WO2016031316A1 - 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物 - Google Patents

非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物 Download PDF

Info

Publication number
WO2016031316A1
WO2016031316A1 PCT/JP2015/064377 JP2015064377W WO2016031316A1 WO 2016031316 A1 WO2016031316 A1 WO 2016031316A1 JP 2015064377 W JP2015064377 W JP 2015064377W WO 2016031316 A1 WO2016031316 A1 WO 2016031316A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
halogen atom
lithium
Prior art date
Application number
PCT/JP2015/064377
Other languages
English (en)
French (fr)
Inventor
雄一 古藤
達雄 藤野
圭 島本
修一 高祖
敷田 庄司
洋輔 佐藤
潤一 親
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014170755A external-priority patent/JP5704277B1/ja
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US15/506,174 priority Critical patent/US10093688B2/en
Priority to JP2016544992A priority patent/JP6572897B2/ja
Publication of WO2016031316A1 publication Critical patent/WO2016031316A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/113Esters of phosphoric acids with unsaturated acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/32Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/11Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • C07F9/17Esters of thiophosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • C07F9/173Esters of thiophosphoric acids with unsaturated acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • C07F9/18Esters of thiophosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4025Esters of poly(thio)phosphonic acids
    • C07F9/4028Esters of poly(thio)phosphonic acids containing no further substituents than -PO3H2 groups in free or esterified form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4025Esters of poly(thio)phosphonic acids
    • C07F9/4037Esters of poly(thio)phosphonic acids containing halogen or nitro(so) substituents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4025Esters of poly(thio)phosphonic acids
    • C07F9/404Esters of poly(thio)phosphonic acids containing hydroxy substituents in the hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4062Esters of acids containing the structure -C(=X)-P(=X)(XR)2 or NC-P(=X)(XR)2, (X = O, S, Se)
    • C07F9/4065Esters of acids containing the structure -C(=X)-P(=X)(XR)2, (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4078Esters with unsaturated acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4084Esters with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/5532Seven-(or more) membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/59Hydrogenated pyridine rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/6506Five-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/6512Six-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/653Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6551Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/117Esters of phosphoric acids with cycloaliphatic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolytic solution capable of improving electrochemical characteristics in a wide temperature range, an electricity storage device using the same, and a novel phosphorus compound in which a polar group is bonded to a phosphorus atom.
  • storage devices particularly lithium secondary batteries
  • PHEVs plug-in hybrid electric vehicles
  • BEVs battery electric vehicles
  • lithium secondary battery Due to the long travel distance of cars, they can be used in a wide temperature range from very hot areas in the tropics to extremely cold areas. Therefore, particularly these storage devices for vehicles are required to have no deterioration in electrochemical characteristics even when used in a wide temperature range from high temperature to low temperature.
  • the term lithium secondary battery is used as a concept including so-called lithium ion secondary battery.
  • a lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of absorbing and desorbing lithium, and a non-aqueous electrolytic solution composed of a lithium salt and a non-aqueous solvent, and ethylene carbonate (EC) as a non-aqueous solvent Carbonates such as propylene carbonate (PC) are used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • metal lithium, metal compounds capable of absorbing and desorbing lithium (metal alone, metal oxides, alloys with lithium, etc.), and carbon materials are known, and in particular, absorbing and desorbing lithium Lithium secondary batteries using carbon materials such as coke, artificial graphite and natural graphite that can be
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposed product generated by reduction decomposition of the solvent in the non-aqueous electrolyte on the surface of the negative electrode during charging. It has been found that the gases inhibit the desired electrochemical response of the cell, resulting in a decrease in cycling characteristics. In addition, when the decomposition product of the non-aqueous solvent is accumulated, it is not possible to smoothly insert and extract lithium to the negative electrode, and the electrochemical characteristics in the case of using in a wide temperature range are likely to be deteriorated.
  • lithium secondary batteries using lithium metal or an alloy thereof, a metal simple substance such as tin or silicon, or an oxide as the negative electrode material have high initial capacity, but pulverization proceeds during the cycle, so a carbon material negative electrode is used.
  • a metal simple substance such as tin or silicon
  • an oxide as the negative electrode material
  • reductive decomposition of non-aqueous solvent occurs in an accelerated manner, and battery performance such as battery capacity and cycle characteristics is greatly reduced.
  • the storage and release of lithium to the negative electrode can not be performed smoothly, and the electrochemical characteristics are likely to be deteriorated when used in a wide temperature range. .
  • the positive electrode material and the non-aqueous electrolyte are used when the non-aqueous solvent in the non-aqueous electrolyte is charged.
  • the decomposition products and gases generated by partial oxidation decomposition locally at the interface of the material interfere with the desired electrochemical reaction of the battery, resulting in deterioration of the electrochemical characteristics also when used in a wide temperature range. I know.
  • the battery performance has been lowered by the movement of lithium ions being inhibited or the battery being swollen by decomposition products and gas when the non-aqueous electrolyte is decomposed on the positive electrode and the negative electrode.
  • multifunctionalization of electronic devices equipped with lithium secondary batteries is in progress and power consumption is increasing. Therefore, the capacity of lithium secondary batteries is increasing, and the volume occupied by the non-aqueous electrolyte in the batteries is decreasing, such as increasing the electrode density and reducing the useless space volume in the batteries. . Therefore, with the decomposition of a small amount of non-aqueous electrolyte, the electrochemical characteristics are likely to deteriorate when used in a wide temperature range.
  • Patent Document 1 a non-aqueous electrolytic solution containing a phosphoric acid ester compound such as triethyl phosphonoacetate or triethyl phosphonoformate as an additive can improve continuous charge characteristics and high temperature storage characteristics and suppress gas generation.
  • Patent Document 2 uses a non-aqueous electrolyte for realizing a lithium ion secondary battery having a positive electrode potential higher than that of the prior art and excellent in cycle characteristics, and moreover, less gas generation, and the non-aqueous electrolyte. It is described that a lithium ion secondary battery can be provided.
  • An object of the present invention is to provide a non-aqueous electrolytic solution capable of improving electrochemical characteristics in a wide temperature range, an energy storage device using the same, and a novel compound in which a polar group is bonded to a phosphorus atom.
  • the inventors of the present invention examined in detail the performance of the non-aqueous electrolyte according to the prior art, and as a result, in the secondary batteries using the non-aqueous electrolytes of Patent Documents 1 and 2, low temperature discharge characteristics after high temperature storage, etc. The fact is that it can hardly exert its effect on the problem of improving the electrochemical characteristics in a wide temperature range of. Therefore, the present inventors have conducted intensive studies to solve the above problems, and in a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, a compound in which a specific polar group is directly bonded to a phosphorus atom is used.
  • the inventors have found that by containing one or more kinds, the electrochemical characteristics of the electricity storage device, particularly the electrochemical characteristics of the lithium battery can be improved in a wide temperature range, and the present invention has been completed. Such an effect is not suggested at all in the Patent Documents 1 and 2.
  • the present invention provides the following (1) to (11).
  • a compound represented by the following general formula (X) in which a polar group (X) is bonded to a phosphorus atom P
  • Non-aqueous electrolyte characterized in that.
  • R 10 and R 20 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl having 6 to 12 carbon atoms
  • a hydrogen atom selected from the group consisting of a group is an organic group optionally substituted with a halogen atom, or a lithium atom
  • R 20 is selected from the group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms
  • R 10 and R 20 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl having 6 to 12 carbon atoms
  • a hydrogen atom selected from the group consisting of a group is an organic group optionally substituted with a halogen atom, or a lithium atom
  • a 4- to 7-membered polar group (iii) containing a -N- group, provided that X 2 is a 4- to 7-membered polar group containing a -C ( O) -N- group, At least one of 10 and R 20 is a lithium atom.
  • R 20 is a hydrogen selected from the group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms
  • a power storage device comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution is described in any of the above (1) to (4)
  • a non-aqueous electrolyte solution of (6) Lithium phosphate represented by any one of the general formulas (IV) to (I-VII) described later, in which a polar group is directly bonded to a phosphorus atom.
  • the additive for the electrical storage device which consists of lithium phosphate as described in said (6).
  • the additive for the electrical storage device which consists of lithium phosphonate as described in said (8).
  • An additive for a power storage device comprising the compound according to (10).
  • a non-aqueous electrolyte capable of improving the electrochemical characteristics of the storage device, particularly the low temperature discharge characteristics after high temperature storage, in a wide temperature range, the storage device such as a lithium battery using the same, and polar groups for phosphorus atoms
  • the storage device such as a lithium battery using the same, and polar groups for phosphorus atoms
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and is represented by the following general formula (X) in which a polar group (X) is bonded to a phosphorus atom (P). Containing the compound.
  • R 10 and R 20 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl having 6 to 12 carbon atoms
  • a hydrogen atom selected from the group consisting of a group is an organic group optionally substituted with a halogen atom, or a lithium atom
  • the non-aqueous electrolytes of the first to third inventions are preferably mentioned as the non-aqueous electrolyte of the present invention.
  • the non-aqueous electrolyte according to the first aspect of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the phosphorus atom (P) has a polar group (X 1 ) directly bonded thereto. It is the non-aqueous electrolyte containing the compound represented by these.
  • the non-aqueous electrolyte according to the second aspect of the invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the phosphorus atom (P) has a heterocyclic polar group (X 2 ) directly bonded thereto. It is the non-aqueous electrolyte containing the compound represented by Formula (II).
  • the non-aqueous electrolyte according to the third aspect of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the phosphorus atom (P) has a polar group (X 3 ) bound thereto. It is the non-aqueous electrolyte containing the compound represented by these.
  • the reason why the non-aqueous electrolyte of the present invention can significantly improve the electrochemical characteristics of the storage device over a wide temperature range is not necessarily clear, but is considered as follows.
  • the polar group (X 1 ) containing two groups is directly bonded. Therefore, it is susceptible to electrochemical decomposition, and a dense, heat-resistant film is formed on the positive electrode and the negative electrode.
  • lithium phosphate represented by General formula (I) is a lithium salt literally, the said film is excellent in lithium ion conductivity. Therefore, compared to triethyl phosphonoacetate and triethyl phosphonoformate described in Patent Document 1, it is considered that the electrochemical characteristics are significantly improved in a wide temperature range.
  • a cyclic polar group (X 2 ) containing a 7-membered heterocyclic ring is directly bonded.
  • Non-aqueous electrolyte of the first invention The lithium phosphate contained in the non-aqueous electrolytic solution of the first invention is represented by the following general formula (I).
  • R 20 is selected from the group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms
  • R 20 an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 10 carbon atoms
  • a hydrogen atom selected from the group consisting of an organic group or a lithium atom in which a part of hydrogen atoms may be substituted with a halogen atom is selected from an alkyl group having 1 to 4 carbon atoms and an alkynyl group having 3 to 4 carbon atoms More preferred is an organic group which may be partially substituted with a halogen atom.
  • organic group in which a part of hydrogen atoms may be substituted with a halogen atom for R 20 are methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n- Straight-chain alkyl groups such as hexyl, n-heptyl and n-octyl; branched alkyl such as iso-propyl, sec-butyl, tert-butyl and tert-amyl; cyclopropyl Group, a cycloalkyl group such as cyclobutyl group, cyclopentyl group and cyclohexyl group; fluoromethyl group, difluoromethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-triethyl group Fluoroethyl group, 3-fluoropropyl
  • a part of hydrogen atoms such as fluorophenyl group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, perfluorophenyl group are halogen atoms
  • Preferred examples include substituted aryl groups and the like.
  • the group is preferable, and a methyl group, an ethyl group, a 2,2,2-trifluoroethyl group, a 2-propenyl group and a 2-propynyl group are more preferable.
  • the lithium phosphate represented by the general formula (I) is preferably at least one lithium phosphate represented by any one of the following general formulas (I-II) to (I-IV).
  • R 1 and R 2 are each independently the same as R 20 )
  • R 1 , R 3 and R 4 are each independently synonymous with R 20 )
  • R 1 and R 5 are each independently the same as R 20 )
  • lithium phosphates represented by any of the general formulas (I-II) to (I-IV) lithium phosphates represented by the general formula (I-II) or (I-III) are more preferable. And lithium phosphates represented by general formula (I-II) are more preferable.
  • at least one of R 1 and R 2 is preferably an organic group in which a part of hydrogen atoms may be substituted with a halogen atom, both of which are part of hydrogen atoms Is more preferably an organic group which may be substituted by a halogen atom.
  • R 1 and R 2 are organic groups in which a part of hydrogen atoms may be substituted with a halogen atom are the same as specific examples and preferred examples of R 20 , R 1 and More preferably, at least one of R 2 is an alkynyl group having 3 to 4 carbon atoms.
  • At least one of R 1 , R 3 and R 4 is preferably an organic group in which a part of hydrogen atoms may be substituted with a halogen atom, and at least two are hydrogen It is more preferable that a part of the atoms be an organic group which may be substituted by a halogen atom, and it is still more preferable that all of the hydrogen atoms be an organic group which may be substituted a part of halogen atoms.
  • Specific examples and preferred examples in the case where R 1 , R 3 and R 4 are organic groups in which a part of hydrogen atoms may be substituted with halogen atoms are the same as specific examples and preferred examples of R 20 . More preferably, at least one of R 1 , R 3 and R 4 is an alkynyl group having a carbon number of 3 to 4.
  • At least one of R 1 and R 5 is preferably an organic group in which a part of hydrogen atoms may be substituted with a halogen atom, both of which are part of hydrogen atoms It is more preferable that it is an organic group which may be substituted by a halogen atom.
  • Specific examples and preferred examples in the case where R 1 and R 5 are organic groups in which a part of hydrogen atoms may be substituted with a halogen atom are the same as specific examples and preferred examples of R 20 , and R 1 and More preferably, at least one of R 5 is an alkynyl group having 3 to 4 carbon atoms.
  • lithium phosphate represented by any of the general formulas (I-II) to (I-IV) include the following compounds. [Compounds Represented by General Formula (I-II)]
  • One or more selected from CC9 are preferred, and compounds AA1 to AA4, AA8, AA20 to AA21, AA23 to AA29, AA33 to AA35, AA43 to AA45, AA51, AA57, AA60 to AA61, AA63 to AA67, AA77 to AA80,
  • One or more selected from AA82, AA84 to AA85, AA89, BB1 to BB3, BB9 to BB11, BB17 to BB18, BB20 to BB21, CC1 to CC2, and CC7 are more preferable, and lithium methyl meth
  • Rubynyl phosphonate (compound AA1), lithium ethyl methoxycarbonyl phosphonate (compound AA2), lithium butyl methoxy carbonyl phosphonate (compound AA4), lithium butyl ethoxy carbonyl phosphonate (compound AA8), lithium 2-propenyl methoxy carbonyl phosphonate (compound AA20), lithium 2-propynyl methoxycarbonylphosphonate (compound AA21), lithium 3-butyn-2-yl methoxycarbonylphosphonate (compound AA23), lithium 2-methyl-3-butyn-2-yl methoxycarbonylphosphonate (compound AA24), lithium phenyl methoxy Carbonyl phosphonate (compound AA25), lithium 2,4-di-tert Butylphenyl methoxycarbonyl phosphonate (compound AA28), lithium ethyl ethoxycarbonyl phosphonate (compound
  • the content of lithium phosphate represented by the general formula (I) contained in the non-aqueous electrolyte is 0.001 to 10% by mass in the non-aqueous electrolyte Is preferred. If the content is 10% by mass or less, there is little possibility that the film is excessively formed on the electrode and the low temperature characteristics are deteriorated, and if it is 0.001% by mass or more, the formation of the film is sufficient and a wide temperature Since the improvement effect of an electrochemical characteristic increases in the range, it is preferable.
  • the content is more preferably 0.05% by mass or more in the non-aqueous electrolyte, and still more preferably 0.1% by mass or more.
  • the lithium phosphate represented by the general formula (I) is combined with the non-aqueous solvent described below, an electrolyte salt, and other additives to obtain electrochemical characteristics in a wide temperature range. Express a unique effect of synergistically improving.
  • Non-aqueous electrolyte of the second invention Compound nonaqueous electrolyte phosphorus atoms contained in (P) to the cyclic polar groups (X 2) is directly bonded to the second invention is represented by the following general formula (II).
  • R 10 and R 20 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl having 6 to 12 carbon atoms
  • a hydrogen atom selected from the group consisting of a group is an organic group optionally substituted with a halogen atom, or a lithium atom
  • a 4- to 7-membered polar group containing an —N— group, provided that X 2 is a 4- to 7-membered polar group containing a —C ( O) —N— group
  • R 10 and R At least one of 20 is a lithium atom.
  • R 10 and R 20 each represent an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms
  • a lithium atom is preferable, and it is composed of an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
  • An organic group in which a part of hydrogen atoms selected from the group may be substituted with halogen atoms, or a lithium atom is more preferable.
  • Specific examples and preferred examples of R 10 and R 20 are the same as specific examples and preferred examples of R 20 in General Formula (I) in the first invention.
  • R 10 and R 20 are preferably a lithium atom.
  • X 2 in the general formula (II) 5- to 7-membered cyclic carbonate group, 4- to 7-membered cyclic carboxylic acid ester group, 5- to 7-membered cyclic acid anhydride group, 5 to 7-membered ring
  • a heterocyclic polar group selected from cyclic imide group of a ring, maleimide group, and 5- to 7-membered cyclic amide group
  • the heterocyclic polar group selected from an ester group, a 5- to 6-membered cyclic acid anhydride group, a 5- to 6-membered cyclic imide group, a maleimide group, and a 5- to 6-membered cyclic amide group is more preferable, Particularly preferred is a heterocyclic polar group selected from an ester group, a 5- to
  • the compound represented by the general formula (II) is preferably at least one compound represented by any of the following general formulas (II-I) to (II-VI).
  • R 21 has the same meaning as R 20 , and p 21 and q 21 each independently represent an integer of 0 to 2, and 1 ⁇ p 21 + q 21 ⁇ 3.
  • the cyclic polar group described above a part of hydrogen atoms may be substituted by a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-VII) Good.)
  • R 22 has the same meaning as R 20 , and p 22 and q 22 each independently represent an integer of 0 to 3 and 1 ⁇ p 22 + q 22 ⁇ 4.
  • the cyclic polar group described above a part of hydrogen atoms may be substituted by a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-VII) Good.)
  • R 23 has the same meaning as R 20 , and p 23 and q 23 each independently represent an integer of 0 to 2, and 1 ⁇ p 23 + q 23 ⁇ 3.
  • the cyclic polar group described above a part of hydrogen atoms may be substituted by a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-VII) Good.)
  • R 24 has the same meaning as R 20 , Y 24 represents -NH- or -O-, p 24 represents an integer of 0 to 1, and q 24 represents an integer of 1 to 4) And 2 ⁇ p 24 + q 24 ⁇ 4, provided that the cyclic polar group is such that a part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or It may be substituted by the substituent represented by the following general formula (II-VII).)
  • R 25 has the same meaning as R 20 , provided that the cyclic polar group is a halogen atom with a part of hydrogen atoms, an alkyl group having 1 to 8 carbon atoms, or a haloalkyl group having 1 to 8 carbon atoms, Or may be substituted by a substituent represented by the following general formula (II-VII))
  • R 26 has the same meaning as R 20 , Y 26 is —NH— or —O—, p 26 is an integer of 0 to 1, and q 26 is an integer of 1 to 4) And 2 ⁇ p 26 + q 26 ⁇ 4, provided that the cyclic polar group is such that a part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or It may be substituted by the substituent represented by the following general formula (II-VII).)
  • R 27 and R 28 each independently have the same meaning as R 20. * Represents a site of binding to a cyclic polar group.
  • the compounds represented by the general formulas (II-I) to (II-VI) are more preferable
  • the compounds represented by formula (II-I) or (II-IV) are more preferred.
  • R 21 are the same as specific examples and preferred examples of R 20 , and methyl group, ethyl group, n-propyl group, n-butyl group, 2, 2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2-propenyl group, 2-propynyl group, phenyl group or lithium atom is preferable, methyl group, ethyl group, 2,2,2-trifluoro Ethyl group, phenyl group or lithium atom is more preferred.
  • the compound represented by the above general formula (II) is a group consisting of the compounds represented by the following general formulas (VI) to (V-III) in which a specific cyclic polar group is directly bonded to a phosphorus atom (P) It is also preferable that it is at least one selected.
  • R 61 and R 62 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms
  • p 61 and q 61 each independently represent an integer of 0 to 2
  • 1 ⁇ p 61 + q 61 is an organic group in which a part of hydrogen atoms selected from the group consisting of Provided that the cyclic polar group is such that part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or the following general formula (V-IV) And may be substituted by the substituent represented by
  • R 63 and R 64 each independently have the same meaning as R 61 and R 62 , p 62 and q 62 each independently represent an integer of 0 to 3, and 1 ⁇ p 62 + q 62 ⁇ 4.
  • a part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or the following general formula (V-IV) (Optionally substituted by the
  • R 65 and R 66 each independently have the same meaning as R 61 and R 62
  • p 63 and q 63 each independently represent an integer of 0 to 2, and 1 ⁇ p 63 + q 63 ⁇ 3.
  • a part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or the following general formula (V-IV) (Optionally substituted by the
  • R 71 and R 72 each independently have the same meaning as R 61 and R 62 )
  • the compounds represented by the general formulas (VI) to (V-III) are more preferable, and the compound represented by the general formula (VI) More preferable.
  • an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl having 6 to 12 carbon atoms Group is preferably an organic group in which a part of hydrogen atoms selected from the group consisting of groups may be substituted with halogen atoms, and hydrogen atoms selected from alkyl groups having 1 to 4 carbon atoms and aryl groups having 6 to 12 carbon atoms More preferred is an organic group which may be partially substituted with a halogen atom.
  • R 61 and R 62 include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
  • alkyl groups branched alkyl groups such as iso-propyl, sec-butyl, tert-butyl and tert-amyl groups; cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups Fluoromethyl group, difluoromethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloropropyl group , 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2 An alkyl group in which a part of hydrogen atoms such as 3,3,3-pentafluoropropyl group is substituted with a halogen atom; vinyl group,
  • R 63 and R 64 are each independently the same as specific examples and preferred examples of R 61 and R 62 , and methyl group, ethyl group, n- Propyl group, n-butyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2-propenyl group, 2-propynyl group and phenyl group are preferred, methyl group, ethyl group, 2, More preferred is a 2,2-trifluoroethyl group or a phenyl group.
  • R 65 and R 66 are each independently the same as specific examples and preferred examples of R 61 and R 62 , and methyl group, ethyl group, n- Propyl group, n-butyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2-propenyl group, 2-propynyl group and phenyl group are preferred, methyl group, ethyl group, 2, More preferred is a 2,2-trifluoroethyl group or a phenyl group.
  • one or more selected from compounds d1 to d18, e5 to e20 and f1 to f14 are preferable, and compounds d1 to d3, d5 to d18, e5 to e7, e9 to e20, f1 to f3, and f5
  • One or more selected from f14 are more preferable, and dimethyl (2-oxo-1,3-dioxolan-4-yl) phosphonate (compound d1), diethyl (2-oxo-1,3-dioxolan-4-yl) Phosphonate (compound d2), bis (2,2,2-trifluoroethyl) (2-oxo-1,3-dioxolan-4-yl) phosphonate (compound d6), diphenyl (2-oxo-1,3-dioxolane 4-yl) phosphonate (compound d9), dimethyl (2-oxotetra
  • the content of the compound represented by the general formula (II) contained in the non-aqueous electrolyte solution is 0.001 to 10% by mass in the non-aqueous electrolyte solution preferable. If the content is 10% by mass or less, there is little possibility that the film is excessively formed on the electrode and the low temperature characteristics are deteriorated, and if it is 0.001% by mass or more, the formation of the film is sufficient and a wide temperature
  • the above range is preferable because the improvement effect of the electrochemical characteristics is enhanced in the range.
  • the content is more preferably 0.05% by mass or more in the non-aqueous electrolyte, and still more preferably 0.1% by mass or more.
  • the compound represented by the general formula (II) is combined with a non-aqueous solvent, an electrolyte salt, and other additives to be described below, so that the electrochemical properties are synergistic over a wide temperature range. Express a unique effect of improving
  • Non-aqueous electrolyte of the third invention The third compound nonaqueous electrolyte specific polar group to the phosphorus atom (P) contained in the (X 3) are bonded in the invention is represented by the following general formula (III).
  • R 20 is a hydrogen selected from the group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms
  • R 20 is a group consisting of an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 10 carbon atoms
  • An organic group or a lithium atom in which a part of the hydrogen atoms selected from these groups may be substituted with a halogen atom is preferable, and an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, and 3 to 4 carbon atoms
  • An organic group in which a part of hydrogen atoms selected from the group consisting of alkynyl groups may be substituted with halogen atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.
  • the specific example of the organic group in which a part of hydrogen atoms of R 20 may be substituted with a halogen atom is the same as the specific example of R 20 of the general formula (I) in the first invention.
  • the group is preferable, a methyl group, an ethyl group, a 2,2,2-trifluoroethyl group, a 2-propenyl group and a 2-propynyl group are more preferable, and a methyl group or an ethyl group is further preferable.
  • the compound represented by the general formula (I) is at least one type of compound represented by any of the following general formulas (III-1) to (III-7).
  • a 1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • R 111, R 114, and R 116 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and carbon
  • a part of hydrogen atoms selected from the group consisting of aryl groups of 6 to 12 is an organic group which may be substituted with a halogen atom, or a
  • R 121 , R 122 , R 124 and R 126 each independently have the same meaning as R 20 .
  • R 123 and R 125 each independently have the same meaning as R 113 and R 115.
  • n 2 represents an integer of 0 to 2.
  • a 3 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • R 131, R 132, R 133 , R 135, and R 137 has the same meaning as independently R 20, R 134 and R 136 are each independently of R 113 and R 115
  • n 3 represents an integer of 0 to 2.
  • a 4 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • R 2 represents an OR 146 group, R 141 , R 144 and R 146 each independently have the same meaning as R 20 , and R 142 , R 143 and R 145 each independently have the same meaning as R 113 and R 115 Yes, n 4 is an integer of 0 to 2.
