WO2016047047A1 - Soiウェーハの製造方法 - Google Patents

Soiウェーハの製造方法 Download PDF

Info

Publication number
WO2016047047A1
WO2016047047A1 PCT/JP2015/004358 JP2015004358W WO2016047047A1 WO 2016047047 A1 WO2016047047 A1 WO 2016047047A1 JP 2015004358 W JP2015004358 W JP 2015004358W WO 2016047047 A1 WO2016047047 A1 WO 2016047047A1
Authority
WO
WIPO (PCT)
Prior art keywords
soi
film thickness
wafer
thinning
plane
Prior art date
Application number
PCT/JP2015/004358
Other languages
English (en)
French (fr)
Inventor
阿賀 浩司
登 桑原
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201580047351.0A priority Critical patent/CN106663597B/zh
Priority to US15/508,237 priority patent/US10115580B2/en
Priority to EP15844654.2A priority patent/EP3200219B1/en
Priority to KR1020177006584A priority patent/KR102259162B1/ko
Priority to SG11201701629WA priority patent/SG11201701629WA/en
Publication of WO2016047047A1 publication Critical patent/WO2016047047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon

Definitions

  • the present invention relates to a method for manufacturing an SOI wafer, and is particularly referred to as FD-SOI (Fully Depleted Silicon-On-Insulator), which is an SOI wafer that requires extremely high SOI layer thickness uniformity. It relates to a manufacturing method.
  • FD-SOI Fluly Depleted Silicon-On-Insulator
  • the SOI wafer is heat-treated in a batch type heat treatment furnace, and Si on the surface of the SOI layer is oxidized to be transformed into an oxide film.
  • a method for removing the oxide film has been performed.
  • Patent Document 1 In this two-stage thinning method, as shown in Patent Document 1, after removing the oxidized oxide film, the SOI film thickness is measured, and the etching process of the next stage is taken based on the measured value. The method of setting the bill has been taken. Further, in the above-described two-stage thinning process by forming and removing the oxide film and etching, as a method of shortening the process, the film thickness of the SOI layer is measured by measuring the film thickness of the SOI layer with the oxide film remaining after oxidation. Based on the above, there has been proposed a method in which the oxide film removal and etching, and the cleaning process are performed in the same batch process of cleaning. In addition to the formation and removal of oxide films and the thinning by a batch-type cleaning machine, a method for controlling the thinning of the SOI layer using a single-wafer etching apparatus has also been proposed (Patent Document 2).
  • the in-plane machining allowance variation occurs in the thinning process such as oxide film formation / removal and etching, and the SOI layer after the thinning process is formed.
  • the in-plane film thickness distribution deteriorates, high-precision film thickness uniformity is required such that all points on the wafer surface are within the target SOI film thickness ⁇ 0.5 nm, such as FD-SOI wafers.
  • the requirement of film thickness uniformity could not be satisfied.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to provide a method for manufacturing an SOI wafer that can manufacture an SOI wafer having excellent in-plane film thickness uniformity of the SOI layer after the thinning process.
  • a step of measuring the SOI film thickness of the SOI wafer on which the SOI layer is formed before the thinning step (A1) a step of measuring the SOI film thickness of the SOI wafer on which the SOI layer is formed before the thinning step; (A2) When performing the thinning step based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the step (A1) and the in-plane allowance distribution in the thinning step obtained in advance.
  • an SOI wafer having excellent in-plane film thickness uniformity of the SOI layer after the thinning process for adjusting the SOI film thickness can be manufactured.
  • a method for manufacturing an SOI wafer having a thinning process for adjusting the SOI film thickness of the SOI wafer on which the SOI layer is formed (B0) performing a heat treatment in an oxidizing gas atmosphere to form a thermal oxide film on the surface of the SOI layer; (B1) a step of measuring the SOI film thickness of the SOI wafer on which the thermal oxide film is formed in the (B0) step with the thermal oxide film; (B2) When performing the thinning step based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (B1) step and the in-plane allowance distribution in the thinning step obtained in advance.
  • the SOI layer is thinned by controlling the etching amount of the SOI layer according to the SOI film thickness obtained in the step (B1) by batch cleaning including thermal oxide film removal and etching of the SOI layer. Process, The manufacturing method of the SOI wafer containing this is provided.
  • the thermal oxide film formed on the surface of the SOI layer is removed before the thinning process for adjusting the SOI film thickness, and the film thickness is adjusted by etching, thereby reducing the thinning process.
  • An SOI wafer with good in-plane film thickness uniformity of the subsequent SOI layer can be manufactured.
  • the method for manufacturing an SOI wafer having first and second thinning steps for adjusting the SOI film thickness of the SOI wafer on which the SOI layer is formed (C0) performing a heat treatment in an oxidizing gas atmosphere to form a thermal oxide film on the surface of the SOI layer; (C1) a step of measuring the SOI film thickness of the SOI wafer on which the thermal oxide film is formed in the step (C0), with the thermal oxide film attached, (C2) Based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (C1) process and the in-plane machining allowance distribution in the first thinning process obtained in advance, the first Determining a rotational position of the SOI wafer when performing the thinning process, and rotating the SOI wafer around a central axis so as to be the rotational position; (C3) The etching amount of the SOI layer is obtained in the step (C1) by batch cleaning including the removal of the thermal oxide film on the SOI layer
  • the second thinning process The manufacturing method of the SOI wafer containing this
  • a first film thickness reduction process for removing a thermal oxide film formed on the surface of the SOI layer before a film thickness reduction process for adjusting the SOI film thickness, and a target film thickness by etching By the two-stage thinning process of the second thinning process to be adjusted, an SOI wafer with better in-plane film thickness uniformity of the SOI layer after the thinning process can be manufactured.
  • the controllability of the film thickness of the SOI layer after the thinning process can be further improved, and an SOI wafer can be manufactured.
  • the rotational position is determined by determining the region showing the maximum value of the in-plane distribution of the SOI film thickness obtained by the film thickness measurement and the maximum of the in-plane machining allowance distribution in the previously obtained thinning process. It is preferable to determine the position where the region indicating the value matches.
  • the rotation position is determined by determining the region showing the minimum value of the in-plane distribution of the SOI film thickness obtained by the film thickness measurement, and the minimum of the in-plane machining allowance distribution in the thinning step obtained in advance. It is preferable to determine the position where the region indicating the value matches.
  • the rotational position is determined based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement and the in-plane machining allowance distribution in the thinning step obtained in advance.
  • the in-plane distribution of the SOI film thickness after the thinning process when the angle is changed by a predetermined angle is calculated, and the difference between the in-plane maximum value and the in-plane minimum value of the SOI film thickness after the thinning process is calculated. It is preferable to determine the position to be the minimum.
  • an SOI wafer having a better uniformity of in-plane film thickness of the SOI layer after the thinning process can be obtained. Can be manufactured.
  • the step of measuring the SOI film thickness before the thinning step and the step of rotating the SOI wafer performed thereafter are performed in the same apparatus.
  • the SOI layer is formed by bonding at least a bond wafer having a microbubble layer formed by ion implantation and a base wafer serving as a support substrate, and the bond using the microbubble layer as a boundary. It is preferable to carry out by an ion implantation peeling method including a step of peeling the wafer and forming a thin film on the base wafer.
  • the ion implantation delamination method can be suitably used for forming the SOI layer in the method for producing an SOI wafer of the present invention.
  • the SC1 solution can be suitably used in the thinning process of the method for manufacturing an SOI wafer of the present invention.
  • an SOI wafer of the present invention for example, a method for removing the thermal oxide film formed on the surface of the SOI layer to reduce the thickness of the SOI layer, or a method for removing the thermal oxide film and adjusting the film thickness.
  • a method of thinning an SOI layer by a two-stage thinning process an SOI wafer with excellent in-plane thickness uniformity of the SOI layer after the thinning process is controlled while controlling the film thickness of the SOI layer with high accuracy. Can be manufactured. Therefore, such a method is suitable as a method for manufacturing an FD-SOI wafer that requires extremely high SOI layer thickness uniformity.
  • the manufacturing yield of an SOI wafer having a target SOI film thickness is improved, and as a result, the process cost can be reduced.
  • the present inventors have a bias in the in-plane distribution of the SOI layer before the thinning process, and there is also a bias in the in-plane allowance distribution in the thinning process.
  • the in-plane thickness uniformity of the SOI layer after the thinning step is I found it worse.
  • the inventors measured the SOI film thickness before the thinning process from this, and based on the in-plane distribution of the measured SOI film thickness and the in-plane machining allowance distribution in the thinning process determined in advance, The rotational position of the SOI wafer when performing the thinning process is determined, and the thinning process is performed in a state where the SOI wafer is rotated around the central axis so as to be in such a rotational position.
  • the in-plane film thickness uniformity of the SOI layer was found to be improved, and the present invention was completed.
  • the present invention relates to a method for manufacturing an SOI wafer having a thinning process for adjusting the SOI film thickness of the SOI wafer on which the SOI layer is formed.
  • A1 a step of measuring the SOI film thickness of the SOI wafer on which the SOI layer is formed before the thinning step;
  • A2) When performing the thinning step based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the step (A1) and the in-plane allowance distribution in the thinning step obtained in advance.
  • an SOI layer is first formed on the wafer, and then the SOI film thickness before the thinning process is measured (FIG. 1 (A1)).
  • the SOI wafer when performing the thinning process based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the step (A1) and the in-plane machining allowance distribution in the thinning process previously obtained.
  • the rotational position of the SOI wafer is determined, and the SOI wafer is rotated around the central axis so as to be the determined rotational position (FIG. 1 (A2)).
  • the SOI layer of the SOI wafer rotated in the step (A2) is thinned (FIG. 1 (A3)).
  • the method for forming the SOI layer is not particularly limited.
  • the step of bonding a bond wafer having a microbubble layer formed by ion implantation and a base wafer serving as a support substrate and the microbubble layer are bounded.
