述の昇温も停止する。
 しかし、リチウムイオン二次電池1が急激に昇温する場合、セパレータ12は、急激に収縮する。この場合、図2の(c)に示されるように、セパレータ12は、破壊されることがある。そして、リチウムイオン3が、破壊されたセパレータ12から漏れ出すため、リチウムイオン3の往来は停止しない。ゆえに、昇温は継続する。
 <耐熱セパレータ>
 図3は、図1に示されるリチウムイオン二次電池1の他の構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
 図3の(a)に示されるように、リチウムイオン二次電池1は、耐熱層4をさらに備えてよい。耐熱層4と、セパレータ12とは、耐熱セパレータ12a(セパレータ)を形成している。耐熱層4は、セパレータ12のカソード11側の片面に積層されている。なお、耐熱層4は、セパレータ12のアノード13側の片面に積層されてもよいし、セパレータ12の両面に積層されてもよい。そして、耐熱層4にも、孔Pと同様の孔が設けられている。通常、リチウムイオン3は、孔Pと耐熱層4の孔とを介し往来する。耐熱層4は、その材料として、例えば全芳香族ポリアミド(アラミド樹脂)を含む。
 図3の(b)に示されるように、リチウムイオン二次電池1が急激に昇温し、セパレータ12が融解又は柔軟化しても、耐熱層4がセパレータ12を補助しているため、セパレータ12の形状は維持される。ゆえに、セパレータ12が融解又は柔軟化し、孔Pが閉塞するにとどまる。これにより、リチウムイオン3の往来が停止するため、上述の過放電又は過充電も停止する。このように、セパレータ12の破壊が抑制される。
 <耐熱セパレータ原反(セパレータ原反)の製造工程>
 リチウムイオン二次電池1の耐熱セパレータ12aの製造は特に限定されるものではなく、公知の方法を利用して行うことができる。以下では、セパレータ12がその材料として主にポリエチレンを含む場合を仮定して説明する。しかし、セパレータ12が他の材料を含む場合でも、同様の製造工程により、耐熱セパレータ12aを製造できる。
 例えば、熱可塑性樹脂に無機充填剤又は可塑剤を加えてフィルム成形した後、該無機充填剤及び該可塑剤を適当な溶媒で除去する方法が挙げられる。例えば、セパレータ12が、超高分子量ポリエチレンを含むポリエチレン樹脂から形成されてなるポリオレフィンセパレータである場合には、以下に示すような方法により製造することができる。
 この方法は、(1)超高分子量ポリエチレンと、無機充填剤(例えば、炭酸カルシウム、シリカ)、又は可塑剤(例えば、低分子量ポリオレフィン、流動パラフィン)とを混練してポリエチレン樹脂組成物を得る混練工程、(2)ポリエチレン樹脂組成物を用いてフィルムを成形する圧延工程、(3)工程(2)で得られたフィルム中から無機充填剤又は可塑剤を除去する除去工程、及び、(4)工程(3)で得られたフィルムを延伸してセパレータ12を得る延伸工程を含む。なお、前記工程(4)を、前記工程(2)と(3)との間で行なうこともできる。
 除去工程によって、フィルム中に多数の微細孔が設けられる。延伸工程によって延伸されたフィルムの微細孔は、上述の孔Pとなる。これにより、所定の厚さと透気度とを有するポリエチレン微多孔膜であるセパレータ12が形成される。
 なお、混練工程において、超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5~200重量部と、無機充填剤100~400重量部とを混練してもよい。
 その後、塗工工程において、セパレータ12の表面に耐熱層4を形成する。例えば、セパレータ12に、アラミド/NMP(N-メチル-ピロリドン)溶液(塗工液)を塗布し、アラミド耐熱層である耐熱層4を形成する。耐熱層4は、セパレータ12の片面だけに設けられても、両面に設けられてもよい。また、耐熱層4として、アルミナ/カルボキシメチルセルロース等のフィラーを含む混合液を塗工してもよい。
 また、塗工工程において、セパレータ12の表面に、ポリフッ化ビニリデン/ジメチルアセトアミド溶液(塗工液)を塗布(塗布工程)し、それを凝固(凝固工程)させることによりセパレータ12の表面に接着層を形成することもできる。接着層は、セパレータ12の片面だけに設けられても、両面に設けられてもよい。
 塗工液をセパレータ12に塗工する方法は、均一にウェットコーティングできる方法であれば特に制限はなく、従来公知の方法を採用することができる。例えば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、ダイコーター法などを採用することができる。耐熱層4の厚さは塗工ウェット膜の厚み、塗工液中のバインダー濃度とフィラー濃度の和で示される固形分濃度、フィラーのバインダーに対する比を調節することによって制御することができる。
 なお、塗工する際にセパレータ12を固定あるいは搬送する支持体としては、樹脂製のフィルム、金属製のベルト、ドラム等を用いることができる。
 以上のように、耐熱層4が積層されたセパレータ原反12cである耐熱セパレータ原反12bを製造できる(図4)。製造された耐熱セパレータ原反12bは、円筒形状のコア53に巻き取られる(図4)。なお、以上の製造方法で製造される対象は、耐熱セパレータ原反12bに限定されない。この製造方法は、塗工工程を含まなくてもよい。この場合、製造される対象は、セパレータ原反12cである。以下では、主に機能層として耐熱層を有する耐熱セパレータ(フィルム)を例に挙げて説明するが、機能層を有しないセパレータ(フィルム)およびセパレータ原反(フィルム原反)についても、同様の処理(工程)を行うことができる。
 <欠陥検出工程>
 リチウムイオン二次電池に使用される耐熱セパレータの製造においては、セパレータ原反に耐熱層を塗工した耐熱セパレータ原反を形成する塗工工程において、検査装置により欠陥を検出すると、当該欠陥を有する原反にマーカにより線を描いて耐熱セパレータ原反を巻き取る。そして、次のスリット工程において耐熱セパレータ原反を巻出す。その後、巻き出された耐熱セパレータ原反に上記マーカによる線を作業員が視認したら、作業員は、上記耐熱セパレータ原反の巻出し動作を停止する。次に、作業員は、上記マーカによる線に対応する欠陥の耐熱セパレータ原反の幅方向の位置を目視確認する。次に、上記マーカによる線に対応する耐熱セパレータ原反の部分が、切断装置により長手方向に沿ってスリットされて複数の耐熱セパレータが形成される。その後、作業員は、上記マーカによる線に対応する欠陥の幅方向の位置に対応する耐熱セパレータの欠陥に対応する位置に、テープを当該耐熱セパレータからはみ出すように貼る。そして、上記テープをはみ出すように貼られた耐熱セパレータは巻き取りローラーに巻き取られる。
 次に、巻き取りローラーに巻き取られた上記耐熱セパレータは、巻替工程において、巻き取りローラーから巻替ローラーに巻き替えられる。その後、当該耐熱セパレータからはみ出すように貼られたテープを巻き替える途中で作業員が発見すると、巻き替え動作を停止する。そして、当該テープに対応する欠陥が存在する耐熱セパレータの個所を幅方向に沿って作業員が切断して除去する。次に、巻き取りローラー側の耐熱セパレータと巻替ローラー側の耐熱セパレータとをつなぎ合わせる。その後、巻き替え動作を再開し、耐熱セパレータをすべて巻替ローラーに巻き替える。
 しかしながら、耐熱セパレータ原反に欠陥を検出すると上記マーカによる線を描くだけなので、次のスリット工程で、作業員が上記マーカを視認したら、作業員は、上記耐熱セパレータ原反の巻出し動作を停止させて、上記欠陥の幅方向の位置を目視確認する必要がある。このため、耐熱セパレータ原反をスリットした複数の耐熱セパレータでの欠陥位置を特定するために非常に手間がかかる。
 図4は、上記耐熱セパレータ原反12bの欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図であり、図4の(a)は両工程の正面図であり、図4の(b)は両工程の平面図である。図5は欠陥検出工程における基材欠陥検査装置55の構成を説明するための図である。図6は欠陥検出工程における塗工欠陥検査装置57の構成を説明するための図である。図7は欠陥検出工程におけるピンホール欠陥検査装置58の構成を説明するための図である。
 セパレータ原反12cに塗工部54で耐熱層が塗布された耐熱セパレータ原反12bがコア53に巻き取られる。セパレータ原反12cの欠陥Dを検査する基材検査工程(欠陥検出工程)は、セパレータ原反12cの繰り出し工程と塗工工程との間に配置された基材欠陥検査装置55(欠陥検出部、セパレータ製造装置)により実施される。基材欠陥検査装置55は、光源55aと検出器55bとがセパレータ原反12cを挟むように配置され、光源55aからセパレータ原反12cの表面、裏面に垂直な方向に出射されてセパレータ原反12cを透過した透過光を検出器55bが検出することにより、セパレータ原反12cに存在する欠陥Dを検査する(欠陥Dの位置を特定する)(欠陥検出工程)。上記セパレータ原反12cに存在する欠陥Dは、貫通孔(ピンホール)に係る欠陥、膜厚不正に係る欠陥、及び、異物に係る欠陥を含む。
 セパレータ原反12cに塗布された耐熱層4の欠陥Dを検査する塗工検査工程(欠陥検出工程)は、塗工工程と、コア53による巻き取り工程との間に配置された塗工欠陥検査装置57(欠陥検出部、セパレータ製造装置)により実施される。塗工欠陥検査装置57は、耐熱セパレータ原反12bの耐熱層4側に配置された光源57a及び検出器57bを有する。塗工欠陥検査装置57は、光源57aから出射されて耐熱層4により反射された反射光を検出器57bで検出することにより、耐熱層4に存在する欠陥Dを検出する(欠陥Dの位置を特定する)。上記耐熱層4に存在する欠陥Dは、スジに係る欠陥、剥がれに係る欠陥、弾きに係る欠陥、及び、表面不良に係る欠陥を含む。上記弾きに係る欠陥とは、異物、油分等で塗工液がセパレータ原反12cの表面から弾かれて局所的に耐熱層4が形成されないか、もしくは、形成されても、ごく薄い耐熱層4になる欠陥を意味する。上記表面不良に係る欠陥とは、耐熱層4の膜厚不良に係る欠陥を意味する。