  • a 25 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • a 6 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of the hydrogen atom may be substituted with a halogen atom, a part of the hydrogen atom is substituted with a halogen atom
  • R 161, R 163, and R 165 has the same meaning as R 20 each independently, R 162 and R 164 are the same meanings as those of R 113 and R 115 each independently .n 6 Represents an integer of 0 to 2.
  • R 172 represents an alkyl group having 1 to 6 carbon atoms in which a part of hydrogen atoms is substituted by a fluorine atom
  • a 7 is a carbon number in which a part of hydrogen atoms may be substituted by a halogen atom 1 to 8 alkoxy group
  • R 171 , R 174 and R 176 are each independently synonymous with R 20
  • R 173 and R 175 are each independently synonymous with R 113 and R 115.
  • n 7 is 0-2 Indicates an integer of
  • the general formulas (III-2) to (III-4) are more preferable, and the general formula (III-2) or (III-2) III-3) is more preferred.
  • R 111, R-- 114, R 116, R 121, R 122, R 124, R 126, R 131, R 132, R 133, R 135 , R 137 , R 141 , R 144 , R 146 , R 151 , R 152 , R 152 , R 154 , R 156 , R 161 , R 163 , R 165 , R 171 , R 174 , and R 176 are preferably R 20 and R 20 .
  • R 112, R 113, R 115, R 123, R 125, R 134, R 136, R 142, R 143, R 145, R 153, R 155, R 162, R 164, R 173 and, R 175 is a group consisting of an alkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms having 1 to 8 carbon atoms
  • a hydrogen atom partially selected is an organic group optionally substituted with a halogen atom, and is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, And an organic group in which part of hydrogen atoms selected from the group consisting of aryl groups having 6 to 10 carbons may be substituted with a halogen atom, and alkyl groups having 1 to 4 carbons,
  • R 112 , R 113 , R 115 , R 123 , R 125 , R 134 , R 136 , R 142 , R 143 , R 145 , R 153 , R 155 , R 162 , R 164 , R 173 , and R 175 are each other.
  • the specific example of the organic group in which a part of hydrogen atoms may be substituted with a halogen atom is the same as the specific example of R 20 of the general formula (I) in the first invention.
  • methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2-propenyl, 2-propynyl or phenyl is preferred.
  • a methyl group, an ethyl group, a trifluoromethyl group, a 2-propenyl group or a 2-propynyl group is more preferable, and a methyl group or an ethyl group is still more preferable.
  • R 172 in the general formula (III-7) represents an alkyl group having 1 to 6 carbon atoms in which a part of hydrogen atoms is substituted by a halogen atom, and one carbon atom in which a part of hydrogen atoms is substituted by a halogen atom
  • An alkyl group of -4 is preferable, and an alkyl group having 1 or 2 carbon atoms in which all hydrogen atoms are substituted with halogen atoms is more preferable.
  • R 172 include fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, perfluoroethyl group, Preferred examples include 2,2,3,3-tetrafluoropropyl group, perfluoropropyl group, perfluorobutyl group or perfluoropentyl group.
  • difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, perfluoroethyl, 2,2,3,3-tetra A fluoropropyl group or a perfluoropropyl group is preferable, and a trifluoromethyl group or a perfluoroethyl group is more preferable.
  • the content of the compound represented by the general formula (III) contained in the non-aqueous electrolyte solution is 0.001 to 10% by mass in the non-aqueous electrolyte solution preferable. If the content is 10% by mass or less, there is little possibility that the film is excessively formed on the electrode and the low temperature characteristics are deteriorated, and if it is 0.001% by mass or more, the formation of the film is sufficient and a wide temperature
  • the above range is preferable because the improvement effect of the electrochemical characteristics is enhanced in the range.
  • the content is more preferably 0.05% by mass or more in the non-aqueous electrolyte, and still more preferably 0.1% by mass or more.
  • the electrochemical properties are synergistic in a wide temperature range. Express a unique effect of improving
  • Non-aqueous solvent As a non-aqueous solvent used for the non-aqueous electrolyte solution of this invention, 1 type, or 2 or more types chosen from cyclic carbonate, chain
  • a chain ester is included, more preferably a chain carbonate is included, and it is most preferable that both a cyclic carbonate and a chain carbonate be included. preferable.
  • linear ester is used as a concept including linear carbonate and linear carboxylic acid ester.
  • the cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 Ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolan-2-one, vinylene carbonate and 4-ethynyl. It is selected from -1,3-dioxolan-2-one (EEC) More species or of two or more preferred.
  • cyclic carbonates having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond, or a fluorine atom
  • electrochemical characteristics are further improved over a wide temperature range.
  • both cyclic carbonates containing unsaturated bonds such as carbon double bonds or carbon-carbon triple bonds and cyclic carbonates having fluorine atoms are included.
  • VC, VEC or EEC is more preferable as a cyclic carbonate having unsaturated bonds such as carbon-carbon double bonds or carbon-carbon triple bonds
  • FEC or DFEC is more preferable as a cyclic carbonate having a fluorine atom .
  • the content of the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.07% by volume or more, more preferably 0.2% by volume, relative to the total volume of the non-aqueous solvent. It is 2% by volume or more, more preferably 0.7% by volume or more, and the upper limit thereof is preferably 7% by volume or less, more preferably 4% by volume or less, still more preferably 2.5% by volume or less It is preferable because the electrochemical characteristics can be increased in a wider temperature range without impairing the Li ion permeability.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, still more preferably 6% by volume or more, based on the total volume of the non-aqueous solvent.
  • the upper limit is preferably 35% by volume or less, more preferably 25% by volume or less, and further preferably 15% by volume or less, whereby the electrochemical characteristics can be improved in a wider temperature range without impairing the Li ion permeability. So preferred.
  • the non-aqueous solvent contains both cyclic carbonate having unsaturated bond such as carbon-carbon double bond or carbon-carbon triple bond and cyclic carbonate having fluorine atom, carbon— relative to the content of cyclic carbonate having fluorine atom
  • the content of cyclic carbonate having an unsaturated bond such as a carbon double bond or a carbon-carbon triple bond is preferably 0.2% by volume or more, more preferably 3% by volume or more, still more preferably 7% by volume or more
  • the upper limit thereof is preferably 40% by volume or less, more preferably 30% by volume or less, and further preferably 15% by volume or less to improve electrochemical characteristics in a wider temperature range without impairing Li ion permeability. It is particularly preferable because
  • the non-aqueous solvent contains both ethylene carbonate and a cyclic carbonate having unsaturated bonds such as carbon-carbon double bonds or carbon-carbon triple bonds
  • electrochemical characteristics over a wide temperature range of the film formed on the electrode The content of ethylene carbonate and cyclic carbonate having unsaturated bond such as carbon-carbon double bond or carbon-carbon triple bond is preferably 3% with respect to the total volume of the non-aqueous solvent.
  • the upper limit thereof is preferably 45% by volume or less, more preferably 35% by volume or less, and still more preferably 25% by volume. It is below.
  • solvents may be used alone or in combination of two or more, since the effect of improving the electrochemical characteristics is further improved over a wide temperature range, and such solvents are preferably used in combination of three or more. Is particularly preferred.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC, PC and VC and FEC, or EC and PC and VC and DFEC, etc.
  • one or more asymmetric linear carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • dipropyl carbonate dibutyl carbonate
  • pivalate esters such as methyl pivalate, ethyl pivalate, propyl pivalate
  • dimethyl carbonate DMC
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • EA methyl butyl carbonate
  • methyl propionate methyl propionate
  • methyl acetate methyl ethyl acetate
  • EA ethyl acetate
  • linear carbonate when using a linear carbonate, it is preferable to use 2 or more types. Furthermore, it is more preferable that both symmetrical linear carbonate and asymmetric linear carbonate are contained, and it is further preferable that the content of symmetrical linear carbonate is larger than that of asymmetric linear carbonate.
  • the content of the linear ester is not particularly limited, but is preferably in the range of 60 to 90% by volume with respect to the total volume of the non-aqueous solvent.
  • the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and when it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte decreases and the electrochemical characteristics are wide
  • the above range is preferable because there is little possibility of lowering. 51 volume% or more is preferable, and, as for the ratio of the volume which symmetrical linear carbonate occupies in linear carbonate, 55 volume% or more is more preferable. As the upper limit, 95 volume% or less is more preferable, and it is still more preferable in it being 85 volume% or less. It is particularly preferred that the symmetrical linear carbonate comprises dimethyl carbonate. Further, it is more preferable that the asymmetric linear carbonate has a methyl group, and methyl ethyl carbonate is particularly preferable. In the above case, the electrochemical characteristics are improved over a wider temperature range, which is preferable.
  • the ratio of the cyclic carbonate to the linear ester is preferably 10:90 to 45:55, and 15:85 to 40:60 from the viewpoint of improving the electrochemical properties at high temperature. Is more preferable, and 20:80 to 35:65 is particularly preferable.
  • nonaqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, etc., chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, etc. And at least one selected from lactones such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone, and ⁇ -angelica lactone.
  • GBL ⁇ -butyrolactone
  • ⁇ -valerolactone ⁇ -valerolactone
  • ⁇ -angelica lactone ⁇ -angelica lactone
  • the combination is preferably, for example, a combination of cyclic carbonate, chain ester and lactone, or a combination of cyclic carbonate, chain ester and ether, and the like, and a combination of cyclic carbonate, chain ester and lactone is more preferable.
  • lactones it is more preferable to use ⁇ -butyrolactone (GBL).
  • the combination of cyclic carbonate, chain ester and lactone is preferred, and among lactones, it is more preferred to use ⁇ -butyrolactone (GBL).
  • the content of the other nonaqueous solvent is usually 1% or more, preferably 2% or more, and usually 40% or less, preferably 30% or less, more preferably 20% or less, based on the total volume of the nonaqueous solvent. It is below.
  • additives include the following compounds (A) to (I).
  • Cyclic acetal compounds such as 1,3-dioxolane, 1,3-dioxane, 1,3,5-trioxane and the like.
  • nitriles (A) one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
  • aromatic compounds one or two selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene
  • biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene and tert-amylbenzene are particularly preferable.
  • isocyanate compounds (C) one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of the additives (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolyte. In this range, the coating is sufficiently formed without becoming too thick, and the electrochemical properties are enhanced in a wider temperature range.
  • the content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and the upper limit thereof is preferably 5% by mass or less, and more preferably 3% by mass or less in the non-aqueous electrolyte. .
  • cyclic or chain-like SSO group-containing compounds selected from (D) triple bond-containing compounds, (E) sultones, cyclic sulfites, sulfonic acid esters, vinyl sulfones, (F) cyclic acetal compounds, (G) It is preferable to include a phosphorus-containing compound, (H) cyclic acid anhydride, and (I) a cyclic phosphazene compound because the electrochemical properties are improved in a wider temperature range.
  • 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonic acid, 2-propynyl vinyl sulfonate, 2-propynyl 2- (methanesulfonyloxy) propionate One or two or more selected from (2-propynyl) ogitalate, methyl 2-propynyl oxyallate, ethyl 2-propynyl oxygenate, and 2-butyne-1,4-diyl dimethanesulfonate are preferable, and methanesulfonic acid 2-propynyl is preferred.
  • a cyclic or chain-like S O group-containing compound selected from sultone, cyclic sulfite, sulfonic acid ester, and vinyl sulfone (however, a compound having a triple bond and a compound represented by any of the above general formulas) It is preferable to use the lithium salt of
  • One or more selected from cyclic sulfites such as 4- (methylsulfonylmethyl) -1,3,2-dioxathiolane 2-oxide are preferably mentioned.
  • cyclic acetal compound (F) 1,3-dioxolane or 1,3-dioxane is preferable, and 1,3-dioxane is more preferable.
  • G As the phosphorus-containing compound, tris (2,2,2-trifluoroethyl) phosphate, tris (1,1,1,3,3,3-hexafluoropropan-2-yl) phosphate, methyl 2- (Dimethylphosphoryl) acetate, ethyl 2- (dimethylphosphoryl) acetate, methyl 2- (diethylphosphoryl) acetate, ethyl 2- (diethylphosphoryl) acetate, 2-propynyl 2- (dimethylphosphoryl) acetate, 2-propynyl 2 -(Diethylphosphoryl) acetate, methyl 2- (dimethoxyphosphoryl) acetate, ethyl 2- (dimethoxyphosphoryl) acetate, methyl 2- (diethoxyphosphoryl) a
  • the cyclic phosphazene compound is preferably a cyclic phosphazene compound such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene or phenoxypentafluorocyclotriphosphazene, and is preferably methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclo More preferred is triphosphazene.
  • the content of the additives (D) to (I) is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. In this range, the coating is sufficiently formed without becoming too thick, and the electrochemical properties are enhanced in a wider temperature range.
  • the content is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 3% by mass or less, and further preferably 2% by mass or less. .
  • the lithium salt having an oxalic acid skeleton the lithium salt having a phosphoric acid skeleton, and the lithium salt having an S ⁇ O group in the non-aqueous electrolyte, for the purpose of improving the electrochemical characteristics in a wider temperature range.
  • lithium salts selected from Specific examples of lithium salt include lithium bis (oxalato) borate [LiBOB], lithium difluoro (oxalato) borate [LiDFOB], lithium tetrafluoro (oxalato) phosphate [LiTFOP], and lithium difluorobis (oxalato) phosphate [LiDFOP]
  • a lithium salt having at least one oxalic acid skeleton selected from the group consisting of: a lithium salt having a phosphoric acid skeleton such as LiPO 2 F 2 or Li 2 PO 3 F, lithium trifluoro ((methanesulfonyl) oxy) borate [LiTFMSB], Lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], lithium methyl sulfate [LMS], lithium ethyl sulfate [LES], lithium 2,2,2-tri Le Oro e
  • the content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.3% by mass or more, and the upper limit thereof is preferably 5% by mass or less in the non-aqueous electrolyte. 3 mass% or less is more preferable, and 2 mass% or less is still more preferable.
  • lithium salt As an electrolyte salt used for this invention, the following lithium salt is mentioned suitably.
  • inorganic lithium salts such as LiPF 6 , LiBF 4 and LiClO 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , lithium salts containing a linear fluorinated alkyl group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 Preferred examples include lithium salts having a cyclic fluorinated alkylene chain such as NLi
  • LiPF 6 LiPF 6
  • LiBF 4 LiN (SO 2 CF 3 ) 2
  • LiN (SO 2 C 2 F 5 ) 2 LiN (SO 2 F) 2 [LiFSI]
  • LiPF 6 LiPF 6
  • LiBF 4 LiN (SO 2 CF 3 ) 2
  • LiN (SO 2 C 2 F 5 ) 2 LiN (SO 2 F) 2 [LiFSI]
  • LiPF 6 LiPF 6
  • LiBF 4 LiN (SO 2 CF 3 ) 2
  • LiN (SO 2 F) 2 [LiFSI] it is most preferable to use LiPF 6.
  • the concentration of the electrolyte salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and still more preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit thereof is preferably 2.5 M or less, more preferably 2.0 M or less, and still more preferably 1.6 M or less.
  • preferable combinations of these electrolyte salts include LiPF 6 and at least one lithium selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI]. It is preferable that the salt is contained in the non-aqueous electrolytic solution, and the lithium property other than LiPF 6 accounts for the effect of improving the electrochemical characteristics in a wide temperature range when the ratio of the non-aqueous solvent is 0.001 M Is preferable because it is less likely to lower the effect of improving the electrochemical characteristics in a wide temperature range. Preferably, it is 0.01 M or more, particularly preferably 0.03 M or more, and most preferably 0.04 M or more. The upper limit thereof is preferably 0.8 M or less, more preferably 0.6 M or less, still more preferably 0.4 M or less, particularly preferably 0.2 M or less.
  • the non-aqueous electrolytic solution of the present invention is, for example, a mixture of the above-mentioned non-aqueous solvents, and the general formula (X) in which a specific polar group is bonded to a phosphorus atom with respect to the electrolyte salt and the non-aqueous electrolytic solution. ), (I), (II) or (III) can be obtained by adding the compound. Under the present circumstances, it is preferable to refine
  • the non-aqueous electrolyte solution of the present invention can be used in the following first to fourth electricity storage devices, and as the non-aqueous electrolyte, not only liquid ones but also gelled ones can be used. Furthermore, the non-aqueous electrolytic solution of the present invention can also be used for solid polymer electrolytes. Above all, it is preferable to use as a first storage battery device (that is, for lithium battery) or a fourth storage battery device (that is, for lithium ion capacitor) that uses lithium salt for electrolyte salt. It is more preferable to use for lithium secondary batteries.
  • a lithium battery is a generic term for lithium primary batteries and lithium secondary batteries.
  • the term lithium secondary battery is used as a concept including so-called lithium ion secondary battery.
  • the lithium battery of the present invention comprises a positive electrode, a negative electrode, and the non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • the constituent members such as the positive electrode and the negative electrode other than the non-aqueous electrolytic solution can be used without particular limitation.
  • a positive electrode active material for a lithium secondary battery a composite metal oxide with lithium containing one or more selected from cobalt, manganese and nickel is used.
  • lithium composite metal oxide for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3 One or more selected from Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , and LiCo 0.98 Mg 0.02 O 2 may be mentioned. Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , and LiMn 2 O 4 and LiNiO 2 may be used in combination.
  • part of the lithium mixed metal oxide may be replaced with other elements in order to improve the safety and cycle characteristics at the time of overcharge, and to enable the use at a charge potential of 4.3 V or more.
  • a part of cobalt, manganese and nickel may be substituted with at least one or more elements such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc.
  • a part of O may be substituted with S or F, or a compound containing these other elements may be coated.
  • lithium composite metal oxides that can be used when the charge potential of the positive electrode in a fully charged state such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 is 4.3 V or more based on Li, LiCo 1-x M x O 2 (wherein M is one or more elements selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and Cu, 0.001 ⁇ x ⁇ 0 .05), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , Li 2 MnO 3 and LiMO 2 (where M is Co, Ni, Mn, Fe, etc.) More preferred are lithium mixed metal oxides usable at 4.4 V or higher, such as solid solutions with transition metals).
  • the use of a lithium composite metal oxide that operates at a high charge voltage is likely to degrade the electrochemical characteristics when used in a particularly wide temperature range due to the reaction with the electrolyte during charge, but the lithium secondary battery according to the present invention Can suppress the deterioration of these electrochemical properties.
  • the resistance of the battery tends to increase with the elution of Mn ions from the positive electrode, so the electrochemical characteristics tend to deteriorate when used in a wide temperature range.
  • the lithium secondary battery according to the invention is preferable because the deterioration of these electrochemical characteristics can be suppressed.
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • lithium-containing olivine-type phosphates containing one or more selected from iron, cobalt, nickel and manganese are preferable.
  • LiFePO 4, LiCoPO 4, LiNiPO 4, and one or more can be mentioned are selected from LiMnPO 4.
  • lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, Nb Alternatively, it may be substituted with one or more elements selected from Cu, Zn, Mo, Ca, Sr, W, and Zr, or may be coated with a compound or carbon material containing these other elements. Among these, LiFePO 4 or LiMnPO 4 is preferred.
  • the lithium-containing olivine-type phosphate can also be used, for example, as a mixture with the above-mentioned positive electrode active material.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 Oxides or chalcogen compounds of one or more metal elements such as Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, etc., SO 2 , SOCl 2 etc.
  • fluorinated carbon represented by the general formula (CF x ) n and the like can be mentioned.
  • MnO 2 , V 2 O 5 , fluorinated graphite and the like are preferable.
  • the effect of improving the electrochemical characteristics is easily obtained in a wider temperature range, which is preferable. And preferably 10.5 to 12.0.
  • the atomic concentration of Ni is 5 to 25 atomic%, and particularly preferably 8 to 21 atomic%.
  • the conductive agent of the positive electrode is not particularly limited as long as it is an electron conductive material which does not cause a chemical change.
  • graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, and more preferably 2 to 5% by mass.
  • the positive electrode includes the above-mentioned positive electrode active material as a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Mixed with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, etc., added with a high boiling point solvent such as 1-methyl-2-pyrrolidone and kneaded to prepare a positive electrode mixture Then, the positive electrode mixture is applied to an aluminum foil of a current collector, a stainless steel lath plate, etc., dried and pressure-molded, and then under a vacuum at a temperature of about 50 ° C.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene flu
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the capacity of the battery, is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is the above, More preferably, it is 3.6 g / cm 3 or more. In addition, as an upper limit, 4 g / cm ⁇ 3 > or less is preferable.
  • lithium metal lithium alloy
  • carbon material capable of inserting and extracting lithium
  • graphitizable carbon difficulty of 0.37 nm or more of (002) plane spacing Graphitized carbon, graphite having an (002) plane spacing of 0.34 nm or less
  • tin (single body) tin compound
  • silicon (single body) silicon compound
  • lithium titanate such as Li 4 Ti 5 O 12
  • a highly crystalline carbon material such as artificial graphite or natural graphite in the ability to absorb and release lithium ions
  • the lattice spacing (d 002 ) of the lattice plane ( 002 ) is 0.
  • artificial graphite particles having a massive structure in which a plurality of flat graphite particles are aggregated or bonded non-parallel to each other, and mechanical actions such as compressive force, frictional force, and shear force are repeatedly applied to make scaly natural graphite spherical It is preferable to use a particle which has been subjected to chemical treatment.
  • the ratio I (110) / I (004) of the peak intensity I (004) on the (004) plane is 0.01 or more, the electrochemical characteristics are improved in a wider temperature range, which is preferable, 0.05 or more Is more preferably 0.1 or more.
  • excessive treatment may lower crystallinity and decrease the discharge capacity of the battery. Therefore, the upper limit of the peak intensity ratio I (110) / I (004) is preferably 0.5 or less, and 0. 0. 3 or less is more preferable.
  • a highly crystalline carbon material core material
  • a carbon material having a crystallinity lower than that of the core material since the electrochemical characteristics are further improved over a wide temperature range.
  • the crystallinity of the coated carbon material can be confirmed by TEM. If highly crystalline carbon materials are used, they tend to react with the non-aqueous electrolyte during charging and to decrease the electrochemical characteristics at low or high temperatures by increasing the interfacial resistance, but the lithium secondary battery according to the present invention The electrochemical properties are good over a wide temperature range.
  • metal compounds capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu And compounds containing at least one metal element such as Zn, Ag, Mg, Sr, or Ba.
  • These metal compounds may be used in any form such as an alloy, an oxide, a nitride, a sulfide, a boride, an alloy with lithium, or any of an alloy, an oxide, an alloy with an oxide or lithium. It is preferable because it can increase the capacity.
  • one containing at least one element selected from Si, Ge and Sn is preferable, and one containing at least one element selected from Si and Sn is more preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder and high boiling point solvent as in the preparation of the above positive electrode to form a negative electrode mixture, and this negative electrode mixture is then applied to copper foil of the current collector and the like. After drying and pressure molding, it can be manufactured by heat treatment at a temperature of about 50 ° C. to 250 ° C. for about 2 hours under vacuum.
  • the density of the part excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g to further increase the capacity of the battery. / Cm 3 or more.
  • 2 g / cm ⁇ 3 > or less is preferable.
  • lithium metal or a lithium alloy is mentioned as a negative electrode active material for lithium primary batteries.
  • the structure of the lithium battery is not particularly limited, and a coin battery, a cylindrical battery, a prismatic battery, a laminate battery and the like having a single-layer or multi-layer separator can be applied.
  • the battery separator is not particularly limited, but a microporous film, woven fabric, non-woven fabric, etc. of a single layer or laminated polyolefin such as polypropylene and polyethylene can be used.
  • the lithium secondary battery in the present invention is excellent in electrochemical characteristics in a wide temperature range even when the charge termination voltage is 4.2 V or more, particularly 4.3 V or more, and further, the characteristics are good even at 4.4 V or more .
  • the discharge termination voltage can be usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, it is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged and discharged at -40 to 100 ° C, preferably -10 to 80 ° C.
  • a method of providing a safety valve on the battery cover or making a notch in a member such as a battery can or a gasket can also be adopted.
  • a current blocking mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery cover.
  • the second electricity storage device of the present invention is an electricity storage device that contains the non-aqueous electrolyte solution of the present invention and stores energy using the electric double layer capacity at the interface between the electrolyte solution and the electrode.
  • One example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this storage device is activated carbon.
  • the bilayer capacity increases approximately in proportion to the surface area.
  • the third electricity storage device of the present invention is an electricity storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using the electrode doping / dedoping reaction.
  • the electrode active material used in the electricity storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide and copper oxide, and ⁇ -conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with electrode doping / de-doping reactions.
  • a fourth electricity storage device of the present invention is an electricity storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using intercalation of lithium ions to a carbon material such as graphite which is a negative electrode. It is called a lithium ion capacitor (LIC).
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a doping / dedoping reaction of a ⁇ -conjugated polymer electrode.
  • the electrolyte includes lithium salts such as at least LiPF 6.
  • a positive electrode to which a compound represented by General Formula (X) or the like is added can be produced.
  • the addition amount of the compound represented by the general formula (X) or the like is preferably 0.001 to 10% by mass with respect to the positive electrode active material.
  • the addition amount is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more with respect to the positive electrode active material.
  • 8 mass% or less is more preferable, and, as for the upper limit, 5 mass% or less is still more preferable.
  • a compound represented by the general formula (X) or the like in which a specific polar group is bonded to a phosphorus atom is kneaded using a conductive agent, a binder and a high boiling point solvent similar to the preparation of the above positive electrode, and a negative electrode mixture Then, the negative electrode mixture is applied to a copper foil of a current collector, dried and pressed, and then heat treated under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours, The negative electrode to which the compound represented by general formula (X) etc. is added can be produced.
  • the addition amount of the compound represented by the general formula (X) or the like is preferably 0.001 to 10% by mass with respect to the negative electrode active material.
  • the addition amount is more preferably 0.05% by mass or more with respect to the negative electrode active material, and further preferably 0.1% by mass or more.
  • 8 mass% or less is more preferable, and, as for the upper limit, 5 mass% or less is still more preferable.