  • the ion implantation peeling method which has the process of peeling a bond wafer and forming a thin film on a base wafer.
  • the ion implantation separation method an SOI wafer on which an SOI layer having an extremely thin SOI layer with a relatively small in-plane film thickness distribution is obtained.
  • the SOI film thickness before the thinning process for adjusting the SOI film thickness of the SOI wafer on which the SOI layer is formed is measured.
  • the SOI film thickness measurement before the thinning process is not particularly limited, and may be performed by a known method.
  • step (A2) when the thinning process is performed based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (A1) process and the in-plane machining allowance distribution in the thinning process obtained in advance.
  • the rotational position of the SOI wafer is determined, and the SOI wafer is rotated about the central axis so as to be the determined rotational position.
  • a thinning means for example, a batch type cleaning machine or a single wafer type
  • the thickness of the SOI film may be reduced to a target value, and the thickness distribution may be obtained by measuring the SOI film thickness after the thinning.
  • the determination of the rotational position of the SOI wafer when performing the thinning process is based on the in-plane distribution of the SOI film thickness obtained by measuring the film thickness in the process (A1), and the in-plane machining allowance distribution in the thinning process previously obtained. Based on. As described above, for example, when the portion where the SOI layer thickness before the thinning step is thin becomes a portion with a large allowance in the thinning step, the in-plane film of the SOI layer after the thinning step Since the thickness uniformity deteriorates, the rotational position may be determined so that the variation in the difference between the film thickness of the SOI layer before the thinning process and the machining allowance in the thinning process becomes small within the wafer surface. More specifically, for example, the following three criteria can be cited as criteria for determining the rotational position.
  • the rotation position is a position where the region showing the maximum value of the in-plane distribution of the SOI film thickness obtained by the film thickness measurement and the region showing the maximum value of the in-plane machining allowance distribution in the thinning process obtained in advance match. decide.
  • the rotation position is a position where the region showing the minimum value of the in-plane distribution of the SOI film thickness obtained by the film thickness measurement and the region showing the minimum value of the in-plane machining allowance distribution in the thinning process obtained in advance match. decide.
  • the determination criteria for the rotational position are not limited to these, and the variation in the difference between the film thickness of the SOI layer before the thinning process and the machining allowance in the thinning process is reduced within the wafer surface. What is necessary is just to determine a rotation position on the basis of arbitrary.
  • the process of measuring the SOI film thickness before the thinning process (process (A1)) and the subsequent process of rotating the SOI wafer (process (A2)) are performed in the same apparatus, the process is simplified. This is preferable because it is possible. More specifically, when a wafer rotation mechanism for alignment is attached to the SOI film thickness measuring apparatus used in the step (A1), the measured SOI film thickness is measured at the time of wafer collection immediately after the SOI film thickness measurement. The wafer rotation position is determined based on the in-plane distribution and the in-plane machining allowance distribution in the thinning process obtained in advance, and the wafer is rotated by using the wafer rotation mechanism in the SOI film thickness measurement apparatus so that the determined rotation position is obtained. After rotating the wafer, it can be collected in the cleaning carrier of the cleaning machine used in the thinning process, so that the SOI film thickness measurement and the wafer rotation before the thinning process can be performed in the same device. Can be realized.
  • step (A3) the SOI layer of the SOI wafer rotated in step (A2) is thinned.
  • a method of thinning the SOI layer for adjusting the SOI film thickness it is effective to apply thinning by cleaning (etching) using a batch type cleaning machine, but the present invention is not limited to this.
  • etching using a single wafer cleaning machine, sacrificial oxidation treatment (batch processing, single wafer processing), gas etching with gas (HCl, etc.), dry etching, wet etching, hydrogen or
  • gas etching with gas HCl, etc.
  • dry etching wet etching
  • hydrogen or Various thinning methods such as a planarization process accompanied by a reduction in the thickness of the SOI layer by heat treatment in a reducing atmosphere such as argon can be applied.
  • the thinning step is preferably performed by immersing the SOI wafer in an SC1 solution (mixed aqueous solution of NH 4 OH and H 2 O 2 ).
  • the rotational position is determined in advance so that, for example, the thin portion of the SOI film is on the upper side of the water tank of the batch cleaning machine before cleaning by the batch cleaning machine. If the wafer is rotated and charged in the cleaning carrier before cleaning, the in-plane distribution of the SOI film thickness after the thinning process by the batch type cleaning machine is improved compared to before the thinning process, or the film thickness is reduced. Deterioration of the in-plane distribution after the process can be minimized.
  • the rotational position of each SOI wafer in the batch can be determined based on the SOI film thickness measurement results before the thinning process. After determining and rotating each wafer to the determined rotational position, it can be loaded into the cleaning carrier and cleaned, so that the in-plane distribution of each wafer can be improved with high accuracy and further processes can be performed. It can be simplified.
  • the in-plane distribution allowance distribution of the Si etching tends to be uneven at the top and bottom in the water tank, and thus obtained by the SOI film thickness measurement before the thinning process.
  • the thin portion of the SOI film is located on the upper side in the water tank of the single-sheet cleaning machine before thinning by the single wafer cleaning machine.
  • the continuous rotation of the wafer during the thinning process is eccentric, the in-plane machining allowance distribution deviates from the concentric circle, so the wafer before the thinning process is rotated to the desired rotation position, so the thinning process
  • the in-plane distribution of the subsequent SOI film thickness can be improved as compared to before the thinning process, or the deterioration of the in-plane distribution after the thinning process can be minimized.
  • FIG. 2 shows an example of the in-plane distribution of the SOI film thickness at each stage when the SOI wafer is actually manufactured by the flow of FIG. 1 and the in-plane machining allowance distribution in the thinning process obtained in advance.
  • 2A shows the in-plane distribution of the SOI film thickness before the thinning process
  • FIG. 2B shows the in-plane machining allowance distribution obtained in the thinning process
  • FIG. 2C shows the SOI after the wafer rotation.
  • FIG. 2D shows the in-plane distribution of SOI film thickness after the thinning process.
  • an SOI layer is formed on a wafer, and then, as a process (A1), the SOI film thickness before the thinning process is measured to obtain an in-plane distribution of the SOI film thickness as shown in FIG.
  • the average value of the SOI film thickness is 16.7 nm
  • the in-plane film thickness distribution (film thickness Range: maximum in-plane value of film thickness ⁇ minimum in-plane value) is 0.59 nm. It can be seen that the SOI film thickness is the thinnest at the measurement position at 7:30 (position of 225 degrees clockwise with the wafer upper end being 0 degrees).
  • step (A2) the rotational position of the wafer when performing the thinning process is determined, but before that, it is thinned until the SOI film thickness becomes 12.0 nm by a batch type cleaning machine using SC1 solution.
  • the in-plane allowance distribution in the process is measured in advance, and the in-plane allowance distribution in the thinning process as shown in FIG.
  • the average machining allowance is 4.7 nm
  • the in-plane machining allowance distribution (the machining allowance range: the in-plane maximum value of the machining allowance—the in-plane minimum value) is 0.18 nm
  • the cleaning carrier It can be seen that the allowance is the smallest on the upper side.
  • the in-plane distribution of the SOI film thickness obtained in the step (A1) (FIG. 2A) and the in-plane machining allowance distribution in the thinning step obtained as described above (FIG. 2B).
  • the rotational position can be arbitrarily determined based on, for example, the above-mentioned criteria.
  • the measurement position at 7:30 where the SOI film thickness is the smallest, is set in the cleaning carrier with the smallest machining allowance.
  • batch cleaning is performed in a state of being aligned with the upper side of the plate is described.
  • the measurement position at 7:30 when the SOI film thickness is the thinnest is rotated 135 degrees clockwise so as to be on the upper side (0 o'clock position) in the cleaning carrier (FIG. 2C).
  • the rotation of the wafer at this time may be performed in the SOI film thickness measuring apparatus used in the step (A1) as described above, or may be performed separately after being taken out from the SOI film thickness measuring apparatus.
  • step (A3) the wafer rotated 135 degrees clockwise as shown in FIG. 2C is transferred to the cleaning carrier, and the SC1 solution is added until the SOI film thickness reaches 12.0 nm.
  • the film is thinned with the batch cleaning machine used.
  • the average value of the SOI film thickness is 12.0 nm and the in-plane film thickness distribution (film thickness Range) is 0.56 nm as shown in FIG. Therefore, by performing the thinning process in the flow as shown in FIG. 1, the in-plane film thickness distribution can be improved as compared to before the thinning process, and the in-plane film thickness uniformity after the thinning process is improved. It can be seen that a good SOI wafer can be manufactured.
  • the SOI wafer manufacturing method of the present invention can manufacture an SOI wafer having excellent in-plane film thickness uniformity of the SOI layer after the thinning process for adjusting the SOI film thickness.
  • a method for manufacturing an SOI wafer having a thinning process for adjusting the SOI film thickness of the SOI wafer on which the SOI layer is formed (B0) performing a heat treatment in an oxidizing gas atmosphere to form a thermal oxide film on the surface of the SOI layer; (B1) a step of measuring the SOI film thickness of the SOI wafer on which the thermal oxide film is formed in the (B0) step with the thermal oxide film; (B2) When performing the thinning step based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (B1) step and the in-plane allowance distribution in the thinning step obtained in advance.
  • the SOI layer is thinned by controlling the etching amount of the SOI layer according to the SOI film thickness obtained in the step (B1) by batch cleaning including thermal oxide film removal and etching of the SOI layer. Process, The manufacturing method of the SOI wafer containing this is provided.
  • the rotational position of the SOI wafer is determined, and the SOI wafer is rotated around the central axis so as to be the determined rotational position (FIG. 3 (B2)).
