WO2023276526A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2023276526A1
WO2023276526A1 PCT/JP2022/022080 JP2022022080W WO2023276526A1 WO 2023276526 A1 WO2023276526 A1 WO 2023276526A1 JP 2022022080 W JP2022022080 W JP 2022022080W WO 2023276526 A1 WO2023276526 A1 WO 2023276526A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
composite oxide
positive electrode
less
secondary battery
Prior art date
Application number
PCT/JP2022/022080
Other languages
English (en)
French (fr)
Inventor
淵龍 仲
翔平 渡川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023531722A priority Critical patent/JPWO2023276526A1/ja
Priority to CN202280045935.4A priority patent/CN117597809A/zh
Priority to EP22832684.9A priority patent/EP4366014A1/en
Publication of WO2023276526A1 publication Critical patent/WO2023276526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to non-aqueous electrolyte secondary batteries.
  • a non-aqueous electrolyte secondary battery represented by a lithium-ion secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a positive electrode positive electrode
  • a negative electrode negative electrode
  • a non-aqueous electrolyte In order to ensure excellent characteristics of non-aqueous electrolyte secondary batteries, attempts have been made to improve battery components.
  • Patent Document 1 describes a compound (A) having an organic group having 1 to 20 carbon atoms which may have a substituent on the nitrogen atom of isocyanuric acid, a nitrile compound, an isocyanate compound, a difluorophosphoric acid compound, or a fluoro proposed a non-aqueous electrolyte containing sulfonate and the like.
  • Patent Document 2 discloses a lithium-containing composite oxide represented by Formula 1: Li x Ni 1-yz-v-w Co y Al z M1 v M2 w O 2 , wherein element M1 in Formula 1 is at least one selected from the group consisting of Mn, Ti, Y, Nb, Mo and W, element M2 is at least two selected from the group consisting of Mg, Ca, Sr and Ba, and The element M2 contains at least Mg and Ca, and formula 1 satisfies 0.97 ⁇ x ⁇ 1.1, 0.05 ⁇ y ⁇ 0.35, 0.005 ⁇ z ⁇ 0.1, 0.0001 ⁇ Satisfying v ⁇ 0.05 and 0.0001 ⁇ w ⁇ 0.05, the composite oxide has primary particles aggregated to form secondary particles, and the average particle diameter of the primary particles of the composite oxide is , 0.1 ⁇ m or more and 3 ⁇ m or less, and the average particle size of the secondary particles of the composite oxide is 8 ⁇ m or more and 20 ⁇ m or less.
  • Formula 1 Li x Ni 1-yz-v-
  • JP 2014-194930 A Japanese Patent Application Laid-Open No. 2006-310181
  • the positive electrode includes a positive electrode active material
  • the positive electrode active material includes a lithium-transition metal composite oxide containing Ni, Mn, and Al, and a metal other than Li contained in the lithium-transition metal composite oxide.
  • the proportions of Ni, Mn, and Al in the elements are Ni: 50 atomic % or more, Mn: 10 atomic % or less, and Al: 10 atomic % or less, and the lithium-transition metal composite oxide contains Co
  • the ratio of Co to the metal elements other than Li is 1.5 atomic % or less
  • the non-aqueous electrolyte has the general formula (1):
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms
  • R 3 is an alkyl group having 1 to 4 carbon atoms. It relates to a non-aqueous electrolyte secondary battery, which is a fluorinated alkyl group.
  • FIG. 1 is a schematic perspective view of a partially cutaway non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure
  • any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than or equal to the upper limit.
  • a plurality of materials are exemplified, one of them may be selected and used alone, or two or more may be used in combination.
  • the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
  • Non-aqueous electrolyte secondary batteries include at least lithium ion batteries and lithium metal secondary batteries.
  • a nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode contains a positive electrode active material.
  • the positive electrode active material contains a lithium transition metal composite oxide containing Ni, Mn and Al.
  • the Co content of the lithium-transition metal composite oxide can be reduced and the Ni content can be increased, it is advantageous in terms of cost and can ensure a high capacity. Therefore, in the non-aqueous electrolyte secondary battery according to the present disclosure, the Ni content of the lithium-transition metal composite oxide is increased.
  • the lithium-transition metal composite oxide does not contain Co, or the ratio of Co to metal elements other than Li is limited to 1.5 atomic % or less. .
  • the lithium-transition metal composite oxide in the non-aqueous electrolyte secondary battery according to the present disclosure is also referred to as “composite oxide NMA”.
  • the proportions of Ni, Mn, and Al in the metal elements other than Li contained in the composite oxide NMA are Ni: 50 atomic % or more, Mn: 10 atomic % or less, and Al: 10 atomic % or less, and The composite oxide NMA does not contain Co, or the ratio of Co to metal elements other than Li is 1.5 atomic % or less.
  • Mn and Al contribute to stabilization of the crystal structure of the composite oxide NMA with a reduced Co content.
  • the composite oxide NMA has a Co content limited to 1.5 atomic % or less and a high Ni content, the crystal structure is likely to be unstable, and the composite oxide NMA has Al, Ni and other metals can be eluted.
  • the positive electrode capacity is lowered, and the cycle characteristics (or capacity retention rate) are lowered.
  • eluted Ni forms an oxide film having a structure that prevents the absorption and release of Li ions on the particle surface of the composite oxide NMA, which may lead to an increase in internal resistance. .
  • the non-aqueous electrolyte is easily oxidatively decomposed, thereby deteriorating cycle characteristics (or capacity retention rate) and increasing resistance.
  • the non-aqueous electrolyte secondary battery uses a composite oxide NMA and a non-aqueous electrolyte containing an organic phosphorus compound (hereinafter also referred to as compound A) represented by the following general formula (1).
  • a water electrolyte is used.
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms.
  • R 3 is a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the oxidation resistance of the non-aqueous electrolyte is improved, and a good coating derived from the compound A is formed on the surface of the positive electrode active material particles.
  • the film has excellent ionic conductivity and stability, and suppresses deterioration of the positive electrode active material (elution of metal from the positive electrode active material) due to contact between the positive electrode active material and the non-aqueous electrolyte. As a result, it is considered that deterioration in cycle characteristics due to deterioration of the positive electrode active material is suppressed.
  • the effect of improving the cycle characteristics and the effect of suppressing the increase in internal resistance cannot be significantly obtained.
  • the above effect can be remarkably obtained by combining the compound A with the composite oxide NMA.
  • the effect of the composite oxide NMA is remarkable because the composite oxide NMA has a large resistance of the composite oxide itself and relatively brittle particles compared to the lithium transition metal composite oxide having a higher Co content. It is considered to be for Particles of the composite oxide NMA are prone to cracking, elution of metal is likely to be significant, and resistance is likely to increase during charging and discharging.
  • the range of improvement in the properties due to the film derived from the compound A is large.
  • lithium-transition metal composite oxides with a high Co content are superior from this point of view, so it can be said that the need to use compound A is low.
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms may be linear or branched.
  • Examples of alkyl groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-butyl group. Among them, a methyl group and an ethyl group are preferable.
  • R 1 and R 2 are fluorinated alkyl group having 1 to 4 carbon atoms, the solubility of the reaction product derived from the organophosphorus compound tends to increase and the ability to form a film tends to decrease.
  • R 3 is a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the fluorinated alkyl group means a group in which at least one hydrogen atom of an alkyl group is substituted with a fluorine atom.
  • the remaining hydrogen atoms not substituted with fluorine atoms may be further substituted with halogen atoms other than fluorine atoms (eg, chlorine atom, bromine atom).
  • a fluorinated alkyl group may be linear or branched.
  • R 3 is an alkyl group having 1 to 4 carbon atoms and does not contain a fluorine atom, it is considered that a film derived from an organophosphorus compound is unlikely to exist stably. Moreover, even if R 3 is a fluorinated alkyl group having 1 to 4 carbon atoms, if it is bonded to a phosphorus atom via an oxygen atom, the resistance of the film tends to increase.
  • Examples of the fluorinated alkyl group having 1 to 4 carbon atoms include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2-difluoroethyl group and a 2,2,2-trifluoroethyl group.
  • a fluoromethyl group, a difluoromethyl group, and a trifluoromethyl group are preferred.
  • a specific example of compound A is preferably at least one selected from the group consisting of diethyl(fluoromethyl)phosphonate, diethyl(difluoromethyl)phosphonate and diethyl(trifluoromethyl)phosphonate. Among them, diethyl (difluoromethyl) phosphonate is more preferable.
  • Compound A may be used alone or in combination of two or more.
  • the non-aqueous electrolyte may further contain a fluorinated cyclic carbonate.
  • the fluorinated cyclic carbonate means a compound in which at least one hydrogen atom of the cyclic carbonate is substituted with a fluorine atom.
  • a fluorinated cyclic carbonate e.g., FEC
  • FEC fluorinated cyclic carbonate
  • Fluorinated cyclic carbonates include, for example, compounds represented by the following general formula (2).
  • R 4 to R 7 are each independently a hydrogen atom or a methyl group, and at least one of the hydrogen atom and the hydrogen atom of the methyl group is substituted with a fluorine atom. ing. The remaining hydrogen atoms not substituted with fluorine atoms may be substituted with halogen atoms other than fluorine atoms (for example, chlorine atoms and bromine atoms).