 耐熱セパレータ原反12bに生じるピンホールによる欠陥Dを検査するピンホール検査工程(欠陥検出工程)は、塗工欠陥検査装置57と欠陥情報記録装置56との間に配置されたピンホール欠陥検査装置58(欠陥検出部、セパレータ製造装置)により実施される。ピンホール欠陥検査装置58は、耐熱セパレータ原反12bのセパレータ原反12c側に配置された光源58aと、光源58aから耐熱セパレータ原反12bの表面、裏面に垂直な方向に向かって出射した光を通過させるスリット58cと、スリット58cを通過して耐熱セパレータ原反12bを透過した光に基づいて欠陥Dを検出する(欠陥Dの位置を特定する)検出器58bとを有している。上記ピンホールによる欠陥Dは、数百μmから数mmの直径を有する。
 ピンホール欠陥検査装置58とコア53との間に欠陥情報記録装置56が配置されている。欠陥情報記録装置56は、基材欠陥検査装置55、塗工欠陥検査装置57、ピンホール欠陥検査装置58により検出された欠陥Dの位置情報などの欠陥情報が保存された欠陥コードDCを、2次元コード、QRコード(登録商標)等のコードデータにより、耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に記録する。上記位置情報は、耐熱セパレータ原反12bの長手方向及び幅方向における欠陥Dの位置を表す。上記位置情報は、欠陥Dの種類を区別できる情報を含んでもよい。欠陥Dの種類は、例えば、基材欠陥検査装置55により検査される基材の構造的欠陥、塗工欠陥検査装置57により検査される塗布に関する欠陥、ピンホール欠陥検査装置58により検査される孔あきに関する欠陥である。
 セパレータ原反12c、耐熱セパレータ原反12bのフィルム張力は、通常200N/m以下であり、好ましくは、120N/m以下である。ここで、「フィルム張力」とは、走行するフィルムの幅方向の単位長さ当たりに加わる走行方向の張力を意味する。例えばフィルム張力が200N/mなら、フィルムの幅1mに対して200Nの力が加えられる。フィルム張力が200N/mよりも高いとフィルムの走行方向にシワが入り、欠陥検査の精度が低下する虞がある。また、フィルム張力は通常10N/m以上であり、好ましくは30N/m以上である。フィルム張力が10N/mよりも低いとフィルムの弛みや蛇行が発生する虞がある。セパレータ原反12c、耐熱セパレータ原反12bには、孔Pが形成されており、そのフィルム張力は、光学フィルム等の孔が無いフィルムのフィルム張力よりも小さい。従って、セパレータ原反12c、耐熱セパレータ原反12bは、光学フィルム等の孔が無いフィルムよりも伸びやすい物性を有する。このため、耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に欠陥コードDCを記録すると、耐熱セパレータ原反12bが長手方向に伸びても、欠陥Dの長手方向の位置と欠陥コードDCの長手方向の位置とが実質的にずれない。従って、耐熱セパレータ原反12bが長手方向に伸びても、欠陥Dの長手方向の位置を容易に特定することができる。
 欠陥コードDCが端部に記録された耐熱セパレータ原反12bは、コア53に巻き取られる。耐熱セパレータ原反12bを巻き取ったコア53は、次のスリット工程に運ばれる。
 欠陥情報記録装置56(図4)は、欠陥Dの位置情報を表す欠陥コードDCを耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に記録する。欠陥Dと欠陥コードDCとの間の長手方向に沿った距離LMDは、例えば、好ましくは100mm以下であり、より好ましくは30mm以下である。欠陥コードDCと耐熱セパレータ原反12bの幅方向の端との間の距離LTDは、例えば、好ましくは100mm以下であり、より好ましくは30mm以下である。また、耐熱セパレータ原反12bにおいて幅方向の端部は波打ちやすいため、距離LTDは、10mm以上であることが好ましい。
 <スリット装置>
 耐熱セパレータ原反12b(以下「セパレータ原反」)から形成される耐熱セパレータ12a(以下「セパレータ」)、又は、セパレータ原反12cから形成されるセパレータ12は、リチウムイオン二次電池1などの応用製品に適した幅(以下「製品幅」)であることが好ましい。しかし、生産性を上げるために、セパレータ原反は、その幅が製品幅以上となるように製造される。そして、一旦製造された後に、セパレータ原反は、製品幅に切断(スリット)されてセパレータとなる。
 なお、「セパレータの幅」とは、セパレータが延びる平面に対し平行であり、かつ、セパレータの長手方向に対し垂直である方向の、セパレータの長さを意味する。また、スリットとは、セパレータ原反を長手方向(製造におけるフィルムの流れ方向、MD:Machine direction)に沿って切断することを意味する。カットとは、セパレータ原反又はセパレータを横断方向(TD:transverse direction)に沿って切断することを意味する。横断方向(TD)とは、セパレータの長手方向(MD)と厚み方向とに対し略垂直である方向(幅方向)を意味する。
 図8は、セパレータ原反12bをスリットするスリット装置6の構成を示す模式図であって、(a)は全体の構成を示し、(b)はセパレータ原反12bをスリットする前後の構成を示す。
 図8の(a)に示されるように、スリット装置6は、回転可能に支持された円柱形状の、巻出ローラー61と、ローラー62~65と、複数の巻取ローラー69とを備える。スリット装置6には、後述する切断装置7(図9)がさらに設けられている。
 <スリット前>
 スリット装置6では、セパレータ原反12bを巻きつけた円筒形状のコア53が、巻出ローラー61に嵌められている。図8の(a)に示されるように、セパレータ原反12bは、コア53から経路U又はLへ巻き出される。巻き出されたセパレータ原反12bは、ローラー63を経由し、ローラー64へ例えば速度100m/分で搬送される。搬送される工程においてセパレータ原反12bは、複数のセパレータ12aに長手方向に沿ってスリットされる。
 <スリット後>
 図8の(a)に示されるように、複数のセパレータ12aの一部は、それぞれ、複数の巻取ローラー69に嵌められた各コア81(ボビン)へ巻き取られる。また、複数のセパレータ12aの他の一部は、それぞれ、複数の巻取ローラー69に嵌められた各コア81(ボビン)へ巻き取られる。なお、ロール状に巻き取られたセパレータを「セパレータ捲回体(フィルム捲回体)」と称する。
 <切断装置>
 図9は、図8の(a)に示されるスリット装置6の切断装置7(スリット部)の構成を示す図であって、(a)は切断装置7の側面図であり、(b)は切断装置7の正面図である。
 図9の(a)(b)に示されるように、切断装置7は、ホルダー71と、刃72とを備える。ホルダー71は、スリット装置6に備えられている筐体などに固定されている。そして、ホルダー71は、刃72と搬送されるセパレータ原反12bとの位置関係が固定されるように、刃72を保持している。刃72は、鋭く研がれたエッジによってセパレータの原反をスリットする。
 図10は、セパレータ12aの欠陥位置特定方法の読み取り工程(欠陥情報取得工程)、判定工程、目印付与工程、及び巻き取り工程を説明するための模式図である。セパレータ原反12bは、コア53(図8)から一定速度(例えば、80m/分)で巻き出される。読み取り部73(欠陥情報取得部)は、セパレータ原反12bの幅方向の端部に記録された欠陥コードDCを読み取ることにより、セパレータ原反12bにおける欠陥情報を取得する(欠陥情報取得工程)。そして、スリット装置6に設けられた複数の切断装置7は、セパレータ原反12bを長手方向に沿って切断して複数個のセパレータ12aを形成する(スリット工程)。
 <欠陥除去工程>
 次に、判定装置75(判定部)は、読み取り部73が読み取った欠陥コードDCに基づいて、セパレータのうち、欠陥Dを有するセパレータを不良セパレータ(不良フィルム)であると判定する(判定工程)。目印付与装置74は、判定装置75が不良セパレータであると判定したセパレータ12aの欠陥Dに対応する位置に目印Lを付与する(欠陥印付与工程)。なお、欠陥Dが複数個存在するときは、判定装置75は、複数個のセパレータ12aを不良セパレータであると判定する。ここで、好ましい目印Lとしては、ラベルが挙げられ、好ましい目印付与装置74としては、ラベラが挙げられる。
 目印Lは、ラベルに替えて、ペンにより描画されたマークでもよく、インジェクタにより塗布されたマークでもよい。また、目印Lは、樹脂から構成されるセパレータ12aを加熱することにより印字するサーモラベルでもよく、また、セパレータ12aにレーザで穴を開けることにより目印Lを形成してもよい。
 切断装置7によりスリットされた複数個のセパレータ12aは、複数個のコア81にそれぞれ巻き取られる(巻き取り工程)。
 そして、目印付与装置74は、欠陥コードDCにより表される欠陥Dのセパレータ原反12bの長さ方向の位置情報を欠陥コードDC2として、上記特定した一つのセパレータ12aを巻き取った最外周部86及び/又はコア81に記録する。
 図11は、セパレータ12aの欠陥位置特定方法の目印検知工程、及び欠陥除去工程を説明するための模式図であり、図11の(a)は目印検知工程を説明するための模式図であり、図11の(b)は欠陥除去工程を説明するための模式図である。まず、目印検知装置83が最外周部86及び/又はコア81に記録された欠陥コードDC2を読み出す。そして、目印検知装置83が読み出した情報を受けて、目印付与装置74により目印Lを貼りつけられたセパレータ12aのコア81から、コア82への巻き替え動作を開始する。次に、目印検知装置83は、読み出した欠陥コードDC2により表される欠陥Dのセパレータ原反12bの長さ方向の位置情報に基づいて、欠陥Dの位置が近付くと、セパレータ12aの上記巻き替え動作の速度を減速する。