  • the SOI film obtained in the step (B1) is subjected to batch type cleaning including removal of the thermal oxide film on the SOI layer surface of the SOI wafer rotated in the step (B2) and etching of the SOI layer.
  • the SOI layer is thinned while controlling in accordance with the thickness (FIG. 3 (B3)).
  • the formation of the thermal oxide film is not particularly limited as long as it is a method of performing heat treatment in an oxidizing gas atmosphere, and can be performed by a known method.
  • the formation of the SOI layer, the (B1) step, and the (B2) step may be performed in the same manner as the formation of the SOI layer, the (A1) step, and the (A2) step, respectively.
  • the etching amount of the SOI layer can be obtained in the step (B1) by batch cleaning including the removal of the thermal oxide film on the SOI layer surface of the SOI wafer rotated in the step (B2) and the etching of the SOI layer.
  • the SOI layer is thinned while controlling according to the SOI film thickness (for example, in-plane average value).
  • the specific method of thinning by batch cleaning including etching of the SOI layer is not particularly limited, but it is preferable to apply cleaning (etching) using the above-described batch cleaning machine and SC1 solution.
  • the surface of the SOI layer after the thinning process is removed by removing the thermal oxide film formed on the surface of the SOI layer before the thinning process and adjusting the film thickness by etching.
  • An SOI wafer with good inner film thickness uniformity can be manufactured.
  • the method for manufacturing an SOI wafer having first and second thinning steps for adjusting the SOI film thickness of the SOI wafer on which the SOI layer is formed (C0) performing a heat treatment in an oxidizing gas atmosphere to form a thermal oxide film on the surface of the SOI layer; (C1) a step of measuring the SOI film thickness of the SOI wafer on which the thermal oxide film is formed in the step (C0), with the thermal oxide film attached, (C2) Based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (C1) process and the in-plane machining allowance distribution in the first thinning process obtained in advance, the first Determining a rotational position of the SOI wafer when performing the thinning process, and rotating the SOI wafer around a central axis so as to be the rotational position; (C3) The etching amount of the SOI layer is obtained in the step (C1) by batch cleaning including the removal of the thermal oxide film on the SOI layer
  • the second thinning process The manufacturing method of the SOI wafer containing this
  • the first thin film forming process based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (C1) process and the in-plane machining allowance distribution in the first thin film forming process obtained in advance, the first thin film forming process
  • the rotational position of the SOI wafer at the time of performing is determined, and the SOI wafer is rotated around the central axis so as to be the determined rotational position (FIG. 4 (C2)).
  • the etching amount of the SOI layer obtained in the step (C1) is obtained by batch cleaning including removal of the thermal oxide film on the surface of the SOI layer of the SOI wafer rotated in the step (C2) and etching of the SOI layer.
  • the SOI layer is thinned so as to be thicker than the final target value (first thinning step; FIG. 4 (C3)).
  • the SOI film thickness of the SOI wafer after the first thinning process is measured (FIG. 4 (C4)).
  • the second thinning step The rotational position of the SOI wafer at the time of performing is determined, and the SOI wafer is rotated around the central axis so as to be the rotational position (FIG. 4 (C5)).
  • the SOI layer is controlled while the etching amount of the SOI layer is controlled in accordance with the SOI film thickness obtained in the (C4) process by cleaning including etching of the SOI layer of the SOI wafer rotated in the (C5) process.
  • the film is thinned to the final target value (second thinning process; FIG. 4 (C6)).
  • the formation of the SOI layer, the (C1) step, and the (C2) step may be performed in the same manner as the formation of the SOI layer, the (A1) step, and the (A2) step, respectively. Further, the (C0) step may be performed in the same manner as the above-described (B0) step.
  • the etching amount of the SOI layer can be obtained in the (C1) step by batch cleaning including removal of the thermal oxide film on the SOI layer surface of the SOI wafer rotated in the (C2) step and etching of the SOI layer. While controlling according to the SOI film thickness (for example, in-plane average value), the SOI layer is thinned so as to be thicker than the final target value.
  • the step (C3) may be performed in the same manner as the above-described step (B3). However, in the first thinning step, the film is thinned so as to be thicker than the final target value, and the final thinning step described later is performed. The film is made thin so that the target value becomes.
  • step (C4) the SOI film thickness of the SOI wafer after the first thinning process is measured.
  • the step (C4) may be performed in the same manner as the above step (A1).
  • step (C5) based on the in-plane distribution of the SOI film thickness obtained by the film thickness measurement in the (C4) step and the in-plane machining allowance distribution in the second thinning step obtained in advance, the second The rotational position of the SOI wafer when performing the thinning process is determined, and the SOI wafer is rotated around the central axis so as to be at the rotational position.
  • the step (C5) may be performed in the same manner as the above step (A2).
  • the SOI film thickness (for example, in-plane average value) obtained in the step (C4) is determined by cleaning including etching of the SOI layer of the SOI wafer rotated in the step (C5). ), The SOI layer is thinned to the final target value.
  • cleaning of the (C6) process similarly to the above-mentioned (A3) process, and it is especially preferable to carry out by single wafer type washing
  • the SOI wafer manufacturing method of the present invention described above can be applied to various SOI wafer manufacturing methods such as a smart cut method, a SIMOX (Separation by IM planted Oxygen) method, and an rTCCP (room-temperature controlled cleave process) method. Also in this method, the in-plane film of the SOI layer after the thinning process is determined by determining the rotational position when the thinning process is performed before the thinning process and rotating the SOI wafer so as to be the determined rotational position. Thickness uniformity can be improved.
  • an SOI wafer of the present invention for example, a method for removing the thermal oxide film formed on the surface of the SOI layer to reduce the thickness of the SOI layer, or a method for removing the thermal oxide film and adjusting the film thickness.
  • a method of thinning an SOI layer by a two-stage thinning process an SOI wafer with excellent in-plane thickness uniformity of the SOI layer after the thinning process is controlled while controlling the film thickness of the SOI layer with high accuracy. Can be manufactured. Therefore, such a method is suitable as a method for manufacturing an FD-SOI wafer that requires extremely high SOI layer thickness uniformity.
  • the manufacturing yield of an SOI wafer having a target SOI film thickness is improved, and as a result, the process cost can be reduced.
  • the present invention will be specifically described using examples and comparative examples, but the present invention is not limited thereto.
  • the final target value of the SOI layer was set to 12.0 nm, and thinning was performed by the first and second thinning steps.
  • Example 1 First, 50 SOI wafers (diameter 300 mm) having an SOI film thickness of 150 nm prepared using an ion implantation separation method were prepared, and the SOI wafer was subjected to heat treatment under the oxidation conditions shown in Table 1 to obtain the surface of the SOI layer. A thermal oxide film was formed. Next, the thickness of the SOI layer and the thermal oxide film of the SOI wafer on which the thermal oxide film was formed was measured using an ellipsometer. The results are shown in Table 1.
  • the thinnest region in the in-plane film thickness of the SOI layer After measuring the SOI film thickness, the wafer is watched by a transfer machine (outside the SOI film thickness measuring apparatus) so that is on the upper side of the cleaning tank in which the first thinning process is performed (that is, the region where the machining allowance is minimized). After rotating around 135 degrees, it was transferred to a cleaning carrier.
  • the SOI layer The transfer machine (SOI film) after measuring the SOI film thickness so that the thinnest area in the in-plane film thickness is the upper side in the cleaning tank in which the second thinning process is performed (that is, the area where the machining allowance is minimized).
  • SOI film The transfer machine
  • batch cleaning was performed using the SC1 solution under the cleaning conditions shown in Table 1 using a batch cleaning machine (film thickness adjustment cleaning).
  • film thickness adjustment cleaning based on the SOI film thickness measurement result after the first thinning process, the cleaning carrier that accommodates the SOI wafer is divided every 0.1 nm in the in-plane average value of the SOI film thickness.
  • the film thickness was adjusted to a target value (12.0 nm) by changing the SC1 immersion time for film thickness adjustment cleaning for each carrier.
  • SC1 was the same as that used in the first thinning process.
  • Example 2 Rotation of the SOI wafer before performing the first thinning process and rotation of the SOI wafer before performing the second thinning process are not provided with a separate wafer rotation process, and the wafer rotation mechanism in the SOI film thickness measuring apparatus.
  • the SOI layer was thinned by performing the same operation as in Example 1 except for the above.
  • the thinnest region in the in-plane film thickness of the SOI layer performs the thinning step. It rotated so that it might become the upper side in a tank (namely, area
  • Table 1 shows the experimental conditions, the SOI film thickness measurement results at each stage, and the calculated yield.
  • Example 3 Rotation of the SOI wafer before performing the first thinning process and rotation of the SOI wafer before performing the second thinning process are not provided with a separate wafer rotation process, and the wafer rotation mechanism in the SOI film thickness measuring apparatus.
  • the SOI layer was thinned by the same operation as in Example 1 except that the second thinning step was performed by wafer immersion type single wafer cleaning.
  • the thinnest region in the in-plane film thickness of the SOI layer performs the thinning step. It rotated so that it might become the upper side in a tank (namely, area
  • the target value (12.0 nm) is obtained by changing the SC1 immersion time for each wafer according to the SOI film thickness based on the SOI film thickness measurement result after the first thinning process.
  • the film was made thin.
  • SC1 was the same as that used in the first thinning process.
  • Table 1 shows the experimental conditions, the SOI film thickness measurement results at each stage, and the calculated yield.
  • Example 1 The same operation as in Example 1 is performed except that the SOI wafer before the first thinning step is rotated and the SOI wafer is not rotated before the second thinning step, and the SOI layer is thinned. Went. Table 1 shows the experimental conditions, the SOI film thickness measurement results at each stage, and the calculated yield.
  • the SOI wafer manufacturing method of the present invention can manufacture an SOI wafer with excellent in-plane film thickness uniformity of the SOI layer after the thinning process for adjusting the SOI film thickness. .
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Weting (AREA)

