WO2016047578A1 - 磁気記録膜形成用スパッタリングターゲット及びその製造方法 - Google Patents

磁気記録膜形成用スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2016047578A1
WO2016047578A1 PCT/JP2015/076628 JP2015076628W WO2016047578A1 WO 2016047578 A1 WO2016047578 A1 WO 2016047578A1 JP 2015076628 W JP2015076628 W JP 2015076628W WO 2016047578 A1 WO2016047578 A1 WO 2016047578A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sputtering target
sputtering
sintered body
particles
Prior art date
Application number
PCT/JP2015/076628
Other languages
English (en)
French (fr)
Inventor
真一 荻野
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN202210426425.3A priority Critical patent/CN114959599A/zh
Priority to JP2015560124A priority patent/JP6084711B2/ja
Priority to CN201580051739.8A priority patent/CN107075665A/zh
Priority to SG11201701838XA priority patent/SG11201701838XA/en
Publication of WO2016047578A1 publication Critical patent/WO2016047578A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the present invention relates to a ferromagnetic thin film sputtering target used for forming a magnetic thin film of a magnetic recording medium, in particular, a magnetic recording layer of a thermally assisted magnetic recording medium, and a stable discharge is obtained when it is sputtered by a magnetron sputtering apparatus.
  • the present invention relates to a FePt-based sintered sputtering target that generates less particles.
  • a material based on Co, Fe, or Ni, which is a ferromagnetic metal is used as a material for a magnetic thin film for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a hard disk recording layer employing a perpendicular magnetic recording system that has been put into practical use in recent years often uses a composite material composed of a Co—Cr—Pt-based ferromagnetic alloy mainly composed of Co and non-magnetic inorganic particles. It has been.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
  • the recording density of the magnetic recording medium is rapidly increasing year by year, are believed to from a surface density of 100 Gbit / in 2 the current, future reaches 1 Tbit / in 2.
  • the size of the recording bit becomes less than 10 nm.
  • superparamagnetization due to thermal fluctuation is expected to be a problem, and magnetic recording media currently used
  • a material in which Pt is added to a Co—Cr base alloy to increase the magnetocrystalline anisotropy, or a medium in which B is further added to weaken the magnetic coupling between the magnetic grains is not sufficient. It is expected that. This is because particles having a size of 10 nm or less and stably acting as ferromagnetism must have higher crystal magnetic anisotropy.
  • FePt phase having an L1 0 structure is attracting attention as a material for an ultra-high density recording medium. Further, FePt phase having an L1 0 structure corrosion and excellent oxidation resistance, it is expected that materials suitable for application as a recording medium.
  • the FePt phase rule to 1573K - has an irregular transformation point, typically having an L1 0 structure by rapid ordering reaction be quenched alloy from the hot.
  • the FePt phase is used as a material for an ultra-high density recording medium, it is necessary to develop a technique for aligning and dispersing the ordered FePt phase as densely as possible in a magnetically separated state. It has been.
  • Granular structure magnetic thin film has been proposed for magnetic recording medium of the next generation hard disk employing a thermally assisted magnetic recording method that are magnetically separated by a nonmagnetic material FePt magnetic phase having an L1 0 structure this reason .
  • This granular structure magnetic thin film has a structure in which magnetic particles are magnetically insulated by the interposition of a non-magnetic substance.
  • the magnetic recording layer is composed of a magnetic phase such as an FePt alloy and a nonmagnetic phase separating the magnetic phase, and it is known that C and BN are effective as a material for the nonmagnetic phase.
  • a magnetic thin film it is common to use a FePt alloy sputtering target containing C instead of using a plurality of targets of a C target and an FePt alloy target (for example, Patent Documents 1 and 2). ).
  • Patent Document 3 a sputtering target for forming a FePt magnetic recording film containing C
  • Patent Document 4 a sputtering target for forming an FePt magnetic recording film containing BN
  • An FePt-based sputtering target containing C or BN is usually produced using a powder sintering method.
  • the thermal expansion coefficient of C and BN is too small compared to the FePt alloy, the higher the sintering temperature, the greater the compressive stress applied to C and BN.
  • C and BN are physically defective. This may cause generation of particles during sputtering.
  • the sintering temperature is too low, the density of the target becomes low, which causes a problem that particles are generated.
  • An object of the present invention is to provide a FePt-based sintered sputtering target, and to provide a high-density FePt-based sputtering target in which particles generated during sputtering are suppressed.
  • the present inventor has conducted intensive research. As a result, by adding an AuCu alloy having a low melting point as a sintering aid to the raw material, the density of the target can be reduced even at a sintering temperature lower than conventional. As a result, it has been found that generation of particles during sputtering due to defects and density reduction based on C and BN can be reduced.
  • the present invention 1) In an FePt-based sintered sputtering target containing C and / or BN, the area ratio occupied by AuCu alloy particles on the polished surface in a cross section perpendicular to the sputtering surface of the target is 0.5% or more and 15% or less.
  • a sputtering target 2) The sputtering target according to 1) above, wherein the total content of Au and Cu is 1 to 20 mol% with respect to the composition of the entire sputtering target; 3) The sputtering target according to 2) above, wherein the content ratio of Cu to Au in the sputtering target is 20 to 80 mol%, 4) The sputtering target according to any one of 1) to 3) above, wherein the Pt content is 30 to 70 mol% with respect to the composition of the entire sputtering target. 5) The sputtering target according to any one of 1) to 4) above, wherein the C content is from 5 to 50 mol% based on the composition of the entire sputtering target.
  • the FePt-based sintered sputtering target containing C and / or BN of the present invention has an excellent effect that the amount of particles generated during sputtering can be remarkably reduced. Further, the magnetic thin film of the magnetic recording medium, particularly a granular type magnetic recording layer can be efficiently formed.
  • the lower the melting point of the metal material the lower the softening temperature.
  • a material having a low melting point as a sintering aid, the density of the sintered body can be increased even at a low sintering temperature.
  • Au, Ag, or Cu is added alone as a sintering aid metal added to the FePt-based sintered sputtering target.
  • the inventor of the present invention pays attention to the fact that an AuCu alloy composed of Au (melting point: 1064.4 ° C.) and Cu (melting point: 1064.6 ° C.) has its melting point lowered to 910 ° C. due to the eutectic reaction.
  • the AuCu alloy means an alloy having a composition range (Au: 20 to 80 at%) in which the liquid phase of the alloy appears at 910 ° C. in the Au—Cu binary phase diagram.
  • Patent Documents 3 to 6 it is known to add Ag, Cu or the like to an FePt alloy sputtering target.
  • these are for the purpose of improving the magnetic properties and are not added as a sintering aid, and the addition method is such that Ag or Cu is added alone, or AgPt alloy or CuPt alloy is added.
  • an AuCu alloy having a relatively low melting point is not added.
  • the sintering temperature can be increased by mixing AuPt alloy powder or CuPt alloy powder having a melting point higher than that of pure Au powder or pure Cu powder. Is clearly different in that the melting point is lowered by alloying Au and Cu as in the present invention.
  • the area ratio occupied by the AuCu alloy particles on the polished surface in the cross section perpendicular to the sputtering surface of the target is 0.5%. It is characterized by being 15% or less.
  • the FePt sintered compact sputtering target containing C and / or BN of the present invention has a structure in which nonmagnetic material particles of C and / or BN are dispersed in a ferromagnetic material made of an FePt alloy.
  • the reason for defining the structure of the vertical cross section is that C or BN used as a raw material has a flaky shape, and therefore, when hot pressing is performed in a uniaxial direction, the structure of the vertical cross section and the horizontal cross section is determined. This is because it looks different. At this time, since the vertical section looks like a layer like a characteristic formation, the vertical section is defined.
  • the observation of the AuCu alloy particles is mirror-polished until the AuCu alloy particles can be discriminated from the vertical cross section with respect to the sputtering surface of the sputtering target, and the laser microscope is used to observe any 10 locations of the sputtering target with a visual field of 60 ⁇ m ⁇ 80 ⁇ m Obtain the area ratio.
  • emery paper of SiC abrasive grains is used for polishing.
  • the emery paper is polished by using grains having a particle size of # 240, # 400, # 600, # 1000 (JIS R6010) in order. Thereafter, wet polishing is performed using alumina abrasive grains having a particle diameter of 0.3 ⁇ m as a finish.
  • the area ratio is calculated as follows.
  • AuCu alloy particles are darker than the FePt alloy phase and brighter than the C and BN phases, so that only the AuCu alloy phase is binarized by utilizing the difference in contrast.