 そして、セパレータ12aの欠陥Dに対応する位置に張り付けられた目印Lが、目印検知装置83により検知される(目印検知工程)。目印検知装置83により目印Lが検知されると、目印検知装置83がセパレータ12aの巻き替え動作を停止する。その後、欠陥除去装置84は、目印Lに対応する欠陥Dの上流側及び下流側のセパレータ12aの箇所を幅方向に沿って切断して欠陥Dをセパレータ12aから除去する(欠陥除去工程)。かかる欠陥除去工程は、欠陥除去装置84に代えて作業者が手作業で実施してもよい。そして、繋ぎ合わせ装置85は、切断したセパレータ12aを繋ぎ合わせる(繋ぎ合わせ工程)。かかる繋ぎ合わせ工程は、繋ぎ合わせ装置85に代えて作業者が手作業で実施してもよい。次に、繋ぎ合わせ装置85は、セパレータ12aの巻き替え動作を再開する。そして、セパレータ12aのコア81からコア82への巻き替えが完了する。ここで、2つに分割されたセパレータ12aは繋ぎ合わせずに、それぞれ別のコアに巻き替えてもよい。つまり、切断される前の部分をコア82に巻き替え、切断された後の部分をコア82以外のコアに巻き替えればよい。
 〔実施形態2〕
 実施形態1では、セパレータ原反12bに存在する欠陥Dの位置情報をセパレータ原反12bの端部に記録する例を示した。しかしながら、本発明はこれに限定されない。欠陥Dの位置情報は、情報記憶装置に記録するように構成してもよい。
 図12は、実施形態2に係るセパレータ原反12bの欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。図13は、セパレータ12aの欠陥位置特定方法の読み取り工程、目印貼り工程、及び巻き取り工程を説明するための模式図である。実施形態1で前述した構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は繰り返さない。
 欠陥情報記録装置56a(欠陥情報記録部、セパレータ原反製造装置)は、基材欠陥検査装置55、塗工欠陥検査装置57、ピンホール欠陥検査装置58により検出されたセパレータ原反12c・12bに存在する欠陥Dの長手方向及び幅方向における位置を表す位置情報を情報記憶装置91に記録する。そして、読み取り部73aは、欠陥Dの長手方向及び幅方向における位置情報を情報記憶装置91から読みとる(読み取り工程)。
 〔実施形態3〕
 以下、本発明の他の実施形態について、図14~図15に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態1では、欠陥情報記録装置56は、欠陥コードDCを、セパレータ原反12bの長手方向における欠陥Dの位置に対応する位置に記録するものとして説明したが、欠陥情報記録工程56による欠陥コードDCの記録の仕方はこれに限られない。
 以下、本実施形態の欠陥情報記録装置56による欠陥コードDCの記録の仕方について説明する。
 <単位領域>
 図14は、欠陥コードDCを記録する位置を説明するためのセパレータ原反の平面図である。
 図14に示されるように、本実施形態の欠陥情報記録装置56は、セパレータ原反12bの長手方向に所定長さを有する単位領域20ごとに、各単位領域20に存在する欠陥Dに対応する欠陥コードDCを記録(形成)する(欠陥情報記録工程)。
 セパレータ原反12bの長手方向における単位領域20の長さは、例えば250mmとすることができる。
 図14中には、セパレータ原反12bの長手方向に並ぶ6つの単位領域20a~20fが例示されており、欠陥Dが含まれる各単位領域20a・20b・20d・20fに対応して欠陥コードDCが記録されている。なお、図14の例では、欠陥情報記録装置56は、単位領域20c・20eのように欠陥Dが存在しない単位領域20には、対応する欠陥コードDCを記録しない。
 また、欠陥情報記録装置56は、単位領域20a・20bのように複数の欠陥Dが存在する単位領域20には、複数の欠陥Dの位置情報などを表す1つの欠陥コードDCを記録する。
 このように、単位領域20ごとに複数の欠陥Dの位置情報などを表す欠陥コードDCを記録することによって、1つの欠陥Dに対して1つの欠陥コードDCを記録する場合に比べて、記録する欠陥コードDCの数を減らすことができ、製造工程を簡易化することができる。
 <欠陥コードに盛り込む情報>
 欠陥情報記録装置56は、単位領域20に存在する欠陥Dの個数の情報、欠陥Dの種類、セパレータ原反12bの表面における欠陥Dの位置を表す座標、欠陥Dの大きさ、などの詳細情報を盛り込んだ欠陥コードDCを記録する。
 しかしながら、単位領域20に多数の欠陥Dが存在する場合、全ての欠陥Dの詳細情報を1つの欠陥コードDCに盛り込むことができない。
 そこで、欠陥情報記録装置56は、単位領域20を、セパレータ原反12bの幅方向に並ぶ複数の分割領域21に分けて、各分割領域21における欠陥Dの有無などの簡易情報を盛り込んだ欠陥コードDCを記録してもよい。
 例えば、図14に例示されるように、3つの欠陥Dが含まれている単位領域20dを、セパレータ原反12bの幅方向に並ぶ分割領域21a~21dに分けて、各分割領域21a~21dにおける欠陥Dの有無の情報を盛り込んだ欠陥コードDCを記録する。具体的には、分割領域21aには欠陥Dは含まれておらず、分割領域21bには欠陥Dが含まれており、分割領域21cには欠陥Dが含まれておらず、分割領域21dには欠陥Dが含まれていない、という簡易情報を盛り込んだ欠陥コードDCを記録する。
 これにより、欠陥コードDCに盛り込む情報の量を低減することができる。なお、図14に示した分割領域21は一例に過ぎず、セパレータ原反12bの幅方向に並ぶ分割領域21の数、および各分割領域21の幅は、適宜設定することができる。
 また、欠陥情報記録装置56は、単位領域20に存在する欠陥Dの個数に応じて、詳細情報を盛り込んだ欠陥コードDCを記録する第1モードと、簡易情報を盛り込んだ欠陥コードDCを記録する第2モードとを切り換えてもよい。
 これにより、欠陥コードDCに盛り込むことができる情報量に制約がある場合に、情報量の制約の下で適切な情報を盛り込んだ欠陥コードDCを記録することができる。
 <判定工程>
 実施形態1および実施形態2では、判定装置75(判定部)が、1つの欠陥Dに基づいて1つの不良セパレータを特定するものとして説明したが、本実施形態の判定装置75による判定工程は、実施形態1および実施形態2の判定装置75による判定工程とは異なる。
 本実施形態では、読み取り部73が、セパレータ原反12bに記録された欠陥コードDCを読み取り、スリット装置6が、セパレータ原反12bを長手方向に沿うスリットラインでスリットし、判定装置75は、1つの欠陥Dに基づいて、実際に欠陥Dを含むセパレータ12aおよび該セパレータ12aに隣接する別のセパレータ12aを不良セパレータと判定する(不良判定する)。
 そして、目印付与装置74は、実際に欠陥Dを含むセパレータ12aに該欠陥Dの位置を示す目印L1(第1の印)を付与するとともに、該セパレータ12aに隣接する別のセパレータ12aにおける目印L1に対応する位置に目印L2(第2の印)を付与する(欠陥印付与工程)。
 すなわち、上記別のセパレータ12aは、セパレータ原反12bの表面を長手方向に沿ったスリットライン(境界線)で区画してなる領域に対応して得られるセパレータであり、スリットラインを介して欠陥Dに対向する位置に目印L2が付与されている。
 これにより、スリット装置6が、所望のスリット位置からずれた位置でセパレータ原反12bをスリットすることによって、本来欠陥Dが含まれるはずのセパレータ12aに欠陥Dが含まれず、該セパレータ12aに隣接する別のセパレータ12aに欠陥Dが含まれることとなった場合であっても、該別のセパレータ12aは不良セパレータ12aと判定され、欠陥Dを有するセパレータ12aの流出を抑制することができる。
 また、欠陥印付与工程の後の工程において、目印確認装置を用いて、目印付与装置74によって適切な位置に目印Lが付与されているか否かを検査してもよい。
 さらに、本実施形態では、読み取り部73が、分割領域ごとの欠陥の有無の簡易情報を盛り込んだ欠陥コードDCを読み取り、判定装置75は、少なくとも1つの欠陥Dを有する分割領域21に基づいて、欠陥Dを有する分割領域21を含んで得られるセパレータ12aおよび該セパレータ12aに隣接する別のセパレータ12aを不良セパレータと判定してもよい。
 これにより、各分割領域21における欠陥Dの有無に関する簡易な情報に基づいて、上記別のセパレータ12aを不良セパレータと判定することができる。
 なお、その後、図11に示されるように、欠陥除去装置84が目印L1・L2に基づいて不良セパレータの欠陥部分を切除してもよい(欠陥切除工程)。
 以下、図面を参照してより具体的に説明する。以下の説明では、欠陥情報記録装置56が簡易情報を盛り込んだ欠陥コードDCを記録した場合における、判定装置75による不良セパレータの判定工程について説明する。
 図15は、欠陥を含む分割領域とスリットラインと不良セパレータとの関係を例示する図であり、(a)は1つの分割領域が1つのセパレータに対応するようなスリットラインでセパレータ原反をスリットする場合を示し、(b)は2つの分割領域が1つのセパレータに対応するようなスリットラインでセパレータ原反をスリットする場合を示し、(c)は3つの分割領域が1つのセパレータに対応するようなスリットラインでセパレータ原反をスリットする場合を示し、(d)は分割領域を分断するスリットラインでセパレータ原反をスリットする場合を示す。なお、図15では欠陥コードDCの表示を省略している。また、図15中のバツ印は、分割領域に含まれていた欠陥Dが、スリット後のセパレータにおいて存在し得る位置を示している。
 <1分割領域が1セパレータに対応>
 図15の(a)の例では、欠陥情報記録装置56は、セパレータ12aの幅に等しい幅を有する各分割領域21a~21dにおける簡易情報を盛り込んだ欠陥コードDCを記録する。読み取り部73は上記欠陥コードDCを読み取る。スリット装置6は、各分割領域21a~21dの境界線に沿ったスリットラインでセパレータ原反12bをスリットすることにより、各分割領域21a~21dに対応してセパレータ12aa~12adを得る。