Abstract

 本発明は、SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、(A1)SOI層が形成されたSOIウェーハの薄膜化工程前のSOI膜厚を測定する工程、(A2)膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布に基づいて、薄膜化工程を行う際のSOIウェーハの回転位置を決定し、該回転位置になるようにSOIウェーハを中心軸まわりに回転させる工程、及び(A3)回転させたSOIウェーハのSOI層を薄膜化する工程を含むSOIウェーハの製造方法である。これにより、薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造できるSOIウェーハの製造方法が提供される。

Description

SOIウェーハの製造方法
 本発明は、SOIウェーハの製造方法に関し、特に、FD-SOI(Fully Depleted Silicon-On-Insulator:完全空乏型SOI)と呼ばれ、極めて高いSOI層膜厚の均一性が要求されるSOIウェーハの製造方法に関する。
 従来、SOI層が形成されたSOIウェーハのSOI層を薄膜化する方法の1つとしてSOIウェーハをバッチ式熱処理炉で熱処理し、SOI層表面のSiを酸化させて酸化膜に変質させた後、この酸化膜を除去する方法(いわゆる、犠牲酸化処理)が行われてきた。
 この方法によってSOI膜厚を精度良く目的の値に薄膜化するには、酸化膜厚が狙い値になるよう正確に制御することが必要となる。しかし、実際には酸化時間中の大気圧の変動により酸化レートが変化するため、熱処理により成長する酸化膜厚を正確に制御することは非常に困難である。このため、酸化膜の形成と除去による薄膜化を行う場合には、薄膜化工程後のSOI膜厚が目的の値よりも若干(3nm程度)厚くなるように酸化膜の形成と除去による薄膜化を行い、その後、別途、エッチングによる薄膜化によって目的の値になるようにエッチング時間を制御する方法がとられてきた。
 この2段階の薄膜化の方法では、特許文献1に示されているように、酸化後の酸化膜を除去した後にSOI膜厚を測定し、その値をもとに次段のエッチング工程の取り代を設定する方法がとられてきた。
 また酸化膜の形成と除去及びエッチングによる上記2段階の薄膜化工程において、工程を短縮する方法として、酸化後に酸化膜が付いたままSOI層の膜厚を測定し、測定したSOI層の膜厚をもとに、酸化膜除去及びエッチング、更には洗浄工程を洗浄の同一バッチ処理で行う方法が提案されている。
 また、酸化膜の形成と除去及びバッチ式洗浄機による薄膜化に加えて、枚葉式のエッチング装置を用いてSOI層の薄膜化を制御する方法も提案されている(特許文献2)。
 しかしながら、これらの方法によってSOI層の膜厚を高精度に制御しても、酸化膜形成・除去やエッチング等の薄膜化工程において面内取り代ばらつきが生じてしまい薄膜化工程後のSOI層の面内膜厚分布が悪化してしまうため、例えばFD-SOIウェーハのようにウェーハ面内の全点が目的のSOI膜厚±0.5nm以内といった高精度の膜厚均一性が必要な場合には、膜厚均一性の要求を満たせないという問題があった。
特開2007-266059号公報 特開2010-092909号公報
 本発明は、上記問題を解決するためになされたものであり、薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造できるSOIウェーハの製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、
 (A1)前記SOI層が形成されたSOIウェーハの前記薄膜化工程前のSOI膜厚を測定する工程、
 (A2)前記(A1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記薄膜化工程での面内取り代分布に基づいて、前記薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
 (A3)前記(A2)工程で回転させたSOIウェーハのSOI層を薄膜化する工程、
を含むSOIウェーハの製造方法を提供する。
 このようなSOIウェーハの製造方法であれば、SOI膜厚を調整する薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。
 また、本発明では、SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、
 (B0)酸化性ガス雰囲気下で熱処理を行って前記SOI層の表面に熱酸化膜を形成する工程、
 (B1)前記(B0)工程で熱酸化膜が形成されたSOIウェーハのSOI膜厚を、前記熱酸化膜付きのまま測定する工程、
 (B2)前記(B1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記薄膜化工程での面内取り代分布に基づいて、前記薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
 (B3)前記(B2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及び前記SOI層のエッチングを含むバッチ式洗浄によって、前記SOI層のエッチング量を前記(B1)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を薄膜化する工程、
を含むSOIウェーハの製造方法を提供する。
 このようなSOIウェーハの製造方法であれば、SOI膜厚を調整する薄膜化工程の前にSOI層表面に形成した熱酸化膜を除去し、エッチングによって膜厚を調整することで、薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。
 また、本発明では、SOI層が形成されたSOIウェーハのSOI膜厚を調整する第一と第二の薄膜化工程を有するSOIウェーハの製造方法において、
 (C0)酸化性ガス雰囲気下で熱処理を行って前記SOI層の表面に熱酸化膜を形成する工程、
 (C1)前記(C0)工程で熱酸化膜が形成されたSOIウェーハのSOI膜厚を、前記熱酸化膜付きのまま測定する工程、
 (C2)前記(C1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記第一の薄膜化工程での面内取り代分布に基づいて、前記第一の薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、
 (C3)前記(C2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及び前記SOI層のエッチングを含むバッチ式洗浄によって、前記SOI層のエッチング量を前記(C1)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を最終のターゲット値より厚くなるように薄膜化する第一の薄膜化工程、
 (C4)前記第一の薄膜化工程後のSOIウェーハのSOI膜厚を測定する工程、
 (C5)前記(C4)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記第二の薄膜化工程での面内取り代分布に基づいて、前記第二の薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
 (C6)前記(C5)工程で回転させたSOIウェーハのSOI層のエッチングを含む洗浄によって、前記SOI層のエッチング量を前記(C4)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を最終のターゲット値となるように薄膜化する第二の薄膜化工程、
を含むSOIウェーハの製造方法を提供する。
 このようなSOIウェーハの製造方法であれば、SOI膜厚を調整する薄膜化工程の前にSOI層表面に形成した熱酸化膜を除去する第一の薄膜化工程と、エッチングによって狙いの膜厚に調整する第二の薄膜化工程の2段階の薄膜化工程によって、薄膜化工程後のSOI層の面内膜厚均一性がより良好なSOIウェーハを製造することができる。
 またこのとき、前記(C6)工程の洗浄を、枚葉式洗浄で行うことが好ましい。
 第二の薄膜化工程を枚葉式洗浄で行うことで、薄膜化工程後のSOI層の膜厚の制御性を更に向上させてSOIウェーハを製造することができる。
 またこのとき、前記回転位置の決定を、前記膜厚測定により得られたSOI膜厚の面内分布の最大値を示す領域と、前記予め求めた薄膜化工程での面内取り代分布の最大値を示す領域とが一致する位置に決定することが好ましい。
 またこのとき、前記回転位置の決定を、前記膜厚測定により得られたSOI膜厚の面内分布の最小値を示す領域と、前記予め求めた薄膜化工程での面内取り代分布の最小値を示す領域とが一致する位置に決定することが好ましい。
 またこのとき、前記回転位置の決定を、前記膜厚測定により得られたSOI膜厚の面内分布、及び前記予め求めた薄膜化工程での面内取り代分布をもとに、前記回転位置を所定の角度ずつ変えた場合の薄膜化工程後のSOI膜厚の面内分布をそれぞれ計算し、該計算した薄膜化工程後のSOI膜厚の面内最大値と面内最小値の差が最小となる位置に決定することが好ましい。
 このような基準で決定した回転位置になるようにSOIウェーハを回転させて薄膜化工程を行うことで、より確実に薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。
 またこのとき、前記薄膜化工程前のSOI膜厚を測定する工程及びその後に行う前記SOIウェーハを回転させる工程を、同一の装置内で行うことが好ましい。
 このように同一装置内で行えば、工程を簡略化することができる。
 またこのとき、前記SOI層の形成を、少なくとも、イオンの注入により形成された微小気泡層を有するボンドウェーハと支持基板となるベースウェーハとを接合する工程と、前記微小気泡層を境界として前記ボンドウェーハを剥離して前記ベースウェーハ上に薄膜を形成する工程とを有するイオン注入剥離法によって行うことが好ましい。
 このように、本発明のSOIウェーハの製造方法のSOI層の形成には、イオン注入剥離法を好適に用いることができる。
 またこのとき、前記薄膜化工程を、SC1溶液に浸漬することによって行うことが好ましい。
 このように、本発明のSOIウェーハの製造方法の薄膜化工程には、SC1溶液を好適に用いることができる。
 以上のように、本発明のSOIウェーハの製造方法であれば、例えばSOI層表面に形成した熱酸化膜を除去してSOI層の薄膜化を行う方法や、熱酸化膜除去と膜厚調整の2段階の薄膜化工程によってSOI層の薄膜化を行う方法において、SOI層の膜厚を高精度に制御しながら、薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。従って、このような方法であれば、極めて高いSOI層膜厚均一性が要求されるFD-SOIウェーハの製造方法として好適である。また、SOI膜厚の面内分布が向上するため、狙いのSOI膜厚を有するSOIウェーハの製造歩留が向上し、結果として、プロセスのコストを低減することができる。
本発明のSOIウェーハの製造方法の一例を示すフロー図である。 図1のフローでSOIウェーハを製造した場合の各段階のSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布の一例を示す図であり、(a)は薄膜化工程前のSOI膜厚の面内分布、(b)は予め求めた薄膜化工程での面内取り代分布、(c)はウェーハ回転後のSOI膜厚の面内分布、(d)は薄膜化工程後のSOI膜厚の面内分布を示す。 本発明のSOIウェーハの製造方法の別の一例を示すフロー図である。 本発明のSOIウェーハの製造方法の更に別の一例を示すフロー図である。
 上述のように、SOI膜厚を調整する薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造できるSOIウェーハの製造方法の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、薄膜化工程前のSOI層の面内分布には偏りがあり、また薄膜化工程での面内取り代分布にも偏りがあるため、例えば、薄膜化工程前のSOI層の膜厚が薄い箇所が薄膜化工程での取り代の大きい箇所となってしまった場合に、薄膜化工程後のSOI層の面内膜厚均一性が悪化することを見出した。更に、本発明者らはこのことから、薄膜化工程前のSOI膜厚を測定し、測定したSOI膜厚の面内分布と予め求めた薄膜化工程での面内取り代分布に基づいて、薄膜化工程を行う際のSOIウェーハの回転位置を決定し、このような回転位置になるようにSOIウェーハを中心軸まわりに回転させた状態で薄膜化工程を行うことで、薄膜化工程後のSOI層の面内膜厚均一性を改善できることを見出し、本発明を完成させた。