  • the oxide phase is photographed darker than the AuCu alloy particles in the same manner as the C phase and the BN phase, and in this case as well, it can be easily distinguished by a contrast difference.
  • the area ratio of the AuCu alloy particles is calculated from the binarized data in this way. In binarization, those having an area of 100 pixels or less are highly likely to be noise, so those values are not included in the binarization data.
  • the total content of Au and Cu is preferably 1 to 20 mol% with respect to the composition of the entire sputtering target. If the total content of Au and Cu is less than 1 mol%, the effect as a sintering aid due to the addition of the AuCu alloy cannot be sufficiently obtained, so the density of the sintered body (sputtering target) cannot be improved, and the particles Is not preferred because it tends to occur. On the other hand, if the total content of Au and Cu is more than 20 mol%, it is difficult to control the characteristics of the magnetic thin film formed by sputtering, which is not preferable.
  • the content ratio of Cu to Au in the sputtering target is preferably 20 to 80 mol%. If the content ratio of Cu to Au is less than 20 mol% or more than 80 mol%, the effect of lowering the melting point of the AuCu alloy cannot be obtained sufficiently, so the density of the sintered body (sputtering target) cannot be improved and particles are generated. It is not preferable because it is easy to do.
  • the Pt content is preferably 30 mol% or more and 70 mol% or less with respect to the composition of the entire sputtering target.
  • the magnetic insulation is improved by setting the C content as a nonmagnetic material to 5 mol% to 50 mol% and the BN content to 5 mol% to 40 mol%.
  • the total content of C and BN is preferably 3 vol% or more and 50 vol% or less.
  • the present invention also includes sputtering one or more metal oxides selected from Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Al, Ga, and Si. It is preferable to contain 0.1 to 20 mol% of the total composition of the target. These oxides are effective components for improving the magnetic properties of the sputtered film.
  • the balance is Fe except for Pt, C and / or BN, AuCu, and the oxide described above. The content of these components can be measured by ICP (inductively coupled plasma) -OES method.
  • the sputtering target of the present invention preferably has a density of 95% or more. Thereby, there is little generation
  • the relative density of the present invention is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
  • the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • the FePt-based sintered sputtering target of the present invention can be produced by the following method. First, each raw material powder (Fe powder, Pt powder, C powder, BN powder, AuCu alloy powder) is prepared. Further, an alloy powder (Fe—Pt powder) previously alloyed by heat treatment or an atomizing apparatus may be used as the raw material powder. The alloy powder containing Pt is effective for reducing the amount of oxygen in the raw material powder, although it depends on its composition. Further, instead of the AuCu alloy powder, Au powder and Cu powder may be used and alloyed during sintering. Furthermore, each raw material powder of the metal oxide listed above is prepared as needed.
  • the metal powder (Fe powder, Pt powder, Fe—Pt alloy powder) is pulverized using a ball mill, a medium stirring mill or the like.
  • such raw material powders of metal are spherical, lump, or other irregular shapes, but the shape can be reduced to a flaky shape by pulverizing them using a ball mill or a medium stirring mill.
  • a flaky powder By using such flaky powder, a layered structure is formed in the vertical cross-sectional direction of the sintered body, the crystal direction of the Fe—Pt alloy phase is stabilized, and this contributes to the stabilization of discharge.
  • Each of these raw material powders preferably has an average particle size of 10 to 100 ⁇ m.
  • the raw material powder is weighed so as to have a desired composition, and the metal powder obtained by pulverization and the AuCu alloy powder, C powder and / or BN powder are mixed using a mortar, a medium stirring mill, a sieve or the like. To do.
  • the oxide as an additive component is added together with the metal raw material powder, is added together with the C powder or BN powder, or the metal raw material powder is mixed with the C powder or BN powder. Can be thrown in.
  • this mixed powder is molded and sintered by hot pressing.
  • a plasma discharge sintering method or a hot isostatic pressing method can also be used.
  • the holding temperature during sintering depends on the composition of the sputtering target, but in many cases is in the temperature range of 850 to 900 ° C. Conventionally, sintering was performed in a temperature range of 800 ° C. to 1400 ° C. in order to increase the density. However, according to the present invention, a high density equivalent to the conventional one can be realized at a relatively low sintering temperature. it can.
  • Hot isostatic pressing is effective in improving the density of the sintered body.
  • the holding temperature during the hot isostatic pressing depends on the composition of the sintered body, but in the temperature range of 850 ° C. to 900 ° C.
  • hot isostatic pressing was performed in the temperature range of 800 ° C to 1200 ° C in order to increase the density, as in the case of the hot press. Can be realized at a low sintering temperature.
  • the sputtering target of the present invention can be produced by processing the sintered body thus obtained into a desired shape using a lathe or the like.
  • a FePt-type sintered sputtering target containing C and / or BN and a high-density sputtering target (particularly a density of 95% or more) can be produced.
  • FePt alloy powder, C powder, and AuCu alloy powder were prepared as raw material powders, and these powders were weighed so as to be 60 (45Fe-45Pt-5Au-5Cu) -40C (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill, the AuCu alloy powder, and the C powder are mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder is filled into a carbon mold. And hot pressed.
  • the hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 850 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold.
  • the conditions for hot isostatic pressing were a temperature increase rate of 300 ° C./hour, a holding temperature of 850 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of the temperature rising and holding at 750 ° C.
  • the inside was pressurized at 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the microscope image is shown in the left figure of FIG. In this figure, the dark gray area corresponds to AuCu alloy particles. Then, this was binarized and the area ratio (average) of AuCu alloy particles was determined. As a result, it was 10.8%. In addition, it confirmed that these particles consisted of AuCu alloy using the FE-EPMA image (refer FIG. 2). Moreover, as a result of measuring the density about the other edge part of this sintered compact using the Archimedes method, it was 95.8%.
  • this sintered body was cut with a lathe into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm, and then attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and subjected to sputtering.
  • the sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa.
  • a film was formed on a 4-inch diameter silicon substrate for 20 seconds.
  • the number of particles having a particle diameter of 0.25 ⁇ m or more adhered on the substrate was measured with a particle counter. At this time, the number of particles was 65.
  • FePt alloy powder, C powder, and Au powder were prepared as raw material powders, and these powders were weighed so as to be 60 (45Fe-45Pt-10Au) -40C (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill, the Au powder, and the C powder are mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder is filled into a carbon mold.
  • the hot pressing was performed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • this sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe, and then attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and subjected to sputtering.
  • the sputtering conditions were the same as in Example 1.
  • the number of particles having a particle diameter of 0.25 ⁇ m or more adhering to the substrate with a particle counter the number of particles increased to 184 compared to the example.
  • FePt alloy powder, C powder, and Cu powder were prepared as raw material powders, and these powders were weighed so as to be 60 (45Fe-45Pt-10Cu) -40C (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours.
  • Cu powder and C powder with a V-shaped mixer, they are further mixed using a 150 ⁇ m sieve, and this mixed powder is filled into a carbon mold.
  • the hot pressing was performed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • FePt alloy powder and C powder were prepared as raw material powders, and these powders were weighed so as to be 60 (50Fe-50Pt) -40C (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill and the C powder were mixed with a V-shaped mixer, and then mixed using a 150 ⁇ m sieve, and the mixed powder was filled into a carbon mold.
  • Hot pressing was performed under the same conditions as in No. 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • Example 2 Fe powder, Pt powder, BN powder, and AuCu alloy powder were prepared as raw material powders, and these powders were weighed so as to be 66 (54Fe-40Pt-3Au-3Cu) -34BN (mol%).
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium agitating mill, the AuCu alloy powder, and the BN powder are mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and the mixed powder is filled into a carbon mold.
  • hot pressing was performed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 2.4%.
  • the density about the other edge part of the sintered compact obtained in this way using the Archimedes method it was 95.4%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 94.
  • this sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe, and then attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and subjected to sputtering.
  • the sputtering conditions were the same as in Example 1.
  • the number of particles having a particle diameter of 0.25 ⁇ m or more adhering to the substrate with a particle counter the number of particles was 256, which was significantly increased as compared with Example 2.
  • Fe powder, Pt powder, C powder, Au powder, and Cu powder are prepared as raw material powders, and these powders are adjusted to 50 (60Fe-30Pt-1.5Au-8.5Cu) -50C (mol%). Weighed. Next, Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours. Then, the powder taken out from the medium agitating mill, Au powder, Cu powder and C powder were mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder was mixed with a carbon mold. And hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 4.8%.
  • the density using the Archimedes method for the other end of the sintered body thus obtained it was 95.1%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 82.
  • Fe powder, Pt powder, C powder, and Au powder were prepared as raw material powders, and these powders were weighed so as to be 50 (60Fe-30Pt-10Au) -50C (mol%).
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill, the Au powder, and the C powder are mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder is filled into a carbon mold.
  • the hot pressing was performed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • Example 4 Fe powder, Pt powder, BN powder, Au powder, and Cu powder were prepared as raw material powders, and these powders were weighed to 80 (20Fe-70Pt-9Au-1Cu) -20BN (mol%).
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill, Ag powder, Cu powder, and BN powder are mixed with a V-shaped mixer, and then mixed using a 150 ⁇ m sieve, and this mixed powder is mixed with a carbon mold.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 9.7%.
  • the density about the other edge part of the sintered compact obtained in this way using the Archimedes method it was 96.0%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 83.
  • Fe powder, Pt powder, C powder, AuCu powder, and SiO 2 powder are prepared as raw material powders, and these powders are set to 77 (35Fe-45Pt-10Au-10Cu) -8SiO 2 -15C (mol%). Weighed.
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours. Then, the powder taken out from the medium stirring mill, the AuCu alloy powder, the SiO 2 powder, and the C powder were mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder was made of carbon.
  • the mold was filled and hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 14.3%.
  • the density using the Archimedes method for the other end of the sintered body thus obtained it was 97.1%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 47.
  • Fe powder, Pt powder, C powder, AuCu powder, TiO 2 powder, and Cr 2 O 3 powder are prepared as raw material powder, and these powders are prepared as 73 (53Fe-45Pt-1Au-1Cu) -1TiO 2 -1Cr 2 O.
  • the sample was weighed to 3 ⁇ 25 C (mol%).
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours.
  • Example 1 After mixing the powder taken out from the medium stirring mill, the AuCu alloy powder, the TiO 2 powder, the Cr 2 O 3 powder and the C powder with a V-shaped mixer, they are further mixed using a 150 ⁇ m sieve, This mixed powder was filled in a carbon mold and hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 0.8%.
  • the density about the other edge part of the sintered compact obtained in this way using the Archimedes method it was 96.2%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 59.
  • Fe powder, Pt powder, C powder, Au powder, TiO 2 powder, and Cr 2 O 3 powder were prepared as raw material powders, and these powders were prepared as 73 (53Fe-45Pt-2Au) -1TiO 2 ⁇ 1Cr 2 O 3 ⁇ It weighed so that it might become 25C (mol%).
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours.
  • Example 1 the powder taken out from the medium stirring mill, Ag powder, TiO 2 powder, Cr 2 O 3 powder and C powder were mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve.
  • the mixed powder was filled in a carbon mold and hot pressed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • Example 7 As raw material powders, FePt alloy powder, BN powder, Au powder, Cu powder, MnO powder, Ta 2 O 5 powder were prepared, and these powders were 78.5 (45Fe-45Pt-4Au-6Cu) -0.5MnO--. It was weighed so as to be 1Ta 2 O 5 -20BN (mol%). Next, the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill, Au powder, Cu powder, MnO powder, Ta 2 O 5 powder and BN powder are mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve.
  • the mixed powder was filled in a carbon mold and hot pressed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 6.1%.
  • the density using the Archimedes method for the other end of the sintered body thus obtained it was 95.2%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 97.
  • FePt alloy powder, BN powder, Cu powder, MnO powder, and Ta 2 O 5 powder are prepared as raw material powder, and these powders are 78.5 (45Fe-45Pt-10Cu) -0.5MnO-1Ta 2 O 5-. It weighed so that it might become 20BN (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium agitating mill, Cu powder, MnO powder, Ta 2 O 5 powder and BN powder are mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixing is performed.
  • the powder was filled in a carbon mold and hot pressed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • FePt alloy powder, C powder, AuCu alloy powder, and SiO 2 powder are prepared as raw material powders, and these powders are weighed so as to be 80 (45Fe-45Pt-5Au-5Cu) -15SiO 2 -5C (mol%). did.
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours. Then, the powder taken out from the medium stirring mill, the AuCu alloy powder, the SiO 2 powder, and the C powder were mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder was made of carbon.
  • the mold was filled and hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 7.2%.
  • the density using the Archimedes method for the other end of the sintered body thus obtained it was 97.3%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 13.
  • FePt alloy powder, C powder, Au powder, and SiO 2 powder were prepared as raw material powders, and these powders were weighed so as to be 80 (45Fe-45Pt-10Au) -15SiO 2 -5C (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours. Then, the powder taken out from the medium stirring mill, the Au powder, the SiO 2 powder, and the C powder were mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder was made of carbon.
  • the mold was filled and hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • Example 9 FePt alloy powder, BN powder, Au powder, Cu powder, and SiO 2 powder are prepared as raw material powders, and these powders become 85 (45Fe-45Pt-4Au-6Cu) -10SiO 2 -5BN (mol%). Weighed out. Next, the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours. Then, the powder taken out from the medium stirring mill, Ag powder, Cu powder, SiO 2 powder, and BN powder were mixed with a V-shaped mixer, and further mixed using a 150 ⁇ m sieve, and this mixed powder was mixed. A carbon mold was filled and hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the end portion (corresponding to a vertical cross section with respect to the sputtering surface) of the sintered body thus obtained was cut out, mirror-polished, and then the polished surface was observed with a laser microscope.
  • the area ratio of the AuCu alloy particles was It was 5.9%.
  • the density about the other edge part of the sintered compact obtained in this way using the Archimedes method it was 97.0%.
  • this sintered body was sputtered under the same conditions as in Example 1.
  • the number of particles was 31.
  • FePt alloy powder, BN powder, Cu powder, and SiO 2 powder were prepared as raw material powders, and these powders were weighed so as to be 85 (45Fe-45Pt-10Cu) -10SiO 2 -5BN (mol%).
  • the FePt alloy powder was put into a medium stirring mill having a capacity of 5 L together with zirconium balls as a grinding medium, and processed at a rotational speed of 300 rpm for 2 hours. And after mixing the powder taken out from the medium stirring mill, Cu powder, SiO 2 powder and BN powder with a V-shaped mixer, they are further mixed using a 150 ⁇ m sieve, and this mixed powder is made of carbon.
  • the mold was filled and hot pressed under the same conditions as in Example 1. Next, hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • Fe powder, Pt powder, C powder, BN powder, and AuCu alloy powder are prepared as raw material powders, and these powders are weighed so as to be 60 (50Fe-40Pt-5Au-5Cu) -30C-10BN (mol%). did.
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours. And after mixing the powder taken out from the medium stirring mill, the AuCu alloy powder, the C powder and the BN powder with a V-shaped mixer, they are further mixed using a 150 ⁇ m sieve, and this mixed powder is made of carbon.
  • the mold was filled and hot pressed under the same conditions as in Example 1.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • Fe powder, Pt powder, C powder, BN powder, and Au powder were prepared as raw material powders, and these powders were weighed so as to be 60 (50Fe-40Pt-10Au) -30C-10BN (mol%).
  • Fe powder and Pt powder were put into a medium stirring mill having a capacity of 5 L together with zirconium balls as grinding media, and were processed at a rotational speed of 300 rpm for 2 hours.
  • the powder taken out from the medium stirring mill, Ag powder, C powder and BN powder are mixed with a V-shaped mixer, and then mixed using a 150 ⁇ m sieve, and this mixed powder is mixed with a carbon mold.
  • hot isostatic pressing was performed on the sintered body taken out from the hot press mold under the same conditions as in Example 1.
  • the FePt-based sintered sputtering target containing C and / or BN of the present invention has an excellent effect of being able to provide the amount of particles generated during sputtering. Therefore, it is useful as a ferromagnetic sputtering target for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

C及び/又はBNを含有するFePt系焼結体スパッタリングターゲットであって、該ターゲットのスパッタ面に対する垂直断面の研磨面においてAuCu合金粒子が占める面積率が0.5%以上15%以下であることを特徴とするスパッタリングターゲット。スパッタリング時に発生するパーティクルを低減して、磁気記録媒体の磁性薄膜を効率的に成膜できるスパッタリングターゲットを提供することを課題とする。

Description

磁気記録膜形成用スパッタリングターゲット及びその製造方法
 本発明は、磁気記録メディアの磁性体薄膜、特に、熱アシスト磁気記録メディアの磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、マグネトロンスパッタ装置でスパッタした際に安定した放電が得られるパーティクル発生の少ないFePt系焼結体スパッタリングターゲットに関する。
 HDD(ハードディスクドライブ)に代表される磁気記録媒体の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物粒子からなる複合材料が多く用いられている。そしてハードディスク等の磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
 一方、磁気記録媒体の記録密度は年々急速に増大しており、現状の100Gbit/inの面密度から、将来は1 Tbit/inに達すると考えられている。Tbit/inに記録密度が達すると、記録bitのサイズが10nmを下回るようになり、その場合熱揺らぎによる超常磁性化が問題となってくると予想され、現在、使用されている磁気記録媒体、例えば、Co-Cr基合金にPtを添加して結晶磁気異方性を高めた材料、また、これにさらにBを添加して磁性粒間の磁気結合を弱めたような媒体では十分ではないことが予想される。10nm以下のサイズで安定に強磁性として振る舞う粒子は、より高い結晶磁気異方性を持っている必要があるからである。
 上記のようなことから、L1構造を持つFePt相が超高密度記録媒体用材料として注目されている。また、L1構造を持つFePt相は耐食性、耐酸化性に優れているため、記録媒体としての応用に適した材料と期待されている。このFePt相は1573Kに規則-不規則変態点を持ち、通常合金を高温から焼き入れても急速な規則化反応によりL1構造を持つ。そして、FePt相を超高密度記録媒体用材料として使用する場合には、規則化したFePt相を磁気的に分離させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。このようなことからL1構造を有するFePt磁性相を非磁性材料で磁気的に分離されたグラニュラー構造磁性薄膜が熱アシスト磁気記録方式を採用した次世代ハードディスクの磁気記録媒体用として提案されている。
 このグラニュラー構造磁性薄膜は、磁性粒子同士が非磁性物質の介在により磁気的に絶縁される構造となっている。上記磁気記録層はFePt合金などの磁性相とそれを分離している非磁性相から構成されており、非磁性相の材料としてCやBNが有効であることが知られている。このような磁性薄膜を形成する場合、CターゲットとFePt合金ターゲットの複数のターゲットを用いるのではなく、Cを含有するFePt合金スパッタリングターゲットを用いるのが一般的である(例えば、特許文献1~2)。以前、本発明者は、Cを含有するFePt系磁気記録膜形成用スパッタリングターゲット(特許文献3)や、BNを含有するFePt系磁気記録膜形成用スパッタリングターゲット(特許文献4)に関する発明を行った。
 CやBNを含有するFePt系スパッタリングターゲットは、通常、粉末焼結法を用いて作製される。ところが、FePt合金に対して、CやBNの熱膨張率が小さすぎるため、焼結温度を高くするほど、CやBNに掛かる圧縮応力が増大し、その結果、CやBNが物理的な欠陥を生じて、スパッタリング中にパーティクル発生の原因となることがあった。一方、焼結温度を低くしすぎると、ターゲットの密度が低くなるため、これが原因となって、パーティクルが発生するという問題があった。
特開2012-102387号公報 特開2012-214874号公報 国際公開WO2014/013920 国際公開WO2014/065201 特許第5041261号 特許第5041262号
 FePt系合金などの磁性相とそれを分離している非磁性相から構成される磁気記録層を形成するためのスパッタリングターゲットであって、非磁性相の材料として、C及び/又はBNを利用したFePt系の焼結体スパッタリングターゲットを提供するものであり、スパッタリング時に発生するパーティクルを抑制した高密度のFePt系スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者は鋭意研究を行った結果、原料に融点の低いAuCu合金を焼結助剤として添加することで、従来よりも低い焼結温度でも、ターゲットの密度を上げることができ、その結果、CやBNに基づく欠陥や密度の低下に起因するスパッタリング中のパーティクルの発生を低減できることを見出した。
  このような知見に基づき、本発明は、
 1)C及び/又はBNを含有するFePt系焼結体スパッタリングターゲットにおいて、該ターゲットのスパッタ面に対する垂直断面の研磨面においてAuCu合金粒子が占める面積率が0.5%以上15%以下であることを特徴とするスパッタリングターゲット、
 2)スパッタリングターゲット全体の組成に対してAu及びCu合計含有量が1~20mol%であることを特徴とする上記1)記載のスパッタリングターゲット、
 3)Auに対するCuのスパッタリングターゲット内の含有比率が20~80mol%であることを特徴とする上記2)記載のスパッタリングターゲット、
 4)スパッタリングターゲット全体の組成に対してPt含有量が30~70mol%であることを特徴とする上記1)~3)のいずれか一に記載のスパッタリングターゲット。
 5)スパッタリングターゲット全体の組成に対してC含有量が5~50mol%であることを特徴とする上記1)~4)のいずれか一に記載のスパッタリングターゲット。
 6)スパッタリングターゲット全体の組成に対してBN含有量が5~40mol%であることを特徴とする上記1)~5)のいずれか一に記載のスパッタリングターゲット。
 7)Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Al、Ga、Siから選択した一種以上の金属酸化物をスパッタリングターゲット全体の組成に対してそれぞれ0.1~20mol%含有することを特徴とする上記1)~6)のいずれか一に記載のスパッタリングターゲット。
 8)密度が95%以上であることを特徴とする上記1)~7)のいずれか一に記載のスパッタリングターゲット、を提供する。
 本発明のC及び/又はBNを含有するFePt系焼結体スパッタリングターゲットはスパッタリング時に発生するパーティクル量を著しく低減することができるという優れた効果を有する。そして、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層を効率的に成膜することができるという効果を有する。
実施例1の焼結体のレーザー顕微鏡像及び二値化した画像である。 実施例1の焼結体のFE-EPMAで得られる元素マッピングである。
 一般に、金属材料は融点が低いほど軟化する温度も低くなるので、融点の低い材料を焼結助剤として添加することによって、低い焼結温度でも焼結体の密度を上げることが可能となる。FePt系焼結体スパッタリングターゲットに添加する焼結助剤の金属として、Au、AgもしくはCuをそれぞれ単独で添加することが知られている。
 本発明者は、Au(融点:1064.4℃)とCu(融点:1064.6℃)からなるAuCu合金が、共晶反応によってその融点が910℃まで低下することに着目し、これを焼結助剤として用いることで、さらに低い焼結温度でも、高密度の焼結体を得ることができることを見出した。なお、本発明においてAuCu合金とは、Au-Cuの二元系状態図において、910℃に合金の液相が現れる組成範囲(Au:20~80at%)の合金を意味する。
 なお、従来から、FePt系合金スパッタリングターゲットにAgやCuなどを添加することは知られている(例えば、特許文献3~6)。しかし、これらは磁気特性を向上させる目的であり、焼結助剤として添加するものではなく、また、添加の方法もAgやCuを単独で添加したり、AgPt合金やCuPt合金を添加したりと、比較的融点の低いAuCu合金を添加するものではない。特に、特許文献5~6には、純Au粉や純Cu粉よりも融点が高い、AuPt合金粉やCuPt合金粉を混合することで、焼結温度を高くすることができ、高密度のターゲットを得ることができると記載されており、本願発明のようにAuとCuを合金化させて融点を下げるという点で明らかに異なる。
 上記知見に基づき、本発明は、C及び/又はBNを含有するFePt系焼結体スパッタリングターゲットにおいて、該ターゲットのスパッタ面に対する垂直断面の研磨面におけるAuCu合金粒子が占める面積率が0.5%以上15%以下であることを特徴とするものである。本発明のC及び/又はBNを含有するFePt系焼結体スパッタリングターゲットはFePt系合金からなる強磁性材中にC及び/又はBNの非磁性材粒子が分散した組織を有する。ここで、垂直断面の組織を規定する理由は、原料に用いるCやBNが薄片状の形態を有しているため、一軸方向の加圧でホットプレスすると、垂直断面と水平断面とで組織の見え方が異なるためである。このとき、垂直断面は特徴ある地層のような層状に見えることから、垂直断面について規定している。
 AuCu合金粒子の観察は、スパッタリングターゲットのスパッタ面に対する垂直断面をAuCu合金粒子が判別できるまで鏡面研磨し、レーザー顕微鏡を用いて視野60μm×80μmでスパッタリングターゲットの任意10箇所を観察して、それら平均の面積率を求める。なお、研磨にはSiC砥粒のエメリー紙を用いる。エメリー紙は、粒度が#240、#400、#600、#1000(JIS R6010)の物を順番に使って研磨をする。その後、仕上げとして粒径0.3μmのアルミナ砥粒を用いて湿式研磨を行う。面積率の算出方法は、以下の通りとする。
 まず、レーザー顕微鏡(キーエンス社製:VK-9710、倍率:対物レンズ20倍×デジタルズーム1倍)を用いて、ターゲットの垂直断面のレーザー顕微鏡像(視野:縦60μm×横80μm)を撮影する。次に、レーザー顕微鏡像と同じ場所FE-EPMAによって元素分析を実施し、AuCu合金を同定する。このとき、FE-EPMA像において、AuとCuとが同じ場所に検出される粒子を、AuCu合金粒子とする。AuCu合金粒子(合金相)は、FePt系合金相よりも色が暗く、C相やBN相よりも色が明るく撮影されるため、コントラストの差を利用することによってAuCu合金相のみを二値化して、デジタル的に区別することが可能である。なお、酸化物を添加した場合は、酸化物相はC相やBN相と同様にAuCu合金粒子よりも暗く撮影されることから、この場合もコントラスト差で容易に区別することが可能である。このようにして二値化したデータから、AuCu合金粒子の面積率を算出する。なお、二値化の際、面積が100ピクセル以下のものはノイズである可能性が高いことから、それらの値は二値化のデータには含めない。
 本発明のスパッタリングターゲットは、スパッタリングターゲット全体の組成に対してAu及びCuの合計含有量が1~20mol%とするのが好ましい。Au及びCuの合計含有量が1mol%未満であると、AuCu合金の添加による焼結助剤としての効果が十分に得られないため、焼結体(スパッタリングターゲット)の密度を向上できず、パーティクルが発生しやすくなるため好ましくない。一方、Au及びCuの合計含有量が20mol%超であると、スパッタリングによって形成した磁性薄膜の特性制御が困難となるため好ましくない。
 また、本発明のスパッタリングターゲットは、Auに対するCuのスパッタリングターゲット内の含有比率が20~80mol%とするのが好ましい。Auに対するCuの含有比率が20mol%未満あるいは80mol%超であると、AuCu合金の融点低下の効果が十分に得られないため、焼結体(スパッタリングターゲット)の密度を向上できず、パーティクルが発生しやすくなるため好ましくない。
 本発明は、スパッタリングターゲット全体の組成に対してPt含有量を30mol%以上70mol%以下とするのが好ましい。Pt含有量を30mol%以上70mol%以下とすることで良好な磁気特性が得られる。また、スパッタリングターゲット全体の組成に対して、非磁性材料としてのC含有量を5mol%以上50mol%以下、BN含有量を5mol%以上40mol%以下とすることで、磁気的な絶縁を向上させることができる。C及びBN合計含有量は3vol%以上50vol%以下とするのが好ましい。これらの数値範囲内とすることでスパッタリング中のパーティクルを抑えつつ磁気的な絶縁を向上させることができる。
 また、本発明は、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Al、Ga、Siから選択した一種以上の金属酸化物をスパッタリングターゲット全体の組成に対してそれぞれ0.1~20mol%含有することが好ましい。これらの酸化物は、スパッタ後の膜の磁気特性を向上させるために有効な成分である。なお、本発明のFePt系焼結体スパッタリングターゲットにおいて、Pt、C及び/又はBN、AuCu、先述の酸化物を除き、残部はFeである。これらの成分はICP(誘導結合プラズマ)-OES法によって、それぞれの含有量を測定することができる。
 本発明のスパッタリングターゲットは、密度が95%以上であることが好ましい。これにより、成膜時の異常放電(アーキング)の発生が少なく、均一な薄膜を作製することができる。なお、本発明の相対密度は、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度は、ターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度であり、次式で計算される。
 式:計算密度=Σ(構成成分の分子量×構成成分の原子量比)/Σ(構成成分の分子量×構成成分の原子量比/構成成分の文献値密度)ここで、Σは、ターゲットの構成成分の全てについて、和をとることを意味する。
 本発明のFePt系焼結体スパッタリングターゲットは、次の方法で作製することができる。
 まず、各原料粉末(Fe粉末、Pt粉末、C粉末、BN粉末、AuCu合金粉末)を用意する。また、原料粉末として、予め熱処理やアトマイズ装置によって合金化した合金粉末(Fe-Pt粉末)を用いてもよい。Ptを含む合金粉末はその組成にもよるが、原料粉末中の酸素量を少なくするために有効である。また、AuCu合金粉末の代わりに、Au粉末とCu粉末をそれぞれ用いて、焼結中に合金化させてもよい。さらに、必要に応じて、上記に掲げた金属酸化物の各原料粉末を用意する。
 次に、金属粉末(Fe粉末、Pt粉末、Fe-Pt合金粉末)をボールミルや媒体撹拌ミルなどを用いて粉砕する。通常、このような金属の原料粉末は球状、塊状、その他不定形のものが使用されるが、これらをボールミルや媒体攪拌ミルを用いて粉砕することによって形状を薄片状にすることができる。このような薄片状の粉末を用いることによって焼結体の垂直断面方向に層状の構造を形成しFe-Pt合金相の結晶方向が安定し、放電の安定化にも寄与する。これらの原料粉末は、それぞれ平均粒径10~100μmとするのが好ましい。
 そして、原料粉末を所望の組成になるように秤量し、粉砕処理して得られた金属粉末とAuCu合金粉末、C粉末及び/又はBN粉末とを乳鉢、媒体撹拌ミル、篩などを用いて混合する。添加成分である酸化物については、金属の原料粉末と一緒に投入したり、C粉末やBN粉末と一緒に投入したり、あるいは、金属の原料粉末とC粉末やBN粉末とを混合した段階で投入することができる。
 その後、この混合粉末をホットプレスで成型・焼結する。ホットプレス以外にも、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度は、スパッタリングターゲットの組成にもよるが、多くの場合、850~900℃の温度範囲である。従来では、密度を高くするために800℃~1400℃の温度範囲で焼結を行っていたが、本発明によれば、従来と同等の高密度を比較的低い焼結温度で実現することができる。
 次に、ホットプレスから取り出した焼結体に熱間等方加圧(HIP)加工を施す。熱間等方加圧加工は焼結体の密度向上に有効である。熱間等方加圧加工時の保持温度は、焼結体の組成にもよるが、多くの場合、850℃~900℃の温度範囲とする。従来はホットプレスと同様に、密度を高くするために800℃~1200℃の温度範囲で熱間等方加圧加工を行っていたが、本発明によれば、従来と同等の高密度を比較的低い焼結温度で実現することができる。
 このようにして得られた焼結体を旋盤などで所望の形状に加工することで、本発明のスパッタリングターゲットは作製できる。以上により、C及び/又はBNを含有するFePt系焼結体スパッタリングターゲットであって、高密度(特に密度95%以上)の
スパッタリングターゲットを作製することができる。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
 原料粉末として、FePt合金粉末、C粉末、AuCu合金粉末を用意し、これらの粉末を60(45Fe-45Pt-5Au-5Cu)-40C(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAuCu合金粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填しホットプレスした。
 ホットプレスの条件は、真空雰囲気、昇温速度300℃/時間、保持温度850℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300℃/時間、保持温度850℃、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、750℃で保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、研磨面をレーザー顕微鏡によって観察した。その顕微鏡像を図1の左図に示す。この図において、濃いグレーの領域がAuCu合金粒子に相当する。その後、これを二値化して、AuCu合金粒子の面積率(平均)を求めた。その結果、10.8%であった。なお、FE-EPMA像を用いて、これらの粒子がAuCu合金からなることを確認した(図2参照)。また、この焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、95.8%であった。
 次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は65個であった。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 原料粉末として、FePt合金粉末、C粉末、Au粉末を用意し、これらの粉末を60(45Fe-45Pt-10Au)-40C(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAu粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.2%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は184個と実施例に比べて増加した。
(比較例2)
 原料粉末として、FePt合金粉末、C粉末、Cu粉末を用意し、これらの粉末を60(45Fe-45Pt-10Cu)-40C(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とCu粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.5%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は179個と実施例1と比べて大幅に増加した。
(比較例3)
 原料粉末として、FePt合金粉末、C粉末を用意し、これらの粉末を60(50Fe-50Pt)-40C(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、92.8%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は261個と実施例1と比べて大幅に増加した。
 (実施例2)
 原料粉末として、Fe粉末、Pt粉末、BN粉末、AuCu合金粉末を用意し、これらの粉末を66(54Fe-40Pt-3Au-3Cu)-34BN(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAuCu合金粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は2.4%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、95.4%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は94個であった。
 (比較例4)
 原料粉末として、Fe粉末、Pt粉末、BN粉末、Au粉末を用意し、これらの粉末を66(54Fe-40Pt-6Au)-34BN(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAg粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.9%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は256個と実施例2と比べて大幅に増加した。
 (実施例3)
 原料粉末として、Fe粉末、Pt粉末、C粉末、Au粉末、Cu粉末を用意し、これらの粉末を50(60Fe-30Pt-1.5Au-8.5Cu)-50C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAu粉末とCu粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は4.8%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、95.1%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は82個であった。
 (比較例5)
 原料粉末として、Fe粉末、Pt粉末、C粉末、Au粉末を用意し、これらの粉末を50(60Fe-30Pt-10Au)-50C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAu粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.3%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は439個と実施例3と比べて大幅に増加した。
 (実施例4)
 原料粉末として、Fe粉末、Pt粉末、BN粉末、Au粉末、Cu粉末を用意し、これらの粉末を80(20Fe-70Pt-9Au-1Cu)-20BN(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAg粉末とCu粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は9.7%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、96.0%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は83個であった。
 (比較例6)
 原料粉末として、Fe粉末、Pt粉末、BN粉末、Cu粉末を用意し、これらの粉末を80(20Fe-70Pt-10Cu)-20C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とCu粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.2%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は307個と実施例4と比べて大幅に増加した。
 (実施例5)
 原料粉末として、Fe粉末、Pt粉末、C粉末、AuCu粉末、SiO粉末を用意し、これらの粉末を77(35Fe-45Pt-10Au-10Cu)-8SiO-15C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAuCu合金粉末とSiO粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は14.3%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、97.1%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は47個であった。
 (比較例7)
 原料粉末として、Fe粉末、Pt粉末、C粉末、Au粉末、SiO粉末を用意し、これらの粉末を77(35Fe-45Pt-20Au)-8SiO-15C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAu粉末とSiO粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.6%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は142個と実施例5と比べて大幅に増加した。
 (実施例6)
 原料粉末として、Fe粉末、Pt粉末、C粉末、AuCu粉末、TiO粉末、Cr粉末を用意し、これらの粉末を73(53Fe-45Pt-1Au-1Cu)-1TiO-1Cr-25C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAuCu合金粉末とTiO粉末とCr粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は0.8%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、96.2%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は59個であった。
 (比較例8)
 原料粉末として、Fe粉末、Pt粉末、C粉末、Au粉末、TiO粉末、Cr粉末を用意し、これらの粉末を73(53Fe-45Pt-2Au)-1TiO-1Cr-25C(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAg粉末とTiO粉末とCr粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、92.9%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は227個と実施例6と比べて大幅に増加した。
 (実施例7)
 原料粉末として、FePt合金粉末、BN粉末、Au粉末、Cu粉末、MnO粉末、Ta粉末を用意し、これらの粉末を78.5(45Fe-45Pt-4Au-6Cu)-0.5MnO-1Ta-20BN(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAu粉末とCu粉末とMnO粉末とTa粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は6.1%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、95.2%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は97個であった。
 (比較例9)
 原料粉末として、FePt合金粉末、BN粉末、Cu粉末、MnO粉末、Ta粉末を用意し、これらの粉末を78.5(45Fe-45Pt-10Cu)-0.5MnO-1Ta-20BN(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とCu粉末とMnO粉末とTa粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、94.0%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は398個と実施例7と比べて大幅に増加した。
 (実施例8)
 原料粉末として、FePt合金粉末、C粉末、AuCu合金粉末、SiO粉末を用意し、これらの粉末を80(45Fe-45Pt-5Au-5Cu)-15SiO-5C(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAuCu合金粉末とSiO粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は7.2%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、97.3%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は13個であった。
 (比較例10)
 原料粉末として、FePt合金粉末、C粉末、Au粉末、SiO粉末を用意し、これらの粉末を80(45Fe-45Pt-10Au)-15SiO-5C(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAu粉末とSiO粉末とC粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、92.2%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は285個と実施例8と比べて大幅に増加した。
 (実施例9)
 原料粉末として、FePt合金粉末、BN粉末、Au粉末、Cu粉末、SiO粉末を用意し、これらの粉末を85(45Fe-45Pt-4Au-6Cu)-10SiO-5BN(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAg粉末とCu粉末とSiO粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は5.9%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、97.0%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は31個であった。
 (比較例11)
 原料粉末として、FePt合金粉末、BN粉末、Cu粉末、SiO粉末を用意し、これらの粉末を85(45Fe-45Pt-10Cu)-10SiO-5BN(mol%)となるように秤量した。
 次に、FePt合金粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とCu粉末とSiO粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、93.8%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は213個と実施例9と比べて大幅に増加した。
 (実施例10)
 原料粉末として、Fe粉末、Pt粉末、C粉末、BN粉末、AuCu合金粉末を用意し、これらの粉末を60(50Fe-40Pt-5Au-5Cu)-30C-10BN(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAuCu合金粉末とC粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部(スパッタ面に対する垂直断面に相当)を切り出し、これを鏡面研磨した後、その研磨面をレーザー顕微鏡によって観察した結果、AuCu合金粒子の面積率は5.5%であった。また、このようにして得られた焼結体の他の端部について、アルキメデス法を用いて密度を測定した結果、95.9%であった。次に、この焼結体を実施例1と同様の条件で、スパッタリングを行った。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は97個であった。
 (比較例12)
 原料粉末として、Fe粉末、Pt粉末、C粉末、BN粉末、Au粉末を用意し、これらの粉末を60(50Fe-40Pt-10Au)-30C-10BN(mol%)となるように秤量した。
 次に、Fe粉末、Pt粉末を粉砕媒体のジルコニウムボールと共に容量5Lの媒体撹拌ミルに投入し、2時間、回転数300rpmで処理した。そして、媒体撹拌ミルから取り出した粉末とAg粉末とC粉末とBN粉末とをV字型混合機で混ぜ合わせた後、さらに150μm目の篩を用いて混合し、この混合粉末をカーボン製の型に充填し、実施例1と同様の条件でホットプレスした。次に、ホットプレスの型から取り出した焼結体に実施例1と同様の条件で熱間等方加圧加工を施した。
 このようにして得られた焼結体の端部について、アルキメデス法を用いて密度を測定した結果、92.7%であった。次にこの焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工した後、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、実施例1と同様とした。基板上へ付着した粒子径が0.25μm以上のパーティクルの個数をパーティクルカウンターで測定した結果、パーティクル個数は421個と実施例10と比べて大幅に増加した。
 本発明のC及び/又はBNを含有するFePt系焼結体スパッタリングターゲットは、スパッタリング時に発生するパーティクル量を提供することができるという優れた効果を有する。したがって、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜用強磁性材スパッタリングターゲットに有用である。

Claims (8)

  1.  C及び/又はBNを含有するFePt系焼結体スパッタリングターゲットであって、該ターゲットのスパッタ面に対する垂直断面の研磨面においてAuCu合金粒子が占める面積率が0.5%以上15%以下であることを特徴とするスパッタリングターゲット。
  2.  スパッタリングターゲット全体の組成に対してAu及びCu合計含有量が1~20mol%であることを特徴とする請求項1記載のスパッタリングターゲット。
  3.  Auに対するCuのスパッタリングターゲット内の含有比率が20~80mol%であることを特徴とする請求項2記載のスパッタリングターゲット。
  4.  スパッタリングターゲット全体の組成に対してPt含有量が30~70mol%であることを特徴とする請求項1~3のいずれか一項に記載のスパッタリングターゲット。
  5.  スパッタリングターゲット全体の組成に対してC含有量が5~50mol%であることを特徴とする請求項1~4のいずれか一項に記載のスパッタリングターゲット。
  6.  スパッタリングターゲット全体の組成に対してBN含有量が5~40mol%であることを特徴とする請求項1~5のいずれか一項に記載のスパッタリングターゲット。
  7.  Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Al、Ga、Siから選択した一種以上の金属酸化物をスパッタリングターゲット全体の組成に対してそれぞれ0.1~20mol%含有することを特徴とする請求項1~6のいずれか一項に記載のスパッタリングターゲット。
  8.  密度が95%以上であることを特徴とする請求項1~7のいずれか一項に記載のスパッタリングターゲット。
PCT/JP2015/076628 2014-09-26 2015-09-18 磁気記録膜形成用スパッタリングターゲット及びその製造方法 WO2016047578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210426425.3A CN114959599A (zh) 2014-09-26 2015-09-18 磁记录膜形成用溅射靶及其制造方法
JP2015560124A JP6084711B2 (ja) 2014-09-26 2015-09-18 磁気記録膜形成用スパッタリングターゲット及びその製造方法
CN201580051739.8A CN107075665A (zh) 2014-09-26 2015-09-18 磁记录膜形成用溅射靶及其制造方法
SG11201701838XA SG11201701838XA (en) 2014-09-26 2015-09-18 Sputtering target for magnetic recording film formation and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197407 2014-09-26
JP2014-197407 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047578A1 true WO2016047578A1 (ja) 2016-03-31

Family

ID=55581105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076628 WO2016047578A1 (ja) 2014-09-26 2015-09-18 磁気記録膜形成用スパッタリングターゲット及びその製造方法

Country Status (5)

Country Link
JP (1) JP6084711B2 (ja)
CN (2) CN114959599A (ja)
MY (1) MY179890A (ja)
SG (1) SG11201701838XA (ja)
WO (1) WO2016047578A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047978A1 (ja) * 2016-09-12 2018-03-15 Jx金属株式会社 強磁性材スパッタリングターゲット
WO2019208463A1 (ja) * 2018-04-27 2019-10-31 田中貴金属工業株式会社 C含有スパッタリングターゲット及びその製造方法
WO2020261702A1 (ja) * 2019-06-28 2020-12-30 田中貴金属工業株式会社 Fe-Pt-BN系スパッタリングターゲット及びその製造方法
JPWO2021010019A1 (ja) * 2019-07-12 2021-01-21
US20210032741A1 (en) * 2018-03-20 2021-02-04 Tanaka Kikinzoku Kogyo K.K. Fe-Pt-OXIDE-BN-BASED SINTERED COMPACT FOR SPUTTERING TARGET

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702294B (zh) * 2018-07-31 2020-08-21 日商田中貴金屬工業股份有限公司 磁氣記錄媒體用濺鍍靶

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178210A (ja) * 2011-01-31 2012-09-13 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP2012178211A (ja) * 2011-01-31 2012-09-13 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2013094605A1 (ja) * 2011-12-22 2013-06-27 Jx日鉱日石金属株式会社 C粒子が分散したFe-Pt系スパッタリングターゲット
WO2014013920A1 (ja) * 2012-07-20 2014-01-23 Jx日鉱日石金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY160775A (en) * 2010-09-03 2017-03-15 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
US9945026B2 (en) * 2010-12-20 2018-04-17 Jx Nippon Mining & Metals Corporation Fe-Pt-based sputtering target with dispersed C grains
US9683284B2 (en) * 2011-03-30 2017-06-20 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
MY167825A (en) * 2012-06-18 2018-09-26 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
WO2014034390A1 (ja) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Fe系磁性材焼結体
US10755737B2 (en) * 2012-09-21 2020-08-25 Jx Nippon Mining & Metals Corporation Fe-Pt based magnetic material sintered compact
JP6366095B2 (ja) * 2014-07-29 2018-08-01 株式会社フルヤ金属 磁気記録媒体用スパッタリングターゲット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178210A (ja) * 2011-01-31 2012-09-13 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP2012178211A (ja) * 2011-01-31 2012-09-13 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2013094605A1 (ja) * 2011-12-22 2013-06-27 Jx日鉱日石金属株式会社 C粒子が分散したFe-Pt系スパッタリングターゲット
WO2014013920A1 (ja) * 2012-07-20 2014-01-23 Jx日鉱日石金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047978A1 (ja) * 2016-09-12 2018-10-18 Jx金属株式会社 強磁性材スパッタリングターゲット
US11060180B2 (en) 2016-09-12 2021-07-13 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
WO2018047978A1 (ja) * 2016-09-12 2018-03-15 Jx金属株式会社 強磁性材スパッタリングターゲット
US20210032741A1 (en) * 2018-03-20 2021-02-04 Tanaka Kikinzoku Kogyo K.K. Fe-Pt-OXIDE-BN-BASED SINTERED COMPACT FOR SPUTTERING TARGET
JP2019189923A (ja) * 2018-04-27 2019-10-31 田中貴金属工業株式会社 C含有スパッタリングターゲット及びその製造方法
WO2019208463A1 (ja) * 2018-04-27 2019-10-31 田中貴金属工業株式会社 C含有スパッタリングターゲット及びその製造方法
JP2021008641A (ja) * 2019-06-28 2021-01-28 田中貴金属工業株式会社 Fe−Pt−BN系スパッタリングターゲット及びその製造方法
WO2020261702A1 (ja) * 2019-06-28 2020-12-30 田中貴金属工業株式会社 Fe-Pt-BN系スパッタリングターゲット及びその製造方法
JP7104001B2 (ja) 2019-06-28 2022-07-20 田中貴金属工業株式会社 Fe-Pt-BN系スパッタリングターゲット及びその製造方法
TWI801731B (zh) * 2019-06-28 2023-05-11 日商田中貴金屬工業股份有限公司 Fe-Pt-BN系濺鍍靶及其製造方法
JPWO2021010019A1 (ja) * 2019-07-12 2021-01-21
WO2021010019A1 (ja) * 2019-07-12 2021-01-21 田中貴金属工業株式会社 Fe-Pt-BN系スパッタリングターゲット及びその製造方法
JP7267425B2 (ja) 2019-07-12 2023-05-01 田中貴金属工業株式会社 Fe-Pt-BN系スパッタリングターゲット及びその製造方法

Also Published As

Publication number Publication date
MY179890A (en) 2020-11-18
JP6084711B2 (ja) 2017-02-22
SG11201701838XA (en) 2017-04-27
CN114959599A (zh) 2022-08-30
JPWO2016047578A1 (ja) 2017-04-27
CN107075665A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6285043B2 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
TWI547579B (zh) Fe-Pt sputtering target with dispersed C particles
JP6084711B2 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
JP5457615B1 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
TWI550114B (zh) Fe-Pt-C系濺鍍靶
JP5567227B1 (ja) Fe−Pt系磁性材焼結体
JP5913620B2 (ja) Fe−Pt系焼結体スパッタリングターゲット及びその製造方法
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
JP5801496B2 (ja) スパッタリングターゲット
JP6005767B2 (ja) 磁性記録媒体用スパッタリングターゲット
JP6305881B2 (ja) 磁気記録媒体用スパッタリングターゲット
JP5876155B2 (ja) 磁気記録膜用スパッタリングターゲット及びその製造に用いる炭素原料
JP5944580B2 (ja) スパッタリングターゲット
WO2017141558A1 (ja) 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
TW201915204A (zh) 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體
JP6030271B2 (ja) 磁性材スパッタリングターゲット
JP5973056B2 (ja) 磁気記録膜形成用スパッタリングターゲットの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560124

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844820

Country of ref document: EP

Kind code of ref document: A1