 このように、欠陥Dを有する分割領域21の境界線に沿ったスリットラインでセパレータ原反12bをスリットする場合、スリット位置がずれることによって本来欠陥が含まれるはずのセパレータ12aに隣接する別のセパレータ12aに欠陥が含まれ易い。
 そこで、本実施形態の判定装置75は、欠陥Dを有する分割領域21を含んで得られるセパレータ12aを不良セパレータと判定するとともに、欠陥Dを有する分割領域21の境界線を介して隣接する分割領域21を含んで得られる別のセパレータ12aを不良セパレータと判定する。
 すなわち、図15の(a)に示されるように、分割領域21cに欠陥Dが含まれている場合、判定装置75は、分割領域21cを含んで得られるセパレータ12acを不良セパレータと判定するとともに、分割領域21cの境界線を介して隣接する分割領域21bを含んで得られるセパレータ12abおよび分割領域21dを含んで得られるセパレータ12adを不良セパレータと判定する。
 本実施形態の判定工程を含むセパレータ12aの製造方法によれば、スリット位置のずれによって欠陥が含まれ易いセパレータ12aを適切に不良セパレータと判定することができる。そのため、欠陥を有するセパレータを誤って良品セパレータと判定してしまうリスクを低減することができる。
 <2分割領域が1セパレータに対応>
 図15の(b)の例では、欠陥情報記録装置56は、セパレータ12aの幅の1/2の幅を有する各分割領域21aa~21dbにおける簡易情報を盛り込んだ欠陥コードDCを記録する。読み取り部73は上記欠陥コードDCを読み取る。スリット装置6は、各分割領域21aa~21dbの境界線うち一つ飛ばしの境界線に沿ったスリットラインでセパレータ原反12bをスリットする。これにより、分割領域21aa・21abに対応してセパレータ12aaを得て、分割領域21ba・21bbに対応してセパレータ12abを得て、分割領域21ca・21cbに対応してセパレータ12acを得て、分割領域21da・21dbに対応してセパレータ12adを得る。
 本実施形態の判定装置75は、欠陥Dを有する分割領域21を含んで得られるセパレータ12aを不良セパレータと判定するとともに、欠陥Dを有する分割領域21と境界線を介して隣接する分割領域21を含んで得られる別のセパレータ12aを不良セパレータと判定する。
 すなわち、図15の(b)に示されるように、分割領域21caに欠陥Dが含まれている場合、判定装置75は、分割領域21caを含んで得られるセパレータ12acを不良セパレータと判定するとともに、分割領域21caの境界線を介して分割領域21caと隣接する分割領域21bbを含んで得られる別のセパレータ12abを不良セパレータと判定する。
 図15の(a)に示される例のように、一つの分割領域21に対応して一つのセパレータ12aを得るようにセパレータ原反12bをスリットする場合、欠陥Dを有する分割領域21に対応するセパレータ12aの両隣のセパレータ12aに欠陥Dが含まれ易く、両隣のセパレータ12aを不良セパレータと判定する必要がある。その結果、1つの欠陥Dに対して3つのセパレータ12aを不良セパレータと判定することとなる。
 これに対して、図15の(b)に示される例では、欠陥Dを有する分割領域21caを含んで得られるセパレータ12acの両隣のセパレータ12ab・12adのうち、一方のセパレータ12adには該欠陥Dが含まれ難く、セパレータ12adを不良セパレータ12と判定する必要がない。これにより、実際には欠陥Dが含まれていないにも関わらず不良セパレータ12と判定するセパレータ12aを減らすことができる。
 <3分割領域が1セパレータに対応>
 図15の(c)の例では、欠陥情報記録装置56は、セパレータ12aの幅の1/3の幅を有する各分割領域21aa~21dcにおける簡易情報を盛り込んだ欠陥コードDCを記録する。読み取り部73は上記欠陥コードDCを読み取る。スリット装置6は、各分割領域21aa~21dcの境界線うち二つ飛ばしの境界線に沿ったスリットラインでセパレータ原反12bをスリットする。これにより、分割領域21aa・21ab・21acに対応してセパレータ12aaを得て、分割領域21ba・21bb・21bcに対応してセパレータ12abを得て、分割領域21ca・21cb・21ccに対応してセパレータ12acを得て、分割領域21da・21db・21dcに対応してセパレータ12adを得る。
 そこで、本実施形態の判定装置75は、欠陥Dを有する分割領域21を含んで得られるセパレータ12aを不良セパレータと判定するとともに、欠陥Dを有する分割領域21と境界線を介して隣接する分割領域21を含んで得られる別のセパレータ12aを不良セパレータと判定する。
 すなわち、図15の(c)に示されるように、分割領域21daに欠陥Dが含まれている場合、判定装置75は、分割領域21daを含んで得られるセパレータ12adを不良セパレータと判定するとともに、分割領域21daの境界線を介して分割領域21daと隣接する分割領域21ccを含んで得られる別のセパレータ12acを不良セパレータと判定する。言い換えると、分割領域21daに欠陥Dが含まれている場合、判定装置75は、分割領域21daの境界線に重なるスリットラインで分断される2つのセパレータ12ac・12adを不良セパレータと判定する。
 図15の(b)に示される例のように、二つの分割領域21に対応して一つのセパレータ12aを得るようにセパレータ原反12bをスリットする場合、欠陥Dを有する分割領域21に対応するセパレータ12aの隣のセパレータ12aに欠陥Dが含まれ易く、隣のセパレータ12aを不良セパレータと判定する必要がある。その結果、1つの欠陥Dに対して2つのセパレータ12aを不良セパレータと判定することとなる。
 これに対して、図15の(c)に示される例では、一つのセパレータ12aに対応する3つの分割領域21のうち真ん中の分割領域21に欠陥Dが存在していた場合、1つの欠陥Dに対して1つのセパレータ12aを不良セパレータと判定するだけで済む。
 すなわち、図15の(c)に示されるように、分割領域21abに欠陥Dが存在していた場合、分割領域21abを含んで得られるセパレータ12aaの隣のセパレータ12abには該欠陥Dが含まれ難く、セパレータ12abを不良セパレータ12と判定する必要がない。これにより、実際には欠陥Dが含まれていないにも関わらず不良セパレータ12と判定するセパレータ12aを減らすことができる。
 <分割領域を分断するスリットライン>
 図15の(a)~(c)の例は、スリット装置6が各分割領域21の境界線に沿ったスリットラインでセパレータ原反12bをスリットする例であったが、分割領域21の境界線とスリットラインの位置関係はこれに限られない。
 図15の(d)の例では、欠陥情報記録装置56は、交互に配列された幅狭の分割領域21aa・21ba・21ca・21da・21ea(第1の分割領域)と、幅広の分割領域21ab・21bb・21cb・21db(第2の分割領域)とにおける簡易情報を盛り込んだ欠陥コードDCを記録する。読み取り部73は上記欠陥コードDCを読み取る。スリット装置6は、幅狭の分割領域を分断するスリットラインでセパレータ原反12bをスリットすることにより、各幅広の分割領域と分断された2つの幅狭の分割領域とに対応して各セパレータ12aa~12adを得る。
 幅狭の分割領域に欠陥Dが含まれていた場合、欠陥Dを有する分割領域が分断されてなる領域を含んで得られる2つのセパレータ12aは、何れも欠陥Dを含んでいる可能性が高い。
 そこで、本実施形態の判定装置75は、欠陥Dを有する分割領域が分断されてなる領域を含んで得られる2つのセパレータ12aを不良セパレータと判定する。言い換えれば、判定装置75は、スリットラインに重なる分割領域に欠陥Dが含まれる場合、該分割領域に重なる2つのセパレータ12aを不良セパレータと判定する。また、幅広の分割領域に欠陥Dが含まれていた場合、該幅広の分割領域を含んで得られる1つのセパレータ12aを不良セパレータと判定する。
 すなわち、図15の(d)に示されるように、分割領域21daに欠陥Dが含まれている場合、判定装置75は、分割領域21daが分断されてなる領域を含んで得られる2つのセパレータ12ac・12adを不良セパレータと判定する。言い換えると、分割領域21daに欠陥Dが含まれている場合、判定装置75は、分割領域21daに重なるスリットラインで分断される2つのセパレータ12ac・12adを不良セパレータと判定する。また、分割領域21abに欠陥Dが含まれている場合、判定装置75は、分割領域21abを含んで得られる1つのセパレータ12aaを不良セパレータと判定する。
 本実施形態の判定工程を含むセパレータ12aの製造方法によれば、欠陥が含まれ易いセパレータ12aを適切に不良セパレータと判定することができる。そのため、欠陥を有するセパレータを誤って良品セパレータと判定してしまうリスクを低減することができる。
 また、幅広の分割領域を分断するスリットラインでセパレータ原反12bをスリットする場合に比べて、幅狭の分割領域を分断するスリットラインでセパレータ原反12bをスリットする場合、分断される分割領域に欠陥が含まれる可能性が低いため、実際には欠陥が含まれていないにも関わらず不良セパレータと判定するセパレータを減らすことができる。
 〔実施形態4〕
 以下、本発明の他の実施形態について、図16~17に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図16は、セパレータ12aの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。
 実施形態3の製造方法は、スリット工程と目印付与工程とをこの順に処理する製造方法であったが、これら各工程の順はこれに限られない。
 すなわち、本実施形態の製造方法は、目印付与工程とスリット工程とをこの順に処理する点で、実施形態3の製造方法とは異なっている。以下、より詳細に説明する。