 即ち、本発明は、SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、
 (A1)前記SOI層が形成されたSOIウェーハの前記薄膜化工程前のSOI膜厚を測定する工程、
 (A2)前記(A1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記薄膜化工程での面内取り代分布に基づいて、前記薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
 (A3)前記(A2)工程で回転させたSOIウェーハのSOI層を薄膜化する工程、
を含むSOIウェーハの製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明のSOIウェーハの製造方法の一例について、図1のフロー図を参照しながら説明する。図1のSOIウェーハの製造方法では、まずウェーハにSOI層を形成し、次に薄膜化工程前のSOI膜厚を測定する(図1(A1))。次に、(A1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布に基づいて、薄膜化工程を行う際のSOIウェーハの回転位置を決定し、決定した回転位置になるようにSOIウェーハを中心軸まわりに回転させる(図1(A2))。次に、(A2)工程で回転させたSOIウェーハのSOI層を薄膜化する(図1(A3))。
 以下、各工程についてさらに詳しく説明する。
[SOI層の形成]
 本発明において、SOI層の形成方法は特に限定されないが、例えば、イオンの注入により形成された微小気泡層を有するボンドウェーハと支持基板となるベースウェーハとを接合する工程と、微小気泡層を境界としてボンドウェーハを剥離してベースウェーハ上に薄膜を形成する工程とを有するイオン注入剥離法によって行うことが好ましい。イオン注入剥離法であれば、極薄で比較的面内膜厚分布の小さいSOI層が形成されたSOIウェーハが得られる。
[(A1)薄膜化工程前のSOI膜厚測定]
 (A1)工程では、SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程前のSOI膜厚を測定する。薄膜化工程前のSOI膜厚測定は、特に限定されず、公知の方法で行えばよい。
[(A2)SOIウェーハの回転位置の決定及びSOIウェーハの回転]
 (A2)工程では、(A1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布に基づいて、薄膜化工程を行う際のSOIウェーハの回転位置を決定し、決定した回転位置になるようにSOIウェーハを中心軸まわりに回転させる。
 SOI膜厚を調整する薄膜化工程での面内取り代分布を予め求める際には、例えば実際に後工程である薄膜化工程で使用する薄膜化手段(例えば、バッチ式洗浄機や枚葉式洗浄機など)を用いて、SOI膜厚がターゲット値となるように薄膜化を行い、薄膜化後にSOI膜厚測定を行って取り代分布を求めればよい。
 薄膜化工程を行う際のSOIウェーハの回転位置の決定は、(A1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布に基づいて行われる。上述のように、例えば、薄膜化工程前のSOI層の膜厚が薄い箇所が薄膜化工程での取り代の大きい箇所となってしまった場合に、薄膜化工程後のSOI層の面内膜厚均一性が悪化することから、回転位置は薄膜化工程前のSOI層の膜厚と薄膜化工程での取り代との差分のばらつきがウェーハ面内で小さくなるように決定すればよい。回転位置を決定する基準として、より具体的には、例えば以下の3つの基準を挙げることができる。
(基準1)
 膜厚測定により得られたSOI膜厚の面内分布の最大値を示す領域と、予め求めた薄膜化工程での面内取り代分布の最大値を示す領域とが一致する位置を回転位置に決定する。
(基準2)
 膜厚測定により得られたSOI膜厚の面内分布の最小値を示す領域と、予め求めた薄膜化工程での面内取り代分布の最小値を示す領域とが一致する位置を回転位置に決定する。
(基準3)
 膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布をもとに、回転位置を所定の角度ずつ変えた場合の薄膜化工程後のSOI膜厚の面内分布をそれぞれ計算し、該計算した薄膜化工程後のSOI膜厚の面内最大値と面内最小値の差が最小となる位置を回転位置に決定する。
 例えば上記のいずれかの基準で決定した回転角度になるようにSOIウェーハを回転させて薄膜化工程を行うことで、薄膜化工程起因のSOI膜厚の面内分布を改善、あるいは面内分布の悪化を最小化することができる。また、もちろん回転位置の決定基準はこれらに限定されるものではなく、薄膜化工程前のSOI層の膜厚と薄膜化工程での取り代との差分のばらつきがウェーハ面内で小さくなるような任意の基準で回転位置を決定すればよい。
 このとき、薄膜化工程前のSOI膜厚を測定する工程((A1)工程)及びその後に行うSOIウェーハを回転させる工程((A2)工程)を同一の装置内で行えば、工程が簡略化できるため好ましい。より具体的には、(A1)工程で使用したSOI膜厚測定装置内にアライメント用のウェーハ回転機構が付属している場合に、SOI膜厚測定直後のウェーハ回収時に、測定したSOI膜厚の面内分布と予め求めた薄膜化工程での面内取り代分布に基づいてウェーハの回転位置を決定し、決定した回転位置になるようにSOI膜厚測定装置内のウェーハ回転機構を用いてウェーハを回転させた後、薄膜化工程で使用する洗浄機の洗浄用キャリア内に回収すれば、SOI膜厚測定と薄膜化工程前のウェーハの回転を同一装置内で行うことができ、作業の簡略化が可能となる。
[(A3)回転させたSOIウェーハのSOI層の薄膜化]
 (A3)工程では、(A2)工程で回転させたSOIウェーハのSOI層を薄膜化する。SOI膜厚を調整するSOI層の薄膜化の方法としては、バッチ式洗浄機を用いた洗浄(エッチング)による薄膜化を適用することが効果的であるが、これに限定されることなく、所望の取り代などに応じて、枚葉式洗浄機を用いた洗浄(エッチング)、犠牲酸化処理(バッチ処理、枚葉処理)、ガス(HCl等)によるガスエッチング、ドライエッチング、ウェットエッチング、水素やアルゴン等の還元性雰囲気熱処理によるSOI層の減厚を伴う平坦化処理等の種々の薄膜化方法を適用することができる。
 また、薄膜化工程は、SOIウェーハをSC1溶液(NHOHとHの混合水溶液)に浸漬することによって行うことが好ましい。
 バッチ式洗浄機とSC1溶液を用いた洗浄(エッチング)の場合、水槽内の上下でSiエッチングの面内取り代分布の偏りが生じやすく、水槽上部に浸漬された部分のエッチング取り代は、水槽下部で浸漬された部分のエッチング取り代よりも小さくなる傾向がある。その原因としては循環ラインで加熱した薬液が水槽内下部から供給されることや、液面からウェーハを出し入れするために、浸漬時間がウェーハ面内で異なりウェーハ下部ほど浸漬時間が長くなることなどによる。
 このことから、薄膜化工程をバッチ式洗浄機とSC1溶液を用いた洗浄(エッチング)で行う場合は、薄膜化工程前のSOI膜厚測定により得られたSOI膜厚の面内分布と、上述のエッチングの面内取り代分布の偏りに基づいて、バッチ式洗浄機による洗浄前に例えばSOI膜厚の薄い部分がバッチ式洗浄機の水槽内上側になるように回転位置を決め、予めバッチ式洗浄の前にウェーハを回転させて洗浄用キャリアに仕込んで洗浄を行えば、バッチ式洗浄機による薄膜化工程後のSOI膜厚の面内分布を薄膜化工程前に比べて改善、あるいは薄膜化工程後の面内分布の悪化を最小化することができる。
 また、バッチ式洗浄機での面内取り代分布を予め調べてデータベース化しておけば、薄膜化工程前のSOI膜厚測定の結果をもとに、バッチ内の各々のSOIウェーハの回転位置を決定し、各々のウェーハを決定した回転位置となるように回転させた後、洗浄用キャリアに仕込んで洗浄を行うことができるため、各ウェーハの面内分布を高精度で改善できるとともに更に工程を簡略化することができる。
 また、ウェーハ浸漬型の枚葉式洗浄機ではバッチ式と同様に水槽内の上下でSiエッチングの面内取り代分布の偏りが生じやすいため、薄膜化工程前のSOI膜厚測定により得られたSOI膜厚の面内分布と、上述のエッチングの面内取り代分布の偏りに基づいて、枚葉式洗浄機による薄膜化前にSOI膜厚の薄い部分が枚様式洗浄機の水槽内上側になるように回転位置を決め、予め枚葉式洗浄の前にウェーハを回転させて洗浄用キャリアに仕込んで洗浄を行えば、枚葉式洗浄機による薄膜化工程後のSOI膜厚の面内分布を薄膜化工程前に比べて改善、あるいは薄膜化工程後の面内分布の悪化を最小化することができる。
 一方、ウェーハを水平に保持し、上部配管より薬液を注水する薬液注水型の枚葉式洗浄機では、薄膜化工程中にウェーハを連続的に回転させる方法が用いられる。このため、薄膜化工程での面内取り代分布が同心円状となり、薄膜化工程前のウェーハを決定した回転位置となるように中心軸まわりに回転させても面内膜厚分布への影響は小さいが、薄膜化工程中のウェーハの連続回転が偏心している場合では面内取り代分布が同心円からずれるために、薄膜化工程前のウェーハを所望の回転位置に回転させることで、薄膜化工程後のSOI膜厚の面内分布を薄膜化工程前に比べて改善、あるいは薄膜化工程後の面内分布の悪化を最小化することができる。
 以下、図2を参照しながら本発明のSOIウェーハの製造方法をより具体的に説明するが、本発明はこれに限定されるものではない。図2は、実際に図1のフローでSOIウェーハを製造した場合の各段階のSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布の例を示しており、図2(a)は薄膜化工程前のSOI膜厚の面内分布、図2(b)は予め求めた薄膜化工程での面内取り代分布、図2(c)はウェーハ回転後のSOI膜厚の面内分布、図2(d)は薄膜化工程後のSOI膜厚の面内分布を示す。
 まず、ウェーハにSOI層を形成し、次に(A1)工程として、薄膜化工程前のSOI膜厚を測定して図2(a)のようなSOI膜厚の面内分布を得る。例えば、図2(a)では、SOI膜厚の平均値は16.7nm、面内膜厚分布(膜厚Range:膜厚の面内最大値-面内最小値)は0.59nmであり、7時半の測定位置(ウェーハ上端を0度として時計回りに225度の位置)で最もSOI膜厚が薄いことが分かる。
 次に、(A2)工程として、薄膜化工程を行う際のウェーハの回転位置を決定するが、その前にSC1溶液を用いたバッチ式洗浄機でSOI膜厚が12.0nmとなるまで薄膜化した際の面内取り代分布を予め測定し、図2(b)のような薄膜化工程での面内取り代分布を求めておく。例えば、図2(b)では、平均取り代は4.7nm、面内取り代分布(取り代Range:取り代の面内最大値-面内最小値)は0.18nmであり、洗浄用キャリア内の上側で取り代が最も少ないことが分かる。
 次に、(A1)工程で得られたSOI膜厚の面内分布(図2(a))と、上述のようにして求めた薄膜化工程での面内取り代分布(図2(b))に基づいて、バッチ式洗浄を行う際のウェーハの回転位置を決定する。このとき、回転位置は例えば上述のような基準に基づいて任意に決定することができるが、ここでは、最もSOI膜厚が薄い7時半の測定位置を、取り代が最も少ない洗浄用キャリア内の上側に合わせた状態でバッチ式洗浄を行う場合を例に挙げる。この場合、最もSOI膜厚が薄い7時半の測定位置が洗浄用キャリア内の上側(0時の位置)になるように、時計回りに135度回転させる(図2(c))。このときのウェーハの回転は、上述のように、(A1)工程に使用したSOI膜厚測定装置内で行ってもよいし、SOI膜厚測定装置から取り出してから別途行ってもよい。
 次に、(A3)工程として、図2(c)のように時計回りに135度回転させた状態のウェーハを洗浄用キャリアに移載し、SOI膜厚が12.0nmとなるまでSC1溶液を用いたバッチ式洗浄機による薄膜化を行う。