  • a separator is dipped and impregnated in a solution in which a compound represented by general formula (X) or the like in which a specific polar group is bonded to a phosphorus atom is dissolved in an organic solvent or water, and then dried by a method of drying
  • a separator can be produced which contains a compound represented by H, etc. on the surface or in the pores.
  • a coating liquid in which a compound represented by general formula (X) or the like is dispersed in an organic solvent or water is prepared, and the entire surface of the separator is coated with the coating liquid to obtain a general formula (X) or the like.
  • a separator to which the compound represented is added can be produced.
  • novel compounds The compounds of the present invention which are novel compounds are described below.
  • the novel compound of the present invention is particularly useful as an additive for an electricity storage device, but from its special structure, it can be used as an electrolyte in general chemistry, especially in the fields of organic chemistry, electrochemistry, biochemistry and polymer chemistry. They are also useful as intermediate materials for medicines, agricultural chemicals, electronic materials, polymer materials and the like as materials for heat resistant applications and the like.
  • novel compounds related to the first invention are lithium phosphates represented by any of the following general formulas (IV) to (I-VII) in which a polar group is directly bonded to a phosphorus atom (P). These lithium phosphates are particularly useful as additives for power storage devices.
  • R 11 and R 12 are each independently the same as R 20 , provided that at least one of R 11 and R 12 is an alkynyl group having a carbon number of 3 to 6).
  • R 11 , R 13 and R 14 each independently have the same meaning as R 20 , provided that all of R 11 , R 13 and R 14 are lithium atoms
  • R 11 and R 15 are each independently the same as R 20 )
  • the lithium phosphates represented by the general formulas (IV) to (I-VII) related to the first invention can be synthesized by reacting the precursor phosphate ester with a lithium salt in the presence of a solvent
  • the present invention is not limited to these methods.
  • Phosphoric esters serving as precursors can be synthesized by known methods, for example, Journal of the American Chemical Society, 2006, vol. 128, # 15, p. 5251-5261, Angewandte Chemie-International Edition, 2010, vol. The methods described in U.S. Pat.
  • lithium base examples include lithium acetate, lithium formate, lithium propionate, lithium trifluoroacetate, lithium oxalate, lithium carboxylate such as lithium benzoate, lithium fluoride, lithium chloride, lithium bromide, lithium iodide and the like.
  • Preferable examples include alkali metal halides, lithium carbonate, lithium hydroxide and the like, but are not limited thereto.
  • lithium salts lithium acetate, lithium chloride, lithium iodide, lithium carbonate or lithium hydroxide is preferable, and lithium acetate or lithium chloride is more preferable.
  • the amount of lithium salt used is preferably 0.5 mol or more, more preferably 0.7 mol or more, and still more preferably 0.9 mol or more per 1 mol of phosphoric acid ester. . If the amount is less than 0.5 mol, the reaction does not proceed sufficiently and the yield is lowered.
  • the upper limit is preferably 2 moles or less, more preferably 1.5 moles or less, and still more preferably 1.1 moles or less. If the amount of lithium salt used is more than 2 moles, side reactions easily proceed, the yield is lowered, and impurities increase.
  • solvent used for the reaction water, alcohol, nitrile, ketone, sulfone, amide, ether, ester, aromatic or halogenated hydrocarbon is preferably mentioned, and alcohol, ketone or ether is preferable among them.
  • the following are mentioned suitably.
  • Alcohols such as methanol, ethanol and n-propanol, nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, sulfones such as dimethyl sulfoxide, N, N-dimethylformamide, N, N- Amides such as dimethylacetamide, ethers such as diethyl ether and tetrahydrofuran, esters such as ethyl acetate, ethyl propionate, dimethyl carbonate, diethyl carbonate and diethyl methyl carbonate, aromatics such as toluene and xylene, or dichloromethane, 1,2-dichloroethane Halogenated hydrocarbons such as o-dichlorobenzene are preferably mentioned, but the solvent is not limited thereto as long as it does not inhibit the reaction.
  • alcohols such as methanol and ethanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and ethers such as diethyl ether and tetrahydrofuran are preferable, and acetone, methyl ethyl ketone, diethyl ether and tetrahydrofuran are more preferable.
  • 0.5 mass part or more is preferable with respect to 1 mass part of phosphate ester, and, as for the minimum of the usage-amount of the said solvent, 1 mass part or more is more preferable. 50 mass parts or less are preferable with respect to 1 mass part of phosphate ester, and, as for the upper limit of the usage-amount of an organic solvent, 20 mass parts or less are more preferable.
  • reaction temperature 80 degrees C or less is preferable, 70 degrees C or less is more preferable, 60 degrees C or less is especially preferable.
  • reaction temperature is higher than 80 ° C., side reactions are likely to proceed.
  • 0 degreeC or more is preferable, 5 degreeC or more is more preferable, and 10 degreeC or more is especially preferable.
  • the reaction temperature is lower than 0 ° C., the reaction rate is significantly reduced.
  • the boiling point of the solvent used is 80 ° C. or less, the boiling point of the solvent is taken as the upper limit of the reaction temperature, and when the melting point of the solvent used is 0 ° C. or more, the melting point of the organic solvent is taken as the lower limit of the reaction temperature.
  • the reaction time varies depending on the reaction temperature and the amount of lithium salt and solvent used, but the lower limit is preferably 0.5 hours or more, more preferably 1 hour or more. This is because the reaction does not proceed sufficiently in less than 0.5 hours.
  • the upper limit is preferably 24 hours or less, more preferably 16 hours or less. If it exceeds 24 hours, the side reaction is likely to proceed.
  • the novel compound related to the second invention is a lithium phosphonate represented by any one of the following formulas (IV-I) to (IV-VI) in which a cyclic polar group is directly bonded to a phosphorus atom (P). These lithium phosphonates are particularly useful as additives for storage devices.
  • R 41 has the same meaning as R 20 , and p 41 and q 41 each independently represent an integer of 0 to 2, and 1 ⁇ p 41 + q 41 ⁇ 3.
  • the cyclic polar group described above a part of hydrogen atoms may be substituted by a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (IV-VII) Good.
  • R 42 has the same meaning as R 20 , and p 42 and q 42 each independently represent an integer of 0 to 3 and 1 ⁇ p 42 + q 42 ⁇ 4.
  • the cyclic polar group described above a part of hydrogen atoms may be substituted by a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (IV-VII) Good.
  • R 43 has the same meaning as R 20 , and p 43 and q 43 each independently represent an integer of 0 to 2, and 1 ⁇ p 43 + q 43 ⁇ 3.
  • the cyclic polar group described above a part of hydrogen atoms may be substituted by a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (IV-VII) Good.
  • R 44 has the same meaning as R 20 above, Y 44 is —NH— or —O—, p 44 is an integer of 0 to 1, and q 44 is an integer of 1 to 4) And 2 ⁇ p 44 + q 44 ⁇ 4, provided that the cyclic polar group is such that a part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms Or may be substituted by a substituent represented by the following general formula (IV-VII))
  • R 45 has the same meaning as R 20 , provided that the cyclic polar group is a halogen atom with a part of hydrogen atoms, an alkyl group having 1 to 8 carbon atoms, or a haloalkyl group having 1 to 8 carbon atoms, Or may be substituted by a substituent represented by the following general formula (IV-VII))
  • R 46 has the same meaning as R 20 above, Y 46 is —NH— or —O—, p 46 is an integer of 0 to 1, and q 46 is an integer of 1 to 4 And 2 ⁇ p 46 + q 46 ⁇ 4, provided that the cyclic polar group is such that a part of hydrogen atoms is a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, Or may be substituted by a substituent represented by the following general formula (IV-VII))
  • R 47 and R 48 each independently have the same meaning as R 20. * Represents a site to which a cyclic polar group is attached.
  • the novel compound related to the third invention is a compound represented by any one of the following formulas (III-1) to (III-7) in which a polar group is directly bonded to a phosphorus atom (P). These compounds are particularly useful as additives for storage devices.
  • a 1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • R 111, R 114, and R 116 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and carbon
  • a part of hydrogen atoms selected from the group consisting of aryl groups of 6 to 12 is an organic group which may be substituted with a halogen atom, or a
  • R 121 , R 122 , R 124 and R 126 each independently have the same meaning as R 20 .
  • R 123 and R 125 each independently have the same meaning as R 113 and R 115.
  • n 2 represents an integer of 0 to 2.
  • a 3 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • R 131, R 132, R 133 , R 135, and R 137 has the same meaning as independently R 20, R 134 and R 136 are each independently of R 113 and R 115
  • n 3 represents an integer of 0 to 2.
  • a 4 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • R 2 represents an OR 146 group, R 141 , R 144 and R 146 each independently have the same meaning as R 120 , and R 142 , R 143 and R 145 each independently have the same meaning as R 113 and R 115 Yes, n 4 is an integer of 0 to 2.
  • a 25 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of hydrogen atoms may be substituted by a halogen atom, a part of hydrogen atoms is substituted by a halogen atom
  • a 6 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms in which a part of the hydrogen atom may be substituted with a halogen atom, a part of the hydrogen atom is substituted with a halogen atom
  • R 161, R 163, and R 265 has the same meaning as R 20 each independently, R 162 and R 164 are the same meanings as those of R 113 and R 115 each independently .n 6 Represents an integer of 0 to 2.
  • R 172 represents an alkyl group having 1 to 6 carbon atoms in which a part of hydrogen atoms is substituted by a fluorine atom
  • a 7 is a carbon number in which a part of hydrogen atoms may be substituted by a halogen atom 1 to 8 alkoxy group
  • R 171 , R 174 and R 176 are each independently synonymous with R 20
  • R 173 and R 175 are each independently synonymous with R 113 and R 115.
  • n 7 is 0-2 Indicates an integer of
  • the compounds represented by the general formulas (III-1) to (III-7) relating to the third invention can be synthesized by reacting the precursor phosphonic acid ester with a lithium salt in the presence of a solvent
  • the present invention is not limited to these methods.
  • the phosphonate ester to be the precursor can be synthesized by a known method, for example, Organic Letters 2006, p. 1573, Angewandte Chemie-International Edition, 2010, vol. 49, # 38, p.
  • the method described in Japanese Patent No. 956404 can be applied.
  • Specific examples of the lithium base are the same as described above.
  • lithium salts lithium acetate, lithium chloride, lithium bromide or lithium iodide is preferable, and lithium chloride or lithium bromide is more preferable.
  • the amount of lithium salt used is preferably 0.5 mol or more, more preferably 0.7 mol or more, and still more preferably 0.9 mol or more per 1 mol of phosphonic acid ester. . If the amount is less than 0.5 mol, the reaction does not proceed sufficiently and the yield is lowered.
  • the upper limit is preferably 2 moles or less, more preferably 1.5 moles or less, and still more preferably 1.1 moles or less. If the amount of lithium salt used is more than 2 moles, side reactions easily proceed, the yield is lowered, and impurities increase.
  • reaction temperature 120 degrees C or less is preferable, 100 degrees C or less is more preferable, 80 degrees C or less is especially preferable.
  • reaction temperature is higher than 120 ° C., side reactions are likely to proceed.
  • 0 degreeC or more is preferable, 10 degreeC or more is more preferable, and 20 degreeC or more is especially preferable.
  • the reaction temperature is lower than 0 ° C., the reaction rate is significantly reduced.
  • the boiling point of the solvent used is 150 ° C. or less, the boiling point of the solvent is taken as the upper limit of the reaction temperature, and when the melting point of the solvent used is 0 ° C.
  • the melting point of the organic solvent is taken as the lower limit of the reaction temperature.
  • the reaction time varies depending on the reaction temperature and the amount of lithium salt and solvent used, but the lower limit is preferably 0.5 hours or more, more preferably 1 hour or more. This is because the reaction does not proceed sufficiently in less than 0.5 hours.
  • the upper limit is preferably 24 hours or less, more preferably 16 hours or less. If it exceeds 24 hours, the side reaction is likely to proceed.
  • Examples I-1 to I-19, Comparative Examples I-1 to I-2 [Fabrication of lithium ion secondary battery] 94% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binder) is mixed in advance with 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding 5% by mass to a solution in which 1% by mass was dissolved in 1-methyl-2-pyrrolidone and mixing.
  • the negative electrode material mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a negative electrode sheet.
  • the density of the part except the current collector of the negative electrode was 1.5 g / cm 3 .
  • the peak intensity I of the (110) plane of the graphite crystal and the ratio of the peak intensity I of the (004) plane I (004) [I (110) / I (004)] was 0.1.
  • the positive electrode sheet, the microporous polyethylene film separator, and the negative electrode sheet were laminated in this order, and the non-aqueous electrolytic solution of the composition shown in Tables 1 to 3 was added to produce a 2032 type coin battery.
  • Example I-20, Comparative Example I-3 A positive electrode sheet was produced using LiNi 1/2 Mn 3/2 O 4 (positive electrode active material) in place of the positive electrode active material used in Example I-1. 94% by mass of LiNi 1/2 Mn 3/2 O 4 coated with amorphous carbon and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binding agent) is mixed in advance. The solution was added to a solution dissolved in methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode material mixture paste was applied to one side on an aluminum foil (current collector), dried and pressurized, punched into a predetermined size, and a positive electrode sheet was prepared.
  • LiNi 1/2 Mn 3/2 O 4 positive electrode active material
  • a coin battery was produced in the same manner as in Example I-1 except that 4.9 V, the discharge end voltage was 2.7 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one, and the battery evaluation was performed. went.
  • the results are shown in Table 4.
  • Example I-21 and Comparative Example I-4 A negative electrode sheet was produced using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) in place of the negative electrode active material used in Example I-1. 80 mass% of lithium titanate Li 4 Ti 5 O 12 and 15 mass% of acetylene black (conductive agent) are mixed, and 5 mass% of polyvinylidene fluoride (binding agent) is dissolved in 1-methyl-2-pyrrolidone in advance The mixture was added to the solution and mixed to prepare a negative electrode mixture paste. The negative electrode material mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched into a predetermined size, and a negative electrode sheet was prepared.
  • a negative electrode sheet was prepared using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) in place of the negative electrode active material used in Example I-1. 80 mass% of lithium titanate Li 4 Ti 5 O 12 and 15 mass% of acetylene black (conductive agent) are mixed, and 5 mass% of polyvinylidene fluoride (
  • a coin battery was prepared and evaluated in the same manner as in Example I-1 except that the discharge termination voltage was 8 V and the discharge termination voltage was 1.2 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 5.
  • Examples I-22 to I-23 A lithium secondary battery was prepared in the same manner as Comparative Example I-1 except that a positive electrode was prepared by adding a predetermined amount of lithium phosphate represented by the general formula (I) to a total mass of the positive electrode active material of 100. Were prepared and subjected to battery evaluation. The results are shown in Table 6. Examples I-24 to I-25 Comparative Example I-1 was used except that a lithium anode represented by the general formula (I) was not added to the positive electrode, and a negative electrode was prepared by adding a predetermined amount with the total mass of the negative electrode active material being 100. Similarly, a lithium secondary battery was produced and battery evaluation was performed. The results are shown in Table 6.
  • Comparative Example I when the lithium phosphate represented by the general formula (I) was not added in the non-aqueous electrolyte of the present invention.
  • the electrochemical characteristics are remarkably improved in a wide temperature range as compared with the lithium secondary battery of Comparative Example I-2 when triethyl phosphonoformate is added.
  • the effect of the present invention is that in the non-aqueous electrolytic solution in which the electrolyte salt is dissolved in the non-aqueous solvent, the phosphorus atom (P) contains lithium phosphate in which a specific polar group (X 1 ) is directly bonded. was found to be a unique effect.
  • Example I-20 and Comparative Example I-3 From the comparison of Example I-20 and Comparative Example I-3, and the comparison of Example I-21 and Comparative Example I-4, lithium manganate lithium salt (LiNi 1/2 Mn 3/2 O 4 ) was used as the positive electrode. The same effect is observed when used or when lithium titanate is used for the negative electrode, so it is clear that the effect is not dependent on a specific positive electrode or negative electrode. Further, from the comparison of Examples I-22 to I-25 and Comparative Example I-1, even when the lithium phosphate represented by the general formula (I) is contained in a portion other than the electrolytic solution, the effect of the present invention can be obtained. It turned out to be. Furthermore, the non-aqueous electrolytic solution of the first invention also has the effect of improving the discharge characteristics over a wide temperature range of the lithium primary battery.
  • Dioxolan-4-yl) phosphonate was obtained (35% yield).
  • the obtained diphenyl (2-oxo-1,3-dioxolan-4-yl) phosphonate was subjected to 1 H-NMR measurement to confirm its structure.
  • Synthesis Example II-3 Synthesis of Bis (2,2,2-trifluoroethyl) (2-oxo-1,3-dioxolan-4-yl) phosphonate (Compound d6) An experiment was carried out in the same manner as in Synthesis Example II-2, except that bistrifluoroethyl phosphite was used instead of diphenyl phosphite, and 9.1 g of bis (2,2,2-trifluoroethyl) 2-oxo-1,3-dioxolan-4-yl) phosphonate was obtained (yield 55%).
  • Synthesis Example II-4 Synthesis of Lithium Ethyl (2,5-dioxopyrrolidin-1-yl) phosphonate (Compound g 3)
  • the same as in Synthesis Example II-1 except that diethyl (2,5-dioxopyrrolidin-1-yl) phosphonate was used instead of diethyl (2-oxo-1,3-dioxolan-4-yl) phosphonate.
  • diethyl (2,5-dioxopyrrolidin-1-yl) phosphonate was used instead of diethyl (2-oxo-1,3-dioxolan-4-yl) phosphonate.
  • 7.0 g of lithium ethyl (2,5-dioxopyrrolidin-1-yl) phosphonate Yield 65%).
  • Examples II-1 to II-34, II-41 to II-58, Comparative Examples II-1 to II-2 [Fabrication of lithium ion secondary battery] 94% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binder) is mixed in advance with 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a positive electrode sheet.
  • conductive agent acetylene black
  • binder polyvinylidene fluoride
  • the density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding 5% by mass to a solution in which 1% by mass was dissolved in 1-methyl-2-pyrrolidone and mixing.
  • the negative electrode material mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a negative electrode sheet.
  • the density of the part except the current collector of the negative electrode was 1.5 g / cm 3 . Further, as a result of X-ray diffraction measurement using this electrode sheet, the peak intensity I of the (110) plane of the graphite crystal and the ratio of the peak intensity I of the (004) plane I (004) [I (110) / I (004)] was 0.1. Then, the positive electrode sheet, the microporous polyethylene film separator, and the negative electrode sheet were laminated in this order, and the non-aqueous electrolytic solution having the composition described in Tables 7 to 13 was added to produce a 2032 type coin battery.
  • Example I-1 ⁇ Low temperature characteristics after high temperature charge storage> In the same manner as in Example I-1, the -10 ° C. discharge capacity retention ratio (%) after high-temperature charge storage was determined.
  • the battery characteristics are shown in Tables 7 to 13.
  • Example II-35, II-59, Comparative Example II-3 A positive electrode sheet was produced using LiNi 1/2 Mn 3/2 O 4 (positive electrode active material) in place of the positive electrode active material used in Example II-1. 94% by mass of LiNi 1/2 Mn 3/2 O 4 coated with amorphous carbon and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binding agent) is mixed in advance. The solution was added to a solution dissolved in methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode material mixture paste was applied to one side on an aluminum foil (current collector), dried and pressurized, punched into a predetermined size, and a positive electrode sheet was prepared.
  • LiNi 1/2 Mn 3/2 O 4 positive electrode active material
  • a coin battery was produced in the same manner as in Example II-1 except that 4.9 V, the discharge end voltage was 2.7 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one, and the battery evaluation was carried out. went. The results are shown in Tables 14 and 15.
  • Example II-36, II-60, and Comparative Example II-4 A negative electrode sheet was produced using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) in place of the negative electrode active material used in Example II-1. 80 mass% of lithium titanate Li 4 Ti 5 O 12 and 15 mass% of acetylene black (conductive agent) are mixed, and 5 mass% of polyvinylidene fluoride (binding agent) is dissolved in 1-methyl-2-pyrrolidone in advance The mixture was added to the solution and mixed to prepare a negative electrode mixture paste. The negative electrode material mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched into a predetermined size, and a negative electrode sheet was prepared.
  • a negative electrode sheet was prepared using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) in place of the negative electrode active material used in Example II-1. 80 mass% of lithium titanate Li 4 Ti 5 O 12 and 15 mass% of acetylene black (conductive agent) are mixed, and 5 mass% of polyvinyliden
  • a coin battery was prepared and evaluated in the same manner as in Example II-1 except that the discharge termination voltage was changed to 8 V, the discharge termination voltage was 1.2 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Tables 16 and 17.
  • Examples II-37, II-38, II-61, II-62 A lithium secondary battery was prepared in the same manner as Comparative Example II-1 except that a positive electrode was prepared by adding a predetermined amount of the compound represented by the general formula (II) to the total mass of the positive electrode active material being 100. The battery was evaluated. The results are shown in Tables 18 and 19. Examples II-39, II-40, II-63, II-64 Similar to Comparative Example II-1 except that a compound represented by the general formula (II) is not added to the positive electrode, and the negative electrode is prepared by adding a predetermined amount with the total mass of the negative electrode active material being 100. A lithium secondary battery was produced and battery evaluation was performed. The results are shown in Tables 18 and 19.
  • Comparative Example II-1 in the case where the compound represented by the general formula (II) was not added in the non-aqueous electrolyte solution of the present invention, Compared to the lithium secondary battery of Comparative Example II-2 in the case of adding triethylphosphonoacetate, the electrochemical characteristics are remarkably improved in a wide temperature range. From the above, the effect of the present invention is that, in the non-aqueous electrolyte solution in which the electrolyte salt is dissolved in the non-aqueous solvent, the phosphorus atom (P) contains a compound in which a specific cyclic polar group (X 2 ) is directly bonded was found to be a unique effect.
  • X 2 is also —C
  • the non-aqueous electrolyte solution of the second invention also has the effect of improving the discharge characteristics over a wide temperature range of the lithium primary battery.
  • the concentrate was dissolved in 5 ml of water and washed three times with 10 ml of toluene.
  • the aqueous layer was concentrated under reduced pressure and vacuum dried at a bath temperature of 60 ° C. to obtain 3.43 g of lithium ethyl (2-methoxy-1-((methylsulfonyl) oxy) -2-oxoethyl) phosphonate as a white solid (yield 62%).
  • the obtained lithium ethyl (2-methoxy-1-((methylsulfonyl) oxy) -2-oxoethyl) phosphonate was subjected to 1 H-NMR measurement to confirm its structure. The results are shown below.
  • Examples III-1 to III-27, Comparative Examples III-1 to III-3 [Fabrication of lithium ion secondary battery] 94% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binder) is mixed in advance with 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding 5% by mass to a solution in which 1% by mass was dissolved in 1-methyl-2-pyrrolidone and mixing.
  • the negative electrode material mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a negative electrode sheet.
  • the density of the part except the current collector of the negative electrode was 1.5 g / cm 3 .
  • the peak intensity I of the (110) plane of the graphite crystal and the ratio of the peak intensity I of the (004) plane I (004) [I (110) / I (004)] was 0.1.
  • the positive electrode sheet, the microporous polyethylene film separator, and the negative electrode sheet were laminated in this order, and the non-aqueous electrolytic solution having the composition described in Tables 20 to 23 was added to produce a 2032 type coin battery.
  • Example III-28, Comparative Example III-4 Example III-1 A positive electrode sheet was produced using LiNi 1/2 Mn 3/2 O 4 (positive electrode active material) in place of the positive electrode active material used. 94% by mass of LiNi 1/2 Mn 3/2 O 4 coated with amorphous carbon and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binding agent) is mixed in advance. The solution was added to a solution dissolved in methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode material mixture paste was applied to one side on an aluminum foil (current collector), dried and pressurized, punched into a predetermined size, and a positive electrode sheet was prepared.
  • LiNi 1/2 Mn 3/2 O 4 positive electrode active material
  • a coin battery was produced in the same manner as in Example III-1 except that 4.9 V, the discharge end voltage was 2.7 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one, and the battery evaluation was carried out. went. The results are shown in Table 24.
  • Example III-29 and Comparative Example III-5 A negative electrode sheet was produced using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) in place of the negative electrode active material used in Example III-1. 80 mass% of lithium titanate Li 4 Ti 5 O 12 and 15 mass% of acetylene black (conductive agent) are mixed, and 5 mass% of polyvinylidene fluoride (binding agent) is dissolved in 1-methyl-2-pyrrolidone in advance The mixture was added to the solution and mixed to prepare a negative electrode mixture paste. The negative electrode material mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched into a predetermined size, and a negative electrode sheet was prepared.
  • a negative electrode material mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched into a predetermined size, and a negative electrode sheet was prepared.
  • a coin battery was prepared and evaluated in the same manner as in Example III-1 except that the discharge termination voltage was changed to 8 V, the discharge termination voltage was 1.2 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 25.
  • Examples III-30, III-31 A lithium secondary battery was produced in the same manner as Comparative Example III-1 except that a positive electrode was prepared by adding a predetermined amount of the compound represented by the general formula (III) with the total mass of the positive electrode active material being 100. The battery was evaluated. The results are shown in Table 26. Examples III-32, III-33 The compound of the general formula (III) is not added to the positive electrode, and the total mass of the negative electrode active material is 100, and the same procedure as in Comparative Example III-1 is used except that a negative electrode is used. A lithium secondary battery was produced and battery evaluation was performed. The results are shown in Table 26.
  • the effect of the present invention is that in the non-aqueous electrolytic solution in which the electrolyte salt is dissolved in the non-aqueous solvent, the phosphorus atom (P) of the present invention contains a compound having a specific polar group (X) bonded thereto. It turned out to be a case-specific effect.
  • lithium manganate lithium salt LiNi 1/2 Mn 3/2 O 4 ) was used as the positive electrode. The same effect is observed when used or when lithium titanate is used for the negative electrode, so it is clear that the effect is not dependent on a specific positive electrode or negative electrode.
  • the non-aqueous electrolytic solution containing a compound in which a polar group is bonded to a phosphorus atom according to the present invention, a storage device excellent in electrochemical characteristics in a wide temperature range can be obtained.
  • a non-aqueous electrolyte for storage devices such as lithium secondary batteries mounted in hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc.
  • the electric storage devices whose electrochemical characteristics are unlikely to deteriorate over a wide temperature range You can get
  • the novel compounds of the present invention can be used as materials for electrolyte applications, heat resistant applications, etc., in medicines, agricultural chemicals, etc., in general chemistry, particularly in the fields of organic chemistry, electrochemistry, It is useful as an intermediate material such as an electronic material, a polymer material, or a battery material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、広い温度範囲で電気化学特性を向上できる二次電池を提供することを目的とする。 本発明は、一般式(X)において、(式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基から選ばれる有機基、又はリチウム原子であり、Xは、-C(=O)基、-P(=O)基、又は-S(=O)2基を含む極性基(i)、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基(ii)、又は-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基(iii)である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基(iii)の場合、R10及びR20の少なくとも一方はリチウム原子である。)ものである。

Description

非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物
 本発明は、広い温度範囲で電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及びリン原子に極性基が結合した新規なリン化合物に関する。
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器の電源、電気自動車や電力貯蔵用の電源として広く使用されている。これらの電子機器や自動車は、真夏の高温下や極寒の低温下等広い温度範囲で使用される可能性があるため、広い温度範囲でバランス良く電気化学特性を向上させることが求められている。
 特に地球温暖化防止のため、CO排出量を削減することが急務となっており、リチウム二次電池やキャパシタ等の蓄電デバイスからなる蓄電装置を搭載した環境対応車の中でも、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリー電気自動車(BEV)の早期普及が求められている。自動車は移動距離が長いため、熱帯の非常に暑い地域から極寒の地域まで幅広い温度範囲の地域で使用される可能性がある。従って、特にこれらの車載用の蓄電デバイスは、高温から低温まで幅広い温度範囲で使用しても電気化学特性が低下しないことが要求されている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 リチウム二次電池は、主にリチウムを吸蔵及び放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネートが使用されている。
 また、負極としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、金属酸化物、リチウムとの合金等)、及び炭素材料が知られており、特にリチウムを吸蔵及び放出することが可能なコークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 一方、正極として、例えばLiCoO、LiMn、LiNiO、LiFePO等を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、やはり広い温度範囲で使用した場合における電気化学特性の低下を生じることが分かっている。
 以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動が阻害されたり、電池が膨れたりすることで電池性能が低下していた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、広い温度範囲で使用した場合における電気化学特性が低下しやすい状況にある。
 特許文献1には、トリエチルホスホノアセテートやトリエチルホスホノフォルメート等のリン酸エステル化合物を添加剤として含有する非水電解液が、連続充電特性、高温保存特性を改善し、ガス発生を抑制できることが記載されている。
 特許文献2には、従来よりも高い正極電位を有し、かつサイクル特性に優れ、その上、ガス発生の少ないリチウムイオン二次電池を実現する非水電解液、及び、該非水電解液を用いたリチウムイオン二次電池を提供することができることが記載されている。
国際公開第2008/123038号 特開2015-18713号
 本発明は、広い温度範囲で電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及びリン原子に極性基が結合した新規な化合物を提供することを課題とする。
 本発明者らは、上記従来技術の非水電解液の性能について詳細に検討した結果、前記特許文献1及び2の非水電解液を用いた二次電池では、高温保存後の低温放電特性等の広い温度範囲での電気化学特性を向上させるという課題に対してはほとんど効果を発揮できないことが実情であった。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、リン原子に特定の極性基が直接結合した化合物を1種以上含有することで、広い温度範囲で蓄電デバイスの電気化学特性、特にリチウム電池の電気化学特性を改善できることを見出し、本発明を完成した。このような効果は、前記特許文献1及び2にはまったく示唆されていない。
 すなわち、本発明は、下記の(1)~(11)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液であって、リン原子(P)に極性基(X)が結合した下記一般式(X)で表される化合物を含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000043
(式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは、-C(=O)基、-P(=O)基、又は-S(=O)基を含む極性基(i)、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基(ii)、又は-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基(iii)である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基(iii)の場合、R10及びR20の少なくとも一方はリチウム原子である。)
(2)前記化合物が、リン原子(P)に極性基(X)が直接結合した下記一般式(I)で表されるリン酸リチウムである、前記(1)に記載の非水電解液(第1発明)。
Figure JPOXMLDOC01-appb-C000044
(式中、R20は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)基、-P(=O)基、又は-S(=O)基を含む極性基(i)である。)
(3)前記化合物が、リン原子(P)に環状の極性基(X)が直接結合した下記一般式(II)で表される化合物である、前記(1)に記載の非水電解液(第2発明)。
Figure JPOXMLDOC01-appb-C000045
(式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基(iii)である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基の場合、R10及びR20の少なくとも一方はリチウム原子である。)
(4)前記化合物が、リン原子(P)に極性基(X)が結合した下記一般式(III)で表される化合物である、前記(1)に記載の非水電解液(第3発明)。
Figure JPOXMLDOC01-appb-C000046
(式中、R20は炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)基、-P(=O)基、-S(=O)基、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基である。)
(5)正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記(1)~(4)のいずれかに記載の非水電解液であることを特徴とする蓄電デバイス。
(6)リン原子に極性基が直接結合した、後述する一般式(I-V)~(I-VII)のいずれかで表されるリン酸リチウム。
(7)前記(6)に記載のリン酸リチウムからなる蓄電デバイス用の添加剤。
(8)リン原子に環状の極性基が直接結合した、後述する一般式(IV-I)~(IV-VI)のいずれかで表されるホスホン酸リチウム。
(9)前記(8)に記載のホスホン酸リチウムからなる蓄電デバイス用の添加剤。
(10)リン原子に極性基が結合した、後述する一般式(III-1)~(III-7)のいずれかで表される化合物。
(11)前記(10)に記載の化合物からなる蓄電デバイス用の添加剤。
 本発明によれば、広い温度範囲で蓄電デバイスの電気化学特性、特に高温保存後の低温放電特性を向上できる非水電解液、それを用いたリチウム電池等の蓄電デバイス、及びリン原子に極性基が結合した新規な化合物を提供することができる。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液であって、リン原子(P)に極性基(X)が結合した下記一般式(X)で表される化合物を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000047
(式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは、-C(=O)基、-P(=O)基、又は-S(=O)基を含む極性基(i)、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基(ii)、又は-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基(iii)である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基(iii)の場合、R10及びR20の少なくとも一方はリチウム原子である。)
 本発明の非水電解液としては、より具体的には、第1発明~第3発明の非水電解液が好ましく挙げられる。
 第1発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液であって、リン原子(P)に極性基(X)が直接結合した前記一般式(I)で表される化合物を含有する非水電解液である。
 第2発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液であって、リン原子(P)に複素環状の極性基(X)が直接結合した前記一般式(II)で表される化合物を含有する非水電解液である。
 第3発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液であって、リン原子(P)に極性基(X)が結合した前記一般式(III)で表される化合物を含有する非水電解液である。
 本発明の非水電解液が、広い温度範囲で蓄電デバイスの電気化学特性を大幅に改善できる理由は必ずしも明らかではないが、以下のように考えられる。
 第1発明で使用されるリン酸リチウムは、前記一般式(I)のとおり、リン原子(P)に、-C(=O)基、-P(=O)基、又はS(=O)基を含む極性基(X)が直接結合している。そのため、電気化学的な分解をうけやすく、正極及び負極上に緻密で耐熱性の高い被膜が形成される。また、一般式(I)で表されるリン酸リチウムは、文字通りリチウム塩であるため、前記の被膜はリチウムイオン伝導性に優れる。したがって、特許文献1に記載のトリエチルホスホノアセテートやトリエチルホスホノフォルメートと比べて、広い温度範囲で電気化学特性が著しく向上すると考えられる。
 第2発明で使用される化合物は、前記一般式(II)のとおり、リン原子(P)に、-C(=O)-O基又は-C(=O)-N-基を含む4~7員の複素環を含む環状の極性基(X)が直接結合している。そのため、電気化学的な分解をうけやすく、正極及び負極上に緻密で耐熱性の高い被膜が形成される。また、一般式(II)で、R10及びR20の少なくとも一方がLi原子の場合はリチウム塩であるため、前記の被膜はリチウムイオン伝導性に優れる。したがって、特許文献1に記載のトリエチルホスホノアセテートやトリエチルホスホノフォルメートと比べて、広い温度範囲で電気化学特性が著しく向上すると考えられる。
 第3発明で使用される化合物は、前記一般式(III)のとおり、リン原子(P)に、-C(=O)基、-P(=O)基、-S(=O)基、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基(X)が結合している。そのため、電気化学的な分解をうけやすく、正極及び負極上に緻密で耐熱性の高い被膜が形成される。また、一般式(III)で表される化合物は、リチウム塩であるため、前記の被膜はリチウムイオン伝導性に優れる。したがって、特許文献1に記載のトリエチルホスホノアセテートやトリエチルホスホノフォルメートや特許文献2に記載のヘキシルホスホン酸や2-ホスホノ酢酸と比べて、広い温度範囲で電気化学特性が著しく向上すると考えられる。
<第1発明の非水電解液>
 第1発明の非水電解液に含まれるリン酸リチウムは、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000048
(式中、R20は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)基、-P(=O)基、又は-S(=O)基を含む極性基(i)である。)
 前記一般式(I)において、R20としては、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~10のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されてもよい有機基又はリチウム原子が好ましく、炭素数1~4のアルキル基及び炭素数3~4のアルキニル基から選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基がより好ましい。
 R20が、水素原子の一部がハロゲン原子で置換されていてもよい有機基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の直鎖のアルキル基;iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フルオロメチル基、ジフルオロメチル基、2-クロロエチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等の水素原子の一部がハロゲン原子で置換されたアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセン-1-イル基等の直鎖のアルケニル基;1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基等の分岐のアルケニル基;3,3-ジフルオロ-2-プロペン-1-イル基、4,4-ジフルオロ-3-ブテン-1-イル基、3,3-ジクロロ-2-プロペン-1-イル基、4,4-ジクロロ-3-ブテン-1-イル基等の水素原子の一部がハロゲン原子で置換されたアルケニル基;2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基等の直鎖のアルキニル基;1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ヘプチニル基等の分岐のアルキニル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジ-tert-ブチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル基等の水素原子の一部がハロゲン原子で置換されたアリール基等が好適に挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基が更に好ましい。
 一般式(I)で表されるリン酸リチウムは、好ましくは下記一般式(I-II)~(I-IV)のいずれかで表される少なくとも1種のリン酸リチウムである。
Figure JPOXMLDOC01-appb-C000049

(式中、R及びRはそれぞれ独立にR20と同義である。)
Figure JPOXMLDOC01-appb-C000050

(式中、R、R、及びRはそれぞれ独立にR20と同義である。)
Figure JPOXMLDOC01-appb-C000051

(式中、R及びRはそれぞれ独立にR20と同義である。)
 前記一般式(I-II)~(I-IV)のいずれかで表されるリン酸リチウムの中でも、一般式(I-II)又は(I-III)で表されるリン酸リチウムがより好ましく、一般式(I-II)で表されるリン酸リチウムが更に好ましい。
 一般式(I-II)において、R及びRのうち少なくとも1つが、水素原子の一部がハロゲン原子で置換されていてもよい有機基であることが好ましく、両方が水素原子の一部がハロゲン原子で置換されていてもよい有機基であることがより好ましい。
 R及びRが水素原子の一部がハロゲン原子で置換されていてもよい有機基である場合の具体例と好適例は、R20の具体例と好適例と同じであり、R及びRのうち少なくとも1つが炭素数3~4のアルキニル基であることが更に好ましい。
 一般式(I-III)において、R、R、及びRの少なくとも1つが、水素原子の一部がハロゲン原子で置換されていてもよい有機基であることが好ましく、少なくとも2つが水素原子の一部がハロゲン原子で置換されていてもよい有機基であることがより好ましく、全てが水素原子の一部がハロゲン原子で置換されていてもよい有機基であることが更に好ましい。
 R、R、及びRが水素原子の一部がハロゲン原子で置換されていてもよい有機基である場合の具体例と好適例は、R20の具体例と好適例と同じであり、R、R、及びRのうち少なくとも1つが炭素数3~4のアルキニル基であることが更に好ましい。
 一般式(I-IV)において、R及びRの少なくとも1つが、水素原子の一部がハロゲン原子で置換されていてもよい有機基であることが好ましく、両方が水素原子の一部がハロゲン原子で置換されていてもよい有機基であることがより好ましい。
 R及びRが水素原子の一部がハロゲン原子で置換されていてもよい有機基である場合の具体例と好適例は、R20の具体例と好適例と同じであり、R及びRのうち少なくとも1つが炭素数3~4のアルキニル基であることが更に好ましい。
 前記一般式(I-II)~(I-IV)のいずれかで表されるリン酸リチウムとしては、具体的に以下の化合物が挙げられる。
[一般式(I-II)で表される化合物]
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
[一般式(I-III)で表される化合物]
Figure JPOXMLDOC01-appb-C000056
[一般式(I-IV)で表される化合物]
Figure JPOXMLDOC01-appb-C000057
 上記具体例の中でも化合物AA1~AA16、AA20~AA35、AA40~AA49、AA51、AA57~AA61、AA63~AA85、AA87~AA89、BB1~BB3、BB9~BB13、BB17~BB21、CC1~CC3、及びCC6~CC9から選ばれる1種以上が好ましく、化合物AA1~AA4、AA8、AA20~AA21、AA23~AA29、AA33~AA35、AA43~AA45、AA51、AA57、AA60~AA61、AA63~AA67、AA77~AA80、AA82、AA84~AA85、AA89、BB1~BB3、BB9~BB11、BB17~BB18、BB20~BB21、CC1~CC2、及びCC7から選ばれる1種以上がより好ましく、リチウム メチル メトキシカルボニルホスホネート(化合物AA1)、リチウム エチル メトキシカルボニルホスホネート(化合物AA2)、リチウム ブチル メトキシカルボニルホスホネート(化合物AA4)、リチウム ブチル エトキシカルボニルホスホネート(化合物AA8)、リチウム 2-プロペニル メトキシカルボニルホスホネート(化合物AA20)、リチウム 2-プロピニル メトキシカルボニルホスホネート(化合物AA21)、リチウム 3-ブチン-2-イル メトキシカルボニルホスホネート(化合物AA23)、リチウム 2-メチル-3-ブチン-2-イル メトキシカルボニルホスホネート(化合物AA24)、リチウム フェニル メトキシカルボニルホスホネート(化合物AA25)、リチウム 2,4-ジ-tert-ブチルフェニル メトキシカルボニルホスホネート(化合物AA28)、リチウム エチル エトキシカルボニルホスホネート(化合物AA33)、リチウム エチル ブトキシカルボニルホスホネート(化合物AA35)、リチウム エチル 2,2-ジフルオロエトキシカルボニルホスホネート(化合物AA44)、リチウム エチル 2,2,2-トリフルオロエトキシカルボニルホスホネート(化合物AA45)、リチウム エチル 2-プロペニルオキシカルボニルホスホネート(化合物AA51)、リチウム エチル 2-プロピニルオキシカルボニルホスホネート(化合物AA57)、リチウム エチル 3-ブチン-2-イルオキシカルボニルホスホネート(化合物AA60)、リチウム エチル 2-メチル-3-ブチン-2-イルオキシカルボニルホスホネート(化合物AA61)、リチウム エチル フェニルオキシカルボニルホスホネート(化合物AA63)、リチウム エチル 4-tert-ブチルフェニルオキシカルボニルホスホネート(化合物AA66)、リチウム フェニル 4-tert-ブチルフェニルオキシカルボニルホスホネート(化合物AA77)、ジリチウム メトキシカルボニルホスホネート(化合物AA78)、ジリチウム エトキシカルボニルホスホネート(化合物AA79)、エチル ジリチウム オキシカルボニルホスホネート(化合物AA84)、トリリチウム オキシカルボニルホスホネート(化合物AA89)、リチウム トリメチルハイポジホスフェート(化合物B1)、リチウム トリエチルハイポジホスフェート(化合物BB2)、リチウム トリブチルハイポジホスフェート(化合物BB3)、リチウム トリス(2-プロペニル)ハイポジホスフェート(化合物BB9)、リチウム トリス(2-プロピニル)ハイポジホスフェート(化合物BB10)、リチウム メチル メチルスルホニルホスホネート(化合物CC1)、リチウム エチル メチルスルホニルホスホネート(化合物CC2)、及びリチウム エチル 2-プロピン-1-イルスルホニルホスホネート(化合物CC7)から選ばれる1種以上が特に好ましい。
 第1発明の非水電解液において、非水電解液に含有される一般式(I)で表されるリン酸リチウムの含有量は、非水電解液中に0.001~10質量%であることが好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、広い温度範囲で電気化学特性の改善効果が高まるので好ましい。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 第1発明の非水電解液において、一般式(I)で表されるリン酸リチウムを以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
<第2発明の非水電解液>
 第2発明の非水電解液に含まれるリン原子(P)に環状の極性基(X)が直接結合した化合物は、下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000058
(式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基の場合、R10及びR20の少なくとも一方はリチウム原子である。)
 一般式(II)において、R10及びR20は、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子が好ましく、炭素数1~4のアルキル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子がより好ましい。
 R10及びR20の具体例、好適例は、第1発明における一般式(I)のR20の具体例、好適例と同じである。
 一般式(II)において、R10及びR20の少なくとも一方がリチウム原子であることが好ましい。
 一般式(II)のXとしては、5~7員環の環状炭酸エステル基、4~7員環の環状カルボン酸エステル基、5~7員環の環状酸無水物基、5~7員環の環状イミド基、マレイミド基、及び5~7員環の環状アミド基から選ばれる複素環状の極性基が好ましく、5~6員環の環状炭酸エステル基、5~6員環の環状カルボン酸エステル基、5~6員環の環状酸無水物基、5~6員環の環状イミド基、マレイミド基、及び5~6員環の環状アミド基から選ばれる複素環状の極性基が更に好ましく、5~6員環の環状炭酸エステル基、5~6員環の環状カルボン酸エステル基、及び5~6員環の環状イミド基から選ばれる複素環状の極性基が特に好ましい。
 一般式(II)で表される化合物は、好ましくは下記一般式(II-I)~(II-VI)のいずれかで表される少なくとも1種の化合物である。
Figure JPOXMLDOC01-appb-C000059
(式中、R21はR20と同義であり、p21及びq21は、それぞれ独立に0~2の整数を示し、1≦p21+q21≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000060
(式中、R22はR20と同義であり、p22及びq22は、それぞれ独立に0~3の整数を示し、1≦p22+q22≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000061
(式中、R23はR20と同義であり、p23及びq23は、それぞれ独立に0~2の整数を示し、1≦p23+q23≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000062
(式中、R24はR20と同義であり、Y24は-NH-基又は-O-基を示し、p24は、0~1の整数を示し、q24は1~4の整数を示し、2≦p24+q24≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000063
(式中、R25はR20と同義である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000064
(式中、R26はR20と同義であり、Y26は-NH-基又は-O-基を示し、p26は、0~1の整数を示し、q26は1~4の整数を示し、2≦p26+q26≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000065

(式中、R27及びR28は、それぞれ独立にR20と同義である。*は、環状の極性基に結合する部位を示す。)
 前記一般式(II-I)~(II-VI)で表される化合物の中でも、一般式(II-I)、(II-II)、又は(II-IV)で表される化合物がより好ましく、一般式(II-I)又は(II-IV)で表される化合物が更に好ましい。
 一般式(II-I)において、R21の具体例と好適例は、R20の具体例と好適例と同じであり、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基、又はリチウム原子が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、フェニル基、又はリチウム原子が更に好ましい。
 一般式(II-II)において、R22の具体例と好適例は、R20の具体例と好適例と同じであり、より具体的な好適例は、上記したR21の好適例と同じである。
 一般式(II-III)において、R23の具体例と好適例は、R20の具体例と好適例と同じであり、より具体的な好適例は、上記したR21の好適例と同じである。
 前記一般式(II-IV)において、R24の具体例と好適例は、R20の具体例と好適例と同じであり、より具体的な好適例は、上記したR21の好適例と同じである。
 前記一般式(II-V)において、R25の具体例と好適例は、R20の具体例と好適例と同じであり、より具体的な好適例は、上記したR21の好適例と同じである。
 前記一般式(II-VI)において、R26の具体例と好適例は、R20の具体例と好適例と同じであり、より具体的な好適例は、上記したR21の好適例と同じである。
 リン原子(P)に特定の環状の極性基が直接結合した前記一般式(II-I)~(II-VI)で表される化合物としては、具体的に以下の化合物が好適に挙げられる。
 〔一般式(II-I)で表される化合物〕
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 〔一般式(II-II)で表される化合物〕
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 〔一般式(II-III)で表される化合物〕
Figure JPOXMLDOC01-appb-C000074
 〔一般式(II-IV)で表される化合物〕
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 〔一般式(II-V)で表される化合物〕
Figure JPOXMLDOC01-appb-C000080
 〔一般式(II-VI)で表される化合物〕
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 上記好適例の中でも化合物a1~a6、a8~a11、a14~a18、a21~a24、a30~a33、a35~a64、b9~b40、c1~c20、g1~6、g8~g12、g15~g17、g21~g51、h1~h8、i1~i12、及びi17~i32から選ばれる1種以上が好ましく、化合物a1~a5、a17、a18、a23、a36、a41~a64、b9~b11、b13~b24、c1~c3、c5~c20、g1~g5、g12、g17、g23、g28~g31、g32~g34、g36、g37、g39、g40~g43、g44~g51、h1~h3、h5、h6、h8、i1~i3、i5、i6、i8、i9~i12、及びi17~i32から選ばれる1種以上がより好ましく、リチウム (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物a1)、リチウム メチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物a2)、リチウム エチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物a3)、リチウム 2,2,2-トリフルオロエチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物a18)、リチウム フェニル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物a36)、リチウム (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物b9)、リチウム メチル (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物b10)、リチウム エチル (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物b11)、リチウム 2,2,2-トリフルオロエチル (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物b13)、リチウム フェニル (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物b16)、リチウム (2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物c1)、リチウム メチル(2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物c2)、リチウム エチル(2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物c3)、リチウム 2,2,2-トリフルオロエチル(2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物c5)、リチウム フェニル(2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物c8)、リチウム(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g1)、リチウム メチル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g2)、リチウム エチル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g3)、リチウム 2,2,2-トリフルオロエチル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g12)、リチウム フェニル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g23)、リチウム エチル(3-メチル-2,5-ジオキソイミダゾリジン-1-イル)ホスホネート(化合物g34)、リチウム (2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ホスホネート(化合物h1)、リチウム エチル(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ホスホネート(化合物h3)、リチウム 2,2,2-トリフルオロエチル(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ホスホネート(化合物h5)、リチウム フェニル(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ホスホネート(化合物h8)、リチウム エチル(2-オキソピロリジン-1-イル)ホスホネート(化合物i3)、リチウム エチル(2-オキソピペリジン-1-イル)ホスホネート(化合物i11)、リチウム エチル(3-メチル-2-オキソイミダゾリジン-1-イル)ホスホネート(化合物i19)、及びリチウム エチル(2-オキソオキサゾリジン-3-イル)ホスホネート(化合物i31)から選ばれる1種以上が特に好ましい。
 前記一般式(II)で表される化合物は、リン原子(P)に特定の環状の極性基が直接結合した下記一般式(V-I)~(V-III)で表される化合物からなる群より選ばれる少なくとも1種であることも好ましい。
Figure JPOXMLDOC01-appb-C000083
(式中、R61及びR62は、それぞれ独立に炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基であり、p61及びq61は、それぞれ独立に0~2の整数を示し、1≦p61+q61≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(V-IV)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000084
(式中、R63及びR64は、それぞれ独立にR61及びR62と同義であり、p62及びq62は、それぞれ独立に0~3の整数を示し、1≦p62+q62≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(V-IV)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000085
(式中、R65及びR66は、それぞれ独立にR61及びR62と同義であり、p63及びq63は、それぞれ独立に0~2の整数を示し、1≦p63+q63≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(V-IV)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000086

(式中、R71及びR72は、それぞれ独立にR61及びR62と同義である。)
 一般式(V-I)~(V-III)で表される化合物の中でも、一般式(V-I)又は(V-II)で表される化合物がより好ましく、一般式(V-I)で表される化合物が更に好ましい。
 一般式(V-I)において、R61及びR62としては、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基が好ましく、炭素数1~4のアルキル基及び炭素数6~12のアリール基から選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基がより好ましい。
 前記R61及びR62の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の直鎖のアルキル基;iso-プロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フルオロメチル基、ジフルオロメチル基、2-クロロエチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等の水素原子の一部がハロゲン原子で置換されたアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセン-1-イル基等の直鎖のアルケニル基;1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基等の分岐のアルケニル基;3,3-ジフルオロ-2-プロペン-1-イル基、4,4-ジフルオロ-3-ブテン-1-イル基、3,3-ジクロロ-2-プロペン-1-イル基、4,4-ジクロロ-3-ブテン-1-イル基等の水素原子の一部がハロゲン原子で置換されたアルケニル基;2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基等の直鎖のアルキニル基;1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ヘプチニル基等の分岐のアルキニル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジ-tert-ブチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル基等の水素原子の一部がハロゲン原子で置換されたアリール基等が好適に挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、フェニル基が更に好ましい。
 前記一般式(V-II)において、R63及びR64の具体例と好適例は、それぞれ独立にR61及びR62の具体例と好適例と同じであり、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、フェニル基が更に好ましい。
 前記一般式(V-III)において、R65及びR66の具体例と好適例は、それぞれ独立にR61及びR62の具体例と好適例と同じであり、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、フェニル基が更に好ましい。
 前記一般式(V-I)~(V-III)で表される化合物としては、具体的に以下の化合物が好適に挙げられる。
 〔一般式(V-I)で表される化合物〕
Figure JPOXMLDOC01-appb-C000087
 〔一般式(V-II)で表される化合物〕
Figure JPOXMLDOC01-appb-C000088
 〔一般式(V-III)で表される化合物〕
Figure JPOXMLDOC01-appb-C000089
 上記好適例の中でも化合物d1~d18、e5~e20、及びf1~f14から選ばれる1種以上が好ましく、化合物d1~d3、d5~d18、e5~e7、e9~e20、f1~f3、及びf5~f14から選ばれる1種以上がより好ましく、ジメチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d1)、ジエチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d2)、ビス(2,2,2-トリフルオロエチル) (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d6)、ジフェニル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d9)、ジメチル (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物e5)、ジエチル (2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物e6)、ビス(2,2,2-トリフルオロエチル)(2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物e9)、ジフェニル(2-オキソテトラヒドロフラン-3-イル)ホスホネート(化合物e12)、ジメチル (2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物f1)、ジエチル (2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物f2)、ビス(2,2,2-トリフルオロエチル) (2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物f5)、ジフェニル (2,5-ジオキソテトラヒドロフラン-3-イル)ホスホネート(化合物f8)、及びテトラエチル (2,5-ジオキソテトラヒドロフラン-3,4-ジイル)ビス(ホスホネート)(化合物f10)から選ばれる1種以上が特に好ましい。
 第2発明の非水電解液において、非水電解液に含有される一般式(II)で表される化合物の含有量は、非水電解液中に0.001~10質量%であることが好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、広い温度範囲で電気化学特性の改善効果が高まるので上記範囲であることが好ましい。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、7質量%以下がより好ましく、5質量%以下が更に好ましく、3質量%以下が特に好ましい。
 第2発明の非水電解液において、一般式(II)で表される化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
<第3発明の非水電解液>
 第3発明の非水電解液に含まれるリン原子(P)に特定の極性基(X)が結合した化合物は、下記一般式(III)で表される。
Figure JPOXMLDOC01-appb-C000090
(式中、R20は炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)基、-P(=O)基、-S(=O)基、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基である。)
 一般式(III)において、R20は、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~10のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されてもよい有機基又はリチウム原子が好ましく、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、及び炭素数3~4のアルキニル基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基がより好ましく、炭素数1~4のアルキル基が特に好ましい。
 R20が、水素原子の一部がハロゲン原子で置換されていてもよい有機基の具体例は、第1発明における一般式(I)のR20の具体例と同じである。これらの中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基がより好ましく、メチル基又はエチル基が更に好ましい。
 前記一般式(I)で表される化合物は、下記一般式(III-1)~(III-7)のいずれかで表される少なくとも1種の化合物である。
Figure JPOXMLDOC01-appb-C000091
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R113基、-OC(=O)-OR114基、-S(=O)115基、又は-S(=O)OR116基を示す。R111、R114、及びR116はそれぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、R112、R113、及びR115は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基を示し、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000092
(式中、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R123基、-OC(=O)-OR124基、-S(=O)125基、又は-S(=O)OR126基を示す。R121、R122、R124、及びR126は、それぞれ独立にR20と同義であり、R123及びR125は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000093
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R134基、-OC(=O)-OR135基、-S(=O)136基、又は-S(=O)OR137基を示す。R131、R132、R133、R135、及びR137は、それぞれ独立にR20と同義であり、R134及びR136は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000094
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R143基、-OC(=O)-OR144基、-S(=O)145基、又は-S(=O)OR146基を示す。R141、R144、及びR146は、それぞれ独立にR20と同義であり、R142、R143、及びR145は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000095
(式中、A25は水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R153基、-OC(=O)-OR154基、-S(=O)155基、又は-S(=O)OR156基を示す。R151、R152、R154、及びR156は、それぞれ独立にR20と同義であり、R153及びR155は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000096
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R162基、-OC(=O)-OR163基、-S(=O)164基、又は-S(=O)OR165基を示す。R161、R163、及びR165は、それぞれ独立にR20と同義であり、R162及びR164は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000097
(式中、R172は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を示し、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R173基、-OC(=O)-OR174基、-S(=O)175基、又は-S(=O)OR176基を示す。R171、R174、及びR176は、それぞれ独立にR20と同義であり、R173及びR175は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
 前記一般式(III-1)~(III-7)のいずれかで表される化合物の中でも一般式(III-2)~(III-4)がより好ましく、一般式(III-2)又は(III-3)が更に好ましい。
 前記一般式(III-1)~(III-7)において、R111、R--114、R116、R121、R122、R124、R126、R131、R132、R133、R135、R137、R141、R144、R146、R151、R152、R154、R156、R161、R163、R165、R171、R174、及びR176の好ましい範囲はR20と同義であり、R112、R113、R115、R123、R125、R134、R136、R142、R143、R145、R153、R155、R162、R164、R173、及びR175は炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基を示し、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~10のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されてもよい有機基が好ましく、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、及び炭素数3~4のアルキニル基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基がより好ましく、炭素数1~4のアルキル基が特に好ましい。
 前記R112、R113、R115、R123、R125、R134、R136、R142、R143、R145、R153、R155、R162、R164、R173、及びR175が、水素原子の一部がハロゲン原子で置換されていてもよい有機基の場合の具体例としては、第1発明における一般式(I)のR20の具体例と同じである。
 これらの中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、もしくはフェニル基が好ましく、メチル基、エチル基、トリフルオロメチル基、2-プロペニル基、もしくは2-プロピニル基がより好ましく、メチル基、もしくはエチル基が更に好ましい。
 一般式(III-7)におけるR172は、水素原子の一部がハロゲン原子で置換された炭素数1~6のアルキル基を示し、水素原子の一部がハロゲン原子で置換された炭素数1~4のアルキル基が好ましく、水素原子の全てがハロゲン原子で置換された炭素数1、又は炭素数2のアルキル基が更に好ましい。
 R172の具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、パーフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、パーフルオロプロピル基、パーフルオロブチル基、又はパーフルオロペンチル基が好適に挙げられる。これらの中でもジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、パーフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、又はパーフルオロプロピル基が好ましく、トリフルオロメチル基又はパーフルオロエチル基が更に好ましい。
 リン原子(P)に特定の極性基が結合した前記一般式(III-1)~(III-7)のいずれかで表される化合物としては、具体的に以下の化合物が好適に挙げられる。
 [一般式(III-1)で表される化合物]
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
 [一般式(III-2)で表される化合物]
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
 [一般式(III-3)で表される化合物]
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
 [一般式(III-4)で表される化合物]
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
 [一般式(III-5)で表される化合物]
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
 [一般式(III-6)で表される化合物]
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
 [一般式(III-7)で表される化合物]
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
 上記好適例の中でも化合物A5~A9、A14~A21、A24~A31、A34~A43、A46、A47、A52~A54、A56、A57、B1~B8、B10~B12、B16~B25、B28~B35、B38~B46、B49~B64、B66、B67、B69、B70、B72~B76、C1~C22、C24~C27、C30~C33、C35、C36、D4~D8、D14~D18、D20,D21、D23、D24、D26、D27、D29、D30、D35、D36、D38~D42、D44~D48、E4~E8、E14~E24、E26、E27、E29、E30、E32、E33、F4~F9、F14~F18、F20、F21、F26、F27、F29~F33、F35、F36、G1~G16、及びG19~G24から選ばれる1種以上が好ましく、化合物A6~A8、A15~A18、A20、A21、A24~A31、A34~A43、A47、B2~B4、B7、B8、B10~B12、B16~B20、B22~B25、B28~B35、B39~B41、B43~B46、B49~B56、B58~B60、B63、B64、B66、B67、B69、B70、B72、B73、B75、B76、C1~C3、C7~C9、C11~C13、C17~C19、C21、C22、C24~C27、C30~C33、C35、C36、D5~D7、D15~D17、D20,D21、D23,D24、D26、D27、D29、D30、D35、D36、D38~D42、E5~E7、E15~E17、E20、E21、E23、E24、F5~F7、F9、F15~F17、F20、F21、F26、F27、F29~F33、F35、F36、F38、F39、G2~G4、G7~G9、G11~G16、G19~G24、G26、G27、G29、及びG30から選ばれる1種以上がより好ましく、リチウム メチル (1-アセトキシ-2-オキソプロピル)ホスホネート(化合物A6)、リチウム メチル (1-((メチルスルホニル)オキシ)-2-オキソプロピル)ホスホネート(化合物A8)、リチウム エチル (1-アセトキシ-2-オキソプロピル)ホスホネート(化合物A15)、リチウム エチル (1-((メチルスルホニル)オキシ)-2-オキソプロピル)ホスホネート(化合物A18)、リチウム メチル (1-アセトキシ-2-メトキシ-2-オキソエチル)ホスホネート(化合物B2)、リチウム メチル (1-((メチルスルホニル)オキシ)-2-メトキシ-2-オキソエチル)ホスホネート(化合物B4)、リチウム エチル (1-アセトキシ-2-メトキシ-2-オキソエチル)ホスホネート(化合物B7)、リチウム エチル (1-((メチルスルホニル)オキシ)-2-メトキシ-2-オキソエチル)ホスホネート(化合物B17),リチウム エチル (1-アセトキシ-2-エトキシ-2-オキソエチル)ホスホネート(化合物B39)、リチウム エチル (1-((メチルスルホニル)オキシ)-2-エトキシ-2-オキソエチル)ホスホネート(化合物B41)、リチウム エチル (1-((メチルスルホニル)オキシ)-2-(2,2,2-トリフルオロエトキシ)-2-オキソエチル)ホスホネート(化合物B50)、リチウム メチル ((ジメトキシホスホリル)メチル)ホスホネート(化合物C1)、リチウム メチル (アセトキシ(ジメトキシホスホリル)メチル)ホスホネート(化合物C7)、リチウム メチル ((ジメトキシホスホリル)((メチルスルホニル)オキシ)メチル)ホスホネート(化合物C9)、リチウム エチル ((ジエトキシホスホリル)メチル)ホスホネート(化合物C11)、リチウム エチル (アセトキシ(ジエトキシホスホリル)メチル)ホスホネート(化合物C17)、リチウム エチル ((ジエトキシホスホリル)((メチルスルホニル)オキシ)メチル)ホスホネート(化合物C19)、リチウム メチル (2-(ジメトキシホスホリル)エチル)ホスホネート(化合物C32)、リチウム エチル (2-(ジエトキシホスホリル)エチル)ホスホネート(化合物C33)、リチウム メチル (アセトキシ(メチルスルホニル)メチル)ホスホネート(化合物D5)、リチウム メチル ((メチルスルホニル)((メチルスルホニル)オキシ)メチル)ホスホネート(化合物D7)、リチウム エチル (アセトキシ(メチルスルホニル)メチル)ホスホネート(化合物D15)、リチウム エチル ((メチルスルホニル)((メチルスルホニル)オキシ)メチル)ホスホネート(化合物D17)、リチウム メチル (アセトキシ(メトキシスルホニル)メチル)ホスホネート(化合物E5)、リチウム メチル ((メトキシスルホニル)((メチルスルホニル)オキシ)メチル)ホスホネート(化合物E7)、リチウム エチル (アセトキシ(メトキシスルホニル)メチル)ホスホネート(化合物E15)、リチウム エチル ((メトキシスルホニル)((メチルスルホニル)オキシ)メチル)ホスホネート(化合物E17)、リチウム メチル (アセトキシ(シアノ)メチル)ホスホネート(化合物F5)、リチウム メチル (シアノ((メチルスルホニル)オキシ)メチル)ホスホネート(化合物F7)、リチウム エチル シアノメチルホスホネート(化合物F9)、リチウム エチル (アセトキシ(シアノ)メチル)ホスホネート(化合物F15)、リチウム エチル (シアノ((メチルスルホニル)オキシ)メチル)ホスホネート(化合物F17)、リチウム メチル (1-アセトキシ-2,2,2-トリフルオロエチル)ホスホネート(化合物G2)、リチウム メチル (2,2,2-トリフルオロ-1-((メチルスルホニル)オキシ)エチル)ホスホネート(化合物G4)、リチウム エチル (1-アセトキシ-2,2,2-トリフルオロエチル)ホスホネート(化合物G7)、及びリチウム エチル (2,2,2-トリフルオロ-1-((メチルスルホニル)オキシ)エチル)ホスホネート(化合物G9)から選ばれる1種以上が特に好ましい。
 第3発明の非水電解液において、非水電解液に含有される一般式(III)で表される化合物の含有量は、非水電解液中に0.001~10質量%であることが好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、広い温度範囲で電気化学特性の改善効果が高まるので上記範囲であることが好ましい。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 第3発明の非水電解液において、一般式(III)で表される化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドから選ばれる1種又は2種以上が好適に挙げられる。広い温度範囲で電気化学特性が相乗的に向上するため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることが更に好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることがもっとも好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる1種又は2種以上が挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる1種又は2種以上がより好適である。
 また、前記炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合又はフッ素原子を有する環状カーボネートのうち少なくとも1種を使用すると広い温度範囲で電気化学特性が一段と向上するので好ましく、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC又は、又はEECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECが更に好ましい。
 炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上であり、また、その上限としては、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下であると、Liイオン透過性を損なうことなく一段と広い温度範囲で電気化学特性を増すことができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、更に好ましくは6体積%以上であり、また、その上限としては、好ましくは35体積%以下、より好ましくは25体積%以下、更に15体積%以下であると、Liイオン透過性を損なうことなく一段と広い温度範囲で電気化学特性を向上させることができるので好ましい。
 非水溶媒が炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、その上限としては、好ましくは40体積%以下、より好ましくは30体積%以下、更に15体積%以下であると、Liイオン透過性を損なうことなく一段と広い温度範囲で電気化学特性を向上させることができるので特に好ましい。
 また、非水溶媒がエチレンカーボネートと炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの両方を含むと電極上に形成される被膜の広い温度範囲で電気化学特性を向上させることができるので好ましく、エチレンカーボネート及び炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、広い温度範囲で電気化学特性の改善効果が更に向上するので好ましく、3種類以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、又はECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、又はECとPCとVCとFEC等の組合せがより好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチル(EA)から選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。
 前記鎖状エステルの中でも、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチル(EA)から選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましい。更に対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲で電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。上記の場合に一段と広い温度範囲で電気化学特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が特に好ましい。
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン(GBL)、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンから選ばれる1種又は2種以上が好適に挙げられる。
 上記その他の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状エステルとラクトンとの組合せ又は環状カーボネートと鎖状エステルとエーテルとの組合せ等が好適に挙げられ、環状カーボネートと鎖状エステルとラクトンとの組合せがより好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いると更に好ましい。
 環状カーボネートと鎖状エステルとラクトンとの組合せは好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いるとより好ましい。
 その他の非水溶媒の含有量は、非水溶媒の総体積に対して、通常1%以上、好ましくは2%以上であり、また通常40%以下、好ましくは30%以下、更に好ましくは20%以下である。
 一段と広い温度範囲で電気化学特性を向上させる目的で、非水電解液中に更にその他の添加剤を加えることが好ましい。
 その他の添加剤の具体例としては、以下の(A)~(I)の化合物が挙げられる。
(A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルから選ばれる1種又は2種以上のニトリル。
(B)シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、アニソール、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)等の芳香族化合物。
(C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上のイソシアネート化合物。
(D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニルオギザレート、エチル 2-プロピニルオギザレート、グルタル酸 ジ(2-プロピニル)、2-ブチン-1,4-ジイル ジメタンスルホネート、2-ブチン-1,4-ジイル ジホルメート、及び2,4-ヘキサジイン-1,6-ジイル ジメタンスルホネートから選ばれる1種又は2種以上の三重結合含有化合物。
(E)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド等のスルトン;エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド、4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン 2-オキシド等の環状サルファイト;ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、メチレンメタンジスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート等のスルホン酸エステル;ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、又はビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる1種又は2種以上の環状又は鎖状のS=O基含有化合物。
(F)1,3-ジオキソラン、1,3-ジオキサン、1,3,5-トリオキサン等の環状アセタール化合物。
(G)リン酸トリメチル、リン酸トリブチル、及びリン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、2-プロピニル 2-(ジエトキシホスホリル)アセテート、及びピロリン酸メチル、ピロリン酸エチルから選ばれる1種又は2種以上のリン含有化合物。
(H)無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、3-スルホ-プロピオン酸無水物等の環状酸無水物。
(I)メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、エトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物。
 上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物から選ばれる少なくとも1種以上を含むと一段と広い温度範囲で電気化学特性が向上するので好ましい。
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルから選ばれる1種又は2種以上がより好ましい。
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンから選ばれる1種又は2種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンから選ばれる1種又は2種以上が特に好ましい。
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上がより好ましい。
 前記(A)~(C)の添加剤の含有量は、非水電解液中に0.01~7質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と広い温度範囲で電気化学特性が高まる。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 また、(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、及び(I)環状ホスファゼン化合物を含むと一段と広い温度範囲で電気化学特性が向上するので好ましい。
 (D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニル オギザレート、エチル 2-プロピニル オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる1種又は2種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる1種又は2種以上が更に好ましい。
 (E)スルトン、環状サルファイト、スルホン酸エステル、及びビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物(但し、三重結合含有化合物、及び前記一般式のいずれかで表される特定のリチウム塩は含まない)を用いることが好ましい。
 前記環状のS=O基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド等のスルトン、メチレン メタンジスルホネート等のスルホン酸エステル、エチレンサルファイト、及び4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン 2-オキシド等の環状サルファイトから選ばれる1種又は2種以上が好適に挙げられる。
 また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、及びビス(2-ビニルスルホニルエチル)エーテルから選ばれる1種又は2種以上が好適に挙げられる。
 前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、及び5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド、ブタン-2,3-ジイル ジメタンスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホンから選ばれる1種又は2種以上が更に好ましい。
 (F)環状アセタール化合物としては、1,3-ジオキソラン、又は1,3-ジオキサンが好ましく、1,3-ジオキサンが更に好ましい。
 (G)リン含有化合物としては、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが更に好ましい。
 (H)環状酸無水物としては、無水コハク酸、無水マレイン酸、又は3-アリル無水コハク酸が好ましく、無水コハク酸又は3-アリル無水コハク酸が更に好ましい。
 (I)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、又はフェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン、又はエトキシペンタフルオロシクロトリホスファゼンが更に好ましい。
 前記(D)~(I)の添加剤の含有量は、非水電解液中に0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と広い温度範囲で電気化学特性が高まる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、3質量%以下がより好ましく、2質量%以下が更に好ましい。
 また、一段と広い温度範囲で電気化学特性を向上させる目的で、非水電解液中に更に、シュウ酸骨格を有するリチウム塩、リン酸骨格を有するリチウム塩及びS=O基を有するリチウム塩の中から選ばれる1種以上のリチウム塩を含むことが好ましい。
 リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕、及びリチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕から選ばれる少なくとも1種のシュウ酸骨格を有するリチウム塩、LiPOやLiPOF等のリン酸骨格を有するリチウム塩、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕、及びFSOLiから選ばれる1種以上のS=O基を有するリチウム塩が好適に挙げられる。
 これらの中でも、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiTFMSB、LMS、LES、LFES、及びFSOLiから選ばれるリチウム塩を含むことがより好ましい。
 シュウ酸骨格を有するリチウム塩、リン酸骨格を有するリチウム塩及びS=O基を有するリチウム塩の中から選ばれる1種以上のリチウム塩の総含有量は、非水電解液中に0.001~10質量%が好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され保存特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温、高電圧で使用した場合の特性の改善効果が高まる。該含有量は、非水電解液中に0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましく、その上限は、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましい。
(電解質塩)
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF、LiBF、LiClO等の無機リチウム塩、LiN(SOF)〔LiFSI〕、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C7、LiPF(iso-C7)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩等が好適に挙げられ、これらの中から選ばれる少なくとも1種のリチウム塩が好適に挙げられ、これらの1種又は2種以上を混合して使用することができる。
 これらの中でも、LiPF、LiBF、LiN(SOCF、LiN(SO、及びLiN(SOF)〔LiFSI〕から選ばれる1種又は2種以上が好ましく、LiPFを用いることがもっとも好ましい。電解質塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
 また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiN(SOCF、及びLiN(SOF)〔LiFSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましく、LiPF以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、広い温度範囲で電気化学特性の向上効果が発揮されやすく、1.0M以下であると広い温度範囲で電気化学特性の向上効果が低下する懸念が少ないので好ましい。好ましくは0.01M以上、特に好ましくは0.03M以上、最も好ましくは0.04M以上である。その上限は、好ましくは0.8M以下、より好ましくは0.6M以下、更に好ましくは0.4M以下、特に好ましくは0.2M以下である。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して、特定の極性基がリン原子に結合した前記一般式(X)、(I)、(II)又は(III)で表される化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることがより好ましく、リチウム二次電池用として用いることが更に好ましい。
〔第1の蓄電デバイス(リチウム電池)〕
 本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン及びニッケルから選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2、及びLiCo0.98Mg0.02から選ばれる1種又は2種以上が挙げられる。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO、LiMn、LiNiOのような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に広い温度範囲で使用した場合における電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 特にMnを含む正極の場合に正極からのMnイオンの溶出に伴い電池の抵抗が増加しやすい傾向にあるため、広い温度範囲で使用した場合における電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる1種又は2種以上を含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、及びLiMnPOから選ばれる1種又は2種以上が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W、及びZrから選ばれる1種又は2種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO又はLiMnPOが好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 また、リチウム一次電池用正極としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VO、Nb、Bi、BiPb,Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、CoO等の、1種又は2種以上の金属元素の酸化物又はカルコゲン化合物、SO、SOCl等の硫黄化合物、一般式(CFnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。これらの中でも、MnO、V、フッ化黒鉛等が好ましい。
 上記の正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHとしては10.0~12.5である場合、一段と広い温度範囲で電気化学特性の改善効果が得られやすいので好ましく、更に10.5~12.0である場合が好ましい。
 また、正極中に元素としてNiが含まれる場合、正極活物質中のLiOH等の不純物が増える傾向があるため、一段と広い温度範囲で電気化学特性の改善効果が得られやすいので好ましく、正極活物質中のNiの原子濃度が5~25atomic%である場合が更に好ましく、8~21atomic%である場合が特に好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、及びサーマルブラックから選ばれる1種又は2種以上のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量を更に高めるため、好ましくは2g/cm以上であり、より好ましくは、3g/cm以上であり、更に好ましくは、3.6g/cm以上である。なお、その上限としては、4g/cm以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、及びLiTi12等のチタン酸リチウム化合物から選ばれる1種又は2種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが更に好ましい。
 特に複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、鱗片状天然黒鉛を球形化処理した粒子、を用いることが好ましい。
 負極の集電体を除く部分の密度を1.5g/cm以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と広い温度範囲で電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、ピーク強度の比I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲で電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温又は高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲で電気化学特性が良好となる。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるのでより好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量を更に高めるため、好ましくは1.5g/cm以上であり、より好ましくは1.7g/cm以上である。なお、その上限としては、2g/cm以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート型電池等を適用できる。
 電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲で電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 本発明の第2の蓄電デバイスは、本発明の非水電解液を含み、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の蓄電デバイス〕
 本発明の第3の蓄電デバイスは、本発明の非水電解液を含み、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 本発明の第4の蓄電デバイスは、本発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF等のリチウム塩が含まれる。
 上記の蓄電デバイスの構成例では、一般式(X)、(I)、(II)又は(III)で表される化合物を電解液に含有する例について説明したが、該リン酸リチウムを電解液以外の他の蓄電デバイス構成要素に含有してもよい。
 以下に説明する第二の態様~第四の態様では、特定の極性基がリン原子に直接結合した一般式(X)、(I)、(II)又は(III)(以下、「一般式(X)等」ともいう)で表されるリン酸リチウムを予め電解液以外の他の構成要素に添加した蓄電デバイスの例について説明する。
[第二の態様:一般式(X)等で表される化合物を正極に添加する例]
 特定の極性基がリン原子に結合した一般式(X)等で表される化合物を、上記の正極活物質や導電剤、及び結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより、一般式(X)等で表される化合物を添加した正極を作製することができる。
 一般式(X)等で表される化合物の添加量は、正極活物質に対して0.001~10質量%であることが好ましい。該添加量は、正極活物質に対して0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、8質量%以下がより好ましく、5質量%以下が更に好ましい。
[第三の態様:一般式(X)等で表される化合物を負極に添加する例]
 特定の極性基がリン原子に結合した一般式(X)等で表される化合物を、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより、一般式(X)等で表される化合物を添加した負極を作製することができる。
 一般式(X)等で表される化合物の添加量は、負極活物質に対して0.001~10質量%であることが好ましい。該添加量は、負極活物質に対して0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、8質量%以下がより好ましく、5質量%以下が更に好ましい。
[第四の態様:一般式(X)等で表される化合物をセパレータに添加する例]
 特定の極性基がリン原子に結合した一般式(X)等で表される化合物を有機溶媒や水に溶解した溶液に、セパレータを浸して含浸させた後、乾燥させる方法により一般式(X)等で表される化合物を表面や孔内に含んだセパレータを作製することができる。また、一般式(X)等で表される化合物を有機溶媒や水に分散させた塗工液を調製し、セパレータの表面全体に塗工液を塗布することにより、一般式(X)等で表される化合物を添加したセパレータを作製することができる。
〔新規化合物〕
 以下に、新規化合物である本発明の化合物について説明する。
 本発明の新規化合物は、蓄電デバイスに添加すると、広い温度範囲において蓄電デバイスの電気化学特性を向上させることができる。
 また、本発明の新規化合物は、蓄電デバイス用の添加剤として特に有用であるが、その特殊な構造から、化学一般、特に有機化学、電気化学、生化学及び高分子化学の分野において、電解質用途、耐熱用途等の材料として、医薬、農薬、電子材料、高分子材料等の中間原料としても有用である。
<第1発明関連の新規化合物>
 第1発明関連の新規化合物は、リン原子(P)に極性基が直接結合した下記一般式(I-V)~(I-VII)のいずれかで表されるリン酸リチウムである。これらのリン酸リチウムは蓄電デバイス用の添加剤として特に有用である。
Figure JPOXMLDOC01-appb-C000116

(式中、R11及びR12はそれぞれ独立にR20と同義である。ただし、R11及びR12の少なくとも1方は炭素数3~6のアルキニル基である。)
Figure JPOXMLDOC01-appb-C000117

(式中、R11、R13、及びR14はそれぞれ独立にR20と同義である。ただし、R11、R13、及びR14のすべてがリチウム原子の場合は除く。)
Figure JPOXMLDOC01-appb-C000118

(式中、R11及びR15はそれぞれ独立にR20と同義である。)
 第1発明関連の一般式(I-V)~(I-VII)で表されるリン酸リチウムは、前駆体であるリン酸エステルを溶媒の存在下、リチウム塩と反応させることによって合成することができるが、これらの方法に何ら限定されるものではない。
 前駆体となるリン酸エステルは公知の方法によって合成することができ、例えばJournal of the American Chemical Society, 2006, vol.128, #15, p.5251-5261、Angewandte Chemie-International Edition, 2010, vol.49, #38, p.6852-6855、独国特許第956404号公報等に記載の方法を適用することができる。
 前記リチウム塩基としては、酢酸リチウム、ギ酸リチウム、プロピオン酸リチウム、トリフルオロ酢酸リチウム、シュウ酸リチウム、安息香酸リチウム等のカルボン酸リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化アルカリ金属塩、炭酸リチウム、又は水酸化リチウム等が好適に挙げられるが、これらに何ら限定されるものではない。
 上記リチウム塩の中でも、酢酸リチウム、塩化リチウム、ヨウ化リチウム、炭酸リチウム、又は水酸化リチウムが好ましく、酢酸リチウム又は塩化リチウムがより好ましい。
 リチウム塩の使用量としては、リン酸エステル1モルに対して0.5モル以上であることが好ましく、0.7モル以上であることがより好ましく、0.9モル以上であることが更に好ましい。0.5モルより少ないと反応が十分に進行せず、収率が低下するためである。上限としては2モル以下が好ましく、1.5モル以下がより好ましく、1.1モル以下であることが更に好ましい。リチウム塩の使用量が2モルより多いと副反応が進行しやすく、収率が低下してしまい、不純物が増加してしまうためである。
 反応に用いる溶媒としては、水、アルコール、ニトリル、ケトン、スルホン、アミド、エーテル、エステル、芳香族、又はハロゲン化炭化水素が好適に挙げられ、中でもアルコール、ケトン、又はエーテルが好ましい。
 前記溶媒としては具体的に以下のものが好適に挙げられる。
 水、メタノール、エタノール、n-プロパノール等のアルコール、アセトニトリル、プロピオニトリル等のニトリル、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、ジメチルスルホキシド等のスルホン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド、ジエチルエーテル、テトラヒドロフラン等のエーテル、酢酸エチル、プロピオン酸エチル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等のエステル、トルエン、キシレン等の芳香族、又はジクロロメタン、1,2-ジクロロエタン、o-ジクロロベンゼン等のハロゲン系炭化水素が好適に挙げられるが、反応を阻害しない溶媒であれば、何らこれらに限定されるものではない。
 中でも、メタノール、エタノール等のアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、又はジエチルエーテル、テトラヒドロフラン等のエーテルが好ましく、アセトン、メチルエチルケトン、ジエチルエーテル、テトラヒドロフランがより好ましい。
 前記溶媒の使用量の下限は、リン酸エステル1質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましい。有機溶媒の使用量の上限は、リン酸エステル1質量部に対して、50質量部以下が好ましく、20質量部以下がより好ましい。
 反応温度の上限としては、80℃以下が好ましく、70℃以下がより好ましく、60℃以下が特に好ましい。反応温度が80℃より高い場合、副反応が進行しやすくなるためである。下限としては、0℃以上が好ましく、5℃以上がより好ましく、10℃以上が特に好ましい。反応温度が0℃より低い場合、反応速度が大幅に低下するためである。ただし、使用する溶媒の沸点が80℃以下の場合、その溶媒の沸点を反応温度の上限とし、使用する溶媒の融点が0℃以上の場合、その有機溶媒の融点を反応温度の下限とする。
 反応時間としては、上記の反応温度や、リチウム塩及び溶媒の使用量により上下するが、下限は0.5時間以上であることが好ましく、1時間以上であることがより好ましい。0.5時間未満では反応が十分に進行しないからである。一方で、上限は24時間以下であることが好ましく、16時間以下であることがより好ましい。24時間を超えてしまうと、副反応が進行しやすくなるためである。
<第2発明関連の新規化合物>
 第2発明関連の新規化合物は、リン原子(P)に環状の極性基が直接結合した下記一般式(IV-I)~(IV-VI)のいずれかで表されるホスホン酸リチウムである。これらのホスホン酸リチウムは蓄電デバイス用の添加剤として特に有用である。
Figure JPOXMLDOC01-appb-C000119
(式中、R41はR20と同義であり、p41及びq41は、それぞれ独立に0~2の整数を示し、1≦p41+q41≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000120
(式中、R42はR20と同義であり、p42及びq42は、それぞれ独立に0~3の整数を示し、1≦p42+q42≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000121
(式中、R43はR20と同義であり、p43及びq43は、それぞれ独立に0~2の整数を示し、1≦p43+q43≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000122
(式中、R44は前記R20と同義であり、Y44は-NH-基又は-O-基を示し、p44は、0~1の整数を示し、q44は1~4の整数を示し、2≦p44+q44≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000123
(式中、R45はR20と同義である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000124
(式中、R46は前記R20と同義であり、Y46は-NH-基又は-O-基を示し、p46は、0~1の整数を示し、q46は1~4の整数を示し、2≦p46+q46≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000125

(式中、R47及びR48は、それぞれ独立にR20と同義である。*は、環状の極性基に結合する部位を示す。)
<第3発明関連の新規化合物>
 第3発明関連の新規化合物は、リン原子(P)に極性基が直接結合した下記一般式(III-1)~(III -7)のいずれかで表される化合物である。これらの化合物は蓄電デバイス用の添加剤として特に有用である。
Figure JPOXMLDOC01-appb-C000126
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R113基、-OC(=O)-OR114基、-S(=O)115基、又は-S(=O)OR116基を示す。R111、R114、及びR116はそれぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、R112、R113、及びR115は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基を示し、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000127
(式中、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R123基、-OC(=O)-OR124基、-S(=O)125基、又は-S(=O)OR126基を示す。R121、R122、R124、及びR126は、それぞれ独立にR20と同義であり、R123及びR125は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000128
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R134基、-OC(=O)-OR135基、-S(=O)136基、又は-S(=O)OR137基を示す。R131、R132、R133、R135、及びR137は、それぞれ独立にR20と同義であり、R134及びR136は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000129
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R143基、-OC(=O)-OR144基、-S(=O)145基、又は-S(=O)OR146基を示す。R141、R144、及びR146は、それぞれ独立にR120と同義であり、R142、R143、及びR145は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000130
(式中、A25は水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R153基、-OC(=O)-OR154基、-S(=O)155基、又は-S(=O)OR156基を示す。R151、R152、R154、及びR156は、それぞれ独立にR20と同義であり、R153及びR155は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000131
(式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R162基、-OC(=O)-OR163基、-S(=O)164基、又は-S(=O)OR165基を示す。R161、R163、及びR265は、それぞれ独立にR20と同義であり、R162及びR164は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000132
(式中、R172は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を示し、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R173基、-OC(=O)-OR174基、-S(=O)175基、又は-S(=O)OR176基を示す。R171、R174、及びR176は、それぞれ独立にR20と同義であり、R173及びR175は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
 また、一般式(III-1)~(III-7)で表される化合物の具体例、好適例は、前記のとおりである。
 第3発明関連の一般式(III-1)~(III-7)で表される化合物は、前駆体であるホスホン酸エステルを溶媒の存在下、リチウム塩と反応させることによって合成することができるが、これらの方法に何ら限定されるものではない。
 前駆体となるホスホン酸エステルは公知の方法によって合成することができ、例えばOrganic Letters 2006, p.1573、Angewandte Chemie-International Edition, 2010, vol.49, #38, p.6852-6855、独国特許第956404号公報等に記載の方法を適用することができる。
 前記リチウム塩基の具体例は、前記と同じである。
 上記リチウム塩の中でも、酢酸リチウム、塩化リチウム、臭化リチウム、又はヨウ化リチウムが好ましく、塩化リチウム又は臭化リチウムがより好ましい。
 リチウム塩の使用量としては、ホスホン酸エステル1モルに対して0.5モル以上であることが好ましく、0.7モル以上であることがより好ましく、0.9モル以上であることが更に好ましい。0.5モルより少ないと反応が十分に進行せず、収率が低下するためである。上限としては2モル以下が好ましく、1.5モル以下がより好ましく、1.1モル以下であることが更に好ましい。リチウム塩の使用量が2モルより多いと副反応が進行しやすく、収率が低下してしまい、不純物が増加してしまうためである。
 反応に用いる溶媒の具体例、好適例、その使用量は、前記と同じである。
 反応温度の上限としては、120℃以下が好ましく、100℃以下がより好ましく、80℃以下が特に好ましい。反応温度が120℃より高い場合、副反応が進行しやすくなるためである。下限としては、0℃以上が好ましく、10℃以上がより好ましく、20℃以上が特に好ましい。反応温度が0℃より低い場合、反応速度が大幅に低下するためである。ただし、使用する溶媒の沸点が150℃以下の場合、その溶媒の沸点を反応温度の上限とし、使用する溶媒の融点が0℃以上の場合、その有機溶媒の融点を反応温度の下限とする。
 反応時間としては、上記の反応温度や、リチウム塩及び溶媒の使用量により上下するが、下限は0.5時間以上であることが好ましく、1時間以上であることがより好ましい。0.5時間未満では反応が十分に進行しないからである。一方で、上限は24時間以下であることが好ましく、16時間以下であることがより好ましい。24時間を超えてしまうと、副反応が進行しやすくなるためである。
〔第1発明〕
 以下、一般式(I)で表されるリン酸リチウムの合成例、及びそれを用いた電解液の実施例を示すが、本発明はこれらの例により何ら限定されるものではない。
合成例I-1[リチウム エチル 2-プロピニルオキシカルボニルホスホネート(化合物AA57)の合成]
 2-プロピニル (ジエトキシホスホリルホリル)ホルメート10.00g(45.4mmol)を、塩化リチウム1.73g(40.9mmol)とアセトン70gのスラリーに添加し6時間還流した。室温まで冷却して白色結晶を濾別し、テトラヒドロフランで洗浄した後、減圧乾燥し2.45gのリチウム エチル 2-プロピニルオキシカルボニルホスホネートを得た(収率30%)。
 得られたリチウム エチル 2-プロピニルオキシカルボニルホスホネートについて、H-NMRの測定を行い、その構造を確認した。
(1)H-NMR(400MHz,DMSO-d):δ = 4.61(dd, J = 2.4, 0.9 Hz, 2 H), 3.84-3.77(m, 2 H), 3.49(t, J = 2.4 Hz, 1 H), 1.12(t, J = 7.1 Hz, 3 H)
実施例I-1~I-19、比較例I-1~I-2
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/3 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、ケイ素(単体)10質量%、人造黒鉛(d002=0.335nm、負極活物質)80質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1~3に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温充電保存後の低温特性の評価〕
<初期の放電容量>
 上記の方法で作製したコイン電池を用いて、25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.35Vまで3時間充電し、-10℃に恒温槽の温度を下げ、1Cの定電流下終止電圧2.75Vまで放電して、初期の-10℃の放電容量を求めた。
<高温充電保存試験>
 次に、このコイン電池を65℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.35Vまで3時間充電し、4.35Vに保持した状態で10日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.75Vまで放電した。
<高温充電保存後の放電容量>
 更にその後、初期の放電容量の測定と同様にして、高温充電保存後の-10℃の放電容量を求めた。
<高温充電保存後の低温特性>
 高温充電保存後の低温特性を下記の-10℃放電容量の維持率より求めた。
 高温充電保存後の-10℃放電容量維持率(%)=(高温充電保存後の-10℃の放電容量/初期の-10℃の放電容量)×100
 電池特性を表1~3に示す。
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
実施例I-20、比較例I-3
  実施例I-1で用いた正極活物質に変えて、LiNi1/2Mn3/2(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiNi1/2Mn3/2 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を4.9V、放電終止電圧を2.7Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例I-1と同様にコイン電池を作製し、電池評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000136
実施例I-21、及び比較例I-4
 実施例I-1で用いた負極活物質に変えて、チタン酸リチウムLiTi12(負極活物質)を用いて、負極シートを作製した。チタン酸リチウムLiTi12 80質量%、アセチレンブラック(導電剤)15質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例I-1と同様にコイン電池を作製し、電池評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000137
 実施例I-22~I-23
 一般式(I)で表されるリン酸リチウムを、正極活物質の全質量を100として所定量を添加して作製した正極を用いた以外は、比較例I-1と同様にリチウム二次電池を作製し、電池評価を行った。結果を表6に示す。
 実施例I-24~I-25
 一般式(I)で表されるリン酸リチウムを正極には添加せず、負極活物質の全質量を100として所定量を添加して作製した負極を用いた以外は、比較例I-1と同様にリチウム二次電池を作製し、電池評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000138
 上記実施例I-1~I-19のリチウム二次電池は何れも、本発明の非水電解液において、一般式(I)で表されるリン酸リチウムを添加しなかった場合の比較例I-1、トリエチルホスホノフォルメートを添加した場合の比較例I-2のリチウム二次電池に比べ、広い温度範囲で電気化学特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、リン原子(P)に特定の極性基(X)が直接結合したリン酸リチウムを含有させた場合に特有の効果であることが判明した。
 また、実施例I-20と比較例I-3の対比、実施例I-21と比較例I-4の対比から正極にニッケルマンガン酸リチウム塩(LiNi1/2Mn3/2)を用いた場合や、負極にチタン酸リチウムを用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 また、実施例I-22~I-25と比較例I-1の対比から、一般式(I)で表されるリン酸リチウムを電解液以外の部位に含む場合においても、本発明の効果があることが判明した。
 更に、第1発明の非水電解液は、リチウム一次電池の広い温度範囲で放電特性を改善する効果も有する。
〔第2発明〕
 以下、一般式(II)で表される化合物の合成例、及びそれを用いた電解液の実施例を示すが、本発明はこれらの例により何ら限定されるものではない。
合成例II-1[リチウム エチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物a3)の合成]
 ジエチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d2)11.95g(53.3mmol)を、塩化リチウム2.14g(50.7mmol)とメチルイソブチルケトン30gのスラリーに添加し10時間加熱還流後、メチルイソブチルケトンを減圧濃縮により留去した。析出した白色結晶をジエチルエーテルで洗浄後、濾別、減圧乾燥し3.90gのリチウム エチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートを得た(収率39%)。
 得られたリチウム エチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。
 H-NMR(400MHz,DMSO-d):δ = 4.64-4.56(m, 1 H), 4.49-4.41(m, 1 H), 4.06-3.98(m, 1 H), 3.89-3.79(m, 2 H)、1.13(t, J = 7.1 Hz, 3 H)
合成例II-2[ジフェニル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d9)の合成]
 クロロエチレンカーボネート6.13g(50.0mmol)、亜リン酸ジフェニル11.71g(0.05mol)とを酢酸エチル50gに溶解し、10℃に冷却した。この溶液に、トリエチルアミン5.06g(0.05mol)を10℃~15℃で15分かけて滴下し、室温で3時間攪拌した。生成した塩をろ過、溶媒を減圧下濃縮し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/1溶出)で精製し、5.6gのジフェニル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートを得た(収率35%)。
得られたジフェニル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。
 H-NMR(400MHz,CDCl3):δ = 7.38-7.34(m, 4 H), 7.26-7.18(m, 6 H), 5.14-5.09(m, 1 H), 4.89-4.52(m, 2 H)
合成例II-3[ビス(2,2,2-トリフルオロエチル) (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネート(化合物d6)の合成]
 亜リン酸ジフェニルに代えて、亜リン酸ビストリフルオロエチルを使用したこと以外は、合成例II-2と同様に実験を行ない、9.1gのビス(2,2,2-トリフルオロエチル) (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートを得た(収率55%)。
得られたビス(2,2,2-トリフルオロエチル) (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。
 H-NMR(400MHz,CDCl3):δ = 5.00-4.96(m, 1 H), 4.78-4.62(m, 2 H), 4.60-4.48(m, 4 H)
合成例II-4[リチウム エチル (2、5-ジオキソピロリジン-1-イル)ホスホネート(化合物g3)の合成]
 ジエチル (2-オキソ-1,3-ジオキソラン-4-イル)ホスホネートに代えて、ジエチル (2、5-ジオキソピロリジン-1-イル)ホスホネートを使用したこと以外は、合成例II-1と同様に実験を行ない、7.0gのリチウム エチル (2、5-ジオキソピロリジン-1-イル)ホスホネートを得た(収率65%)。
 得られたリチウム エチル (2、5-ジオキソピロリジン-1-イル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。
 H-NMR(400MHz,DMSO-d):δ = 3.87-3.80(m, 2 H), 2.61 (s, 4 H),1.09(t, J = 7.1 Hz, 3 H)
実施例II-1~II-34、II-41~II-58、比較例II-1~II-2
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/3 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、ケイ素(単体)10質量%、人造黒鉛(d002=0.335nm、負極活物質)80質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表7~13に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温充電保存後の低温特性の評価〕
<初期の放電容量>
 実施例I-1と同様にして、初期の-10℃の放電容量を求めた。
<高温充電保存試験>
 次に、このコイン電池を60℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.35Vまで3時間充電し、4.35Vに保持した状態で10日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.75Vまで放電した。
<高温充電保存後の放電容量>
 実施例I-1と同様にして、高温充電保存後の-10℃の放電容量を求めた。
<高温充電保存後の低温特性>
 実施例I-1と同様にして、高温充電保存後の-10℃放電容量維持率(%)を求めた。
 電池特性を表7~13に示す。
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
Figure JPOXMLDOC01-appb-T000145
実施例II-35、II-59、比較例II-3
 実施例II-1で用いた正極活物質に変えて、LiNi1/2Mn3/2(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiNi1/2Mn3/2 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を4.9V、放電終止電圧を2.7Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例II-1と同様にコイン電池を作製し、電池評価を行った。結果を表14及び15に示す。
Figure JPOXMLDOC01-appb-T000146
Figure JPOXMLDOC01-appb-T000147
実施例II-36、II-60、及び比較例II-4
 実施例II-1で用いた負極活物質に変えて、チタン酸リチウムLiTi12(負極活物質)を用いて、負極シートを作製した。チタン酸リチウムLiTi12 80質量%、アセチレンブラック(導電剤)15質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例II-1と同様にコイン電池を作製し、電池評価を行った。結果を表16及び17に示す。
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
 実施例II-37、II-38、II-61、II-62
 一般式(II)で表される化合物を、正極活物質の全質量を100として所定量を添加して作製した正極を用いた以外は、比較例II-1と同様にリチウム二次電池を作製し、電池評価を行った。結果を表18及び19に示す。
 実施例II-39、II-40、II-63、II-64
 一般式(II)で表される化合物を正極には添加せず、負極活物質の全質量を100として所定量を添加して作製した負極を用いた以外は、比較例II-1と同様にリチウム二次電池を作製し、電池評価を行った。結果を表18及び19に示す。
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000151
 上記実施例II-1~II-34のリチウム二次電池は何れも、本発明の非水電解液において一般式(II)で表される化合物を添加しなかった場合の比較例II-1、トリエチルホスホノアセテートを添加した場合の比較例II-2のリチウム二次電池に比べ、広い温度範囲で電気化学特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、リン原子(P)に特定の環状の極性基(X)が直接結合した化合物を含有させた場合に特有の効果であることが判明した。
 実施例II-35と比較例II-3の対比、実施例II-36と比較例II-4の対比から正極にニッケルマンガン酸リチウム塩(LiNi1/2Mn3/2)を用いた場合や、負極にチタン酸リチウムを用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 実施例II-37~II-40と比較例II-1の対比から、一般式(II)で表されるリン原子(P)に特定の環状の極性基(X)が直接結合した化合物を電解液以外の部位に含む場合においても、本発明の効果があることが判明した。
 また、実施例II-41~II-64から、一般式(II)において、Xが-C(=O)-N-基を含む環状の極性基である場合も、Xが-C(=O)-O-基を含む環状の極性基である場合と同様な効果を有することが分かる。
 更に、第2発明の非水電解液は、リチウム一次電池の広い温度範囲で放電特性を改善する効果も有する。
〔第3発明〕
 以下、一般式(III)で表される化合物の合成例、及びそれを用いた電解液の実施例を示すが、本発明はこれらの例により何ら限定されるものではない。
合成例III-1〔リチウム エチル(1-アセトキシ-2-エトキシ-2-オキソエチル)ホスホネート(化合物B39)の合成〕
 100mlガラス製フラスコに、エチル 2-アセトキシ-2-(ジエトキシホスホリル)アセテート6.00g(21.3mmol),メチルイソブチルケトン50ml,塩化リチウム0.72g(17.0mmol)を加えた。浴温100℃で19時間撹拌した。析出した固体をろ過し、9.10gの白色固体を得た。これを浴温100℃で真空乾燥し、リチウム エチル(1-アセトキシ-2-エトキシ-2-オキソエチル)ホスホネート4.30gを白色固体として得た(収率97%)。
 得られたリチウム エチル (1-アセトキシ-2-エトキシ-2-オキソエチル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d6):δ4.80(1H,d,J=15.2Hz),3.95-4.1(2H,m),3.7-3.85(2H,m),2.05(3H,s),1.16(3H,t,J=7.1Hz),1.10(3H,t,J=7.1Hz)
合成例III-2〔リチウム エチル(2-メトキシ-1-((メチルスルホニル)オキシ)-2-オキソエチル)ホスホネート(化合物B17)の合成〕
 200mlフラスコに、メチル-2-(ジエトキシホスホリル)-2-((メチルスルホニル)オキシ)アセテート6.00g(19.7mmol),メチルイソブチルケトン90ml,塩化リチウム0.84g(19.7mmol)を加えた。浴温70℃で64時間撹拌した。不溶物をろ過し、ろ液を減圧濃縮した。濃縮物を水5mlに溶かし、トルエン10mlで3回洗浄した。水層を減圧濃縮後、浴温60℃で真空乾燥し、リチウム エチル(2-メトキシ-1-((メチルスルホニル)オキシ)-2-オキソエチル)ホスホネート3.43gを白色固体として得た(収率62%)。
 得られたリチウム エチル(2-メトキシ-1-((メチルスルホニル)オキシ)-2-オキソエチル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d):δ4.91(1H,d,J=15.7Hz),3.75-3.9(2H,m),3.66(3H,s),3.20(3H,s),1.12(3H,t,J=7.0Hz)
合成例III-3〔リチウム エチル ((ジエトキシホスホリル)メチル)ホスホネート(化合物C11)の合成〕
 100mlフラスコに、メチレンジホスホン酸テトラエチル5.00g(17.3mmol)、水10mlを加えた。水酸化リチウム一水和物0.65g(15.6mmol)を加え、室温で23時間撹拌した。炭酸ジメチル20mlを加え、減圧濃縮を行った。濃縮物に炭酸ジメチル20mlを加え、室温で24時間撹拌した。析出した固体をろ過し、浴温50℃で真空乾燥し、リチウム エチル ((ジエトキシホスホリル)メチル)ホスホネート3.21gを白色固体として得た(収率82%)。
 得られたリチウム エチル ((ジエトキシホスホリル)メチル)ホスホネートついて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d):δ4.10-3.95(m,4H),3.80-3.65(m,2H),2.03(dd,J=20,19Hz,1H)1.22(t,J=7Hz,6H),1.12(t,J=7Hz,3H)
 合成例III-4〔リチウム エチル (2,2,2-トリフルオロ-1-((メチルスルホニル)オキシ)エチル)ホスホネート(化合物B50)の合成〕
 100mlフラスコに、1-(ジエトキシホスホリル)-2,2,2-トリフルオロエチル メタンスルホネート6.00g(19.1mmol)、臭化リチウム1.33g(15.3mmol)、メチルイソブチルケトン50mlを加えた。浴温100℃で59時間攪拌した。析出した固体をろ過し、浴温40℃で真空乾燥した。リチウム エチル (2,2,2-トリフルオロ-1-((メチルスルホニル)オキシ)エチル)ホスホネート4.17gを白色固体として得た(収率93%)。
 得られたリチウム エチル (2,2,2-トリフルオロ-1-((メチルスルホニル)オキシ)エチル)ホスホネートついて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d):δ4.78-4.65(m,1H),3.88-3.78(m,2H),3.37(s,3H),1.12(t,J=7Hz,3H)
 合成例III-5〔リチウム エチル (1-アセトキシ-2,2,2-トリフルオロエチル)ホスホネート(化合物G7)の合成〕
 100mlフラスコに、1-(ジエトキシホスホリル)-2,2,2-トリフルオロエチルアセテート6.47g(22.0mmol)、臭化リチウム1.53g(17.6mmol)、メチルイソブチルケトン30mlを加えた。浴温100℃で54時間攪拌した。析出した固体をろ過し、浴温70℃で真空乾燥した。リチウム エチル (1-アセトキシ-2,2,2-トリフルオロエチル)ホスホネート3.65gを白色固体として得た(収率81%)。
 得られたリチウム エチル (1-アセトキシ-2,2,2-トリフルオロエチル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d6):δ5.32-5.19(m,1H),3.80(quintet,J=7.1Hz、2H),2.11(s、3H)、1.14(t,J=7.0Hz、3H)
 合成例III-6〔リチウム エチル (シアノメチル)ホスホネート(化合物F9)の合成〕
 100mlフラスコに、ジエチル(シアノメチル)ホスホネート5.06g(28.6mmol)、臭化リチウム1.97g(22.7mmol)、メチルイソブチルケトン40mlを加えた。浴温100℃で70時間攪拌した。析出した固体をろ過し、浴温70℃で真空乾燥した。リチウム エチル (シアノメチル)ホスホネート3.59gを白色固体として得た(収率100%)。
 得られたリチウム エチル (シアノメチル)ホスホネートについて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d6):δ3.82(quintet,J=7.1Hz,2H),2.54(d,J=18Hz、2H),1.14(t,J=7.0Hz、3H)
実施例III-1~III-27、比較例III-1~III-3
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/3 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、ケイ素(単体)10質量%、人造黒鉛(d002=0.335nm、負極活物質)80質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表20~23に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温充電保存後の低温特性の評価〕
<初期の放電容量>
 実施例I-1と同様にして、初期の-10℃の放電容量を求めた。
<高温充電保存試験>
 実施例I-1と同様にして、高温充電保存試験を行った。
<高温充電保存後の放電容量>
 実施例I-1と同様にして、高温充電保存後の-10℃の放電容量を求めた。
<高温充電保存後の低温特性>
 実施例I-1と同様にして、高温充電保存後の-10℃放電容量維持率(%)を求めた。
 電池特性を表20~22に示す。
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
実施例III-28、比較例III-4
 実施例III-1用いた正極活物質に変えて、LiNi1/2Mn3/2(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiNi1/2Mn3/2 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を4.9V、放電終止電圧を2.7Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例III-1と同様にコイン電池を作製し、電池評価を行った。結果を表24に示す。
Figure JPOXMLDOC01-appb-T000156
実施例III-29、及び比較例III-5
 実施例III-1で用いた負極活物質に変えて、チタン酸リチウムLiTi12(負極活物質)を用いて、負極シートを作製した。チタン酸リチウムLiTi12 80質量%、アセチレンブラック(導電剤)15質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例III-1と同様にコイン電池を作製し、電池評価を行った。結果を表25に示す。
Figure JPOXMLDOC01-appb-T000157
 実施例III-30、III-31
 一般式(III)で表される化合物を、正極活物質の全質量を100として所定量を添加して作製した正極を用いた以外は、比較例III-1と同様にリチウム二次電池を作製し、電池評価を行った。結果を表26に示す。
 実施例III-32、III-33
 一般式(III)で表される化合物を正極には添加せず、負極活物質の全質量を100として所定量を添加して作製した負極を用いた以外は、比較例III-1と同様にリチウム二次電池を作製し、電池評価を行った。結果を表26に示す。
 上記実施例III-1~III-27のリチウム二次電池は何れも、本発明の非水電解液において一般式(III)で表されるリン原子(P)に特定の極性基(X)が結合した化合物を添加しなかった場合の比較例III-1、トリエチルホスホノアセテートを添加した場合の比較例III-2、及びホスホノ酢酸を添加した場合の比較例III-3のリチウム二次電池に比べ、広い温度範囲で電気化学特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本発明のリン原子(P)に特定の極性基(X)が結合した化合物を含有させた場合に特有の効果であることが判明した。
 また、実施例III-28と比較例III-4の対比、実施例III-29と比較例III-5の対比から正極にニッケルマンガン酸リチウム塩(LiNi1/2Mn3/2)を用いた場合や、負極にチタン酸リチウムを用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 また、実施例III-30~III-33と比較例III-1の対比から、一般式(III)で表されるリン原子(P)に特定の極性基(X)が結合した化合物を電解液以外の部位に含む場合においても、本発明の効果があることが判明した。
 更に、第3発明の非水電解液は、リチウム一次電池の広い温度範囲で放電特性を改善する効果も有する。
 本発明に係るリン原子に極性基が結合した化合物を含む非水電解液を使用すれば、広い温度範囲における電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載されるリチウム二次電池等の蓄電デバイス用の非水電解液として使用すると、広い温度範囲で電気化学特性が低下しにくい蓄電デバイスを得ることができる。
 また、本発明の新規な化合物は、その特殊な構造から、化学一般、特に有機化学、電気化学、生化学及び高分子化学の分野において、電解質用途、耐熱用途等の材料として、医薬、農薬、電子材料、高分子材料等の中間原料、又は電池材料として有用である。

Claims (16)

  1.  非水溶媒に電解質塩が溶解されている非水電解液であって、リン原子(P)に極性基(X)が結合した下記一般式(X)で表される化合物を含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは、-C(=O)基、-P(=O)基、又は-S(=O)基を含む極性基(i)、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基(ii)、又は-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基(iii)である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基(iii)の場合、R10及びR20の少なくとも一方はリチウム原子である。)
  2.  前記化合物が、リン原子(P)に極性基(X)が直接結合した下記一般式(I)で表されるリン酸リチウムである、請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002

    (式中、R20は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)基、-P(=O)基、又は-S(=O)基を含む極性基(i)である。)
  3.  前記リン酸リチウムが、下記一般式(I-II)~(I-IV)のいずれかで表される少なくとも1種のリン酸リチウムである、請求項2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000003

    (式中、R及びRはそれぞれ独立にR20と同義である。)
    Figure JPOXMLDOC01-appb-C000004

    (式中、R、R、及びRはそれぞれ独立にR20と同義である。)
    Figure JPOXMLDOC01-appb-C000005

    (式中、R及びRはそれぞれ独立にR20と同義である。)
  4.  前記化合物が、リン原子(P)に環状の極性基(X)が直接結合した下記一般式(II)で表される化合物である、請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000006

    (式中、R10及びR20は、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)-O-基又は-C(=O)-N-基を含む4~7員環の極性基(iii)である。ただし、Xが-C(=O)-N-基を含む4~7員環の極性基の場合、R10及びR20の少なくとも一方はリチウム原子である。)
  5.  前記一般式(II)で表される化合物において、R10及びR20の少なくとも一方がリチウム原子である、請求項4に記載の非水電解液。
  6.  前記一般式(II)で表される化合物が、リン原子(P)に環状の極性基が直接結合した下記一般式(II-I)~(II-VI)のいずれかで表される少なくとも1種の化合物である、請求項4又は5に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000007

    (式中、R21はR20と同義であり、p21及びq21は、それぞれ独立に0~2の整数を示し、1≦p21+q21≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000008

    (式中、R22はR20と同義であり、p22及びq22は、それぞれ独立に0~3の整数を示し、1≦p22+q22≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000009

    (式中、R23はR20と同義であり、p23及びq23は、それぞれ独立に0~2の整数を示し、1≦p23+q23≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000010

    (式中、R24はR20と同義であり、Y24は-NH-基又は-O-基を示し、p24は、0~1の整数を示し、q24は1~4の整数を示し、2≦p24+q24≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000011

    (式中、R25はR20と同義である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000012

    (式中、R26はR20と同義であり、Y26は-NH-基又は-O-基を示し、p26は、0~1の整数を示し、q26は1~4の整数を示し、2≦p26+q26≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000013

    (式中、R27及びR28は、それぞれ独立にR20と同義である。*は、環状の極性基に結合する部位を示す。)
  7.  前記化合物が、リン原子(P)に極性基(X)が結合した下記一般式(III)で表される化合物である、請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000014

    (式中、R20は炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、Xは-C(=O)基、-P(=O)基、-S(=O)基、-CN基、又は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を含む極性基である。)
  8.  前記一般式(III)で表される化合物が、下記一般式(III-1)~(III-7)のいずれかで表される少なくとも1種の化合物である、請求項7に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000015

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R113基、-OC(=O)-OR114基、-S(=O)115基、又は-S(=O)OR116基を示す。R111、R114、及びR116はそれぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、R112、R113、及びR115は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基を示し、nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000016

    (式中、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R123基、-OC(=O)-OR124基、-S(=O)125基、又は-S(=O)OR126基を示す。R121、R122、R124、及びR126は、それぞれ独立にR20と同義であり、R123及びR125は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000017

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R134基、-OC(=O)-OR135基、-S(=O)136基、又は-S(=O)OR137基を示す。R131、R132、R133、R135、及びR137は、それぞれ独立にR20と同義であり、R134及びR136は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000018

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R143基、-OC(=O)-OR144基、-S(=O)145基、又は-S(=O)OR116基を示す。R141、R144、及びR146は、それぞれ独立にR20と同義であり、R142、R143、及びR145は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000019

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R153基、-OC(=O)-OR154基、-S(=O)155基、又は-S(=O)OR156基を示す。R151、R152、R154、及びR156は、それぞれ独立にR20と同義であり、R153及びR155は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000020

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R162基、-OC(=O)-OR163基、-S(=O)164基、又は-S(=O)OR165基を示す。R161、R163、及びR165は、それぞれ独立にR20と同義であり、R162及びR164は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000021

    (式中、R172は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を示し、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R173基、-OC(=O)-OR174基、-S(=O)175基、又は-S(=O)OR176基を示す。R171、R174、及びR176は、それぞれ独立にR20と同義であり、R173及びR175は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
  9.  正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が請求項1、2、4又は7に記載の非水電解液であることを特徴とする蓄電デバイス。
  10.  リン原子(P)に極性基が直接結合した下記一般式(I-V)~(I-VII)のいずれかで表されるリン酸リチウム。
    Figure JPOXMLDOC01-appb-C000022

    (式中、R11及びR12はそれぞれ独立にR20と同義である。ただし、R11及びR12の少なくとも1方は炭素数3~6のアルキニル基である。)
    Figure JPOXMLDOC01-appb-C000023

    (式中、R11、R13、及びR14はそれぞれ独立にR20と同義である。ただし、R11、R13、及びR14のすべてがリチウム原子の場合は除く。)
    Figure JPOXMLDOC01-appb-C000024

    (式中、R11及びR15はそれぞれ独立にR20と同義である。)
  11.  請求項10に記載のリン酸リチウムからなる蓄電デバイス用の添加剤。
  12.  リン原子(P)に環状の極性基が直接結合した下記一般式(IV-I)~(IV-VI)のいずれかで表されるホスホン酸リチウム。
    Figure JPOXMLDOC01-appb-C000025

    (式中、R41はR20と同義であり、p41及びq41は、それぞれ独立に0~2の整数を示し、1≦p41+q41≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000026

    (式中、R42はR20と同義であり、p42及びq42は、それぞれ独立に0~3の整数を示し、1≦p42+q42≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000027

    (式中、R43はR20と同義であり、p43及びq43は、それぞれ独立に0~2の整数を示し、1≦p43+q43≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000028

    (式中、R44は前記R20と同義であり、Y44は-NH-基又は-O-基を示し、p44は、0~1の整数を示し、q44は1~4の整数を示し、2≦p44+q44≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000029

    (式中、R45はR20と同義である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000030

    (式中、R46は前記R20と同義であり、Y46は-NH-基又は-O-基を示し、p46は、0~1の整数を示し、q46は1~4の整数を示し、2≦p46+q46≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(IV-VII)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000031

    (式中、R47及びR48は、それぞれ独立にR20と同義である。*は、環状の極性基に結合する部位を示す。)
  13.  請求項12に記載のホスホン酸リチウムからなる蓄電デバイス用の添加剤。
  14.  前記一般式(II)で表される化合物が、リン原子(P)に環状の極性基が直接結合した下記一般式(V-I)~(V-III)で表される化合物からなる群より選ばれる少なくとも1種である、請求項4に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000032

    (式中、R61及びR62は、それぞれ独立に炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基であり、p61及びq61は、それぞれ独立に0~2の整数を示し、1≦p61+q61≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(V-IV)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000033

    (式中、R63及びR64は、それぞれ独立にR61及びR62と同義であり、p62及びq62は、それぞれ独立に0~3の整数を示し、1≦p62+q62≦4である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(V-IV)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000034

    (式中、R65及びR66は、それぞれ独立にR61及びR62と同義であり、p63及びq63は、それぞれ独立に0~2の整数を示し、1≦p63+q63≦3である。ただし、上記環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(V-IV)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000035

    (式中、R71及びR72は、それぞれ独立にR61及びR62と同義である。)
  15.  リン原子(P)に極性基が結合した下記一般式(III-1)~(III-7)のいずれかで表される化合物。
    Figure JPOXMLDOC01-appb-C000036

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R113基、-OC(=O)-OR114基、-S(=O)115基、又は-S(=O)OR116基を示す。R111、R114、及びR116はそれぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基、又はリチウム原子であり、R112、R113、及びR115は、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる水素原子の一部がハロゲン原子で置換されていてもよい有機基を示し、nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000037

    (式中、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R123基、-OC(=O)-OR124基、-S(=O)125基、又は-S(=O)OR126基を示す。R121、R122、R124、及びR126は、それぞれ独立にR20と同義であり、R123及びR125は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000038

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R134基、-OC(=O)-OR135基、-S(=O)136基、又は-S(=O)OR137基を示す。R131、R132、R133、R135、及びR137は、それぞれ独立にR20と同義であり、R134及びR136は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000039

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R143基、-OC(=O)-OR144基、-S(=O)145基、又は-S(=O)OR116基を示す。R141、R144、及びR146は、それぞれ独立にR20と同義であり、R142、R143、及びR145は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000040

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R153基、-OC(=O)-OR154基、-S(=O)155基、又は-S(=O)OR156基を示す。R151、R152、R154、及びR156は、それぞれ独立にR20と同義であり、R153及びR155は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000041

    (式中、Aは水素原子、ハロゲン原子、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R162基、-OC(=O)-OR163基、-S(=O)164基、又は-S(=O)OR165基を示す。R161、R163、及びR165は、それぞれ独立にR20と同義であり、R162及びR164は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。
    Figure JPOXMLDOC01-appb-C000042

    (式中、R172は水素原子の一部がフッ素原子で置換された炭素数1~6のアルキル基を示し、Aは水素原子の一部がハロゲン原子で置換されていてもよい炭素数1~8のアルコキシ基、-OC(=O)R173基、-OC(=O)-OR174基、-S(=O)175基、又は-S(=O)OR176基を示す。R171、R174、及びR176は、それぞれ独立にR20と同義であり、R173及びR175は、それぞれ独立にR113及びR115と同義である。nは0~2の整数を示す。)
  16.  請求項15に記載の化合物からなる蓄電デバイス用の添加剤。
     
PCT/JP2015/064377 2014-08-25 2015-05-19 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物 WO2016031316A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/506,174 US10093688B2 (en) 2014-08-25 2015-05-19 Non-aqueous liquid electrolyte, electricity storage device using same, and phosphorus compound used therein
JP2016544992A JP6572897B2 (ja) 2014-08-25 2015-05-19 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-170755 2014-08-25
JP2014170755A JP5704277B1 (ja) 2014-08-25 2014-08-25 非水電解液およびそれを用いた蓄電デバイス
JP2015031732 2015-02-20
JP2015-031732 2015-02-20
JP2015031758 2015-02-20
JP2015-031758 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016031316A1 true WO2016031316A1 (ja) 2016-03-03

Family

ID=55399222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064377 WO2016031316A1 (ja) 2014-08-25 2015-05-19 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物

Country Status (3)

Country Link
US (1) US10093688B2 (ja)
JP (1) JP6572897B2 (ja)
WO (1) WO2016031316A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217480A (zh) * 2017-06-22 2017-09-29 盐城工学院 具有抗菌和阻燃性能的整理剂及其制备方法和应用方法
WO2018134251A1 (en) * 2017-01-18 2018-07-26 Basf Se Trifunctional additives for electrolyte composition for lithium batteries
US20200343581A1 (en) * 2018-01-10 2020-10-29 Mazda Motor Corporation Electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery
WO2021065863A1 (ja) * 2019-09-30 2021-04-08 Muアイオニックソリューションズ株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2021124651A1 (ja) * 2019-12-17 2021-06-24 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
WO2023276526A1 (ja) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7488167B2 (ja) 2020-09-25 2024-05-21 Muアイオニックソリューションズ株式会社 蓄電デバイス用非水電解液およびそれを用いた蓄電デバイス

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6538500B2 (ja) * 2015-09-16 2019-07-03 株式会社東芝 非水電解質電池、電池パック、及び車
KR20170096423A (ko) * 2016-02-16 2017-08-24 삼성에스디아이 주식회사 리튬전지용 전해질 및 이를 포함하는 리튬전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN107910568B (zh) * 2017-11-15 2020-04-24 厦门大学 一种锂原电池
JP7187126B2 (ja) 2018-03-27 2022-12-12 三菱ケミカル株式会社 非水系電解液及びそれを用いた蓄電デバイス
EP3923383A4 (en) * 2019-04-19 2023-09-06 Murata Manufacturing Co., Ltd. ELECTRODE CONTAINING MAGNESIUM AND METHOD FOR THE PRODUCTION THEREOF AND ELECTROCHEMICAL DEVICE
KR20210031158A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20210052006A (ko) * 2019-10-31 2021-05-10 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN113130996B (zh) * 2019-12-31 2022-12-13 北京卫蓝新能源科技有限公司 一种锂电池电解液添加剂及其制备方法和应用
EP3907804A4 (en) * 2020-03-13 2021-12-22 Ningde Amperex Technology Limited ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE INCLUDING IT
CN111342135B (zh) * 2020-03-13 2022-02-15 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN112201852B (zh) * 2020-09-30 2022-11-15 香河昆仑新能源材料股份有限公司 一种锂离子电池电解液添加剂及其制备方法以及锂离子电池电解液
CN112186248B (zh) * 2020-09-30 2022-11-25 香河昆仑新能源材料股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN112117493B (zh) * 2020-10-19 2022-05-06 珠海冠宇电池股份有限公司 一种锂离子电池用电解液及包括该电解液的锂离子电池
CN114388887B (zh) * 2020-10-22 2024-09-17 深圳市比亚迪锂电池有限公司 一种电解液及锂离子电池
KR102651787B1 (ko) * 2021-07-14 2024-03-26 주식회사 엘지에너지솔루션 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
CN114094191B (zh) * 2021-11-24 2024-01-30 东莞新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置
CN118661306A (zh) 2022-02-04 2024-09-17 中央硝子株式会社 非水电解液、非水电解液电池、非水电解液电池的制造方法、化合物、以及非水电解液用添加剂
WO2023177162A1 (ko) * 2022-03-16 2023-09-21 주식회사 엘지에너지솔루션 리튬 이차전지
CN115572364A (zh) * 2022-11-07 2023-01-06 重庆宏国聚材科技有限责任公司 一种溶剂型高分子磷酸盐及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730983B2 (ja) * 1989-07-07 1998-03-25 三洋電機株式会社 非水系電解液電池
JP2008300081A (ja) * 2007-05-29 2008-12-11 Toyota Motor Corp リチウム二次電池用電解液
JP2010282836A (ja) * 2009-06-04 2010-12-16 Nissan Motor Co Ltd リチウムイオン二次電池
WO2012067248A1 (ja) * 2010-11-19 2012-05-24 三菱化学株式会社 4-アルキニル-1,3-ジオキソラン-2-オン誘導体の製造法
JP2013109930A (ja) * 2011-11-18 2013-06-06 Mitsubishi Chemicals Corp 非水系電解液、および非水系電解液二次電池
JP2013534205A (ja) * 2010-08-04 2013-09-02 ソルヴェイ(ソシエテ アノニム) POF3またはPF5からのLiPO2F2の製造
WO2013168716A1 (ja) * 2012-05-08 2013-11-14 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びジハロリン酸エステル化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943201A (en) * 1973-07-23 1976-03-09 E. I. Du Pont De Nemours And Comapny Alkoxy carboxycarbonylphosphonic acid esters
UST986003I4 (en) * 1979-02-21 1979-09-04 Method for controlling herbaceous weeds
KR101531483B1 (ko) 2007-03-19 2015-06-25 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
WO2010074838A1 (en) * 2008-12-23 2010-07-01 Dow Global Technologies Inc. Battery electrolyte solutions containing aromatic phosphorus compounds
KR101754606B1 (ko) * 2012-11-13 2017-07-07 삼성에스디아이 주식회사 전해액 첨가제, 전해액 및 리튬 이차 전지
JP2015018713A (ja) 2013-07-11 2015-01-29 旭化成株式会社 非水電解液、及び該非水電解液を用いたリチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730983B2 (ja) * 1989-07-07 1998-03-25 三洋電機株式会社 非水系電解液電池
JP2008300081A (ja) * 2007-05-29 2008-12-11 Toyota Motor Corp リチウム二次電池用電解液
JP2010282836A (ja) * 2009-06-04 2010-12-16 Nissan Motor Co Ltd リチウムイオン二次電池
JP2013534205A (ja) * 2010-08-04 2013-09-02 ソルヴェイ(ソシエテ アノニム) POF3またはPF5からのLiPO2F2の製造
WO2012067248A1 (ja) * 2010-11-19 2012-05-24 三菱化学株式会社 4-アルキニル-1,3-ジオキソラン-2-オン誘導体の製造法
JP2013109930A (ja) * 2011-11-18 2013-06-06 Mitsubishi Chemicals Corp 非水系電解液、および非水系電解液二次電池
WO2013168716A1 (ja) * 2012-05-08 2013-11-14 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びジハロリン酸エステル化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KINZHYBALO, VASYL ET AL.: "Electron density distribution in tetralithium hypodiphosphate hexahydrate, Li4P206·6H20", ACTA CRYSTALLOGRAPHICA, SECTION B: STRUCTURAL SCIENCE , CRYSTAL ENGINEERING AND MATERIALS, vol. 69, no. 4, 2013, pages 344 - 355 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134251A1 (en) * 2017-01-18 2018-07-26 Basf Se Trifunctional additives for electrolyte composition for lithium batteries
CN110178259A (zh) * 2017-01-18 2019-08-27 巴斯夫欧洲公司 用于锂电池组的电解质组合物的三官能添加剂
CN107217480A (zh) * 2017-06-22 2017-09-29 盐城工学院 具有抗菌和阻燃性能的整理剂及其制备方法和应用方法
US20200343581A1 (en) * 2018-01-10 2020-10-29 Mazda Motor Corporation Electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery
WO2021065863A1 (ja) * 2019-09-30 2021-04-08 Muアイオニックソリューションズ株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2021124651A1 (ja) * 2019-12-17 2021-06-24 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
JP7488167B2 (ja) 2020-09-25 2024-05-21 Muアイオニックソリューションズ株式会社 蓄電デバイス用非水電解液およびそれを用いた蓄電デバイス
WO2023276526A1 (ja) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
US10093688B2 (en) 2018-10-09
US20170275311A1 (en) 2017-09-28
JP6572897B2 (ja) 2019-09-11
JPWO2016031316A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6572897B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物
JP6380409B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるカルボン酸エステル化合物
JP6583267B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリチウム塩
EP3012896B1 (en) Nonaqueous electrolyte solution, electricity storage device using same, and biphenyl group-containing carbonate compound used in same
EP3086397B1 (en) Nonaqueous electrolyte solution, electricity storage device using same, and phosphonoformic acid compound used in same
JP6838363B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6866067B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2019530180A (ja) 電解液及び電池
JP7277819B2 (ja) 化合物、電解液用添加剤、電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2020175522A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール及び化合物
WO2017069278A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
WO2019016903A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
CN111247681B (zh) 电解液、电化学器件、锂离子二次电池及组件
WO2021065863A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP2013089390A (ja) 非水電解液及びそれを用いた蓄電デバイス
JP7025436B2 (ja) リチウムイオン電池のための電解質組成物のための官能性スルホニルフルオリド添加剤
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5704277B1 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP7076527B2 (ja) リチウム電池用の電解質組成物のための複素環式スルホニルフルオリド添加剤
JP2019169238A (ja) 非水電解液用カチオン、非水電解液、それを用いた蓄電デバイス、及びそれに用いるホスホニウム塩
WO2021235358A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール及び化合物
KR20230043121A (ko) 비수 전해액 및 그것을 사용한 축전 디바이스
JP2016046242A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2022054303A (ja) 蓄電デバイス用非水電解液およびそれを用いた蓄電デバイス
JP2021054766A (ja) アルカリ金属塩化合物、それを用いた非水電解液、及びその非水電解液を用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15506174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836420

Country of ref document: EP

Kind code of ref document: A1