 図16に示されるように、読み取り部73がセパレータ原反12bに記録された欠陥コードDCを読み取り(欠陥情報取得工程)、判定装置75が欠陥コードDCに基づいて、セパレータ原反12bにおいてスリット後に不良セパレータとなる部分を特定し(判定工程)、目印付与装置74は、セパレータ原反12bに対して、不良セパレータとなる部分に目印Lを付与する(原反欠陥印付与工程)。
 セパレータ原反12bにおける欠陥Dの位置情報に基づいてスリット後のセパレータ12aに目印Lを付与する場合、スリット工程におけるセパレータ12aの幅方向への位置ずれの影響によって、セパレータ原反12bにおける欠陥Dの位置と、スリット後のセパレータ12aにおける欠陥Dの位置とが対応しないことがあり、欠陥Dに対して付与される目印Lの位置がずれてしまうことがある。これに対して、セパレータ原反12bにおける欠陥Dの位置情報に基づいてスリット前にセパレータ原反12bに対して目印Lを付与することにより、欠陥Dに対応する正確な位置に目印Lを付与することができる。
 なお、目印L1および目印L2は、スリットラインに重ならないように付与することが好ましい。これにより、スリット工程において目印L1・L2が切断されて不良セパレータの判別が困難になることを防止することができる。
 図17は、欠陥に対応する位置に目印が付与されたセパレータ原反またはセパレータを示す斜視図であり、(a)は本来のスリットラインを破線で図示したものであり、(b)は本来の位置からずれたスリットラインを破線で図示したものである。
 なお、図17は、欠陥情報記録装置56が、図15の(d)に示されるように交互に配置された幅狭の分割領域と、幅広の分割領域とにおける簡易情報を盛り込んだ欠陥コードDCを記録したセパレータ原反12bを例示したものである。
 図17の(a)に示されるように、幅狭の分割領域21baに3つの欠陥Dが含まれている場合、判定装置75は、分割領域21baが分断されてなる領域を含んで得られる2つのセパレータ12ab・12aaを不良セパレータと判定する。目印付与装置74は、セパレータ原反12bにおける、不良セパレータと判定されたセパレータ12abに対応する部分に目印L1を付与するとともに、不良セパレータと判定されたセパレータ12aaに対応する部分に目印L2を付与する。目印L1・L2は、対応する欠陥Dの周囲に付与される。
 その後、スリット装置6は、上記目印L1・L2が付与されたセパレータ原反12bをスリットする。
 なお、実施形態3の製造方法のように、スリット工程と目印付与工程とをこの順に処理する場合には、目印付与装置74は、スリット後のセパレータ12abに目印L1を付与するとともに、セパレータ12aaに目印L2を付与する。スリット工程の前にセパレータ原反12bに目印を付与した場合、スリット工程において目印が切断されるリスクがあるが、スリット後のセパレータ12ab・12aaに目印L1・L2を付与することにより、このようなリスクを回避することができる。
 図17の(a)に示されるように、スリット工程において、セパレータ原反12bを本来のスリットラインでスリットした場合、セパレータ12abに欠陥Dが含まれることとなる。しかしながら、図17の(b)に示されるように、セパレータ原反12bを本来の位置からずれたスリットラインでスリットした場合、セパレータ12aaに欠陥Dが含まれることとなる。
 本実施形態の製造方法によれば、セパレータ12abに対応する部分に目印L1を付与するだけでなく、セパレータ12aaに対応する部分に目印L2を付与する。また、実施形態3の製造方法によれば、スリット後のセパレータ12abに目印L1を付与するとともに、セパレータ12aaに目印L2を付与する。
 そのため、スリットラインが本来の位置からずれてしまい、セパレータ12aaに欠陥Dが含まれることとなった場合であっても、不良セパレータであるセパレータ12aaの流出を抑制することができる。
 (本発明の他の側面)
 上記の課題を解決するために、本発明に係るセパレータ原反の製造方法は、セパレータ原反を形成する形成工程と、前記形成工程により形成したセパレータ原反に存在する欠陥を検出する欠陥検出工程と、前記セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録する欠陥情報記録工程とを包含することを特徴とする。ここで、「セパレータ原反」とは、スリットされる前の幅広のセパレータを意味するものとする。
 この特徴によれば、セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録するので、当該記録された位置情報に基づいて、セパレータ原反に存在する欠陥を容易に特定することができる。従って、セパレータ原反に存在する欠陥を容易に除去することができる。
 本発明に係るセパレータ原反の製造方法では、前記欠陥情報は、前記セパレータ原反の長手方向における前記欠陥の位置情報をさらに含むことが好ましい。ここで、「セパレータ原反の長手方向」は、セパレータの製造工程において製造対象物が搬送される方向に相当するものとする。
 上記構成によれば、前記欠陥の長手方向における位置情報に基づいて、捲回されたセパレータ原反からセパレータ原反を巻き出すときに上記欠陥を容易に発見することができる。
 本発明に係るセパレータ原反の製造方法では、前記欠陥情報は、前記セパレータ原反の長手方向における前記欠陥の位置に対応する箇所に記録されていることが好ましい。
 上記構成によれば、欠陥情報が記録された位置に基づいて、セパレータ原反の長手方向における欠陥の位置を特定することができる。また、セパレータ原反の長手方向における前記欠陥の位置に対応する箇所に欠陥情報が記録されるので、セパレータ原反が長手方向に伸びても、欠陥と欠陥情報との長手方向の位置が実質的にずれない。従って、セパレータ原反が長手方向に伸びても、欠陥の長手方向の位置を容易に特定することができる。
 上記の課題を解決するために、本発明に係るセパレータの製造方法は、セパレータ原反を形成する形成工程と、前記形成工程により形成したセパレータ原反に存在する欠陥を検出する欠陥検出工程と、前記セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録する欠陥情報記録工程と、前記欠陥情報記録工程により前記位置情報が記録された欠陥を有するセパレータ原反を前記原反の長手方向に沿って切断した複数のセパレータを形成する切断工程と、前記位置情報を読み取る読み取り工程と、前記読み取り工程により読み取られた位置情報に基づいて、前記切断工程により切断された複数のセパレータのうちの少なくとも一つに、前記欠陥の位置を特定するための目印を付与する目印付与工程とを包含することを特徴とする。
 この特徴によれば、読み取り工程により読み取られた位置情報に基づいて、切断工程により切断された複数のセパレータのうちの少なくとも一つに、欠陥の位置を特定するための目印を付与するので、セパレータ原反をスリットした複数のセパレータのうちの当該欠陥を含むセパレータの欠陥部位を容易に除去することができる。
 本発明に係るセパレータの製造方法では、前記目印付与工程により欠陥の位置を特定するための目印を付与された複数のセパレータのうちの少なくとも一つを巻き取る巻き取り工程と、前記巻き取り工程により巻き取られた複数のセパレータのうちの少なくとも一つを巻き替えながら前記目印を検知する目印検知工程と、前記目印検知工程による目印の検知に応じて巻き替え動作を停止して前記欠陥を除去する欠陥除去工程とを包含することが好ましい。
 上記構成によれば、巻き取り工程の後で欠陥を除去するので、巻き取り工程で巻き取りを停止する必要が無く作業効率が向上する。
 本発明に係るセパレータの製造方法では、前記欠陥除去工程は、前記欠陥の長手方向の両側のセパレータの箇所を幅方向に沿って切断して前記欠陥を前記セパレータから除去した後、前記切断したセパレータをつなぎ合わせることが好ましい。
 上記構成によれば、セパレータ原反に存在する欠陥を除去したセパレータを製造することができる。
 本発明に係るセパレータの製造方法では、前記欠陥情報記録工程は、前記位置情報を前記セパレータ原反の幅方向の端部に記録することが好ましい。
 上記構成によれば、セパレータ原反の幅方向の端部を読み取ることにより欠陥部位を認識することができる。
 本発明に係るセパレータの製造方法では、前記欠陥情報記録工程は、前記位置情報を情報記憶装置に記録してもよい。
 上記構成によれば、情報記憶装置に記録された情報を読み取ることにより欠陥部位を認識することができる。
 本発明に係るセパレータの製造方法では、前記目印付与工程は、ラベルを貼ることによって行うことが好ましい。
 上記の課題を解決するために、本発明に係るセパレータ原反は、自己の欠陥の幅方向における位置情報を幅方向の端部に記録したことを特徴とする。
 上記の課題を解決するために、本発明に係るセパレータ原反製造装置は、セパレータ原反を形成する形成部と、前記形成部により形成されたセパレータ原反に存在する欠陥を検出する欠陥検出部と、前記セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録する欠陥情報記録部とを備えることを特徴とする。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 4 耐熱層
 6 スリット装置(スリット部)
 7 切断装置(切断機)
12 セパレータ(フィルム)
12a 耐熱セパレータ、セパレータ(フィルム)
12b 耐熱セパレータ原反、セパレータ原反(フィルム原反)
12c セパレータ原反
54 塗工部(フィルム原反製造装置)
55 基材欠陥検査装置(欠陥検出部、フィルム原反製造装置)
57 塗工欠陥検査装置(欠陥検出部、フィルム原反製造装置)
58 ピンホール欠陥検査装置(欠陥検出部、フィルム原反製造装置)
56、56a 欠陥情報記録装置(欠陥情報記録部、フィルム原反製造装置)
73 読み取り部
74 目印付与装置
75 判定装置(判定部)
81 コア
82 コア
83 目印検知装置
84 欠陥除去装置
85 繋ぎ合わせ装置
86 最外周部
91 情報記憶装置
 D 欠陥
DC、DC2 欠陥コード
 L 目印