 薄膜化工程後のSOI膜厚分布を測定すると、図2(d)のようにSOI膜厚の平均値は12.0nm、面内膜厚分布(膜厚Range)は0.56nmとなっており、このことから図1のようなフローで薄膜化工程を行うことで、薄膜化工程前に比べて面内膜厚分布を改善させることができ、薄膜化工程後の面内膜厚均一性が良好なSOIウェーハを製造できることが分かる。
 以上説明したように、本発明のSOIウェーハの製造方法であれば、SOI膜厚を調整する薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。
 また、本発明では、SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、
 (B0)酸化性ガス雰囲気下で熱処理を行って前記SOI層の表面に熱酸化膜を形成する工程、
 (B1)前記(B0)工程で熱酸化膜が形成されたSOIウェーハのSOI膜厚を、前記熱酸化膜付きのまま測定する工程、
 (B2)前記(B1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記薄膜化工程での面内取り代分布に基づいて、前記薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
 (B3)前記(B2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及び前記SOI層のエッチングを含むバッチ式洗浄によって、前記SOI層のエッチング量を前記(B1)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を薄膜化する工程、
を含むSOIウェーハの製造方法を提供する。
 このようなSOIウェーハの製造方法の一例について、図3のフロー図を参照しながら説明する。図3のSOIウェーハの製造方法では、まずウェーハにSOI層を形成し、次に酸化性ガス雰囲気下で熱処理を行ってSOI層の表面に熱酸化膜を形成する(図3(B0))。次に、薄膜化工程前のSOI膜厚を、熱酸化膜付きのまま測定する(図3(B1))。次に、(B1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた薄膜化工程での面内取り代分布に基づいて、薄膜化工程を行う際のSOIウェーハの回転位置を決定し、決定した回転位置になるようにSOIウェーハを中心軸まわりに回転させる(図3(B2))。次に、(B2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及びSOI層のエッチングを含むバッチ式洗浄によって、SOI層のエッチング量を(B1)工程で得られたSOI膜厚に応じて制御しながら、SOI層を薄膜化する(図3(B3))。
[(B0)熱酸化膜の形成]
 本発明において、熱酸化膜の形成は酸化性ガス雰囲気下で熱処理を行う方法であれば特に限定されず、公知の方法で行うことができる。
 なお、SOI層の形成、(B1)工程、及び(B2)工程は、それぞれ上述のSOI層の形成、(A1)工程、及び(A2)工程と同様に行えばよい。
[(B3)回転させたSOIウェーハのSOI層の薄膜化]
 (B3)工程では、(B2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及びSOI層のエッチングを含むバッチ式洗浄によって、SOI層のエッチング量を(B1)工程で得られたSOI膜厚(例えば、面内平均値)に応じて制御しながら、SOI層を薄膜化する。SOI層のエッチングを含むバッチ式洗浄による薄膜化の具体的な方法は、特に限定されないが、上述のバッチ式洗浄機とSC1溶液を用いた洗浄(エッチング)を適用することが好ましい。
 このようなSOIウェーハの製造方法であれば、薄膜化工程の前にSOI層表面に形成した熱酸化膜を除去し、エッチングによって膜厚を調整することで、薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。
 また、本発明では、SOI層が形成されたSOIウェーハのSOI膜厚を調整する第一と第二の薄膜化工程を有するSOIウェーハの製造方法において、
 (C0)酸化性ガス雰囲気下で熱処理を行って前記SOI層の表面に熱酸化膜を形成する工程、
 (C1)前記(C0)工程で熱酸化膜が形成されたSOIウェーハのSOI膜厚を、前記熱酸化膜付きのまま測定する工程、
 (C2)前記(C1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記第一の薄膜化工程での面内取り代分布に基づいて、前記第一の薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、
 (C3)前記(C2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及び前記SOI層のエッチングを含むバッチ式洗浄によって、前記SOI層のエッチング量を前記(C1)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を最終のターゲット値より厚くなるように薄膜化する第一の薄膜化工程、
 (C4)前記第一の薄膜化工程後のSOIウェーハのSOI膜厚を測定する工程、
 (C5)前記(C4)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記第二の薄膜化工程での面内取り代分布に基づいて、前記第二の薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
 (C6)前記(C5)工程で回転させたSOIウェーハのSOI層のエッチングを含む洗浄によって、前記SOI層のエッチング量を前記(C4)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を最終のターゲット値となるように薄膜化する第二の薄膜化工程、
を含むSOIウェーハの製造方法を提供する。
 このようなSOIウェーハの製造方法の一例について、図4のフロー図を参照しながら説明する。図4のSOIウェーハの製造方法では、まずウェーハにSOI層を形成し、次に酸化性ガス雰囲気下で熱処理を行ってSOI層の表面に熱酸化膜を形成する(図4(C0))。次に、第一の薄膜化工程前のSOI膜厚を、熱酸化膜付きのまま測定する(図4(C1))。次に、(C1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた第一の薄膜化工程での面内取り代分布に基づいて、第一の薄膜化工程を行う際のSOIウェーハの回転位置を決定し、決定した回転位置になるようにSOIウェーハを中心軸まわりに回転させる(図4(C2))。次に、(C2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及びSOI層のエッチングを含むバッチ式洗浄によって、SOI層のエッチング量を(C1)工程で得られたSOI膜厚に応じて制御しながら、SOI層を最終のターゲット値より厚くなるように薄膜化する(第一の薄膜化工程;図4(C3))。次に、第一の薄膜化工程後のSOIウェーハのSOI膜厚を測定する(図4(C4))。次に、(C4)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた第二の薄膜化工程での面内取り代分布に基づいて、第二の薄膜化工程を行う際のSOIウェーハの回転位置を決定し、該回転位置になるようにSOIウェーハを中心軸まわりに回転させる(図4(C5))。次に、(C5)工程で回転させたSOIウェーハのSOI層のエッチングを含む洗浄によって、SOI層のエッチング量を(C4)工程で得られたSOI膜厚に応じて制御しながら、SOI層を最終のターゲット値となるように薄膜化する(第二の薄膜化工程;図4(C6))。
 なお、SOI層の形成、(C1)工程、及び(C2)工程は、それぞれ上述のSOI層の形成、(A1)工程、及び(A2)工程と同様に行えばよい。また、(C0)工程は、上述の(B0)工程と同様に行えばよい。
[(C3)回転させたSOIウェーハのSOI層の薄膜化(第一の薄膜化工程)]
 (C3)工程では、(C2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及びSOI層のエッチングを含むバッチ式洗浄によって、SOI層のエッチング量を(C1)工程で得られたSOI膜厚(例えば、面内平均値)に応じて制御しながら、SOI層を最終のターゲット値より厚くなるように薄膜化する。(C3)工程は、上述の(B3)工程と同様にして行えばよいが、第一の薄膜化工程では最終のターゲット値より厚くなるように薄膜化し、後述の第二の薄膜化工程で最終のターゲット値となるように薄膜化する。
[(C4)第一の薄膜化工程後のSOI膜厚測定]
 (C4)工程では、第一の薄膜化工程後のSOIウェーハのSOI膜厚を測定する。(C4)工程は、上述の(A1)工程と同様に行えばよい。
[(C5)SOIウェーハの回転位置の決定及びSOIウェーハの回転]
 (C5)工程では、(C4)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた第二の薄膜化工程での面内取り代分布に基づいて、第二の薄膜化工程を行う際のSOIウェーハの回転位置を決定し、該回転位置になるようにSOIウェーハを中心軸まわりに回転させる。(C5)工程は、上述の(A2)工程と同様に行えばよい。
[(C6)回転させたSOIウェーハのSOI層の薄膜化(第二の薄膜化工程)]
 (C6)工程では、(C5)工程で回転させたSOIウェーハのSOI層のエッチングを含む洗浄によって、SOI層のエッチング量を(C4)工程で得られたSOI膜厚(例えば、面内平均値)に応じて制御しながら、SOI層を最終のターゲット値となるように薄膜化する。なお、(C6)工程の洗浄は、上述の(A3)工程と同様にして行えばよく、特に枚葉式洗浄で行うことが好ましい。
 このようなSOIウェーハの製造方法であれば、薄膜化工程の前にSOI層表面に形成した熱酸化膜を除去する第一の薄膜化工程と、エッチングによって狙いの膜厚に調整する第二の薄膜化工程の2段階の薄膜化工程によって、薄膜化工程後のSOI層の面内膜厚均一性がより良好なSOIウェーハを製造することができる。
 なお、以上説明した本発明のSOIウェーハの製造方法は、スマートカット法やSIMOX(Separation by IMplanted Oxygen)法、rTCCP(room-Temerature Controlled Cleave Process)法といった種々のSOIウェーハ製造方法に適用でき、これらの方法においても、薄膜化工程前に薄膜化工程を行う際の回転位置を決定し、決定した回転位置になるようにSOIウェーハを回転させることで、薄膜化工程後のSOI層の面内膜厚均一性を改善させることができる。
 以上のように、本発明のSOIウェーハの製造方法であれば、例えばSOI層表面に形成した熱酸化膜を除去してSOI層の薄膜化を行う方法や、熱酸化膜除去と膜厚調整の2段階の薄膜化工程によってSOI層の薄膜化を行う方法において、SOI層の膜厚を高精度に制御しながら、薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造することができる。従って、このような方法であれば、極めて高いSOI層膜厚均一性が要求されるFD-SOIウェーハの製造方法として好適である。また、SOI膜厚の面内分布が向上するため、狙いのSOI膜厚を有するSOIウェーハの製造歩留が向上し、結果として、プロセスのコストを低減することができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例及び比較例では、SOI層の最終のターゲット値を12.0nmとし、第一と第二の薄膜化工程によって薄膜化を行った。
(実施例1)
 まず、イオン注入剥離法を用いて作製されたSOI膜厚150nmのSOIウェーハ(直径300mm)を50枚用意し、このSOIウェーハに対して表1に示す酸化条件で熱処理を行ってSOI層の表面に熱酸化膜を形成した。次に、エリプソメーターを用いて、熱酸化膜を形成したSOIウェーハのSOI層と熱酸化膜の膜厚を測定した。結果を表1に示す。
 次に、膜厚測定により得られたSOI膜厚の面内分布と、予め求めた第一の薄膜化工程での面内取り代分布に基づいて、SOI層の面内膜厚で最も薄い領域が第一の薄膜化工程を行う洗浄槽内の上側(即ち、取り代が最小となる領域)になるように、SOI膜厚測定後に移載機(SOI膜厚測定装置外)でウェーハを時計回りに135度回転させてから洗浄用キャリアに移載した。