  • fluorinated cyclic carbonates include fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1-fluoropropylene carbonate, 3,3,3-trifluoropropylene carbonate, 2,3-difluoro-2,3-butylene carbonate and the like.
  • FEC fluoroethylene carbonate
  • 1,2-difluoroethylene carbonate 1,1-difluoroethylene carbonate
  • 1-fluoropropylene carbonate 1,3,3-trifluoropropylene carbonate
  • 2,3-difluoro-2,3-butylene carbonate 2,3-difluoro-2,3-butylene carbonate and the like.
  • Fluorinated cyclic carbonates may be used alone or in combination of two or more.
  • the non-aqueous electrolyte secondary battery according to the present disclosure will be specifically described below for each component.
  • the positive electrode contains a positive electrode active material.
  • a positive electrode generally includes a positive electrode current collector and a layered positive electrode mixture (hereinafter referred to as a positive electrode mixture layer) held by the positive electrode current collector.
  • the positive electrode mixture layer can be formed by coating the surface of the positive electrode current collector with a positive electrode slurry in which the components of the positive electrode mixture are dispersed in a dispersion medium, and drying the slurry. The dried coating film may be rolled if necessary.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a thickener, a conductive agent, etc. as optional components.
  • the positive electrode active material contains composite oxide NMA.
  • Composite oxide NMA contains Ni, Mn, and Al, and may contain a trace amount of Co, or may contain no Co. From the viewpoint of manufacturing cost reduction, it is desirable that the Co content is as small as possible. The following are more preferable, and Co-free is the most preferable.
  • the proportions of Ni, Mn and Al in the metal elements other than Li are Ni: 50 atomic % or more, Mn: 10 atomic % or less, and Al: 10 atomic %. atomic % or less.
  • the Ni content in the metal elements other than Li is desirably 80 atomic % or more, more desirably 90 atomic % or more, and may be 92 atomic % or more.
  • the Mn content may be 7 atomic % or less, 5 atomic % or less, or 3 atomic % or less.
  • the Al content may be 9 atomic % or less, 7 atomic % or less, or 5 atomic % or less.
  • Composite oxide NMA has, for example, a layered crystal structure (for example, rock salt type crystal structure).
  • the composite oxide NMA is represented, for example, by the formula: Li ⁇ Ni (1-x1-x2-yz) Co x1 Mn x2 Al y M z O 2+ ⁇ .
  • Element M is an element other than Li, Ni, Mn, Al, Co and oxygen.
  • ⁇ indicating the atomic ratio of lithium is, for example, 0.95 ⁇ 1.05. ⁇ increases and decreases due to charging and discharging. In (2+ ⁇ ) representing the atomic ratio of oxygen, ⁇ satisfies ⁇ 0.05 ⁇ 0.05.
  • the valence of Ni in the composite oxide NMA with increased capacity tends to increase.
  • the atomic ratio of Ni increases, the atomic ratio of other elements relatively decreases. In this case, especially in a fully charged state, the crystal structure tends to become unstable, metals (such as Ni) tend to leach out, and the crystal structure changes to a crystal structure that makes reversible absorption and release of lithium ions difficult due to repeated charging and discharging. becomes easier to inactivate. As a result, cycle characteristics tend to deteriorate. Therefore, when the composite oxide NMA with a high Ni content is used, the addition of the compound A to the non-aqueous electrolyte significantly improves the cycle characteristics.
  • x1 which indicates the atomic ratio of Co, is, for example, 0.015 or less (0 ⁇ x1 ⁇ 0.015), may be 0.01 or less, or may be 0.005 or less.
  • x1 0, the case where Co is below the detection limit is included.
  • x2 which indicates the atomic ratio of Mn, is, for example, 0.1 or less (0 ⁇ x2 ⁇ 0.1), may be 0.07 or less, may be 0.05 or less, or may be 0.03 It may be below. x2 may be 0.01 or more, or may be 0.02 or more. Mn contributes to stabilization of the crystal structure of the composite oxide NMA, and the composite oxide NMA contains inexpensive Mn, which is advantageous for cost reduction.
  • y which indicates the atomic ratio of Al, is, for example, 0.1 or less (0 ⁇ y ⁇ 0.1), may be 0.09 or less, may be 0.07 or less, or may be 0.05 It may be below. y may be 0.01 or more, or 0.02 or more. Al contributes to stabilization of the crystal structure of the composite oxide NMA. Moreover, it is preferable to satisfy 0.05 ⁇ x2+y ⁇ 0.1. In this case, the effect of compound A and the effect of suppressing an increase in internal resistance after repeated charging and discharging are further realized.
  • z which indicates the atomic ratio of the element M, is, for example, 0 ⁇ z ⁇ 0.10, may be 0 ⁇ z ⁇ 0.05, or may be 0.001 ⁇ z ⁇ 0.005.
  • the element M may be at least one selected from the group consisting of Ti, Zr, Nb, Mo, W, Fe, Zn, B, Si, Mg, Ca, Sr, Sc and Y.
  • the surface structure of the composite oxide NMA is stabilized, the resistance is reduced, and the metal is further eluted. considered to be suppressed. It is more effective when the element M is unevenly distributed near the particle surfaces of the composite oxide NMA.
  • the content of the elements constituting the composite oxide NMA can be measured using an inductively coupled plasma atomic emission spectroscopy (ICP-AES), an electron probe microanalyzer (EPMA), or an energy dispersive type It can be measured by an X-ray analyzer (Energy dispersive X-ray spectroscopy: EDX) or the like.
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • EPMA electron probe microanalyzer
  • EDX X-ray analyzer
  • Composite oxide NMA is, for example, secondary particles in which multiple primary particles are aggregated.
  • the particle size of the primary particles is generally 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the average particle size of the secondary particles of the composite oxide is, for example, 3 ⁇ m or more and 30 ⁇ m or less, and may be 5 ⁇ m or more and 25 ⁇ m or less.
  • the average particle size of secondary particles means the particle size (volume average particle size) at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • particle size is sometimes referred to as D50.
  • LA-750 manufactured by HORIBA, Ltd. can be used as the measuring device.
  • Composite oxide NMA can be obtained, for example, by the following procedure. First, a solution containing an alkali such as sodium hydroxide is added dropwise to a solution of a salt containing a metal element constituting the composite oxide NMA under stirring, and the pH is adjusted to the alkaline side (eg, 8.5 to 12.5). , a composite hydroxide containing metal elements (Ni, Mn, Al, optionally Co, and optionally element M) is precipitated. Subsequently, by calcining the composite hydroxide, a composite oxide containing a metal element (hereinafter also referred to as "raw material composite oxide”) is obtained. The firing temperature at this time is not particularly limited, but is, for example, 300°C to 600°C.
  • the firing temperature at this time is not particularly limited, but is, for example, 300°C to 600°C.
  • the composite oxide NMA can be obtained by mixing the raw material composite oxide, the lithium compound, and, if necessary, a compound containing the element M, and firing the mixture in an oxygen stream.
  • the firing temperature at this time is not particularly limited, but is, for example, 450° C. or higher and 800° C. or lower. Each firing may be performed in one step, in multiple steps, or while raising the temperature.
  • lithium compound lithium oxide, lithium hydroxide, lithium carbonate, etc.
  • the element M By mixing a compound containing the element M when mixing the raw material composite oxide and the lithium compound, the element M can be unevenly distributed in the vicinity of the particle surface of the composite oxide NMA.
  • the positive electrode active material can contain a lithium transition metal composite oxide other than the composite oxide NMA, but it is preferable that the ratio of the composite oxide NMA is large.
  • the ratio of the composite oxide NMA in the positive electrode active material is, for example, 90% by mass or more, and may be 95% by mass or more.
  • the ratio of the composite oxide in the positive electrode active material is 100% by mass or less.
  • a resin material is used as the binder.
  • binders include fluororesins, polyolefin resins, polyamide resins, polyimide resins, acrylic resins, vinyl resins, and rubber-like materials (eg, styrene-butadiene copolymer (SBR)).
  • SBR styrene-butadiene copolymer
  • thickeners examples include cellulose derivatives such as cellulose ethers. Examples of cellulose derivatives include carboxymethyl cellulose (CMC) and modified products thereof, methyl cellulose, and the like. A thickener may be used individually by 1 type, and may be used in combination of 2 or more type.
  • CMC carboxymethyl cellulose
  • Examples of conductive agents include conductive fibers and conductive particles.
  • Examples of conductive fibers include carbon fibers, carbon nanotubes, and metal fibers.
  • Conductive particles include conductive carbon (carbon black, graphite, etc.), metal powder, and the like. Conductive agents may be used singly or in combination of two or more.
  • the dispersion medium used for the positive electrode slurry is not particularly limited, but examples include water, alcohol, N-methyl-2-pyrrolidone (NMP), and mixed solvents thereof.
  • a metal foil can be used as the positive electrode current collector.
  • the positive electrode current collector may be porous. Examples of porous current collectors include nets, punched sheets, expanded metals, and the like. Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloys, and titanium.
  • the thickness of the positive electrode current collector is not particularly limited, but is, for example, 1 to 50 ⁇ m, and may be 5 to 30 ⁇ m.
  • the negative electrode includes at least a negative electrode current collector and may include a negative electrode active material.
  • a negative electrode generally includes a negative electrode current collector and a layered negative electrode mixture (hereinafter referred to as a negative electrode mixture layer) held by the negative electrode current collector.
  • the negative electrode mixture layer can be formed by coating the surface of the negative electrode current collector with a negative electrode slurry in which the components of the negative electrode mixture are dispersed in a dispersion medium, and drying the slurry. The dried coating film may be rolled if necessary.
  • the negative electrode mixture contains a negative electrode active material as an essential component, and may contain a binder, a thickener, a conductive agent, etc. as optional components.
  • the negative electrode active material metallic lithium, a lithium alloy, or the like may be used, but a material capable of electrochemically intercalating and deintercalating lithium ions is preferably used. Examples of such materials include carbonaceous materials and Si-containing materials.
  • the negative electrode may contain one type of negative electrode active material, or may contain two or more types in combination.
  • carbonaceous materials examples include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon).
  • soft carbon graphitizable carbon
  • hard carbon non-graphitizable carbon
  • graphite is preferable as the carbonaceous material because of its excellent charge-discharge stability and low irreversible capacity.
  • examples of graphite include natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • Si-containing materials include simple Si, silicon alloys, silicon compounds (such as silicon oxides), and composite materials in which a silicon phase is dispersed in a lithium ion conductive phase (matrix).
  • Silicon oxides include SiOx particles. x is, for example, 0.5 ⁇ x ⁇ 2, and may be 0.8 ⁇ x ⁇ 1.6. At least one selected from the group consisting of SiO 2 phase, silicate phase and carbon phase can be used as the lithium ion conductive phase.
  • binder thickener, conductive agent, and dispersion medium used in the negative electrode slurry
  • the materials exemplified for the positive electrode can be used.
  • a metal foil can be used as the negative electrode current collector.
  • the negative electrode current collector may be porous. Examples of materials for the negative electrode current collector include stainless steel, nickel, nickel alloys, copper, copper alloys, and the like.
  • the thickness of the negative electrode current collector is not particularly limited, but is, for example, 1 to 50 ⁇ m, and may be 5 to 30 ⁇ m.
  • Non-aqueous electrolyte A non-aqueous electrolyte usually contains a non-aqueous solvent, a lithium salt, and an additive.
  • the non-aqueous electrolyte contains the above compound A as an additive.
  • the content of compound A in the non-aqueous electrolyte may be 2% by mass or less, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the content of compound A is within this range, excessive film formation on the surface of the positive electrode is suppressed, and the effect of suppressing an increase in internal resistance when charging and discharging are repeated can be enhanced.
  • the content of Compound A in the non-aqueous electrolyte changes during storage or charge/discharge.
  • compound A should remain in the non-aqueous electrolyte collected from the non-aqueous electrolyte secondary battery at a concentration equal to or higher than the detection limit.
  • the content of compound A in the non-aqueous electrolyte may be 0.01% by mass or more.
  • the content of compound A in the non-aqueous electrolyte used for manufacturing the non-aqueous electrolyte secondary battery may be 0.01% by mass or more, 0.1% by mass or more, or 0.3% by mass or more. may
  • the content of compound A in the non-aqueous electrolyte used for manufacturing the non-aqueous electrolyte secondary battery is, for example, 1.5% by mass or less, and may be 1% by mass or less or 0.5% by mass or less. . These lower and upper limits can be combined arbitrarily.
  • the nonaqueous electrolyte may further contain the above fluorinated cyclic carbonate as an additive.
  • the content of the fluorinated cyclic carbonate in the non-aqueous electrolyte is preferably 1.5% by mass or less, and may be 1% by mass or less or 0.5% by mass or less.
  • the content of the fluorinated cyclic carbonate is within this range, excessive film formation on the surface of the positive electrode is suppressed, and the effect of suppressing an increase in internal resistance when charging and discharging are repeated can be enhanced.
  • the content of the fluorinated cyclic carbonate in the non-aqueous electrolyte changes during storage or charge/discharge.
  • the fluorinated cyclic carbonate remains in the non-aqueous electrolyte collected from the non-aqueous electrolyte secondary battery at a concentration equal to or higher than the detection limit.
  • the content of the fluorinated cyclic carbonate in the non-aqueous electrolyte may be 0.01% by mass or more.
  • the content of the fluorinated cyclic carbonate in the non-aqueous electrolyte used for manufacturing the non-aqueous electrolyte secondary battery may be 0.01% by mass or more, 0.1% by mass or more, or 0.3% by mass or more. may be The content of the fluorinated cyclic carbonate in the non-aqueous electrolyte used for manufacturing the non-aqueous electrolyte secondary battery is, for example, 1.5% by mass or less, 1% by mass or less, or 0.5% by mass or less. good too. These lower and upper limits can be combined arbitrarily.
  • the contents of the compound A and the fluorinated cyclic carbonate in the non-aqueous electrolyte are determined, for example, using gas chromatography under the following conditions.
  • the mass ratio of fluorinated cyclic carbonate to compound A may be, for example, 0.5 to 1.5, and 0.8 to 1.2. There may be.
  • the mass ratio of both components is within such a range, the composition of the coating formed on the particle surface of the composite oxide NMA is well balanced. That is, a coating film is formed which has excellent ion conductivity and has a large effect of suppressing the elution of metals and an effect of suppressing an increase in internal resistance when charging and discharging are repeated.
  • Non-aqueous solvent examples include cyclic carbonates, chain carbonates, cyclic carboxylates, and chain carboxylates.
  • Cyclic carbonates include propylene carbonate (PC), ethylene carbonate (EC), and the like.
  • Chain carbonates include diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Cyclic carboxylic acid esters include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • Chain carboxylic acid esters include methyl formate, ethyl formate, propyl formate, methyl acetate (MA), ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and propyl propionate.
  • the non-aqueous electrolyte may contain one type of non-aqueous solvent, or may contain two or more types in combination.
  • Lithium salts include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lithium lower aliphatic carboxylate, LiCl , LiBr, LiI, borates, and imide salts.
  • Borates include lithium bisoxalate borate, lithium difluorooxalate borate, bis(1,2-benzenediolate(2-)-O,O') lithium borate, bis(2,3-naphthalene diolate (2-)-O,O') lithium borate, bis(2,2'-biphenyldiolate (2-)-O,O') lithium borate, bis(5-fluoro-2-olate- 1-benzenesulfonic acid-O,O') lithium borate and the like.
  • the imide salt examples include lithium bisfluorosulfonylimide (LiN(FSO 2 ) 2 ), lithium bistrifluoromethanesulfonimide (LiN(CF 3 SO 2 ) 2 ), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 )(C 4 F 9 SO 2 )), lithium bispentafluoroethanesulfonic acid imide (LiN(C 2 F 5 SO 2 ) 2 ), and the like.
  • the non-aqueous electrolyte may contain one type of lithium salt, or may contain two or more types in combination.
  • the concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol/L or more and 2 mol/L or less.
  • the nonaqueous electrolyte may further contain, as an additive, at least one selected from the group consisting of vinylene carbonate and vinylethylene carbonate.
  • Separator It is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and moderate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a nonwoven fabric, or the like can be used as the separator.
  • Polyolefins such as polypropylene and polyethylene are preferable as the material of the separator.
  • An example of the structure of a non-aqueous electrolyte secondary battery is a structure in which an electrode group, in which a positive electrode and a negative electrode are wound with a separator interposed therebetween, is accommodated in an exterior body together with a non-aqueous electrolyte.
  • an electrode group in which a positive electrode and a negative electrode are wound with a separator interposed therebetween
  • a laminated electrode group in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween may be used.
  • the shape of the non-aqueous electrolyte secondary battery is not limited, either, and may be, for example, cylindrical, square, coin, button, laminate, or the like.
  • the battery includes a prismatic battery case 4 with a bottom, and an electrode group 1 and a non-aqueous electrolyte (not shown) housed in the battery case 4 .
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed therebetween.
  • the negative electrode current collector of the negative electrode is electrically connected to a negative electrode terminal 6 provided on a sealing plate 5 via a negative electrode lead 3 .
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7 .
  • the positive current collector of the positive electrode is electrically connected to the rear surface of the sealing plate 5 via the positive lead 2 . That is, the positive electrode is electrically connected to the battery case 4 which also serves as a positive electrode terminal.
  • the peripheral edge of the sealing plate 5 is fitted into the open end of the battery case 4, and the fitted portion is laser-welded.
  • the sealing plate 5 has an injection hole for a non-aqueous electrolyte, which is closed by
  • a non-aqueous electrolyte secondary battery was produced and evaluated by the following procedure.
  • (1) Fabrication of Positive Electrode To 95 parts by mass of positive electrode active material particles, 2.5 parts by mass of acetylene black, 2.5 parts by mass of polyvinylidene fluoride, and an appropriate amount of NMP were added and mixed to obtain a positive electrode slurry. Next, the positive electrode slurry was applied to the surface of the aluminum foil, the coating film was dried, and then rolled to form a positive electrode mixture layer (thickness: 95 ⁇ m, density: 3.6 g/cm 3 ) on both sides of the aluminum foil. , to obtain the positive electrode.
  • the positive electrode active material particles were produced by the following procedure.
  • An aqueous solution was prepared by dissolving nickel sulfate, aluminum sulfate, and, if necessary, cobalt sulfate or manganese sulfate.