Claims (19)

  1.  フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得工程と、
     上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット工程と、
     1つの上記欠陥に関する上記欠陥情報に基づいてスリット後のフィルムの不良判定を行うことにより、実際に上記欠陥を含むフィルムおよび該フィルムに隣接する別のフィルムを不良フィルムと判定する判定工程と、を含むことを特徴とするフィルム製造方法。
  2.  上記欠陥情報取得工程では、上記欠陥情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、
     上記判定工程では、上記欠陥を有する1つの上記分割領域に関する上記欠陥情報に基づいて、上記欠陥を有する上記分割領域を含んで得られるフィルムおよび該フィルムに隣接する別のフィルムを不良フィルムと判定することを特徴とする請求項1に記載のフィルム製造方法。
  3.  上記スリット工程では、上記分割領域の境界線に沿ったスリットラインで上記フィルム原反をスリットし、
     上記判定工程では、上記欠陥を有する上記分割領域の境界線を介して該分割領域に隣接する分割領域を含んで得られる上記別のフィルムを不良フィルムと判定することを特徴とする請求項2に記載のフィルム製造方法。
  4.  上記スリット工程では、複数の上記分割領域に対応して各上記フィルムを得るように上記分割領域の境界線に沿ったスリットラインで上記フィルム原反をスリットし、
     上記判定工程では、上記欠陥を有し、かつ、各上記フィルムに対応する上記複数の分割領域のうち端部に位置する上記分割領域の境界線を介して、該分割領域に隣接する分割領域を含んで得られる上記別のフィルムを不良フィルムと判定することを特徴とする請求項3に記載のフィルム製造方法。
  5.  上記スリット工程では、3つの上記分割領域に対応して各上記フィルムを得るように上記分割領域の境界線に沿ったスリットラインで上記フィルム原反をスリットし、
     上記判定工程では、上記欠陥を有し、かつ、各上記フィルムに対応する上記3つの分割領域のうち端部に位置する上記分割領域の境界線を介して、該分割領域に隣接する分割領域を含んで得られる上記別のフィルムを不良フィルムと判定することを特徴とする請求項4に記載のフィルム製造方法。
  6.  上記スリット工程では、上記分割領域を分断するスリットラインで上記フィルム原反をスリットし、
     上記判定工程では、上記欠陥を有する上記分割領域が分断されてなる領域を含んで得られる2つのフィルムを不良フィルムと判定することを特徴とする請求項2に記載のフィルム製造方法。
  7.  上記欠陥情報取得工程では、上記欠陥情報として、互いに交互に配列される第1の分割領域と上記第1の分割領域よりも幅広の第2の分割領域との欠陥の有無の情報を取得し、
     上記スリット工程では、上記第1の分割領域を分断するスリットラインで上記フィルム原反をスリットし、
     上記判定工程では、上記欠陥を有する上記第1の分割領域が分断されてなる領域を含んで得られる2つのフィルムを不良フィルムと判定することを特徴とする請求項6に記載のフィルム製造方法。
  8.  フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得工程と、
     上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット工程と、
     上記欠陥情報に基づいてスリット後のフィルムの不良判定を行う判定工程と、を含み、
     上記欠陥情報取得工程では、上記欠陥情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、
     上記判定工程では、欠陥が存在する上記分割領域が上記スリットラインに重ならない場合には、該分割領域を含んで得られる1つのフィルムを不良フィルムと判定し、欠陥が存在する上記分割領域またはその境界線が上記スリットラインに重なる場合には、該スリットラインで分断される2つのフィルムを不良フィルムと判定することを特徴とするフィルム製造方法。
  9.  上記フィルム原反の長手方向に所定長さを有する単位領域ごとの上記欠陥情報を記録する欠陥情報記録工程を含むことを特徴とする請求項2~8の何れか1項に記載のフィルム製造方法。
  10.  上記欠陥情報記録工程では、上記単位領域における上記分割領域ごとの上記欠陥の有無の情報を記録することを特徴とする請求項9に記載のフィルム製造方法。
  11.  上記欠陥情報記録工程では、上記単位領域における欠陥の個数に応じて、
     上記欠陥情報として、上記単位領域における欠陥の個数の情報、各欠陥の位置情報、および各欠陥の大きさの情報からなる群より選択される少なくとも何れか1つの情報を記録する第1モードと、
     上記欠陥情報として、上記単位領域における上記分割領域ごとの上記欠陥の有無の情報を記録する第2モードと、を切り換えることを特徴とする請求項10に記載のフィルム製造方法。
  12.  上記実際に欠陥を含むフィルムに該欠陥の位置を示す第1の印を付与するとともに、
    上記別のフィルムにおける上記第1の印に対応する位置に第2の印を付与する欠陥印付与工程を含むことを特徴とする請求項1~11の何れか1項に記載のフィルム製造方法。
  13.  上記欠陥情報に基づいて、上記フィルム原反における上記実際に欠陥を含むフィルムに対応する位置に上記欠陥の位置を示す第1の印を付与するとともに、上記フィルム原反における上記別のフィルムに対応する位置であって、上記第1の印の位置から幅方向に移動させた位置に第2の印を付与する原反欠陥印付与工程を含み、
     上記スリット工程では、上記第1の印および上記第2の印が付与された上記フィルム原反をスリットすることを特徴とする請求項1~11の何れか1項に記載のフィルム製造方法。
  14.  上記原反欠陥印付与工程では、上記第1の印および上記第2の印を、上記スリットラインに重ならないように付与することを特徴とする請求項13に記載のフィルム製造方法。
  15.  上記欠陥情報に基づいて、上記不良フィルムの一部を切除する欠陥切除工程を含むことを特徴とする請求項1~14の何れか1項に記載のフィルム製造方法。
  16.  フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得部と、
     上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット部と、
     1つの上記欠陥に関する上記欠陥情報に基づいてスリット後のフィルムの不良判定を行うことにより、実際に上記欠陥を含むフィルムおよび該フィルムに隣接する別のフィルムを不良フィルムと判定する判定部と、を備えていることを特徴とするフィルム製造装置。
  17.  フィルム原反における欠陥の位置情報を含む欠陥情報を取得する欠陥情報取得部と、
     上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット部と、
     上記欠陥情報に基づいてスリット後のフィルムの不良判定を行う判定部と、を含み、
     上記欠陥情報取得部は、上記欠陥情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、
     上記判定部では、欠陥が存在する上記分割領域が上記スリットラインに重ならない場合には、該分割領域を含んで得られる1つのフィルムを不良フィルムと判定し、欠陥が存在する上記分割領域またはその境界線が上記スリットラインに重なる場合には、該スリットラインで分断される2つのフィルムを不良フィルムと判定することを特徴とするフィルム製造装置。
  18.  欠陥を有するフィルム原反の表面を長手方向に沿った境界線で区画してなる領域ごとに対応して得られる複数のフィルムのうちの一つのフィルムであって、
     上記境界線を介して上記欠陥が含まれる領域に隣接する領域に対応して得られ、
     上記境界線を介して上記欠陥に対向する位置に印が付与されていることを特徴とするフィルム。
  19.  請求項18に記載のフィルムがロール状に巻き取られてなるフィルム捲回体。
PCT/JP2015/076651 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体 WO2016056379A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/517,729 US10355256B2 (en) 2014-10-10 2015-09-18 Film production method and film production device
CN201580054773.0A CN106796183B (zh) 2014-10-10 2015-09-18 膜制造方法、膜制造装置
KR1020177010258A KR101759468B1 (ko) 2014-10-10 2015-09-18 필름 제조 방법, 및 필름 제조 장치
JP2016520129A JP6017093B2 (ja) 2014-10-10 2015-09-18 フィルム製造方法、及びフィルム製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-209414 2014-10-10
JP2014209414 2014-10-10
JPPCT/JP2015/052749 2015-01-30
PCT/JP2015/052749 WO2016056253A1 (ja) 2014-10-10 2015-01-30 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置

Publications (1)

Publication Number Publication Date
WO2016056379A1 true WO2016056379A1 (ja) 2016-04-14

Family

ID=55652885

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2015/052749 WO2016056253A1 (ja) 2014-10-10 2015-01-30 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
PCT/JP2015/076651 WO2016056379A1 (ja) 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体
PCT/JP2015/076650 WO2016056378A1 (ja) 2014-10-10 2015-09-18 セパレータ原反の製造方法、セパレータの製造方法、セパレータ捲回体、セパレータ原反捲回体、及びセパレータ原反製造装置
PCT/JP2015/076652 WO2016056380A1 (ja) 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052749 WO2016056253A1 (ja) 2014-10-10 2015-01-30 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/076650 WO2016056378A1 (ja) 2014-10-10 2015-09-18 セパレータ原反の製造方法、セパレータの製造方法、セパレータ捲回体、セパレータ原反捲回体、及びセパレータ原反製造装置
PCT/JP2015/076652 WO2016056380A1 (ja) 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体

Country Status (5)

Country Link
US (4) US10665838B2 (ja)
JP (4) JP5815909B1 (ja)
KR (4) KR102270352B1 (ja)
CN (5) CN106796184B (ja)
WO (4) WO2016056253A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155566A (ja) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 フィルム検査システム及びフィルムの製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796184B (zh) * 2014-10-10 2019-11-19 住友化学株式会社 隔膜及隔膜卷料的制造方法、隔膜卷料及其制造装置
JP7014512B2 (ja) * 2015-12-22 2022-02-01 住友化学株式会社 電池用セパレータの製造方法及び電池用セパレータ製造装置
KR102248231B1 (ko) * 2016-01-18 2021-05-04 주식회사 엘지화학 이차전지용 분리막 코팅방법
JP6770855B2 (ja) * 2016-08-31 2020-10-21 住友化学株式会社 セパレータ捲回体、セパレータ捲回体の製造方法およびラベル検査方法
EP3339845A3 (en) * 2016-11-30 2018-09-12 Sumitomo Chemical Company, Ltd Defect inspection device, defect inspection method, method for producing separator roll, and separator roll
JP6933513B2 (ja) * 2016-11-30 2021-09-08 住友化学株式会社 欠陥検査装置、欠陥検査方法、セパレータ捲回体の製造方法、及びセパレータ捲回体
CN111094953A (zh) * 2017-09-19 2020-05-01 柯尼卡美能达株式会社 非破坏检查方法
IT201700112283A1 (it) * 2017-10-06 2019-04-06 Italia Tech Alliance S R L Procedimento ed impianto per produrre bobine di prodotti sottili
JP6563469B2 (ja) * 2017-12-15 2019-08-21 本田技研工業株式会社 電極接合方法及び電極接合装置
NL2020361B1 (en) 2018-01-31 2019-08-07 Airborne Int B V Tape sectioning system and method of sectioning tape
JP7044583B2 (ja) 2018-02-22 2022-03-30 住友化学株式会社 フィルムの製造方法、フィルム捲回装置
EP3678858B1 (en) * 2018-07-08 2023-05-24 Lohia Corp Limited Device and method for managing defects in a web material on conversion lines
CN109585937B (zh) * 2018-12-12 2021-04-20 江苏时代新能源科技有限公司 卷绕自动识别隔膜标签的方法
DE102019127454B4 (de) * 2019-03-29 2023-05-04 Windmöller & Hölscher Kg System zur verbesserten Einführung einer Trennvorrichtung sowie Blasfolienanlage sowie Verfahren zur Herstellung und Bereitstellung von zumindest zwei Folienbahnen aus Kunststoff in einer Blasfolienanlage
CN109967375B (zh) * 2019-04-18 2021-04-16 苏州方林科技股份有限公司 一种电池极耳检测设备
JP7277244B2 (ja) * 2019-04-25 2023-05-18 住友化学株式会社 スリットセパレータの製造方法およびスリットセパレータの製造装置
JP7277243B2 (ja) * 2019-04-25 2023-05-18 住友化学株式会社 セパレータの製造方法およびセパレータの製造装置
CN111180650A (zh) * 2020-01-06 2020-05-19 深圳市海目星激光智能装备股份有限公司 极耳成型方法及成型装置
CN114953764B (zh) * 2021-02-18 2023-08-22 恒美光电股份有限公司 一种偏光膜缺点汇整标记系统
EP4047675A1 (en) * 2021-02-23 2022-08-24 Siemens Aktiengesellschaft A cutting system, control method, controller in a li-ion battery winding machine and medium
KR20230000877A (ko) 2021-06-26 2023-01-03 주식회사 엘지에너지솔루션 분리막 통기도 검사장치 및 이를 이용한 분리막 통기도 검사방법
KR102450342B1 (ko) * 2021-08-10 2022-10-04 (주)피엔티 원단의 불량 부분 표시 장치
JP7288989B1 (ja) * 2022-01-31 2023-06-08 日東電工株式会社 長尺光学フィルムの検査方法
EP4310040A1 (en) * 2022-07-20 2024-01-24 Siemens Aktiengesellschaft Method and system for computer-implemented tracking of production history of a continuous web
CN116730056B (zh) * 2023-08-15 2023-10-27 江苏铭丰电子材料科技有限公司 一种可测缺陷的铜箔收卷装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338406A (ja) * 2003-05-16 2004-12-02 Bobst Sa 平坦なワークピースの品質を検査するための方法及びかかる方法を実施するための装置
JP2009244063A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 偏光フィルムの仕分けシステムおよび仕分け方法
JP2011220967A (ja) * 2010-04-14 2011-11-04 Sumitomo Chemical Co Ltd 光学フィルム作製用原反フィルム、光学フィルムおよびその製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806015A (en) 1973-05-04 1974-04-23 Eastman Kodak Co Detection of defects in a moving web of material
IT1257545B (it) 1992-06-15 1996-01-30 Olivetti & Co Spa Apparecchiatura facsimile con stampante a getto d'inchiostro.
JPH08101130A (ja) 1994-09-29 1996-04-16 Fuji Xerox Co Ltd 表面欠陥検査装置
US6219930B1 (en) 1998-02-27 2001-04-24 Randall M. McPherson Apparatus and method of use for calculating an estimate of damaged surface repair cost
JP2002228429A (ja) * 2001-01-30 2002-08-14 Tonen Chem Corp フィルムの評価方法及びスリットフィルムの品質管理方法
JP2002292853A (ja) * 2001-03-29 2002-10-09 Tomoegawa Paper Co Ltd マーキングシステム、マーキング方法およびマーキング装置
JP4343456B2 (ja) * 2001-04-03 2009-10-14 大日本印刷株式会社 シート状製品の欠陥マーキング方法および装置
US20060164647A1 (en) 2005-01-13 2006-07-27 Nagase & Co., Ltd. Apparatus for marking a defect
JP2006194721A (ja) 2005-01-13 2006-07-27 Nagase & Co Ltd 欠陥マーキング装置
JP4552680B2 (ja) * 2005-02-10 2010-09-29 Jfeスチール株式会社 金属帯の製造方法およびマーキング付き金属帯
JP2006337630A (ja) 2005-06-01 2006-12-14 Sumitomo Chemical Co Ltd 積層光学フィルムの製造方法
JP2008082910A (ja) * 2006-09-28 2008-04-10 Nippon Paper Industries Co Ltd シート材加工における欠陥部指示方法及び欠陥部指示装置
JP5248052B2 (ja) * 2006-10-11 2013-07-31 日東電工株式会社 光学フィルムを有するシート状製品の欠点検査装置、その検査データ処理装置、その切断装置及びその製造システム
JP5228459B2 (ja) 2007-11-30 2013-07-03 ダックエンジニアリング株式会社 検査群データ管理システム
JP4737569B2 (ja) 2008-01-29 2011-08-03 日東電工株式会社 光学表示ユニットの製造方法および光学表示ユニットの製造システム
JP2009244064A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 偏光フィルムの検査方法
JP2010032346A (ja) 2008-07-29 2010-02-12 Panasonic Corp 二次電池用電極群の検査方法
JP2010244875A (ja) 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
JP4503690B1 (ja) 2009-10-13 2010-07-14 日東電工株式会社 液晶表示素子を連続製造する装置に用いられる情報格納読出システム、及び、前記情報格納読出システムを製造する方法及び装置
JP5519330B2 (ja) 2010-02-26 2014-06-11 日東電工株式会社 切断情報決定方法、並びに、これを用いた帯状偏光シートの製造方法、光学表示ユニットの製造方法、帯状偏光シート及び偏光シート原反
JP4691205B1 (ja) 2010-09-03 2011-06-01 日東電工株式会社 薄型高機能偏光膜を含む光学フィルム積層体の製造方法
JP5511730B2 (ja) 2010-09-03 2014-06-04 日東電工株式会社 光学的パネル組立体の連続的製造方法及び装置
JP5502023B2 (ja) 2010-09-03 2014-05-28 日東電工株式会社 偏光膜を有する光学フィルム積層体ロールの製造方法
JP5701679B2 (ja) 2010-09-03 2015-04-15 日東電工株式会社 矩形形状のパネルに偏光膜を有する光学フィルムを順次的に貼り付ける方法及び装置
JP5478553B2 (ja) 2010-09-03 2014-04-23 日東電工株式会社 連続ウェブ状光学フィルム積層体ロール及びその製造方法
JP5361941B2 (ja) 2010-09-03 2013-12-04 日東電工株式会社 偏光膜を有する積層体ストリップロールの製造方法
JP5474869B2 (ja) 2010-09-03 2014-04-16 日東電工株式会社 偏光膜を有する積層体ストリップロールの製造方法
WO2012133097A1 (ja) * 2011-03-30 2012-10-04 東レ株式会社 微多孔プラスチックフィルムロールの製造方法
ES2400656B1 (es) 2011-06-28 2014-06-02 Airbus Operations, S.L. Procedimiento de marcado y reconocimiento de defectos en material prepreg
KR101434379B1 (ko) * 2011-10-21 2014-08-27 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
CN202562855U (zh) * 2012-05-18 2012-11-28 山东正华隔膜技术有限公司 用于分切机上隔膜在线瑕疵检测装置
CN203450889U (zh) * 2013-08-06 2014-02-26 达尼特材料科技(芜湖)有限公司 多层隔膜复合机
CN103515562B (zh) * 2013-09-30 2016-02-03 长沙理工大学 一种新型锂离子电池隔膜及其制备方法
EP3074760A1 (en) 2013-11-26 2016-10-05 3M Innovative Properties Company Devices and methods for assessment of surfaces
CN106796184B (zh) 2014-10-10 2019-11-19 住友化学株式会社 隔膜及隔膜卷料的制造方法、隔膜卷料及其制造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338406A (ja) * 2003-05-16 2004-12-02 Bobst Sa 平坦なワークピースの品質を検査するための方法及びかかる方法を実施するための装置
JP2009244063A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 偏光フィルムの仕分けシステムおよび仕分け方法
JP2011220967A (ja) * 2010-04-14 2011-11-04 Sumitomo Chemical Co Ltd 光学フィルム作製用原反フィルム、光学フィルムおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155566A (ja) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 フィルム検査システム及びフィルムの製造方法

Also Published As

Publication number Publication date
US10665838B2 (en) 2020-05-26
US10168285B2 (en) 2019-01-01
KR20170046183A (ko) 2017-04-28
JPWO2016056378A1 (ja) 2017-04-27
JP5815909B1 (ja) 2015-11-17
JPWO2016056253A1 (ja) 2017-04-27
CN106796184A (zh) 2017-05-31
CN106796184B (zh) 2019-11-19
CN106796182B (zh) 2018-11-23
WO2016056253A1 (ja) 2016-04-14
KR102270352B1 (ko) 2021-06-30
JP6017091B2 (ja) 2016-10-26
CN109616602B (zh) 2021-09-24
US20170307971A1 (en) 2017-10-26
CN107076679B (zh) 2018-11-13
WO2016056378A1 (ja) 2016-04-14
JPWO2016056379A1 (ja) 2017-04-27
CN106796183A (zh) 2017-05-31
CN109616602A (zh) 2019-04-12
KR20170047402A (ko) 2017-05-04
US20170307542A1 (en) 2017-10-26
KR101780172B1 (ko) 2017-09-19
US10355256B2 (en) 2019-07-16
US10177358B2 (en) 2019-01-08
JPWO2016056380A1 (ja) 2017-04-27
JP6017093B2 (ja) 2016-10-26
CN106796183B (zh) 2018-07-24
KR101751672B1 (ko) 2017-06-27
KR20170054514A (ko) 2017-05-17
JP6017092B2 (ja) 2016-10-26
US20170307543A1 (en) 2017-10-26
US20170317327A1 (en) 2017-11-02
KR20170066430A (ko) 2017-06-14
KR101759468B1 (ko) 2017-07-18
CN107076679A (zh) 2017-08-18
WO2016056380A1 (ja) 2016-04-14
CN106796182A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6017093B2 (ja) フィルム製造方法、及びフィルム製造装置
KR102545613B1 (ko) 세퍼레이터 권회체, 전지의 제조 방법, 및 세퍼레이터 권회체의 제조 방법
KR101931414B1 (ko) 필름 제조 방법 및 필름 제조 장치
TW201611387A (zh) 電池隔板用微多孔膜捲繞物及其製造方法
JPWO2017131181A1 (ja) フィルム製造装置、フィルム捲回体製造装置、フィルム製造方法、及びフィルム捲回体製造方法
JP6794315B2 (ja) フィルム捲回体並びにその製造方法、およびフィルム
JP6549192B2 (ja) 巻芯、セパレータ捲回体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520129

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177010258

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15848832

Country of ref document: EP

Kind code of ref document: A1