 次に、第一の薄膜化工程として、複数のウェーハを1つのバッチとして同一カセットに纏めるバッチ式の洗浄機を用いて、表1に示す洗浄条件で、SOI膜厚が(最終のターゲット値より厚い)13.0nmになるようにバッチ式洗浄を行った(酸化膜除去洗浄)。なお、洗浄は15%HF溶液を用いた洗浄(100sec)と、SC1溶液(NHOH水溶液(29%):H水溶液(30%):HO=1:1:5;液温76℃)を用いた洗浄(240sec)を組み合わせて行った。
 その後、第一の薄膜化工程後のSOI膜厚の測定を行った。結果を表1に示す。
 次に、第一の薄膜化工程後のSOI膜厚測定により得られたSOI膜厚の面内分布と、予め求めた第二の薄膜化工程での面内取り代分布に基づいて、SOI層の面内膜厚で最も薄い領域が第二の薄膜化工程を行う洗浄槽内の上側(即ち、取り代が最小となる領域)になるように、SOI膜厚測定後に移載機(SOI膜厚測定装置外)でそれぞれのウェーハを回転させてから洗浄用キャリアに移載した。
 次に、第二の薄膜化工程として、バッチ式の洗浄機を用いて、表1に示す洗浄条件でSC1溶液を用いてバッチ式洗浄を行った(膜厚調整洗浄)。バッチ式の膜厚調整洗浄では、第一の薄膜化工程後のSOI膜厚測定結果に基づき、SOI膜厚の面内平均値が0.1nm毎にSOIウェーハを収容する洗浄用キャリアを分割し、キャリア毎に膜厚調整洗浄のSC1浸漬時間を変えてターゲット値(12.0nm)まで薄膜化を行った。なお、SC1は第一の薄膜化工程と同様のものを使用した。
 その後、第二の薄膜化工程後のSOI膜厚の測定を行った。更に、測定した第二の薄膜化工程後のSOI膜厚の面内分布からSOI層が12.0nm±0.5nmとなったウェーハの割合(歩留)を算出した。結果を表1に示す。
(実施例2)
 第一の薄膜化工程を行う前のSOIウェーハの回転、及び第二の薄膜化工程を行う前のSOIウェーハの回転を、別途ウェーハの回転工程を設けずSOI膜厚測定装置内のウェーハ回転機構で行う以外は実施例1と同様の操作を行い、SOI層の薄膜化を行った。なお、第一の薄膜化工程及び第二の薄膜化工程を行う前のSOIウェーハの回転では、実施例1と同様に、SOI層の面内膜厚で最も薄い領域が薄膜化工程を行う洗浄槽内の上側(即ち、取り代が最小となる領域)になるように回転させた。
 実験条件、各段階でのSOI膜厚測定結果、及び算出した歩留を表1に示す。
(実施例3)
 第一の薄膜化工程を行う前のSOIウェーハの回転、及び第二の薄膜化工程を行う前のSOIウェーハの回転を、別途ウェーハの回転工程を設けずSOI膜厚測定装置内のウェーハ回転機構で行い、また第二の薄膜化工程をウェーハ浸漬型の枚葉式洗浄で行う以外は実施例1と同様の操作を行い、SOI層の薄膜化を行った。なお、第一の薄膜化工程及び第二の薄膜化工程を行う前のSOIウェーハの回転では、実施例1と同様に、SOI層の面内膜厚で最も薄い領域が薄膜化工程を行う洗浄槽内の上側(即ち、取り代が最小となる領域)になるように回転させた。
 また、ウェーハ浸漬型の枚葉式洗浄では、第一の薄膜化工程後のSOI膜厚測定結果に基づき、SOI膜厚に応じてウェーハ毎にSC1浸漬時間を変えてターゲット値(12.0nm)まで薄膜化を行った。なお、SC1は第一の薄膜化工程と同様のものを使用した。
 実験条件、各段階でのSOI膜厚測定結果、及び算出した歩留を表1に示す。
(比較例1)
 第一の薄膜化工程を行う前のSOIウェーハの回転、及び第二の薄膜化工程を行う前のSOIウェーハの回転を行わない以外は実施例1と同様の操作を行い、SOI層の薄膜化を行った。実験条件、各段階でのSOI膜厚測定結果、及び算出した歩留を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、第一の薄膜化工程(酸化膜除去洗浄)後のSOI膜厚を比較すると、第一の薄膜化工程の前にウェーハを回転させた実施例1~3では、第一の薄膜化工程後の膜厚Rangeが0.64nmとなっており、ウェーハを回転させなかった比較例1(膜厚Range=0.75nm)と比べて、SOI層の膜厚Rangeが改善していた。
 また、第二の薄膜化工程(膜厚調整洗浄)後のSOI膜厚を比較すると、第二の薄膜化工程の前にウェーハを回転させた実施例1~3では、第二の薄膜化工程後の膜厚Rangeが0.61nmとなっており、ウェーハを回転させなかった比較例1(膜厚Range=0.79nm)と比べて、SOI層の膜厚Rangeが改善していた。
 また、膜厚Rangeが改善した結果、SOI膜厚の規格(12.0nm±0.5nm)に対する製造歩留が向上した。
 なお、膜厚Rangeや歩留については、SOI膜厚測定のウェーハ回収時にSOI膜厚測定装置内でウェーハを回転させる場合(実施例2)と、SOI膜厚測定後に別途ウェーハを回転させる場合(実施例1)で差は見られなかった。
 以上のことから、本発明のSOIウェーハの製造方法であれば、SOI膜厚を調整する薄膜化工程後のSOI層の面内膜厚均一性が良好なSOIウェーハを製造できることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、
     (A1)前記SOI層が形成されたSOIウェーハの前記薄膜化工程前のSOI膜厚を測定する工程、
     (A2)前記(A1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記薄膜化工程での面内取り代分布に基づいて、前記薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
     (A3)前記(A2)工程で回転させたSOIウェーハのSOI層を薄膜化する工程、
    を含むことを特徴とするSOIウェーハの製造方法。
  2.  SOI層が形成されたSOIウェーハのSOI膜厚を調整する薄膜化工程を有するSOIウェーハの製造方法において、
     (B0)酸化性ガス雰囲気下で熱処理を行って前記SOI層の表面に熱酸化膜を形成する工程、
     (B1)前記(B0)工程で熱酸化膜が形成されたSOIウェーハのSOI膜厚を、前記熱酸化膜付きのまま測定する工程、
     (B2)前記(B1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記薄膜化工程での面内取り代分布に基づいて、前記薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
     (B3)前記(B2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及び前記SOI層のエッチングを含むバッチ式洗浄によって、前記SOI層のエッチング量を前記(B1)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を薄膜化する工程、
    を含むことを特徴とするSOIウェーハの製造方法。
  3.  SOI層が形成されたSOIウェーハのSOI膜厚を調整する第一と第二の薄膜化工程を有するSOIウェーハの製造方法において、
     (C0)酸化性ガス雰囲気下で熱処理を行って前記SOI層の表面に熱酸化膜を形成する工程、
     (C1)前記(C0)工程で熱酸化膜が形成されたSOIウェーハのSOI膜厚を、前記熱酸化膜付きのまま測定する工程、
     (C2)前記(C1)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記第一の薄膜化工程での面内取り代分布に基づいて、前記第一の薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、
     (C3)前記(C2)工程で回転させたSOIウェーハのSOI層表面の熱酸化膜除去及び前記SOI層のエッチングを含むバッチ式洗浄によって、前記SOI層のエッチング量を前記(C1)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を最終のターゲット値より厚くなるように薄膜化する第一の薄膜化工程、
     (C4)前記第一の薄膜化工程後のSOIウェーハのSOI膜厚を測定する工程、
     (C5)前記(C4)工程の膜厚測定により得られたSOI膜厚の面内分布、及び予め求めた前記第二の薄膜化工程での面内取り代分布に基づいて、前記第二の薄膜化工程を行う際の前記SOIウェーハの回転位置を決定し、該回転位置になるように前記SOIウェーハを中心軸まわりに回転させる工程、及び
     (C6)前記(C5)工程で回転させたSOIウェーハのSOI層のエッチングを含む洗浄によって、前記SOI層のエッチング量を前記(C4)工程で得られたSOI膜厚に応じて制御しながら、前記SOI層を最終のターゲット値となるように薄膜化する第二の薄膜化工程、
    を含むことを特徴とするSOIウェーハの製造方法。
  4.  前記(C6)工程の洗浄を、枚葉式洗浄で行うことを特徴とする請求項3に記載のSOIウェーハの製造方法。
  5.  前記回転位置の決定を、前記膜厚測定により得られたSOI膜厚の面内分布の最大値を示す領域と、前記予め求めた薄膜化工程での面内取り代分布の最大値を示す領域とが一致する位置に決定することを特徴とする請求項1から請求項4のいずれか一項に記載のSOIウェーハの製造方法。
  6.  前記回転位置の決定を、前記膜厚測定により得られたSOI膜厚の面内分布の最小値を示す領域と、前記予め求めた薄膜化工程での面内取り代分布の最小値を示す領域とが一致する位置に決定することを特徴とする請求項1から請求項4のいずれか一項に記載のSOIウェーハの製造方法。
  7.  前記回転位置の決定を、前記膜厚測定により得られたSOI膜厚の面内分布、及び前記予め求めた薄膜化工程での面内取り代分布をもとに、前記回転位置を所定の角度ずつ変えた場合の薄膜化工程後のSOI膜厚の面内分布をそれぞれ計算し、該計算した薄膜化工程後のSOI膜厚の面内最大値と面内最小値の差が最小となる位置に決定することを特徴とする請求項1から請求項4のいずれか一項に記載のSOIウェーハの製造方法。
  8.  前記薄膜化工程前のSOI膜厚を測定する工程及びその後に行う前記SOIウェーハを回転させる工程を、同一の装置内で行うことを特徴とする請求項1から請求項7のいずれか一項に記載のSOIウェーハの製造方法。
  9.  前記SOI層の形成を、少なくとも、イオンの注入により形成された微小気泡層を有するボンドウェーハと支持基板となるベースウェーハとを接合する工程と、前記微小気泡層を境界として前記ボンドウェーハを剥離して前記ベースウェーハ上に薄膜を形成する工程とを有するイオン注入剥離法によって行うことを特徴とする請求項1から請求項8のいずれか一項に記載のSOIウェーハの製造方法。
  10.  前記薄膜化工程を、SC1溶液に浸漬することによって行うことを特徴とする請求項1から請求項9のいずれか一項に記載のSOIウェーハの製造方法。
PCT/JP2015/004358 2014-09-24 2015-08-28 Soiウェーハの製造方法 WO2016047047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580047351.0A CN106663597B (zh) 2014-09-24 2015-08-28 Soi晶圆的制造方法
US15/508,237 US10115580B2 (en) 2014-09-24 2015-08-28 Method for manufacturing an SOI wafer
EP15844654.2A EP3200219B1 (en) 2014-09-24 2015-08-28 Soi wafer manufacturing method
KR1020177006584A KR102259162B1 (ko) 2014-09-24 2015-08-28 Soi 웨이퍼의 제조방법
SG11201701629WA SG11201701629WA (en) 2014-09-24 2015-08-28 Method for manufacturing an soi wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014194425A JP6086105B2 (ja) 2014-09-24 2014-09-24 Soiウェーハの製造方法
JP2014-194425 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047047A1 true WO2016047047A1 (ja) 2016-03-31