  • the concentration of nickel sulfate in the aqueous solution was set to 1 mol/L, and the concentrations of other sulfates were adjusted so that the relationship between the ratios of Ni and each metal element was the value shown in Table 1.
  • an aqueous solution containing sodium hydroxide at a concentration of 30% by mass was added dropwise until the pH of the mixture reached 12 to precipitate hydroxide.
  • the hydroxide was recovered by filtration, washed with water and dried.
  • a composite oxide was obtained by baking the dried product at 500° C. for 8 hours in a nitrogen atmosphere.
  • the obtained composite oxide and lithium hydroxide were mixed so that the total atomic ratio of Li and Ni, Co, Mn and Al was 1:1.
  • the mixture was fired by heating from room temperature to 650° C. in an oxygen atmosphere at a heating rate of 2.0° C./min using an electric furnace. After that, it was fired by heating from 650° C. to 750° C. at a heating rate of 0.5° C./min.
  • Composite oxide NMA positive electrode active material particles
  • Negative Electrode A silicon composite material and graphite were mixed at a mass ratio of 5:95 and used as a negative electrode active material.
  • the negative electrode slurry was applied to the surface of a copper foil as a negative electrode current collector, the coating film was dried, and then rolled to form negative electrode mixture layers on both sides of the copper foil.
  • the voltage value was measured when the battery with an SOC of 50% was discharged for 10 seconds at current values of 0A, 0.1A, 0.5A and 1.0A.
  • DCIR initial DCIR was calculated from the absolute value of the slope when the relationship between the discharge current value and the voltage value after 10 seconds was linearly approximated by the method of least squares.
  • DCIR increase rate ( ⁇ DCIR) DCIR (DCIR at the 200th cycle) was calculated in the same manner as in (a) above, except that the battery after 200 cycles of charging and discharging in the charge-discharge cycle test (b) above was used. The ratio of the DCIR after 200 cycles to the initial DCIR was calculated as the DCIR increase rate using the following formula.
  • DCIR increase rate (%) ⁇ (DCIR at 200th cycle-initial DCIR) / initial DCIR ⁇ x 100
  • Table 1 shows the evaluation results.
  • A1 is diethyl(difluoromethyl)phosphonate
  • A2 is diethyl(trifluoromethyl)phosphonate
  • B1 is diethylmethylphosphonate
  • B2 is dimethylvinylphosphonate
  • B3 is bis(2,2,2-trifluoroethyl)methylphosphonate.
  • A1 to A2 are organic phosphorus compounds represented by general formula (1)
  • B1 to B3 are not organic phosphorus compounds represented by general formula (1).
  • E1 and C3 a composite oxide NMA containing no Co was used as the positive electrode active material, respectively.
  • A1 was added to the non-aqueous electrolyte, and in C3, A1 was not added to the non-aqueous electrolyte.
  • MR increased significantly by 4.5% (84.9% ⁇ 89.4%), and ⁇ DCIR decreased significantly by 5.3% (24.2% ⁇ 18 .9%).
  • C8 and C2 a composite oxide containing a relatively large amount of Co was used as the positive electrode active material.
  • A1 was added to the non-aqueous electrolyte, and in C2, A1 was not added to the non-aqueous electrolyte.
  • the capacity retention rate (MR) increased by only 1.4% (87.2% ⁇ 88.6%), and the DCIR increase rate ( ⁇ DCIR) was also reduced by only 3.3%. (21.5% ⁇ 18.2%).
  • E2 had a further 0.9% increase in MR (89.4% ⁇ 90.3%) and a further 0.9% reduction in ⁇ DCIR (18.9% ⁇ 18.0%) relative to E1. .
  • ⁇ DCIR 18.9% ⁇ 18.0%
  • E2 and E1 a composite oxide NMA that does not contain Co is used as the positive electrode active material. was not added.
  • the amount of gas generated during high-temperature storage increased by only 1.9 mL compared to E1 (24.5 mL ⁇ 26.4 mL), and gas generation due to FEC was greatly suppressed when FEC was added together with A1. rice field.
  • R 3 in the general formula (1) is a methyl group.
  • R2 in general formula (1) is a vinyl group.
  • R 1 and R 2 in general formula (1) are 2,2,2-trifluoroethyl groups, and R 3 is a methyl group.
  • a non-aqueous electrolyte secondary battery according to the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like.
  • non-aqueous electrolyte secondary batteries are suitable for in-vehicle use because they have high capacity and excellent cycle characteristics.
  • the uses of the non-aqueous electrolyte secondary battery are not limited to these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池は、正極と負極と非水電解質とを備え、正極は、正極活物質を含み、正極活物質は、NiとMnとAlとを含むリチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物に含まれるLi以外の金属元素に占めるNi、MnおよびAlの割合が、それぞれ、Ni:50原子%以上、Mn:10原子%以下、およびAl:10原子%以下である。リチウム遷移金属複合酸化物がCoを含む場合、Li以外の金属元素に占めるCoの割合が1.5原子%以下である。非水電解質は、一般式(1):で表される有機リン化合物を含む。一般式(1)中、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基であり、Rは、炭素数1~4のフッ素化アルキル基である。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、正極と、負極と、非水電解質とを備える。非水電解質二次電池の優れた特性を確保するために、電池の構成要素の改良が試みられている。
 特許文献1は、イソシアヌル酸の窒素原子上に置換基を有していても良い炭素数1~20の有機基を有する化合物(A)と、ニトリル化合物、イソシアネート化合物、ジフルオロリン酸化合物、またはフルオロスルホン酸塩などとを含有する非水電解液を提案している。
 特許文献2は、式1:LiNi1-y-z-v-wCoAlM1M2で表されるリチウム含有複合酸化物からなり、式1中の元素M1は、Mn、Ti、Y、Nb、MoおよびWよりなる群から選ばれた少なくとも1種であり、元素M2は、Mg、Ca、SrおよびBaよりなる群から選ばれた少なくとも2種であり、かつ、元素M2は、少なくともMgとCaとを含み、式1は、0.97≦x≦1.1、0.05≦y≦0.35、0.005≦z≦0.1、0.0001≦v≦0.05、および0.0001≦w≦0.05を満たし、複合酸化物は、一次粒子が集合して二次粒子を形成しており、複合酸化物の一次粒子の平均粒径は、0.1μm以上、3μm以下であり、複合酸化物の二次粒子の平均粒径は、8μm以上、20μm以下である、非水電解液二次電池用の正極活物質を提案している。
特開2014-194930号公報 特開2006-310181号公報
 リチウム遷移金属複合酸化物中のCoは近年価格が高騰している。リチウム遷移金属複合酸化物中のCo含有量を低減すると、コスト的に有利であるが、非水電解質二次電池のサイクル特性が低下する。これは、リチウム遷移金属複合酸化物の格子構造が不安定になり、副反応によって劣化が促進されるためと考えられる。
 本開示の一側面は、正極と、負極と、非水電解質と、を備え、
 前記正極は、正極活物質を含み、前記正極活物質は、Niと、Mnと、Alと、を含むリチウム遷移金属複合酸化物を含み、前記リチウム遷移金属複合酸化物に含まれるLi以外の金属元素に占めるNi、MnおよびAlの割合が、それぞれNi:50原子%以上、Mn:10原子%以下、およびAl:10原子%以下であり、前記リチウム遷移金属複合酸化物がCoを含む場合、Li以外の金属元素に占めるCoの割合が1.5原子%以下であり、
 前記非水電解質は、一般式(1):
Figure JPOXMLDOC01-appb-C000002
で表される有機リン化合物を含み、一般式(1)中、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基であり、Rは、炭素数1~4のフッ素化アルキル基である、非水電解質二次電池に関する。
 本開示によれば、Coを含まないリチウム遷移金属複合酸化物またはCo含有量が少ないリチウム遷移金属複合酸化物を用いる場合でも、サイクル特性に優れる非水電解質二次電池を提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 以下では、本開示に係る非水電解質二次電池の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。
 非水電解質二次電池には、少なくともリチウムイオン電池、リチウム金属二次電池などが含まれる。
 本開示に係る非水電解質二次電池は、正極と負極と非水電解質とを備える。正極は、正極活物質を含む。正極活物質は、NiとMnとAlとを含むリチウム遷移金属複合酸化物を含む。
 リチウム遷移金属複合酸化物のCo含有量を低減して、Ni含有量を多くすることができれば、コスト的に有利であるとともに、高容量を確保することができる。そこで、本開示に係る非水電解質二次電池では、リチウム遷移金属複合酸化物のNi含有量を高くする。一方、本開示に係る非水電解質二次電池において、リチウム遷移金属複合酸化物は、Coを含まないか、Li以外の金属元素に占めるCoの割合が1.5原子%以下に制限されている。以下、本開示に係る非水電解質二次電池におけるリチウム遷移金属複合酸化物を「複合酸化物NMA」とも称する。
 複合酸化物NMAに含まれるLi以外の金属元素に占めるNi、MnおよびAlの割合は、それぞれNi:50原子%以上、Mn:10原子%以下、および、Al:10原子%以下であり、かつ複合酸化物NMAは、Coを含まないか、Li以外の金属元素に占めるCoの割合が1.5原子%以下である。
 MnおよびAlは、Co含有量が低減された複合酸化物NMAの結晶構造の安定化に寄与する。しかし、複合酸化物NMAは、Co含有量が1.5原子%以下にまで制限されており、かつNi含有量が多いため、結晶構造が不安定になりやすく、複合酸化物NMAからAl、Ni等の金属が溶出し得る。金属が溶出すると、正極容量が低下し、サイクル特性(もしくは容量維持率)が低下する。特に、Ni含有量が多い複合酸化物NMAでは、溶出したNiが複合酸化物NMAの粒子表面にLiイオンの吸蔵および放出を妨げる構造の酸化被膜を形成し、内部抵抗の上昇を招く場合がある。また、複合酸化物NMAを含む正極では非水電解質が酸化分解され易く、それによりサイクル特性(もしくは容量維持率)が低下し、抵抗が上昇する。
 上記に鑑み、本開示に係る非水電解質二次電池では、複合酸化物NMAを用いるとともに、下記の一般式(1)で表される有機リン化合物(以下、化合物Aとも称する。)を含む非水電解質を用いる。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基である。一般式(1)中、Rは、炭素数1~4のフッ素化アルキル基である。
 非水電解質に化合物Aを含ませることにより、非水電解質の耐酸化性が向上するとともに、正極活物質粒子の表面に化合物Aに由来する良質な被膜が形成される。当該被膜は、イオン伝導性および安定性に優れ、正極活物質と非水電解質との接触による正極活物質の劣化(正極活物質からの金属の溶出)が抑制される。その結果、正極活物質の劣化に伴うサイクル特性の低下が抑制されると考えられる。
 ところで、化合物Aを複合酸化物NMAよりもCo含有量が多いリチウム遷移金属複合酸化物と組み合わせても、サイクル特性を向上させる効果や内部抵抗の増加を抑制する効果を顕著に得ることができない。化合物Aは複合酸化物NMAと組み合わせることで上記効果が顕著に得られる。複合酸化物NMAにおいて効果が顕著となるのは、複合酸化物NMAは、Co含有量がより多いリチウム遷移金属複合酸化物に比べて、複合酸化物自体の抵抗が大きく、かつ粒子が比較的脆いためと考えられる。複合酸化物NMAの粒子は、クラックが発生しやすく、金属の溶出も顕著になりやすく、充放電に伴う抵抗の上昇が顕在化しやすい。よって、複合酸化物NMAでは化合物Aに由来する被膜による特性の向上幅が大きくなる。一方、Co含有量が多いリチウム遷移金属複合酸化物は、そのような観点ではより優れているため、化合物Aを用いる必要性が低いと言える。
(有機リン化合物)
 一般式(1)中、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基である。炭素数1~4のアルキル基は、直鎖状でもよく、分岐鎖状でもよい。炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。中でも、メチル基、エチル基が好ましい。
 仮にRおよびRの少なくとも一方が、炭素数1~4のフッ素化アルキル基の場合、有機リン化合物由来の反応生成物の溶解性が高くなり、被膜の形成能が低下する傾向がある。
 一般式(1)中、Rは、炭素数1~4のフッ素化アルキル基である。なお、フッ素化アルキル基とは、アルキル基の水素原子の少なくとも1つがフッ素原子に置換された基を意味する。炭素数1~4のフッ素化アルキル基において、フッ素原子に置換されない残りの水素原子が、さらに、フッ素原子以外のハロゲン原子(例えば、塩素原子、臭素原子)に置換されていてもよい。フッ素化アルキル基は、直鎖状でもよく、分岐鎖状でもよい。
 アルキル基の水素原子の少なくとも1つがフッ素原子に置換されていること、および、Rがリン原子に直接結合していることが、被膜のイオン伝導性および安定性に影響しているものと推測される。
 仮にRがフッ素原子を含まない炭素数1~4のアルキル基である場合、有機リン化合物に由来する被膜が安定して存在しにくいと考えられる。また、Rが炭素数1~4のフッ素化アルキル基であっても、仮に酸素原子を介してリン原子に結合している場合、被膜の抵抗が大きくなる傾向がある。
 炭素数1~4のフッ素化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-フルオロプロピル基、3-フルオロプロピル基、2,2-ジフルオロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2-フルオロブチル基、3-フルオロブチル基、4-フルオロブチル基、2,2-ジフルオロブチル基、3,3-ジフルオロブチル基、4,4-ジフルオロブチル基、4,4,4-トリフルオロブチル基等が挙げられる。中でも、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基が好ましい。
 化合物Aの具体例としては、ジエチル(フルオロメチル)ホスホネート、ジエチル(ジフルオロメチル)ホスホネートおよびジエチル(トリフルオロメチル)ホスホネートからなる群より選択された少なくとも1種であることが好ましい。中でも、ジエチル(ジフルオロメチル)ホスホネートがより好ましい。化合物Aは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(フッ素化環状カーボネート)
 非水電解質は、更に、フッ素化環状カーボネートを含んでもよい。なお、フッ素化環状カーボネートとは、環状カーボネートの水素原子の少なくとも1つがフッ素原子に置換された化合物を意味する。化合物Aとフッ素化環状カーボネートとを併用する場合、化合物Aとフッ素化環状カーボネートとの組み合わせに由来する被膜が形成され、被膜のイオン伝導性が更に高められる。これにより、より優れたサイクル特性を確保できるとともに、内部抵抗の増加が更に抑制される。特に、正極活物質に後述のNMA複合酸化物を用いる場合、化合物Aとフッ素化環状カーボネートとの併用による効果が顕著に得られる。ただし、フッ素化環状カーボネート単独では、被膜のイオン伝導性の面で不利である。
 非水電解質にフッ素化環状カーボネート(例えばFEC)を添加する場合、充電状態の電池の高温保存時のガス発生量が多くなる傾向があるが、化合物Aとともにフッ素化環状カーボネートを非水電解質に添加する場合、ガス発生が大幅に抑制される。
 フッ素化環状カーボネートは、例えば、下記の一般式(2)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、R~Rは、それぞれ独立して、水素原子またはメチル基であり、当該水素原子および当該メチル基の水素原子のうちの少なくとも1つは、フッ素原子に置換されている。フッ素原子に置換されない残りの水素原子は、フッ素原子以外のハロゲン原子(例えば、塩素原子、臭素原子)に置換されていてもよい。
 フッ素化環状カーボネートの具体例としては、フルオロエチレンカーボネート(FEC)、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1-フルオロプロピレンカーボネート、3,3,3-トリフルオロプロピレンカーボネート、2,3-ジフルオロ-2,3-ブチレンカーボネート等が挙げられる。中でも、被膜抵抗の低減の観点から、FECが好ましい。フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 以下に、本開示に係る非水電解質二次電池について構成要素ごとにより具体的に説明する。
[正極]
 正極は、正極活物質を含む。正極は、通常、正極集電体と、正極集電体に保持された層状の正極合剤(以下、正極合剤層と称する)を備えている。正極合剤層は、正極合剤の構成成分を分散媒に分散させた正極スラリを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。
 正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、増粘剤、導電剤等を含むことができる。
(正極活物質)
 正極活物質は、複合酸化物NMAを含む。複合酸化物NMAは、NiとMnとAlとを含み、微量のCoを含んでもよく、Coを含まなくてもよい。製造コスト削減の観点からは、Co含有量は少ないほど望ましく、Li以外の金属元素に占めるCoの割合は1.5原子%以下であり、1.0原子%以下が望ましく、0.5原子%以下がより望ましく、Coを含まないことが最も望ましい。一方、高容量化の観点から、複合酸化物NMAにおいて、Li以外の金属元素に占めるNi、MnおよびAlの割合は、それぞれNi:50原子%以上、Mn:10原子%以下、およびAl:10原子%以下である。Li以外の金属元素に占めるNi含有量は80原子%以上が望ましく、90原子%以上がより望ましく、92原子%以上でもよい。Mn含有量は、7原子%以下でもよく、5原子%以下でもよく、3原子%以下でもよい。Al含有量は、9原子%以下でもよく、7原子%以下でもよく、5原子%以下でもよい。複合酸化物NMAは、例えば、層状の結晶構造(例えば、岩塩型結晶構造)を有する。
 複合酸化物NMAは、例えば、式:LiαNi(1-x1-x2-y-z)Cox1Mnx2Al2+βで表される。元素Mは、Li、Ni、Mn、Al、Coおよび酸素以外の元素である。
 上記式において、リチウムの原子比を示すαは、例えば、0.95≦α≦1.05である。αは、充放電により増減する。酸素の原子比を示す(2+β)において、βは、-0.05≦β≦0.05を満たす。
 Niの原子比を示す1-x1-x2-y-z(=v)は、例えば、0.685以上であり、0.8以上であってもよく、0.90以上であってもよく、0.92以上であってもよい。また、Niの原子比を示すvは、0.95以下であってもよい。vは0.685以上、0.95以下(0.685≦v≦0.95)であってもよく、0.80以上、0.95以下であってもよく、0.90以上、0.95以下であってもよく、0.92以上、0.95以下であってもよい。
 Niの原子比vが高いほど、充電時に複合酸化物NMAから多くのリチウムイオンを引き抜くことができ、容量を高めることができる。しかしながら、このように容量を高めた複合酸化物NMA中のNiはその価数が高くなる傾向にある。また、Niの原子比が高くなると、相対的に他の元素の原子比が小さくなる。この場合、特に満充電状態において結晶構造が不安定になり易く、金属(Ni等)が溶出し易く、充放電の繰り返しによってリチウムイオンの可逆的な吸蔵および放出が困難な結晶構造に変化することで不活性化しやすくなる。その結果、サイクル特性が低下しやすい。よって、Ni含有量が高い複合酸化物NMAを用いる場合、非水電解質への化合物Aの添加によるサイクル特性の改善効果が顕著に得られる。
 Coの原子比を示すx1は、例えば、0.015以下(0≦x1≦0.015)であり、0.01以下であってもよく、0.005以下であってもよい。x1が0の場合には、Coが検出限界以下である場合が包含される。
 Mnの原子比を示すx2は、例えば、0.1以下(0<x2≦0.1)であり、0.07以下であってもよく、0.05以下であってもよく、0.03以下であってもよい。x2は、0.01以上であってもよく、0.02以上であってもよい。Mnは複合酸化物NMAの結晶構造の安定化に寄与するとともに、複合酸化物NMAが安価なMnを含むことでコスト削減に有利となる。
 Alの原子比を示すyは、例えば、0.1以下(0<y≦0.1)であり、0.09以下であってもよく、0.07以下であってもよく、0.05以下であってもよい。yは、0.01以上であってもよく、0.02以上であってもよい。Alは複合酸化物NMAの結晶構造の安定化に寄与する。また、0.05≦x2+y≦0.1を満たすことが好ましい。この場合、化合物Aの効果や、充放電を繰り返した後の内部抵抗の増加を抑制する効果が更に顕在化する。
 元素Mの原子比を示すzは、例えば、0≦z≦0.10であり、0<z≦0.05であってもよく、0.001≦z≦0.005であってもよい。
 元素Mは、Ti、Zr、Nb、Mo、W、Fe、Zn、B、Si、Mg、Ca、Sr、ScおよびYからなる群より選択された少なくとも1種であってもよい。中でも、Nb、SrおよびCaからなる群より選択された少なくとも1種が複合酸化物MNAに含まれている場合、複合酸化物NMAの表面構造が安定化し、抵抗が低減し、金属の溶出が更に抑えられと考えられる。元素Mは、複合酸化物NMAの粒子表面の近傍に偏在しているとより効果的である。
 複合酸化物NMAを構成する元素の含有量は、誘導結合プラズマ発光分光分析装置(Inductively coupled plasma atomic emission spectroscopy:ICP-AES)、電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)、あるいはエネルギー分散型X線分析装置(Energy dispersive X-ray spectroscopy:EDX)等により測定することができる。
 複合酸化物NMAは、例えば、複数の一次粒子が凝集した二次粒子である。一次粒子の粒径は、一般的に0.05μm以上、1μm以下である。複合酸化物の二次粒子の平均粒径は、例えば3μm以上、30μm以下であり、5μm以上、25μm以下であってもよい。
 なお、本明細書中、二次粒子の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。このような粒径を、D50と称することがある。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
 複合酸化物NMAは、例えば、次のような手順で得ることができる。まず、複合酸化物NMAを構成する金属元素を含む塩の溶液に、攪拌下で、水酸化ナトリウム等のアルカリを含む溶液を滴下し、pHをアルカリ側(例えば、8.5~12.5)に調整することにより、金属元素(Ni、Mn、Al、必要に応じてCo、必要に応じて元素M)を含む複合水酸化物を析出させる。続いて、複合水酸化物を焼成することにより、金属元素を含む複合酸化物(以下、「原料複合酸化物」とも称する。)を得る。このときの焼成温度は、特に制限されないが、例えば、300℃~600℃である。
 次いで、原料複合酸化物と、リチウム化合物と、必要に応じて元素Mを含む化合物とを混合し、混合物を、酸素気流下、焼成することにより、複合酸化物NMAを得ることができる。このときの焼成温度は、特に制限されないが、例えば、450℃以上、800℃以下である。各焼成は、一段階で行ってもよく、多段階で行ってもよく、昇温しながら行ってもよい。
 リチウム化合物としては、酸化リチウム、水酸化リチウム、炭酸リチウム等を用いてもよい。原料複合酸化物とリチウム化合物とを混合する際に、元素Mを含む化合物を混合することで、元素Mを複合酸化物NMAの粒子表面の近傍に偏在させることができる。
 正極活物質は、複合酸化物NMA以外のリチウム遷移金属複合酸化物を含むことができるが、複合酸化物NMAの比率が多いことが好ましい。正極活物質に占める複合酸化物NMAの比率は、例えば、90質量%以上であり、95質量%以上であってもよい。正極活物質に占める複合酸化物の比率は、100質量%以下である。
(その他)
 結着剤としては、例えば、樹脂材料が用いられる。結着剤としては、例えば、フッ素樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ビニル樹脂、ゴム状材料(例えばスチレンブタジエン共重合体(SBR))等が挙げられる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、セルロースエーテル等のセルロース誘導体が挙げられる。セルロース誘導体としては、カルボキシメチルセルロース(CMC)およびその変性体、メチルセルロース等が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、例えば、導電性繊維、導電性粒子が挙げられる。導電性繊維としては、炭素繊維、カーボンナノチューブ、金属繊維等が挙げられる。導電性粒子としては、導電性炭素(カーボンブラック、黒鉛等)、金属粉末等が挙げられる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極スラリに用いる分散媒としては、特に制限されないが、例えば、水、アルコール、N-メチル-2-ピロリドン(NMP)、これらの混合溶媒が挙げられる。
 正極集電体としては、例えば、金属箔を用い得る。正極集電体は多孔質であってもよい。多孔質の集電体としては、例えば、ネット、パンチングシート、エキスパンドメタル等が挙げられる。正極集電体の材質としては、ステンレス鋼、アルミニウム、アルミニウム合金、チタン等が例示できる。正極集電体の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
[負極]
 負極は、少なくとも負極集電体を含み、負極活物質を含んでもよい。負極は、通常、負極集電体と、負極集電体に保持された層状の負極合剤(以下、負極合剤層と称する)を備えている。負極合剤層は、負極合剤の構成成分を分散媒に分散させた負極スラリを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。
 負極合剤は、必須成分として、負極活物質を含み、任意成分として、結着剤、増粘剤、導電剤等を含むことができる。
(負極活物質)
 負極活物質としては、金属リチウム、リチウム合金等を用いてもよいが、電気化学的にリチウムイオンを吸蔵および放出可能な材料が好適に用いられる。このような材料としては、炭素質材料、Si含有材料等が挙げられる。負極は、負極活物質を1種含んでいてもよく、2種以上組み合わせて含んでもよい。
 炭素質材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)が挙げられる。炭素質材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 充放電の安定性に優れ、不可逆容量も少ないことから、中でも、炭素質材料としては黒鉛が好ましい。黒鉛としては、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子が挙げられる。
 Si含有材料としては、Si単体、ケイ素合金、およびケイ素化合物(ケイ素酸化物等)、リチウムイオン伝導相(マトリックス)内にシリコン相が分散している複合材料等が挙げられる。ケイ素酸化物としては、SiOx粒子が挙げられる。xは、例えば0.5≦x<2であり、0.8≦x≦1.6であってもよい。リチウムイオン伝導相としては、SiO相、シリケート相および炭素相からなる群より選択される少なくとも1種を用い得る。
(その他)
 結着剤、増粘剤および導電剤ならびに負極スラリに用いる分散媒としては、例えば、正極で例示した材料を用い得る。
 負極集電体としては、例えば、金属箔を用い得る。負極集電体は多孔質であってもよい。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金等が例示できる。負極集電体の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
[非水電解質]
 非水電解質は、通常、非水溶媒とリチウム塩と添加剤とを含む。
 非水電解質は、添加剤として、上記の化合物Aを含む。非水電解質中の化合物Aの含有量は、2質量%以下であってもよく、1.5質量%以下でもよく、1質量%以下でもよく、0.5質量%以下でもよい。化合物Aの含有量がこのような範囲である場合、正極表面における過度な被膜形成が抑制され、充放電を繰り返した場合の内部抵抗の増加を抑制する効果を高めることができる。非水電解質二次電池では、保存または充放電の間、非水電解質中の化合物Aの含有量が変化する。そのため、非水電解質二次電池から採取される非水電解質中に化合物Aが検出限界以上の濃度で残存していればよい。非水電解質中の化合物Aの含有量は、0.01質量%以上であってもよい。
 非水電解質二次電池の製造に用いられる非水電解質中の化合物Aの含有量は、0.01質量%以上であってもよく、0.1質量%以上または0.3質量%以上であってもよい。非水電解質二次電池の製造に用いられる非水電解質中の化合物Aの含有量は、例えば、1.5質量%以下であり、1質量%以下または0.5質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 非水電解質は、添加剤として、更に、上記のフッ素化環状カーボネートを含んでもよい。非水電解質中のフッ素化環状カーボネートの含有量は、1.5質量%以下が好ましく、1質量%以下または0.5質量%以下であってもよい。フッ素化環状カーボネートの含有量がこのような範囲である場合、正極表面における過度な被膜形成が抑制され、充放電を繰り返した場合の内部抵抗の増加を抑制する効果を高めることができる。非水電解質二次電池では、保存または充放電の間、非水電解質中のフッ素化環状カーボネートの含有量は変化する。そのため、非水電解質二次電池から採取される非水電解質中に、フッ素化環状カーボネートが検出限界以上の濃度で残存していればよい。非水電解質中のフッ素化環状カーボネートの含有量は、0.01質量%以上であってもよい。
 非水電解質二次電池の製造に用いられる非水電解質中のフッ素化環状カーボネートの含有量は、0.01質量%以上であってもよく、0.1質量%以上または0.3質量%以上であってもよい。非水電解質二次電池の製造に用いられる非水電解質中のフッ素化環状カーボネートの含有量は、例えば、1.5質量%以下であり、1質量%以下または0.5質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 非水電解質中の化合物Aおよびフッ素化環状カーボネートの含有量は、例えば、ガスクロマトグラフィーを用いて、下記の条件で求められる。
 使用機器:(株)島津製作所製、GC-2010 Plus
 カラム:J&W社製、HP-1(膜厚1μm、内径0.32mm、長さ60m)
 カラム温度:50℃から昇温速度5℃/minで90℃に昇温し、90℃で15分維持し、次いで、90℃から250℃に昇温速度10℃/minで昇温し、250℃で15分維持
 スプリット比:1/50
 線速度:30.0cm/sec
 注入口温度:270℃
 注入量:1μL
 検出器:FID 290℃(sens.101)
 非水電解質において、フッ素化環状カーボネートの化合物Aに対する質量割合(=フッ素化環状カーボネート/化合物A)は、例えば、0.5~1.5であってもよく、0.8~1.2であってもよい。両成分の質量割合がこのような範囲である場合、複合酸化物NMAの粒子表面に形成される被膜組成のバランスが良くなる。すなわち、イオン伝導性に優れ、かつ金属の溶出を抑制する効果や、充放電を繰り返した場合の内部抵抗の増加を抑制する効果が大きい被膜が形成される。
(非水溶媒)
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルが挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル(MA)、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水電解質は、非水溶媒を1種含んでもよく、2種以上組み合わせて含んでもよい。
(リチウム塩)
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩、イミド塩が挙げられる。ホウ酸塩としては、ビスオキサレートホウ酸リチウム、ジフルオロオキサレートホウ酸リチウム、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。非水電解質は、リチウム塩を、1種含んでもよく、2種以上組み合わせて含んでもよい。
 非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下である。
 非水電解質は、添加剤として、更に、ビニレンカーボネートおよびビニルエチレンカーボネートからなる群より選択される少なくとも1種を含んでもよい。
[セパレータ]
 正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布等を用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレン等のポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群が非水電解質と共に外装体に収容された構造が挙げられる。ただし、これに限られず、他の形態の電極群が適用されてもよい。例えば、正極と負極とがセパレータを介して積層された積層型の電極群でもよい。非水電解質二次電池の形態も限定されず、例えば、円筒型、角型、コイン型、ボタン型、ラミネート型等であればよい。
 以下、本開示に係る非水電解質二次電池の一例として角形の非水電解質二次電池の構造を、図1を参照しながら説明する。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極の負極集電体は、負極リード3を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製ガスケット7により封口板5から絶縁されている。正極の正極集電体は、正極リード2を介して、封口板5の裏面に電気的に接続されている。すなわち、正極は、正極端子を兼ねる電池ケース4に電気的に接続されている。封口板5の周縁は、電池ケース4の開口端部に嵌合し、嵌合部はレーザー溶接されている。封口板5には非水電解質の注入孔があり、注液後に封栓8により塞がれる。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
[実施例]
《実施例1~4および比較例1~8》
 下記の手順で、非水電解質二次電池を作製し、評価を行った。
(1)正極の作製
 正極活物質粒子95質量部に、アセチレンブラック2.5質量部と、ポリフッ化ビニリデン2.5質量部と、適量のNMPとを加え、混合し、正極スラリを得た。次に、アルミニウム箔の表面に正極スラリを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に正極合剤層(厚み95μm、密度3.6g/cm)を形成し、正極を得た。
 正極活物質粒子は、次のような手順で作製した。
 硫酸ニッケル、硫酸アルミニウム、および、必要に応じて、硫酸コバルトまたは硫酸マンガンを溶解させた水溶液を調製した。水溶液中の硫酸ニッケルの濃度を1mol/Lとし、他の硫酸塩の濃度については、Niと各金属元素との比率の関係が表1に示す値となるように調節した。
 50℃にて、水溶液を攪拌しながら、水酸化ナトリウムを30質量%濃度で含む水溶液を混合物のpHが12になるまで滴下し、水酸化物を析出させた。水酸化物を濾過により回収して、水洗し、乾燥させた。乾燥物を、窒素雰囲気下、500℃で8時間焼成することにより複合酸化物を得た。
 得られた複合酸化物と、水酸化リチウムとを、Liと、Ni、Co、MnおよびAlの合計とが、1:1の原子比になるように混合した。混合物を、電気炉を用いて、酸素雰囲気中、昇温速度2.0℃/minで、室温から650℃まで加熱することにより焼成した。その後、昇温速度0.5℃/minで、650℃から750℃まで加熱して焼成した。得られた焼成物を水洗し、乾燥することにより複合酸化物NMA(正極活物質粒子)を得た。
(2)負極の作製
 ケイ素複合材料と黒鉛とを5:95の質量比で混合し、負極活物質として用いた。負極活物質と、CMCのナトリウム塩(CMC-Na)と、SBRと、水とを所定の質量比で混合し、負極スラリを調製した。次に、負極集電体である銅箔の表面に負極スラリを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に負極合剤層を形成した。
(3)非水電解質の調製
 ECおよびEMCとの混合溶媒(EC:EMC=3:7(体積比))に、LiPF6および必要に応じて表1に示す有機リン化合物(第1成分)およびFEC(第2成分)を溶解させることにより、非水電解質(電解液)を調製した。電解液におけるLiPF6の濃度は1.0mol/Lとした。調製した非水電解質中の第1成分および第2成分の濃度(初期濃度)は、表1中に示す値(質量%)とした。
(4)非水電解質二次電池の作製
 上記で得られた正極にAl製の正極リードを取り付け、上記で得られた負極にNi製の負極リードを取り付けた。不活性ガス雰囲気中で、正極と負極とをポリエチレン薄膜(セパレータ)を介して渦巻状に捲回し、捲回型の電極群を作製した。電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、上記非水電解質を注入した後、外装体を封止して非水電解質二次電池を作製した。なお、電極群を外装体に収容する際、正極リードおよび負極リードの一部は、それぞれ、外装体より外部に露出させた。表1中、E1~E4は、実施例1~4であり、C1~C8は、比較例1~8である。
(5)評価
 実施例および比較例で得られた非水電解質二次電池について、下記の評価を行った。
(a)初期の直流抵抗値(DCIR)
 25℃の環境下において、電池を0.3Itの電流で電圧が4.2Vになるまで定電流充電し、その後、4.2Vの定電圧で電流が0.05Itになるまで定電圧充電した。次いで、0.3Itの定電流で100分間放電し、充電状態(State of charge:SOC)を50%にした。
 SOC50%の電池に対して、0A、0.1A、0.5Aおよび1.0Aのそれぞれの電流値で10秒間放電したときの電圧値を測定した。放電の電流値と10秒後の電圧値との関係を最小二乗法で直線に近似したときの傾きの絶対値からDCIR(初期のDCIR)を算出した。
(b)充放電サイクル試験
 25℃の環境下において、電池を0.5Itの定電流で電圧が4.2Vになるまで定電流充電し、その後、4.2Vの定電圧で電流が0.02Itになるまで定電圧充電した。次いで、0.5Itの定電流で電圧が3.0Vになるまで定電流放電を行った。この充電および放電を1サイクルとして、200サイクル繰り返した。
(c)DCIR上昇率(ΔDCIR)
 上記(b)の充放電サイクル試験で充放電を200サイクル繰り返した後の電池を用いる以外は、上記(a)の場合と同様にして、DCIR(200サイクル目のDCIR)を算出した。初期のDCIRに対する200サイクル後のDCIRの比率をDCIR上昇率として、以下の式により算出した。
 DCIR上昇率(%)={(200サイクル目のDCIR-初期のDCIR)/初期のDCIR}×100
(d)容量維持率(MR)
 上記(b)の充放電サイクル試験において、1サイクル目の放電容量と200サイクル目の放電容量とを測定し、以下の式により容量維持率を求め、サイクル特性の指標とした。
 容量維持率(%)=(200サイクル目の放電容量/1サイクル目の放電容量)×100
(e)高温保存時のガス発生量
 更に、E1、E2、C3、C4の電池について、以下の高温保存特性の評価を行った。
 25℃の環境下において、電池を0.3Itの定電流で電圧が4.2Vになるまで定電流充電し、その後、4.2Vの定電圧で電流が0.02Itになるまで定電圧充電した。充電後の電池を80℃の環境下で72時間保存し、保存時の電池内のガス発生量を調べた。
 評価結果を表1に示す。表1中の第1成分について、A1は、ジエチル(ジフルオロメチル)ホスホネートであり、A2は、ジエチル(トリフルオロメチル)ホスホネートであり、B1は、ジエチルメチルホスホネートであり、B2は、ジメチルビニルホスホネートであり、B3は、ビス(2,2,2-トリフルオロエチル)メチルホスホネートである。
 A1~A2は、一般式(1)で表される有機リン化合物であり、B1~B3は、一般式(1)で表される有機リン化合物ではない。
Figure JPOXMLDOC01-appb-T000005
 Coを含まない複合酸化物NMAを用いたC3では、Coを相対的に多く含む複合酸化物を用いたC1に比べて、MRが4.9%低下し(89.8%→84.9%)、ΔDCIRが7.2%増大した(17.0%→24.2%)。
 Coを含まない複合酸化物NMAを用いたC3では、Coを相対的に多く含む複合酸化物を用いたC2に比べて、MRが2.3%低下し(87.2%→84.9%)、ΔDCIRが2.7%増大した(21.5%→24.2%)。
 E1およびC3では、それぞれ、Coを含まない複合酸化物NMAを正極活物質に用い、E1では非水電解質にA1を添加し、C3では非水電解質にA1を添加しなかった。E1では、C3に比べて、MRが4.5%と大幅に上昇し(84.9%→89.4%)、ΔDCIRが5.3%と大幅に低減された(24.2%→18.9%)。
 一方、C8およびC2では、それぞれ、Coを相対的に多く含む複合酸化物を正極活物質に用い、C8では非水電解質にA1を添加し、C2では非水電解質にA1を添加しなかった。C8では、C2に比べて、容量維持率(MR)が1.4%しか上昇せず(87.2%→88.6%)、DCIR上昇率(ΔDCIR)も3.3%しか低減されなかった(21.5%→18.2%)。
 Coを含まない複合酸化物NMAを用いたE1では、Coを相対的に多く含む複合酸化物を用いたC8に比べて、非水電解質へのA1の添加による効果が顕著に得られた。
 非水電解質にA1およびFECを含ませたE2では、C3に比べて、MRが5.4%と大幅に上昇し(84.9%→90.3%)、ΔDCIRが6.2%と大幅に低減された(24.2%→18.0%)。
 非水電解質にA1を含ませず、FECを含ませたC4では、C3に比べて、MRが2.1%上昇し(84.9%→87.0%)、ΔDCIRが3.3%低下した(24.2%→20.9%)。
 E2では、E1に対して、MRが更に0.9%上昇し(89.4%→90.3%)、ΔDCIRが更に0.9%低減された(18.9%→18.0%)。A1とともにFECを含む非水電解質を用いることで、サイクル特性の向上効果および内部抵抗の低減効果がより顕著に得られた。
 C4およびC3では、それぞれ、Coを含まない複合酸化物NMAを正極活物質に用い、C4では非水電解質にFECを添加し、C3では非水電解質にFECを添加しなかった。C4では、C3に対して、高温保存時のガス発生量が6.3mLと大幅に増加した(24.2mL→30.5mL)。
 一方、E2およびE1では、それぞれ、Coを含まない複合酸化物NMAを正極活物質に用い、E2では非水電解質にA1およびFECを添加し、E1では非水電解質にA1を添加し、FECを添加しなかった。E2では、E1に対して、高温保存時のガス発生量が1.9mLしか増加せず(24.5mL→26.4mL)、FECをA1とともに添加する場合にFECによるガス発生が大幅に抑制された。
 非水電解質にA2を含ませたE3~E4においても同様に、MRが大幅に上昇し、ΔDCIRが顕著に低減された。
 C5~C7では、第1成分としてB1~B3を非水電解質に含ませたため、MRが低下し、ΔDCIRが増大した。なお、B1では、一般式(1)のRがメチル基である。B2では、一般式(1)のRがビニル基である。B3では、一般式(1)のRおよびRが、2,2,2-トリフルオロエチル基であり、Rがメチル基である。
 本開示に係る非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。また、非水電解質二次電池は、高容量でありながらも、サイクル特性に優れることで、車載用途にも適している。しかし、非水電解質二次電池の用途は、これらに限定されるものではない。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1:電極群、2:正極リード、3:負極リード、4:電池ケース、5:封口板、6:負極端子、7:ガスケット、8:封栓

Claims (7)

  1.  正極と、負極と、非水電解質と、を備え、
     前記正極は、正極活物質を含み、
     前記正極活物質は、Niと、Mnと、Alと、を含むリチウム遷移金属複合酸化物を含み、
     前記リチウム遷移金属複合酸化物に含まれるLi以外の金属元素に占めるNi、MnおよびAlの割合が、それぞれ
     Ni:50原子%以上、
     Mn:10原子%以下、および
     Al:10原子%以下
    であり、
     前記リチウム遷移金属複合酸化物がCoを含む場合、Li以外の金属元素に占めるCoの割合が1.5原子%以下であり、
     前記非水電解質は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表される有機リン化合物を含み、一般式(1)中、
     RおよびRは、それぞれ独立して、炭素数1~4のアルキル基であり、
     Rは、炭素数1~4のフッ素化アルキル基である、非水電解質二次電池。
  2.  前記有機リン化合物は、ジエチル(フルオロメチル)ホスホネート、ジエチル(ジフルオロメチル)ホスホネートおよびジエチル(トリフルオロメチル)ホスホネートからなる群より選択された少なくとも1種を含む、請求項1に記載の非水電解質二次電池。
  3.  前記非水電解質中の前記有機リン化合物の含有量は、2質量%以下である、請求項1または2に記載の非水電解質二次電池。
  4.  更に、フッ素化環状カーボネートを含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記フッ素化環状カーボネートは、フルオロエチレンカーボネートを含む、請求項4に記載の非水電解質二次電池。
  6.  前記リチウム遷移金属複合酸化物は、下記式:
     LiαNi(1-x1-x2-y-z)Cox1Mnx2Al2+β
    で表され、式中、
     0.95≦α≦1.05、
     0.685≦1-x1-x2-y-z≦0.95、
     0≦x1≦0.015、
     0<x2≦0.1、
     0<y≦0.1、
     0≦z≦0.1、および
     -0.05≦β≦0.05を満たし、
     Mは、Li、Ni、Mn、Al、Coおよび酸素以外の元素である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記元素Mが、Ti、Zr、Nb、Mo、W、Fe、Zn、B、Si、Mg、Ca、Sr、ScおよびYからなる群より選択された少なくとも1種である、請求項6に記載の非水電解質二次電池。
PCT/JP2022/022080 2021-06-30 2022-05-31 非水電解質二次電池 WO2023276526A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023531722A JPWO2023276526A1 (ja) 2021-06-30 2022-05-31
CN202280045935.4A CN117597809A (zh) 2021-06-30 2022-05-31 非水电解质二次电池
EP22832684.9A EP4366014A1 (en) 2021-06-30 2022-05-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109544 2021-06-30
JP2021-109544 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276526A1 true WO2023276526A1 (ja) 2023-01-05

Family

ID=84691222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022080 WO2023276526A1 (ja) 2021-06-30 2022-05-31 非水電解質二次電池

Country Status (4)

Country Link
EP (1) EP4366014A1 (ja)
JP (1) JPWO2023276526A1 (ja)
CN (1) CN117597809A (ja)
WO (1) WO2023276526A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310181A (ja) 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
WO2011030686A1 (ja) * 2009-09-09 2011-03-17 日本電気株式会社 二次電池
WO2013024717A1 (ja) * 2011-08-12 2013-02-21 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP2014194930A (ja) 2013-02-27 2014-10-09 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
WO2016031316A1 (ja) * 2014-08-25 2016-03-03 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310181A (ja) 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
WO2011030686A1 (ja) * 2009-09-09 2011-03-17 日本電気株式会社 二次電池
WO2013024717A1 (ja) * 2011-08-12 2013-02-21 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP2014194930A (ja) 2013-02-27 2014-10-09 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
WO2016031316A1 (ja) * 2014-08-25 2016-03-03 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物

Also Published As

Publication number Publication date
EP4366014A1 (en) 2024-05-08
JPWO2023276526A1 (ja) 2023-01-05
CN117597809A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
EP2498323B1 (en) Positive active material, and electrode and lithium battery containing the material
JP6588079B2 (ja) 非水電解質二次電池
KR20190131842A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190059115A (ko) 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
WO2013145846A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2007188878A (ja) リチウムイオン二次電池
JP2011070789A (ja) 非水電解質二次電池
KR102595884B1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020026486A1 (ja) 正極材料および二次電池
JP7165913B2 (ja) 非水電解質二次電池
JPWO2019167581A1 (ja) 非水電解質二次電池
JP2022501789A (ja) 二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
US9847551B2 (en) Lithium-ion secondary battery
JP7357994B2 (ja) 二次電池用正極活物質の製造方法
WO2023276527A1 (ja) 非水電解質二次電池
KR20220062974A (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2018096889A1 (ja) 非水電解液、及びリチウムイオン二次電池
KR20160023423A (ko) 리튬이차전지
JP7458033B2 (ja) 非水電解質二次電池およびこれに用いる電解液
WO2023276526A1 (ja) 非水電解質二次電池
WO2022091939A1 (ja) 非水電解質二次電池
WO2021235131A1 (ja) 非水電解質二次電池
KR102567705B1 (ko) 리튬 이차 전지
JP7278652B2 (ja) 二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
WO2023032799A1 (ja) 非水電解質電池およびこれに用いる非水電解質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531722

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18569130

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280045935.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022832684

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832684

Country of ref document: EP

Effective date: 20240130