Family

ID=55580599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004358 WO2016047047A1 (ja) 2014-09-24 2015-08-28 Soiウェーハの製造方法

Country Status (8)

Country Link
US (1) US10115580B2 (ja)
EP (1) EP3200219B1 (ja)
JP (1) JP6086105B2 (ja)
KR (1) KR102259162B1 (ja)
CN (1) CN106663597B (ja)
SG (1) SG11201701629WA (ja)
TW (1) TWI640033B (ja)
WO (1) WO2016047047A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354363B2 (ja) * 2014-06-12 2018-07-11 富士通セミコンダクター株式会社 半導体装置の製造方法
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
JP6747386B2 (ja) 2017-06-23 2020-08-26 信越半導体株式会社 Soiウェーハの製造方法
US10985028B1 (en) * 2019-10-18 2021-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices and methods of manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253493A (ja) * 2003-02-19 2004-09-09 Renesas Technology Corp 加工物の製造方法、ウェハの処理レシピ決定方法
JP2005051210A (ja) * 2003-07-15 2005-02-24 Matsushita Electric Ind Co Ltd 面内分布データの圧縮法、面内分布の測定方法、面内分布の最適化方法、プロセス装置の管理方法及びプロセス管理方法
JP2007266059A (ja) * 2006-03-27 2007-10-11 Sumco Corp Simoxウェーハの製造方法
JP2007533123A (ja) * 2004-03-30 2007-11-15 エス オー イ テク シリコン オン インシュレータ テクノロジース 別のウェハと接合するための半導体ウェハ表面の調製
JP2009231488A (ja) * 2008-03-21 2009-10-08 Shin Etsu Chem Co Ltd Soi基板の欠陥検出方法
JP2012004294A (ja) * 2010-06-16 2012-01-05 Shibaura Mechatronics Corp 基板処理装置および基板処理方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697106B2 (ja) 1998-05-15 2005-09-21 キヤノン株式会社 半導体基板の作製方法及び半導体薄膜の作製方法
JP3297417B2 (ja) * 2000-03-29 2002-07-02 株式会社半導体先端テクノロジーズ ウェット洗浄装置およびウェットエッチング方法
JP4509488B2 (ja) * 2003-04-02 2010-07-21 株式会社Sumco 貼り合わせ基板の製造方法
US7256104B2 (en) * 2003-05-21 2007-08-14 Canon Kabushiki Kaisha Substrate manufacturing method and substrate processing apparatus
JP4087345B2 (ja) 2004-03-02 2008-05-21 信越半導体株式会社 Soiウェーハの結晶欠陥の評価方法
JP2007173354A (ja) 2005-12-20 2007-07-05 Shin Etsu Chem Co Ltd Soi基板およびsoi基板の製造方法
WO2007074551A1 (ja) 2005-12-27 2007-07-05 Shin-Etsu Chemical Co., Ltd. Soiウェーハの製造方法及びsoiウェーハ
DE102006023497B4 (de) 2006-05-18 2008-05-29 Siltronic Ag Verfahren zur Behandlung einer Halbleiterscheibe
JP5466410B2 (ja) * 2008-02-14 2014-04-09 信越化学工業株式会社 Soi基板の表面処理方法
JP5458525B2 (ja) * 2008-08-05 2014-04-02 株式会社Sumco Soiウェーハの製造方法
JP5320954B2 (ja) * 2008-10-03 2013-10-23 信越半導体株式会社 Soiウェーハの製造方法
JP2010153809A (ja) * 2008-11-26 2010-07-08 Sumco Corp シリコンウェーハの表面に形成された所定の膜厚を有する層の膜厚分布を均一化する処理方法及びシリコンウェーハの厚み分布を均一化する処理方法
KR20100092909A (ko) 2009-02-13 2010-08-23 주식회사 엘지생명과학 잔틴 옥시다제 저해제로서 효과적인 신규 화합물, 그 제조방법 및 그를 함유하는 약제학적 조성물
US8395191B2 (en) * 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
JP2011253906A (ja) 2010-06-01 2011-12-15 Shin Etsu Handotai Co Ltd 貼り合わせウェーハの製造方法
JP5927894B2 (ja) 2011-12-15 2016-06-01 信越半導体株式会社 Soiウェーハの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253493A (ja) * 2003-02-19 2004-09-09 Renesas Technology Corp 加工物の製造方法、ウェハの処理レシピ決定方法
JP2005051210A (ja) * 2003-07-15 2005-02-24 Matsushita Electric Ind Co Ltd 面内分布データの圧縮法、面内分布の測定方法、面内分布の最適化方法、プロセス装置の管理方法及びプロセス管理方法
JP2007533123A (ja) * 2004-03-30 2007-11-15 エス オー イ テク シリコン オン インシュレータ テクノロジース 別のウェハと接合するための半導体ウェハ表面の調製
JP2007266059A (ja) * 2006-03-27 2007-10-11 Sumco Corp Simoxウェーハの製造方法
JP2009231488A (ja) * 2008-03-21 2009-10-08 Shin Etsu Chem Co Ltd Soi基板の欠陥検出方法
JP2012004294A (ja) * 2010-06-16 2012-01-05 Shibaura Mechatronics Corp 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
TWI640033B (zh) 2018-11-01
CN106663597A (zh) 2017-05-10
EP3200219A1 (en) 2017-08-02
KR20170058924A (ko) 2017-05-29
TW201624531A (zh) 2016-07-01
EP3200219B1 (en) 2022-04-27
CN106663597B (zh) 2019-05-17
JP2016066692A (ja) 2016-04-28
KR102259162B1 (ko) 2021-06-01
JP6086105B2 (ja) 2017-03-01
US20170287697A1 (en) 2017-10-05
EP3200219A4 (en) 2018-06-27
SG11201701629WA (en) 2017-04-27
US10115580B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2016047047A1 (ja) Soiウェーハの製造方法
US9496130B2 (en) Reclaiming processing method for delaminated wafer
CN110223916B (zh) 一种硅晶片的加工方法
TWI601185B (zh) A semiconductor wafer cleaning tank and a method of manufacturing a bonded wafer
JP5458525B2 (ja) Soiウェーハの製造方法
JP2018530159A (ja) 湿式エッチング処理の温度の動的制御のための方法及び装置
WO2013136146A1 (en) Process for thinning the active silicon layer of a substrate of "silicon on insulator" (soi) type
JP2007242972A (ja) Soiウェーハの製造方法
TWI611568B (zh) 絕緣體上矽晶圓的製造方法
WO2020158210A1 (ja) エッチング方法
JP6525046B1 (ja) 半導体ウェーハの製造方法
JP7364071B2 (ja) Soiウェーハの製造方法
JP2004349493A (ja) 膜厚調整装置及びsoi基板の製造方法
TWI266675B (en) CMP apparatus for polishing dielectric layer and method of controlling dielectric layer thickness
WO2024105945A1 (ja) シリコンウェーハの洗浄方法、シリコンウェーハの製造方法、及びシリコンウェーハ
CN102945830B (zh) 一种控制浅沟道绝缘层制程中衬底氧化层的均匀性的方法
JP6864145B1 (ja) ウェーハの表面形状調整方法
JP2010153627A (ja) 裏面照射型固体撮像素子の製造方法
CN109273358A (zh) 晶圆的侧墙刻蚀方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844654

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015844654

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844654

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15508237

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177006584

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE