WO2016010056A1 - 蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法 - Google Patents

蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法 Download PDF

Info

Publication number
WO2016010056A1
WO2016010056A1 PCT/JP2015/070212 JP2015070212W WO2016010056A1 WO 2016010056 A1 WO2016010056 A1 WO 2016010056A1 JP 2015070212 W JP2015070212 W JP 2015070212W WO 2016010056 A1 WO2016010056 A1 WO 2016010056A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
silicon
lithium
storage device
active material
Prior art date
Application number
PCT/JP2015/070212
Other languages
English (en)
French (fr)
Inventor
川上総一郎
Original Assignee
川上総一郎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川上総一郎 filed Critical 川上総一郎
Priority to US15/326,281 priority Critical patent/US10541411B2/en
Publication of WO2016010056A1 publication Critical patent/WO2016010056A1/ja
Priority to US16/710,997 priority patent/US11018337B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a negative electrode material capable of storing and releasing lithium ions, the main component of which is silicon that is alloyed with lithium by an electrochemical reaction, a method for producing an electrode structure comprising the material, and the electrode
  • the present invention relates to a method for manufacturing an electricity storage device having a structure.
  • the one with the highest energy density is a lithium ion secondary battery using carbon such as graphite for the negative electrode and a compound of lithium and transition metal for the positive electrode (common name: Lithium ion battery).
  • carbon such as graphite for the negative electrode and a compound of lithium and transition metal for the positive electrode
  • Lithium ion battery common name: Lithium ion battery.
  • the negative electrode is made of a carbon material, theoretically, only a maximum of 1/6 lithium atoms can be intercalated per carbon atom. Therefore, it is difficult to further increase the capacity, and a new electrode material for increasing the capacity is desired.
  • the lithium ion secondary battery is expected as a power source for hybrid vehicles and electric vehicles because of its high energy density.
  • the battery has a large internal resistance for rapid discharge, that is, it cannot release a sufficient amount of electricity.
  • Non-Patent Document 1 proposes a silicon nanotube having an expansion space inside and having an outermost surface coated with silicon oxide, and an electrode having a long charge / discharge cycle life is obtained.
  • Non-Patent Document 2 proposes alumina-coated silicon nanowires as an electrode active material having a long cycle life by the Atomic Layer Deposition method.
  • the production of the silicon nanotubes requires many steps and cannot be said to be a method suitable for mass production.
  • the production of the silicon nanowires is not suitable for mass production, and the silicon nanotubes and silicon nanowires are provided at low cost. It was difficult to do.
  • the alumina coating is not suitable for mass production.
  • Non-patent document 3 proposes a composite with graphene. However, it is difficult to say that the method for producing graphene used for assisting conduction shown in Non-Patent Document 3 is suitable for mass production.
  • Non-Patent Document 4 proposes that the expanded graphite is immersed in a tetrahydrofuran solution of silicon nanoparticles and polyvinyl chloride and irradiated with ultrasonic waves to peel the expanded graphite to form a composite of graphite nanosheets and silicon particles.
  • it is difficult to increase the size of the peeling device using ultrasonic waves which is not suitable for mass production. Therefore, development of a mass production easy and inexpensive conductive auxiliary material suitable for silicon fine particles is expected.
  • Patent Document 2 proposes a metal coating for improving the electronic conductivity of silicon particles and a ceramic coating for suppressing pulverization due to expansion when lithium is inserted.
  • Patent Document 3 proposes a means for extending the charge / discharge cycle life by providing a metal oxide coating layer on silicon particles from a raw material such as alkoxide by a sol-gel method.
  • Patent Document 4 proposes particles having a structure in which silicon nanoparticles are dispersed in silicon oxide and coated with a metal oxide film in order to suppress gas generation due to decomposition of the organic solvent of the electrolytic solution.
  • the silicon particle coating treatment does not lead to a reduction in the amount of silicon oxide that causes the irreversible amount of lithium due to charge and discharge, but rather causes an increase in many cases, resulting in a decrease in initial charge and discharge coulombic efficiency. I was invited.
  • Non-Patent Document 5 carboxymethyl cellulose is a non-patent Document 6 proposes sodium alginate, and Non-Patent Document 7 proposes polyacrylic acid. None of the polymers of any of the above materials has a sufficient strength in a small amount, and there is a problem in that the conductivity of the electrode is lowered when an amount for maintaining the strength is used. Therefore, the development of a method that can increase the mechanical strength of the electrode with a small amount of binder is expected.
  • Non-Patent Document 8 shows that a flexible current collector formed by vapor-depositing a metal thin film on a flexible substrate relieves stress of lithium insertion. There is a problem that it can not cope.
  • Patent Document 5 in order to prevent the negative electrode current collector from being distorted or cut and causing the negative electrode to be deformed, a current collector having a plurality of convex portions on the surface and an alloy-based active material on the convex portions are provided. Disposed electrodes have been proposed, but the process of removing strain at the time of forming the current collector is required, and in order to stack the active material only on the convex portions, the number of manufacturing steps increases and the manufacturing cost increases. There was a problem.
  • Non-Patent Document 9 an electrolyte containing vinylene carbonate is proposed in Non-Patent Document 9
  • an electrolyte containing fluoroethylene carbonate is proposed in Non-Patent Document 10.
  • the lifetime is longer than that without the above additives, the SEI (Solid Electrolyte Interphase) layer thickness resulting from the decomposition of the electrolyte gradually increases and the conductivity of the electrode decreases, so the growth of the SEI layer It was not sufficient in suppression.
  • an additive that is highly effective in suppressing the growth of the SEI layer is required.
  • the present invention is capable of electrochemically storing and releasing a large amount of lithium ions, and a negative electrode active material composed of a silicon-based material having a high ratio of the release amount to the initial lithium ion accumulation amount (
  • An object is to provide a negative electrode material) and a method for producing the same.
  • An object of the present invention is to provide a power storage device having a high output density and a high energy density that is less likely to decrease in capacity even when repeated.
  • the power storage device includes a capacitor, a secondary battery, a device in which a capacitor and a secondary battery are combined, and a device in which a power generation function is incorporated.
  • the present inventor has developed a high charge / discharge efficiency and charge / discharge cycle life while maintaining a high capacity in an electricity storage device such as a lithium ion secondary battery using a negative electrode (referred to as a silicon negative electrode) composed of silicon-based particles.
  • a negative electrode referred to as a silicon negative electrode
  • the silicon negative electrode the silicon itself as a main component, the conductive auxiliary material and the binder and the void that absorbs the volume expansion when lithium is inserted, the current collector that can withstand the stress during the volume expansion, It has been found that any of the electrolyte additives that form a stable SEI layer is important, and it is necessary to consider a strategy that can fully exhibit the performance of the silicon negative electrode.
  • the following discoveries (1) to (5) were made, and it was found that a high-capacity and long-life silicon negative electrode (silicon electrode) and a lithium ion secondary battery could be realized.
  • silicon particles particles containing silicon as a main component
  • electrolyte solution that is, on the surface of the silicon particles.
  • a lithium composite oxide layer containing a metal element selected from La and a Li element generation of silicon oxide can be suppressed, and metal lithium is deposited on the surface of silicon particles during charging, and the electrolytic solution reacts with lithium.
  • the inventors have found that it is possible to suppress the formation of inactive LiF, Li 2 O, Li 2 CO 3 and the like, and it is possible to produce an electrode having a long charge / discharge cycle life.
  • lithium composite metal oxide which is more thermodynamically stable than silicon oxide
  • the oxidation of silicon particles is suppressed, and from the lithium ion conductivity of the lithium composite oxide coating, lithium deposition during charging is It occurs at the solid-solid interface between the lithium composite oxide and the silicon particles, and the reaction between the electrolyte component and lithium is suppressed.
  • silicon particles are immersed in a metal nitrate or organic acid salt selected from Al, Zr, Li, Mg, Ca and La or an alcohol solution of alkoxide and dried, and then in a range of 200 to 1000 ° C. Baking to form a lithium composite metal oxide film on the surface of the silicon particles.
  • alumina or zirconia beads are used in the above alcohol solution to wet pulverize silicon to form nano-silicon particles. It is good to form.
  • silicon particles and Li 2 O or LiOH and a metal oxide or hydroxide selected from Al, Zr, Mg, Ca, and La are mixed, and then dry-processed in an apparatus such as a planetary ball mill, vibration mill, or attritor. After the pulverization, it is also preferable to form a lithium composite metal oxide film on the surface of the nanosilicon particles by firing in the range of 200 to 1000 ° C.
  • the expanded graphite is exfoliated by wet pulverization or dry pulverization and then used as a conductive auxiliary material or mixed with silicon particles and dried to have a high size ratio in the plane direction relative to the thickness direction exfoliated from the expanded graphite
  • a composite powder of graphite pieces (referred to as exfoliated graphite) and silicon particles is formed.
  • the exfoliated graphite can be arranged in parallel to the current collector surface, and the conductivity is high, and the volume expansion when lithium is inserted It has been found that a long-life electrode can be formed in which voids are ensured and stress generation is suppressed.
  • expanded graphite As a method for producing a graphite piece (exfoliated graphite) having a high size ratio in the planar direction with respect to the thickness direction, expanded graphite was immersed in a salt solution selected from ammonium carbonate, ammonium hydrogen carbonate, and tetraalkylammonium hydroxide. Thereafter, a method of peeling off the expanded graphite by adding an organic acid is a more preferable method. It has been found that ammonium carbonate, ammonium hydrogen carbonate, and tetraalkylammonium hydroxide inserted between layers of expanded graphite are easily separated by the expansion of gas generated by reaction with an organic acid. Each reaction raw material is gasified by processing at a high temperature and does not remain in the exfoliated expanded graphite.
  • a salt solution selected from ammonium carbonate, ammonium hydrogen carbonate, and tetraalkylammonium hydroxide.
  • At least one type of fiber selected from cellulose nanofibers, chitin nanofibers, chitosan nanofibers, and carbon fiber mills is mixed as a reinforcing material in the electrode layer composed of at least silicon particles, a conductive auxiliary material, and a binder.
  • the binder is preferably a water-soluble polymer, and water containing nanometer-sized (100 to 300 nm) bubbles (nano-bubble water) is used as a solvent for kneading the binder, silicon particles, a conductive auxiliary material, and the fiber. It has been found that a porous electrode layer can be formed by using it, the penetration of the electrolyte solution can be facilitated, the ion conductivity can be increased, and the expansion of the electrode layer when lithium is inserted can be suppressed.
  • a metal foil provided with a surface layer made of carbon fiber mill and a binder on an electrode current collector made of silicon particles, or a cross-sectional shape is selected from a sine wave, a triangular wave, a rectangular wave, a trapezoidal wave, and a sawtooth wave. It has been found that the cycle life of charge / discharge is extended by using a metal foil having a corrugated waveform and having a crest and trough formed linearly.
  • the negative electrode active material (negative electrode material) of the electricity storage device capable of accumulating / releasing lithium ions according to the first invention for solving the above-mentioned problems is obtained by agglomerating primary particles of 10 nm to 300 nm composed mainly of silicon as secondary particles. And a composite oxide layer formed at least from at least one metal element selected from Al, Zr, Mg, Ca, La and Li is provided on the surface layer of the primary particles.
  • the production method of the negative electrode active material (negative electrode material) of the electricity storage device capable of electrochemically storing and releasing lithium ions according to the second invention for solving the above-mentioned problems is selected from at least Al, Zr, Mg, Ca, La
  • the method includes a step of heat-treating the silicon particles after immersing the silicon particles in an alcohol solution in which one or more metal elements and Li nitrate or organic acid salt are dissolved. Also preferred is a method of obtaining an active material for a negative electrode by heat-treating silicon after bead milling in a nitrate or organic acid salt alcohol solution, followed by drying.
  • One or more compounds selected from ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and polyvinyl pyrrolidone may be added to the alcohol solution.
  • a process of mixing at least one metal element oxide or hydroxide selected from Al, Zr, Mg, Ca, La and lithium hydroxide or lithium oxide, and dry-grinding with a media mill The manufacturing method containing is also preferable.
  • the electrode structure for an electricity storage device capable of inserting and desorbing lithium ions comprises the active material comprising silicon as a main component of the present invention, a conductive assistant, a binder, and a current collector.
  • the exfoliated graphite is obtained by crushing or exfoliating expanded graphite
  • the conductive auxiliary material is exfoliated graphite in which multiple layers of graphene sheets are stacked, and the plane in which the six carbons of the exfoliated graphite take a regular hexagonal structure. It is characterized by being oriented parallel to the wide surface of the current collector.
  • the binder is a water-soluble polymer, and one or more fibers selected from cellulose nanofibers, chitin nanofibers, chitosan nanofibers, and carbon fiber milled are combined.
  • the current collector of the electrode structure of the present invention has a waveform in which the cross-sectional shape is selected from a sine wave, a triangular wave, a rectangular wave, a trapezoidal wave, and a sawtooth wave, and peaks and troughs of the wave Is a metal foil formed in a linear shape, or a metal foil in which a layer made of carbon fiber mill and a binder is formed on the surface.
  • an electricity storage device capable of inserting and removing lithium ions comprising at least a negative electrode, a lithium ion conductor, and a positive electrode comprising a lithium transition metal compound is the electrode structure of the present invention.
  • the body is used as a negative electrode.
  • the lithium ion conductor is characterized in that inorganic solid lithium ion conductor fine particles are dispersed in an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the lithium ion conductor is characterized in that at least an aluminum salt or a magnesium salt is added to an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the lithium ion conductor is prepared by adding styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, acrylonitrile, N-vinylpyrrolidone, 4-vinylpyrrolidone, 2- (2-propynyloxy) to an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the positive electrode of the electricity storage device of the present invention is a lithium transition metal whose surface layer is coated with a composite oxide composed of at least one metal element selected from Al, Zr, Mg, Ca, La and Li It consists of compound fine particles. Furthermore, it is preferable that the exfoliated graphite is used for the conductive auxiliary material constituting the positive electrode.
  • the negative electrode active material capable of accumulating / releasing lithium ions according to the present invention suppresses the formation of the SEI layer during insertion of lithium, has high initial lithium insertion / extraction efficiency, and can accumulate / release a large amount of lithium ions. become.
  • the electrode structure having the negative electrode active material (negative electrode material) of the present invention, the conductive auxiliary material of the present invention and the binder reinforcing material can withstand repeated expansion and contraction associated with electrochemical lithium insertion and release, Allows long life. Furthermore, according to the electricity storage device using the electrochemical oxidation-reduction reaction of lithium ions of the present invention, high initial charge / discharge efficiency, high output density and high energy density can be obtained, and long-life charge / discharge can be obtained. Cycle life is also possible. An electricity storage device that can be rapidly charged can also be obtained.
  • the negative electrode active material (negative electrode material) of an electricity storage device capable of electrochemically storing and releasing lithium ions comprises secondary particles by agglomerating primary particles of 10 nm to 300 nm composed mainly of silicon.
  • the surface layer of the primary particles has a composite oxide layer formed at least from at least one metal element selected from Al, Zr, Mg, Ca, and La and Li.
  • the proportion of silicon contained in the negative electrode active material containing silicon as a main component is preferably in the range of 50 wt% to 99 wt%.
  • the manufacturing method includes a step of heat treatment after immersing silicon particles in an alcohol solution in which at least one metal element selected from Al, Zr, Mg, Ca, La and a nitrate or organic acid salt of Li is dissolved. And a step of obtaining an active material for a negative electrode by heat-treating silicon after bead milling and drying in an alcohol solution of nitrate or organic acid salt or alkoxide. Further, one or more compounds selected from ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and polyvinyl pyrrolidone may be added to the alcohol solution. The above compound has an effect of coordinating with a metal element to easily form a composite oxide.
  • At least one metal element oxide or hydroxide selected from Al, Zr, Mg, Ca, La and lithium oxide or lithium hydroxide and silicon powder are mixed, and dry pulverized in a media mill.
  • a production method including a treatment step is also preferable.
  • silicon powder as a raw material in thermal plasma powder of one or more metals selected from Al, Zr, Mg, Ca, La, or a compound thereof, and lithium compound powder are introduced to form silicon.
  • a method of forming a composite of nanoparticles and lithium composite metal oxide is also preferable.
  • the metal or lithium compound is preferably an oxide, hydroxide, organic acid salt, or organic metal.
  • the electrode structure for an electricity storage device capable of inserting and desorbing lithium ions according to the present invention comprises the active material mainly comprising silicon according to the present invention, a conductive auxiliary material, a binder, and a current collector.
  • the conductive auxiliary material is exfoliated graphite obtained by crushing or exfoliating expanded graphite, in which a plurality of graphene sheets are stacked, and a plane in which the six carbons of the exfoliated graphite have a regular hexagonal structure is a wide surface of the current collector It is characterized by being oriented in parallel with.
  • the exfoliated graphite is produced by immersing expanded graphite in a salt solution selected from ammonium carbonate, ammonium hydrogen carbonate, and tetraalkylammonium hydroxide, and then adding the organic acid to exfoliate the expanded graphite. It is characterized by including the process to perform.
  • the binder is a water-soluble polymer, and it is preferable that at least one fiber selected from cellulose nanofibers, chitin nanofibers, chitosan nanofibers, and carbon fiber milled is combined.
  • a nanometer size It is also preferable to use water containing bubbles of 100 to 300 nm.
  • the current collector of the electrode structure of the present invention has a waveform in which the cross-sectional shape is selected from a sine wave, a triangular wave, a rectangular wave, a trapezoidal wave, and a sawtooth wave, and peaks and troughs of the wave Is a metal foil formed in a linear shape, or a metal foil in which a layer made of carbon fiber mill and a binder is formed on the surface.
  • the electrode structure of the present invention is used as the negative electrode. It is characterized by that.
  • the lithium ion conductor is characterized in that inorganic solid lithium ion conductor fine particles are dispersed in an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the lithium ion conductor is characterized in that at least one salt selected from an aluminum salt and a magnesium salt is added to an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the lithium ion conductor is a styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, acrylonitrile, N-vinylpyrrolidone, 4-vinylpyrrolidone, 2- (2-propynyloxy) in an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the positive electrode of the electricity storage device of the present invention is a lithium transition in which a surface layer is coated with a composite metal oxide composed of at least one metal element selected from Al, Zr, Mg, Ca, La and Li. It is preferably made of metal compound fine particles.
  • a negative electrode active material for an electricity storage device comprising a silicon as a main component having a composite oxide layer formed at least from one or more metal elements selected from Al, Zr, Mg, Ca, La and Li on the surface of the present invention This embodiment will be described more specifically with reference to FIGS. 1A and 1B.
  • FIG. 1A is a schematic cross-sectional view of active material particles mainly composed of silicon
  • FIG. 1B is a diagram of secondary particles composed of a plurality of active material particles mainly composed of silicon. It is a cross-sectional schematic diagram.
  • 101 and 103 are active material particles mainly composed of silicon
  • 102 and 104 are formed at least from one or more metal elements selected from Al, Zr, Mg, Ca and La and Li.
  • a composite metal oxide layer desirably covers the entire surface of the active material particles mainly composed of silicon, but does not necessarily have to cover the entire surface.
  • the material of the active material particles containing silicon as a main component is silicon or a silicon alloy.
  • metal (grade) silicon having a purity of about 93 to 99.9% obtained from reduction of silicon dioxide, solar cell grade silicon with higher purity, and semiconductor grade silicon are preferable, inexpensive and crystalline Metallic silicon is more preferable because the particles are small and are easily pulverized.
  • Metallic silicon contains 0.5 wt% or less of iron element, 0.5 wt% or less of aluminum element, and 0.3 wt% or less of calcium element.
  • the silicon alloy is preferably an alloy of silicon and at least a transition metal.
  • the primary particle diameter of the active material particles containing silicon as a main component is preferably 10 to 300 nm, and more preferably 10 to 100 nm.
  • the thickness of the composite metal oxide layer is preferably in the range of 2 to 100 nm, and more preferably in the range of 2 to 20 nm.
  • the negative electrode active material particles of the present invention may be coated on the entire surface or a part of the surface with an amorphous carbon layer, or the composite metal oxide layer may be coated on the composite metal oxide layer.
  • Amorphous carbon may be complexed.
  • the smaller the particle size of the active material particles the smaller the actual current density on the surface of the active material particles during charging / discharging of the battery, the lithium redox reaction occurs uniformly, and the lithium ion insertion / desorption occurs.
  • the volume expansion and contraction is also preferable because it becomes more uniform.
  • silicon oxide is also easily formed in the step of forming particles small, it is desirable to select a particle size range in which silicon oxide is less formed.
  • a specific method for producing a negative electrode active material according to the present invention includes an alcohol solution in which at least one metal element selected from Al, Zr, Mg, Ca, and La and a nitrate or organic acid salt of Li are dissolved. It is obtained by dispersing a fine powder composed of particles whose main component is composed of silicon, followed by drying and heat treatment in an inert gas atmosphere, preferably in the range of 200 to 1000 ° C., more preferably in the range of 300 to 900 ° C. Is. Powder consisting of particles composed mainly of silicon is used as a medium with an alcohol solution in which at least one metal element selected from Al, Zr, Mg, Ca and La and a nitrate or organic acid salt of Li are dissolved.
  • it may be a step of performing a heat treatment in a range of 200 to 1000 ° C., more preferably 300 to 900 ° C. in an inert gas atmosphere after wet pulverization in a bead mill apparatus and drying. It is preferable to add one or more compounds selected from ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and polyvinyl pyrrolidone to the alcohol solution.
  • the above compound coordinates to a metal ion and facilitates formation of a composite metal oxide. Further, a part of the compound forms a composite layer with the composite metal oxide as amorphous carbon by thermal decomposition, and remains on the particle surface of the silicon main component, thereby contributing to improvement of electron conduction.
  • the electrode structure of the present invention is an electrode structure for an electricity storage device capable of inserting and removing lithium ions, and comprises the active material mainly comprising silicon of the present invention, a conductive auxiliary material, a binder, and a current collector. It is made up. An embodiment of the electrode structure of the present invention will be described more specifically with reference to FIG.
  • FIG. 2 is a schematic cross-sectional view of the electrode structure of the present invention.
  • 200 is a current collector
  • 201 is an active material mainly composed of silicon
  • 202 is exfoliated graphite as a conductive auxiliary material
  • 203 is a binder
  • Reference numeral 204 denotes a fiber-shaped reinforcing material
  • 205 denotes an electrode layer
  • 206 denotes an electrode structure.
  • the conductive auxiliary material is exfoliated graphite obtained by crushing or exfoliating expanded graphite, and a plurality of graphene sheets stacked, and a plane in which the carbon of the exfoliated graphite has a regular hexagonal structure is a current collector. It is preferably oriented parallel to a wide surface.
  • the conductive auxiliary material carbon black, carbon nanofibers, carbon nanotubes and the like may be further added.
  • the method for producing the exfoliated graphite of the conductive auxiliary material used in the electrode structure of the present invention the expanded graphite is immersed in a salt solution selected from ammonium carbonate, ammonium hydrogen carbonate, and tetraalkyl ammonium hydroxide. A method of peeling an expanded graphite by adding an organic acid is more preferable.
  • the binder 203 is preferably a water-soluble polymer, and one or more kinds of fibrous reinforcing materials 204 selected from cellulose nanofibers, chitin nanofibers, chitosan nanofibers, and carbon fiber mills are preferably combined.
  • the cellulose nanofiber, chitin nanofiber, and chitosan nanofiber are fibers having a diameter of about 4 to 100 nm and a length of 2 ⁇ m or more, and can be prepared by an underwater counter collision method or the like.
  • the carbon fiber milled is obtained by shortening a carbon fiber (carbon fiber) yarn, and preferably has a fiber diameter of about 7 ⁇ m and a fiber length of about 30 ⁇ m, but is not limited thereto.
  • the mechanical strength can be increased, and the strength against stress caused by volume expansion and contraction generated when lithium is inserted into and released from the active material containing silicon as a main component can be increased. Furthermore, when carbon fiber milled composites are used, not only the carbon nanofibers and carbon nanotubes are harder to aggregate but also easier to disperse and have higher electrical conductivity. Can also be increased.
  • Typical examples of the water-soluble polymer used in the binder include sodium alginate, sodium carboxymethylcellulose, carboxymethylcellulose, sodium polyacrylate, polyacrylic acid, polyvinyl alcohol, chitin, chitosan, etc. to increase mechanical strength. It is preferable to crosslink. Polyvinyl alcohol has high water absorption, so if it is used as it is as a binder for the electrode of the electricity storage device, hydrogen gas is generated during charging and the pressure in the housing of the electricity storage device is increased. It is preferable to reduce the hydroxyl group by crosslinking with an agent. Polyacrylic acid and polyvinyl alcohol may be mixed and crosslinked by hydrogen bonding.
  • the current collector used in the electrode structure of the present invention has a cross-sectional shape having a waveform selected from a sine wave, a triangular wave, a rectangular wave, a trapezoidal wave, and a sawtooth wave, and peaks and troughs of the wave.
  • 3A is an example of a current collector having a triangular wave cross-sectional shape
  • FIG. 3B is an example of a current collector having a rectangular wave cross-sectional shape
  • FIG. 3C is a current collector having a carbon fiber mill and binder layer on the surface.
  • 301, 302 and 303 are metal foils
  • 304 is a binder
  • 305 is carbon fiber milled
  • 306 is a layer made of carbon milled and binder.
  • the material of the metal foil is required to be stable without being dissolved in the charge / discharge reaction of the electricity storage device, and specifically includes copper, stainless steel, titanium, and nickel.
  • the processing of the cross-sectional shape can be easily formed by pressing a metal foil through a roll press machine whose surface has been patterned.
  • the carbon fiber mill preferably has a fiber diameter of about 7 ⁇ m and a fiber length of about 30 to 150 ⁇ m.
  • the present invention is subject to volume expansion and contraction due to insertion and release of lithium into and from the negative electrode active material of which the silicon of the present invention is a main component along with the charge / discharge reaction of the electricity storage device.
  • the current collector of the electrode structure follows and can relieve stress generated by volume expansion and contraction.
  • a metal foil having a carbon fiber mill and binder layer formed on the surface is used for the current collector of the electrode structure of the present invention, the stress generated by volume expansion and contraction associated with charge / discharge of the electricity storage device The mechanical strength that can withstand
  • the electrode structure of the present invention is produced by the following procedure. First, an active material 201 mainly composed of silicon of a composite metal oxide coating of the present invention, flake graphite 202 as a conductive auxiliary material, a binder 203, and a bio-nanofiber of a fibrous reinforcing material 204 (cellulose nanofiber, chitin nanofiber, chitosan) Nanofiber) and / or carbon fiber mill are mixed at a predetermined mixing ratio, a binder solvent is added, and the mixture is kneaded in a kneader to prepare a slurry.
  • an active material 201 mainly composed of silicon of a composite metal oxide coating of the present invention, flake graphite 202 as a conductive auxiliary material, a binder 203, and a bio-nanofiber of a fibrous reinforcing material 204 (cellulose nanofiber, chitin nanofiber, chitosan) Nanofiber
  • a binder solvent is added, and the
  • a porous electrode layer can be formed by using a water-soluble polymer as the binder and water containing nanometer-sized (100 to 300 nm) bubbles (nanobubble water) as the binder solvent. Nitrogen gas is preferable as the gas in the bubbles.
  • the electrode structure of the present invention having a porous void is used for the negative electrode of an electricity storage device that utilizes the reductive oxidation reaction of lithium ions, the volume expansion of the active material during lithium insertion due to charging can be reduced, and The penetration of the liquid becomes easy and the internal impedance of the electricity storage device can be reduced.
  • the solid content of the active material mainly composed of silicon of the composite metal oxide coating of the present invention exfoliated graphite as a conductive auxiliary material, binder, bionanofiber and / or carbon fiber milled, each of the total solid content of the slurry, The range is preferably 20 to 80% by weight, 10 to 50% by weight, 3 to 20% by weight, and 1 to 5% by weight.
  • the electrode layer 205 preferably has a thickness of 10 to 50 ⁇ m and a density of 0.8 to 2.0 g / cm 3 .
  • the electricity storage device of the present invention is an electricity storage device that utilizes a reductive oxidation reaction of lithium ions, and comprises at least the electrode structure of the present invention as a negative electrode, and a positive electrode comprising an ionic conductor and a lithium transition metal compound. .
  • An embodiment of the electrode structure of the present invention will be described more specifically with reference to FIG.
  • 401 is a negative electrode current collector
  • 402 is a negative electrode active material layer
  • 403 is a negative electrode
  • 404 is a lithium ion conductor
  • 405 is a positive electrode current collector
  • 406 is a positive electrode active material layer
  • 407 is a positive electrode
  • 408 is an exterior.
  • 409 is a negative electrode lead
  • 410 is a negative electrode terminal
  • 411 is a positive electrode lead
  • 412 is a positive electrode terminal.
  • the electrode structure of the present invention is used for the negative electrode 403.
  • the lithium ion conductor 404 is preferably one in which inorganic solid lithium ion conductor fine particles are dispersed in an electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the average primary particle size of the inorganic solid electrolyte is preferably in the range of 10 to 300 nm.
  • the organic solvent content can be reduced, the side reaction during the charging can be prevented from being decomposed, and the increase in the SEI layer can be prevented.
  • An increase in resistance can be suppressed, a charge / discharge cycle life can be extended, and safety can be improved.
  • at least one salt selected from an aluminum salt and a magnesium salt is added to an electrolytic solution in which a lithium salt of the lithium ion conductor 404 is dissolved in an organic solvent.
  • the aluminum salt or magnesium salt is a cathode reaction, and it is easy to form an aluminum or magnesium-containing oxide or fluoride film on the negative electrode surface.
  • the electrolytic reaction of the organic solvent contained in the electrolytic solution can be suppressed, the increase in the SEI layer can be prevented, the increase in electrode resistance can be suppressed, and the charge / discharge cycle life can be extended.
  • the amount of the aluminum salt or magnesium salt added to the electrolyte is preferably in the range of 0.1 to 3% by weight.
  • styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, acrylonitrile, N-vinylpyrrolidone, 4-vinylpyrrolidone, 2- (2-propynyloxy) -3-vinylnaphthalene are added to an electrolytic solution obtained by dissolving the lithium salt in an organic solvent.
  • the positive electrode active material layer 406 of the positive electrode 407 has a lithium transition in which the surface layer is coated with a composite metal oxide composed of at least one metal element selected from Al, Zr, Mg, Ca, and La and Li. It is preferably made of metal compound fine particles.
  • the composite metal oxide layer composed of one or more metal elements selected from Al, Zr, Mg, Ca, La and Li is a lithium transition metal compound that is a positive electrode active material in a side reaction during charge and discharge. Therefore, it is possible to prevent the transition metal element from being dissolved in the electrolytic solution, to prevent an increase in the film thickness of the SEI layer, and to suppress an increase in electrode resistance, thereby extending the charge / discharge cycle life. It is also preferable to reduce the electrical resistance of the positive electrode using the exfoliated graphite as the conductive auxiliary material of the positive electrode.
  • a negative electrode 403 including a negative electrode current collector 401 and a negative electrode active material layer 402 and a positive electrode 407 including a positive electrode current collector 405 and a positive electrode active material layer 406 are stacked with an ion conductor 404 sandwiched therebetween.
  • a battery case (housing, exterior) 408 in a dry air or dry inert gas atmosphere in which the dew point temperature is sufficiently controlled each electrode and each electrode terminal 410, 412 Are connected by the respective electrode leads 409 and 411, and the battery case 408 is sealed, whereby the electric storage device is assembled.
  • the power storage device includes a capacitor, a secondary battery, a device in which the capacitor and the secondary battery are combined, and a device in which a power generation function is incorporated.
  • the cell shape of the electricity storage device manufactured according to the present invention include a flat shape, a cylindrical shape, a rectangular parallelepiped shape, and a sheet shape.
  • the cell structure include a single layer type, a multilayer type, and a spiral type.
  • the spiral cylindrical cell has a feature that an electrode area can be increased by sandwiching a separator between a negative electrode and a positive electrode, and a large current can be flowed during charging and discharging.
  • the rectangular parallelepiped or sheet-shaped cell has a feature that it can effectively use the storage space of a device configured by storing a plurality of batteries.
  • FIG. 5 is a schematic sectional view of a single-layer flat (coin type) cell
  • FIG. 6 is a laminate type cell (pouch cell)
  • FIG. 7 is a spiral cylindrical cell.
  • the negative electrode is composed of a negative electrode current collector and a negative electrode active material layer
  • the positive electrode is composed of a positive electrode current collector and a positive electrode active material layer
  • an ionic conductor is disposed between the negative electrode and the positive electrode.
  • 5, 6, and 7, 501, 601 and 701 are negative electrode current collectors
  • 502, 602 and 702 are negative electrode active material layers
  • 503, 603 and 703 are ion conductors
  • 504, 604 and 704 are positive electrode current collectors.
  • 505, 605, 705 are positive electrode active material layers
  • 708 is a negative electrode lead
  • 709 is a positive electrode lead
  • 506, 606 are negative electrode terminals
  • 507, 607, 707 are positive electrode terminals
  • 608 is a battery case (housing, exterior)
  • 508, 713 is a gasket
  • 710 is a safety valve
  • 711 and 712 are insulating plates
  • 706 is a negative electrode terminal and a battery case.
  • the electrode structure of the positive electrode is also similar to the electrode structure in FIG.
  • a positive electrode active material layer composed of a lithium-transition metal compound serving as a positive electrode active material, a binder, and a conductive auxiliary material such as carbon black is formed on a positive electrode current collector.
  • Transition metal oxides, transition metal phosphate compounds, lithium-transition metal oxides, and lithium-transition metal phosphate compounds are used as positive electrode active materials for secondary batteries that utilize redox oxidation of lithium ions.
  • the transition metal element contained in the positive electrode active material Ni, Co, Mn, Fe, Cr, V or the like is more preferably used as the main element.
  • the positive electrode active material is mainly composed of an element selected from Mo, W, Nb, Ta, V, B, Ti, Ce, Al, Ba, Zr, Sr, Th, Mg, Be, La, Ca, and Y. It may be combined with an oxide or composite oxide.
  • a high specific surface area and / or porous carbon is used as the positive electrode active material for a capacitor.
  • high specific surface area and / or porous carbon include a carbon material obtained by carbonizing an organic polymer in an inert gas atmosphere, and a carbon material having pores formed by treating the carbonized material with an alkali or the like. Can be mentioned.
  • mesoporous carbon obtained by inserting an organic polymer material into a template such as an oxide with oriented pores produced in the presence of an amphiphilic surfactant, carbonizing it, and removing the metal oxide by etching.
  • the specific surface area of the carbon material is preferably in the range of 10 to 3000 m 2 / g.
  • high specific surface area and / or porous carbon material such as carbon nanofiber (carbon fiber of nanometer order), carbon nanotube, graphene, graphite with increased specific surface area by pulverization treatment, etc.
  • Amorphous carbon such as acetylene black and ketjen black called carbon black, and metal oxides (including semi-metal oxides) such as manganese oxide having a high specific surface area can be used.
  • fluorine resin such as poly (vinylidene fluoride), polyacrylate, polyamic acid (polyimide precursor), polyimide, polyamideimide, epoxy resin, styrene butadiene copolymer-carboxymethyl cellulose can be used.
  • a material for forming the current collector a material having high electrical conductivity and inert to battery reaction is desirable.
  • Preferable materials include those made of one or more metal materials selected from aluminum, nickel, iron, stainless steel, titanium, and platinum.
  • a more preferable material is aluminum which is inexpensive and has low electric resistance.
  • the shape of the current collector is plate-like, but this “plate-like” is not specified in terms of thickness in terms of practical use, and is a form called “foil” having a thickness of about 5 ⁇ m to 100 ⁇ m. Is also included.
  • a plate-like member such as a mesh, sponge, or fiber, a punching metal, a metal having a three-dimensional concavo-convex pattern formed on both front and back surfaces, an expanded metal, or the like may be employed.
  • the plate-like or foil-like metal on which the three-dimensional uneven pattern is formed is, for example, a plate-like or foil-like shape by applying pressure to a metal or ceramic roll provided with a microarray pattern or a line and space pattern on the surface. It can be produced by transferring to a metal.
  • power storage devices that employ a current collector with a three-dimensional uneven pattern have a substantial reduction in current density per electrode area during charge and discharge, improved adhesion to the electrode layer, and mechanical strength. As a result, there is an effect of improving the current characteristics of charge / discharge and improving the charge / discharge cycle life.
  • the ion conductor When the electricity storage device of the present invention is a lithium secondary battery, the ion conductor includes a separator holding an electrolytic solution (an electrolyte solution prepared by dissolving an electrolyte in a solvent), a solid electrolyte, and a polymer gel containing the electrolytic solution. Lithium ion conductors such as a solidified electrolyte gelled, a polymer gel / solid electrolyte composite, and an ionic liquid can be used. Actually, a separator is provided between the negative electrode and the positive electrode to prevent an electrical short circuit, and the fine pores of the separator are impregnated with an ionic conductor.
  • a resin film having a micropore structure or a nonwoven fabric structure is used, and as the resin material, polyolefins such as polyethylene and polypropylene, polyimide, polyamideimide, and cellulose are preferable.
  • the microporous resin film may be coated with a metal oxide particle-containing layer such as alumina, zirconia, or titania that passes lithium ions.
  • the conductivity of the ionic conductor used in the secondary battery is preferably 1 ⁇ 10 ⁇ 3 S / cm or more, more preferably 5 ⁇ 10 ⁇ 3 S / cm or more as a value at 25 ° C.
  • the electrolyte include lithium ions (Li + ) and Lewis acid ions (BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , ClO 4 ⁇ , CF 3 SO 3 ⁇ , BPh 4 ⁇ (Ph: phenyl group)). And salts thereof, mixed salts thereof, and ionic liquids.
  • an electrolyte prepared by dissolving the lithium salt in an ionic liquid can also be used.
  • the solvent for the electrolyte include acetonitrile, benzonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethylformamide, tetrahydrofuran, nitrobenzene, dichloroethane, diethoxyethane, 1,2-dimethoxyethane, Chlorobenzene, ⁇ -butyrolactone, dioxolane, sulfolane, nitromethane, dimethyl sulfide, dimethylsulfoxide, 3-methyl-2-oxazolidinone, 2-methyltetrahydrofuran, 3-propyl sydnone, sulfur dioxide, or a mixture thereof can be used .
  • the solvent may be dehydrated with activated alumina, molecular sieve, phosphorus pentoxide, calcium chloride, or the like, or depending on the solvent, distillation may be performed in the presence of an alkali metal in an inert gas for impurity removal and dehydration.
  • the electrolyte concentration of the electrolyte prepared by dissolving the electrolyte in the solvent is preferably in the range of 0.5 to 3.0 mol / liter because of high ionic conductivity.
  • an organic fluorine compound such as fluoroethylene carbonate or difluoroethylene carbonate that forms a stable fluoride on the electrode surface.
  • the solidified electrolyte a solution obtained by gelling the electrolytic solution with a gelling agent and solidifying it is preferable.
  • the gelling agent it is desirable to use a porous material having a large liquid absorption amount, such as a polymer that swells by absorbing the solvent of the electrolytic solution, or silica gel.
  • the polymer include polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, vinylidene fluoride-hexafluoropropylene copolymer, and polyethylene glycol.
  • the polymer preferably has a crosslinked structure.
  • gasket As a material of the gasket (508, 713), for example, a fluororesin, a polyolefin resin, a polyamide resin, a polysulfone resin, and various rubbers can be used.
  • a battery sealing method a glass sealing tube, an adhesive, welding, or the like is used in addition to “caulking” using a gasket as shown in FIGS.
  • the material of the insulating plates (711, 712) in FIG. 7 various organic resin materials and ceramics are used.
  • the material of the battery case (housing, exterior) (408, 608, 706) is stainless steel, aluminum alloy, titanium clad stainless steel, copper clad stainless steel, nickel plated steel plate, a laminate of resin film and aluminum foil. Aluminum laminate films are also frequently used.
  • metals such as zinc, plastics such as polypropylene, or composite materials of metals or glass fibers and plastics can also be used.
  • the lithium secondary battery is provided with a safety valve (710) as a safety measure for releasing the pressure when the internal pressure of the battery increases.
  • a safety valve for example, a rupture foil, rubber, spring, metal ball, or the like can be used.
  • Example M1 Preparation of negative electrode active material for power storage devices based on silicon
  • metal silicon powder having a particle size of 10 ⁇ m or less is dispersed in ethanol so as to be 10% by weight
  • 1 part by weight of lithium citrate and 26 parts of aluminum nitrate (9 hydrate) are added to 100 parts by weight of silicon. It added so that it might become a ratio of 7 weight part, and also a small amount of polyethyleneglycol was added, and the liquid mixture was obtained.
  • the obtained mixture was pulverized while circulating through a first wet bead mill filled with zirconia beads having a particle diameter of 0.5 mm until the average particle diameter of the raw material silicon became 0.5 ⁇ m or less.
  • a second wet bead mill filled with 03 mm zirconia beads was pulverized while circulating until the raw material had an average particle size of 100 nm or less to obtain a pulverized product dispersed slurry.
  • the obtained pulverized product dispersion slurry was spray-dried at 150 ° C. with a spray dryer in a nitrogen gas atmosphere to obtain a powder. Then, heat treatment was performed in a firing furnace for 30 minutes under a nitrogen gas atmosphere at 600 ° C. to obtain a lithium-aluminum composite oxide-coated silicon composite.
  • Example M2 In a high-speed planetary ball mill, 100 parts by weight of metal silicon powder having a particle size of 100 ⁇ m or less, 1.5 parts by weight of lithium hydroxide (monohydrate), and 9.1 parts by weight of aluminum oxide are mixed and pulverized for 10 hours by a vibration mill. Then, a heat treatment at 800 ° C. was performed for 30 minutes in a nitrogen atmosphere to obtain a lithium-aluminum composite oxide-coated silicon composite. After dry pulverization of silicon, removal in normal air required red oxidation due to oxidation, so slow oxidation was necessary. However, since it is covered with oxide, it is safely removed without the need for slow oxidation. I was able to.
  • Comparative Example M1 A silicon powder was obtained in the same manner as in Example M1, except that in Example M1, lithium citrate, aluminum nitrate (9 hydrate) and ethylene glycol were not added.
  • Example 2 lithium hydroxide (monohydrate) and aluminum oxide were not mixed. Other than that was carried out similarly to Example 2, and the silicon
  • XPS X-ray Photoelectron Spectroscopy
  • SEM Scanning Electron Microscope
  • TEM Transmission Electron Microscope
  • EDS Energy Dispersive X-ray Spectrometer
  • Example M2 the silicon particle surface layer was coated with a composite oxide of lithium and aluminum, and an oxide film having a thickness of 2 to 10 nm was confirmed.
  • Example M1 carbon element was also confirmed in the surface layer.
  • the surface layer of the comparative example M1 was confirmed to be a silicon layer of a bond of hydrocarbon and oxygen, and the silicon oxide layer was confirmed to be a comparative example M2.
  • the order of the amount of silicon oxide was as follows: Comparative Example M2> Comparative Example M1> Example M2> Example M1.
  • Reference example G1 A solution in which ammonium hydrogen carbonate is dissolved in ion-exchanged water is prepared, and expanded graphite having an average particle size of 15 ⁇ m is dispersed. Then, while stirring, a solution in which citric acid is dissolved in ion-exchanged water is added to the expanded graphite. The permeated ammonium hydrogen carbonate and citric acid were reacted to generate carbon dioxide, and the expanded graphite was peeled off with the generated carbon dioxide pressure to prepare exfoliated graphite dispersion.
  • Reference example C1 The cross-sectional shape is triangular wave (actually, the peaks and valleys are rounded) through a 12 ⁇ m thick electrolytic copper foil between a chromium-plated metal roll and rubber roll that have been processed with V-shaped line grooves with a pitch of 50 ⁇ m and a depth of 25 ⁇ m.
  • a current collector having a shape close to a sine wave was formed.
  • Reference example C2 Ion exchange water is added to 95 parts by weight of carbon fiber milled with a fiber diameter of 7 ⁇ m and fiber length of 130 ⁇ m, and 5 parts by weight of sodium alginate, kneaded to prepare a slurry. And dried at 100 ° C. to form a current collector.
  • Example N1 A binder solution prepared by dissolving 10% by weight of sodium alginate in a 1% by weight aqueous dispersion of cellulose nanofibers, 60 parts by weight of the powder mainly composed of silicon of Example M1, and 27 parts by weight of exfoliated graphite prepared in Reference Example G1 After mixing 2 parts by weight of acetylene black (so that the solid content of sodium alginate is 10 parts by weight and 1 part by weight of cellulose nanofibers), nanobubble water of nitrogen gas is added and kneaded to form an electrode layer A slurry was prepared. The obtained slurry was coated on both sides of the copper foil of Reference Example C1 using a coater, then dried at 110 ° C.
  • an electrode structure in which an electrode active material layer having a thickness of 30 ⁇ m and a density of 1.2 g / cm 3 was formed on a copper foil current collector.
  • a nickel lead was welded to the tab of the copper foil of the current collector with a spot welder, and the lead terminal was taken out to produce an electrode.
  • Example N2 In Example N1, an electrode was produced in the same manner as in Example N1, except that the powder of Example M2 was used instead of the powder containing silicon as the main component of Example M1.
  • Example N3 an electrode was produced in the same manner as in Example N1, except that graphite powder having a particle size of 5 ⁇ m was used instead of the exfoliated graphite of Reference Example G1.
  • Example N4 In Example N1, cellulose nanofibers were not mixed, and an electrode was prepared in the same manner as in Example N1, except that it was not mixed.
  • Example N5 In Example N1, an electrode was produced in the same manner as in Example N1, except that ion-exchanged water without adding nanobubble water and not containing nanobubbles was used.
  • Example N6 In Example N1, an electrode was prepared in the same manner as in Example N1, except that the carbon fiber milled current collector of Reference Example C2 was used instead of the corrugated copper foil of Reference Example C1.
  • Example N7 In Example N1, instead of the copper foil having a corrugated cross section of Reference Example C1, a flat field copper foil current collector having a thickness of 12 ⁇ m (not coated with a carbon fiber milled layer) was used. Similarly, an electrode was produced.
  • Example N1 an electrode was produced in the same manner as in Example N1, except that the powder of Comparative Example M1 was used in place of the silicon-based powder of Example M1.
  • Example N2 an electrode was produced in the same manner as in Example N1, except that the powder of Comparative Example M2 was used instead of the powder mainly containing silicon of Example M1.
  • Example N3 the powder of Comparative Example M1 is used in place of the silicon-based powder of Example M1, and cellulose nanofibers and nanobubble water are not used, and the current collector of Reference Example C1 is used before processing.
  • An electrode was prepared in the same manner as in Example N1 except that a flat electrolytic copper foil having a thickness of 12 ⁇ m was used.
  • the electrochemical lithium insertion amount as a single electrode of the negative electrode structure of the electricity storage device was evaluated according to the following procedure.
  • the electrodes of Example N1, Example N2, Reference Example N1, and Reference Example N2 are fabricated as working electrodes.
  • a cell was prepared by combining metallic lithium as a counter electrode with the produced electrode, and the electrochemical lithium insertion amount was evaluated.
  • the lithium electrode was manufactured by pressing a metal lithium foil having a thickness of 140 ⁇ m onto an expanded metal of nickel foil and punching it into a predetermined size.
  • a pouch cell was used as the evaluation cell.
  • a pouch cell evaluation cell was prepared by the following procedure.
  • the pouch cell (laminate type cell) was all produced in a dry atmosphere in which the moisture with a dew point of ⁇ 50 ° C. or lower was controlled. Insert a working electrode / separator / lithium electrode group into a battery case made of polyethylene / aluminum foil / nylon aluminum laminate film in a pocket shape, inject electrolyte, take out electrode lead, heat seal and evaluate A cell was prepared.
  • the aluminum laminate film has a nylon film outside and a polyethylene film inside.
  • As the separator a polyethylene film having a micropore structure with a thickness of 17 ⁇ m and a porosity of 40% is used.
  • a solution obtained by dissolving 1M (mol / liter) of lithium hexafluorophosphate (LiPF 6 ) was used.
  • the amount of electrochemical lithium inserted is such that the lithium electrode of the fabricated cell is the negative electrode, each working electrode is the positive electrode, the cell voltage is discharged to 0.01 V, and the cell is charged to 1.80 V. evaluated. That is, the amount of electricity discharged was used as the amount of electricity used to insert lithium, and the amount of electricity charged was used as the amount of electricity used to release lithium. Charging / discharging is performed at a constant current of about 0.2 C, the Coulomb efficiency of the first Li release amount (electric amount) with respect to the first Li insertion amount (electric amount), and the second Li release amount (mAh / g). was evaluated. The evaluation results were as follows.
  • the capacity per active material weight of the electrodes was 2500 mAh / g or more, and the Coulomb efficiency was 90% or more in the electrodes of Examples N1 and N2. From the above evaluation results, it was found that the active material particles mainly composed of silicon of the lithium-containing composite oxide coating of the present invention are materials with a small irreversible amount in electrochemical lithium insertion / release reaction.
  • the thickness was adjusted with a roll press to obtain an electrode structure in which an electrode active material layer having a thickness of 82 ⁇ m and a density of 3.2 g / cm 3 was formed on a copper foil current collector.
  • the obtained electrode structure was punched into a predetermined size, and a nickel lead was welded to an aluminum current collector tab by ultrasonic welding to produce a positive electrode.
  • Reference example P2 A small amount of polyethylene glycol is added to an ethanol solution in which lithium nitrate and nickel nitrate are mixed at a molar ratio of 1: 5 and dissolved in ethanol, and nickel cobalt lithium manganate LiNi 1/3 Co 1/3 Mn 1/3 is added to the ethanol solution.
  • O 2 powder is dispersed, and the dispersion is passed through a micropore composed of a pressurized diamond disk with an ultrahigh pressure pump.
  • the nickel cobalt lithium manganate particles are dissolved by local high impact force of cavitation that occurs during the passage. It was crushed, dried with a spray dryer at 100 ° C., and heat-treated at 600 ° C. to obtain nickel cobalt lithium manganate particles coated with a lithium-aluminum composite oxide layer.
  • the electrode used as a positive electrode was produced by the method similar to the said reference example P1.
  • Reference Example E2 An electrolytic solution was prepared by adding 2% by weight and 1% by weight of 2-vinylnaphthalene and ethylene glycol dimethacrylate to the electrolytic solution of Reference Example E1, respectively.
  • Reference Example E3 An electrolyte solution was prepared by adding 0.05 wt% and 1.5 wt% of lithium nitrate and aluminum iodide to the electrolyte solution of Reference Example E1, respectively.
  • Reference Example E4 In the electrolyte solution of Reference Example E1, 25 solid electrolyte Li 1.5 A 10.3 Ti 1.7 Si 0.2 P 2.8 O 12 having a NASICON type crystal structure finely pulverized to an average particle size of 100 nm or less was used. An electrolyte solution dispersed by weight% was prepared.
  • Example B1 As a power storage device, a structure in which a negative electrode with a negative electrode layer provided on both sides of a negative electrode current collector is sandwiched between a separator film and a positive electrode with a positive electrode layer provided on one side of the positive electrode current collector (positive electrode / separator / negative electrode / separator / positive electrode) ) Pouch cell (laminate type) lithium ion secondary battery.
  • the reason why the electrodes provided with electrode layers on both sides of the negative electrode current collector are used is to make the stress on the current collector generated by volume expansion at the time of lithium insertion almost equal on both sides.
  • Example N1 was used for the negative electrode
  • Reference Example P1 was used for the positive electrode to prepare a pouch cell.
  • the pouch cells were all produced in a dry atmosphere in which moisture with a dew point of ⁇ 50 ° C. or lower was controlled. Insert a group of positive electrode / separator / negative electrode / separator / positive electrode into a battery case made of polyethylene / aluminum foil / nylon aluminum laminate film in a pocket shape, inject the electrolyte solution of Reference Example E1, and take out the electrode lead
  • the battery for evaluation of positive electrode capacity regulation was manufactured by heat sealing.
  • the aluminum laminate film has a nylon film outside and a polyethylene film inside.
  • As the separator a polyethylene film having a micropore structure having a thickness of 17 ⁇ m and a porosity of 40% was used.
  • Example B2 A secondary battery was made in the same manner as in Example B1, except that in Example B1, the electrode of Example N2 was used as the negative electrode instead of the electrode of Example N1.
  • Example B3 In Example B1, instead of Example N1, instead of exfoliated graphite as a conductive auxiliary material, N3 of an electrode using graphite powder having a particle diameter of 5 ⁇ m was used as the negative electrode, A secondary battery was produced.
  • Example B4 In Example B1, a secondary battery was produced in the same manner as in Example B1, except that instead of Example N1, the electrode of Example N4 produced without mixing cellulose nanofibers was used as the negative electrode.
  • Example B5 In Example B1, a secondary battery was produced in the same manner as in Example B1, except that instead of Example N1, the electrode of Example N5 produced without adding nanobubble water was used as the negative electrode.
  • Example B6 In Example B1, in place of Example N1, the same procedure as in Example B1 was repeated except that the electrode of Example N6 using a current collector coated with carbon fiber milled on the current collector was used as the negative electrode. A secondary battery was produced.
  • Example B7 In Example B1, in place of Example N1, the secondary electrode was obtained in the same manner as Example B1, except that the electrode of Example N7 using a flat electric field copper foil having a thickness of 12 ⁇ m as the current collector was used as the negative electrode. A battery was produced.
  • Example B8 A secondary battery was made in the same manner as in Example B1, except that in Example B1, Reference Example E2 in which a vinyl monomer was added to the electrolytic solution was used, and the electrode of Reference Example P2 was used as the positive electrode.
  • Example B9 A secondary battery was made in the same manner as in Example B1, except that in Example B1, Reference Example E2 in which a vinyl monomer was added to the electrolytic solution was used.
  • Example B10 A secondary battery was made in the same manner as in Example B1, except that in Example B1, Reference Example E3 in which an inorganic additive was added to the electrolytic solution was used.
  • Example B11 A secondary battery was made in the same manner as in Example B1, except that in Example B1, Reference Example E4 in which the solid electrolyte was dispersed in the electrolytic solution was used.
  • Example B12 A secondary battery was made in the same manner as in Example B1, except that in Example B1, the electrode of Reference Example P2 was used as the positive electrode.
  • Reference example B1 A secondary battery was made in the same manner as in Example B1, except that in Example B1, the electrode of Reference Example N1 was used as the negative electrode instead of Example N1.
  • Reference example B2 A secondary battery was made in the same manner as in Example B1, except that in Example B1, the electrode of Reference Example N2 was used as the negative electrode instead of Example N1.
  • Comparative Example B1 A secondary battery was made in the same manner as in Example B1, except that in Example B1, the electrode of Comparative Example N1 was used as the negative electrode instead of Example N1.
  • a power storage device having a high output density, a high energy density, and a long repetition life, a negative electrode structure of the power storage device, and an active structure used for the negative electrode structure.
  • a substance (negative electrode material) can be provided.

Abstract

 主成分がシリコンから構成される10nm~300nmの一次粒子が凝集して二次粒子を構成し、前記一次粒子の表層に、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから少なくとも形成される複合酸化物層を有することを特徴とする電気化学的にリチウムイオンの挿入脱離が可能な蓄電デバイス用負極活物質とその製造方法。また、上記活物質と剥片黒鉛から成る電極構造体、並びに該電極構造体を負極に用いた蓄電デバイス。

Description

蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法
 本発明は、電気化学反応にてリチウムと合金化するシリコンを主成分とする、リチウムイオンを蓄積・放出できる負極用電極材料の製造方法、該材料から成る電極構造体の製造方法、及び該電極構造体を有する蓄電デバイスの製造方法に関する。
 近年、大気中のCOガス量の増加が主因の温室効果により地球の気候変動が生じている可能性が指摘されている。移動手段として使用されている自動車から排出されるCO、NO、炭化水素などを含む大気汚染も健康への影響を指摘されている。原油等のエネルギーの高騰と環境保全、災害時の対応から、最近、エネルギー効率の高い、蓄電デバイスに蓄えた電気で作動させる電気モーターとエンジンを組み合わせたハイブリッド車や電気自動車、発電設備からの電力をネットワーク管理して電力需要バランスの最適化をするシステムであるスマートグリッド、蓄電システムに大きな期待が寄せられて来ている。また、情報通信の分野でもスマートフォンなどの情報端末が情報の授受と発信が容易であることから、急激に社会に浸透しつつある。このような状況下、スマートフォン、ハイブリッド車や電気自動車、スマートグリッド等の性能を高め、生産コストを抑制するために、高出力密度と高エネルギー密度、長寿命を併せ持つキャパシタもしくは二次電池の蓄電デバイスの開発が期待されている。
 上記蓄電デバイスとして、現在製品化されているものの中で、最もエネルギー密度が高いものは、負極に黒鉛等のカーボン、正極にリチウムと遷移金属の化合物、を使用したリチウムイオン二次電池(通称:リチウムイオン電池)である。しかし、このリチウムイオン二次電池では、負極がカーボン材料で構成されるために、理論的に炭素原子当たり最大1/6のリチウム原子しかインターカレートできない。そのために、さらなる高容量化は困難であり、高容量化のための新たな電極材料が望まれている。また、上記リチウムイオン二次電池では、エネルギー密度が高いことからハイブリッド車や電気自動車の電源として期待されているが、急速な放電には電池の内部抵抗が大きく十分な電気量を放出できない、即ち出力密度が小さいという問題点もある。そのために、出力密度が高くエネルギー密度の高い蓄電デバイスの開発が要望されている。これらの要望を満たすために、黒鉛より多くのリチウムイオンを貯蔵・放出できる、スズやシリコン、並びにそれらの合金が研究されている。スズやシリコンは電気化学的により多くのリチウムイオンを蓄えることができるが、約4倍もの体積膨張を起こし、充放電にて膨張と収縮を繰り返すことにより、電極の抵抗増加が起こり性能低下を招く。上記電極性能の低下を防止するために、シリコン粒子自体、導電補助材、バインダー、集電体基板に関する各種提案がなされて来ている。
 非特許文献1では内部に膨張空間を有し、最表面が酸化シリコンで被覆されたシリコンナノチューブが提案され、充放電サイクル寿命の長い電極が得られている。非特許文献2では、長サイクル寿命の電極活物質としてAtomic Layer Deposition法にてアルミナ被覆のシリコンナノワイヤーが提案されている。しかし、前記シリコンナノチューブの作製には多くの工程が必要で量産に適した方法とは言えず、また前記シリコンナノワイヤーの製造も量産には不適で、安価に前記シリコンナノチューブやシリコンナノワイヤーを提供することは困難であった。また前記アルミナ被覆も量産には不向きであった。
 リチウムの挿入時の粒子のクラックを抑制するために、シリコンナノチューブやシリコンワイヤーと違って、量産も容易なサブミクロン以下のサイズのシリコン粒子(一般的にはシリコンナノ粒子と呼ばれている)でのリチウムイオン二次電池用負極の作製が試みられているが、シリコン粒子自体の電子伝導性が低く、リチウム挿入時には依然として膨張が起きるので、電子伝導性を補助し、膨張空間を確保するために、グラフェンとの複合化が非特許文献3等で提案されている。しかし、非特許文献3に示される前記導電補助に用いるグラフェンの作製方法は、量産に適しているとは言い難い。また、リチウムと合金化可能なシリコン等の電池活物質と膨張黒鉛または薄片状黒鉛との複合物質が特許文献1に提案されているが、膨張黒鉛または薄片状黒鉛も粒子径が大きくそのままでは、サブミクロン以下のシリコン粒子との均一な混合分散は困難であった。さらに非特許文献4では、膨張黒鉛をシリコンナノ粒子とポリ塩化ビニルのテトラヒドロフラン溶液に浸漬し超音波を照射して膨張黒鉛を剥離し、黒鉛ナノシートとシリコン粒子の複合体を形成する提案がなされていが、超音波による剥離装置の大型化は困難で大量生産には不向きである。そのため、シリコン微粒子に適した量産容易で安価な導電補助材の製造方法の開発が期待されている。
 特許文献2では、シリコン粒子の電子伝導性の向上のために金属被覆、リチウム挿入時の膨張による微粉化を抑制するためにセラミック被覆が提案されている。特許文献3では、アルコキシド等の原料からゾル-ゲル法にて金属酸化物コーティング層をシリコン粒子に設けて、充放電サイクル寿命を伸ばす手段が提案されている。特許文献4では、電解液の有機溶媒の分解によるガス発生を抑えるために、金属酸化物被膜で被覆された、珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子が提案されている。いずれの提案でも、シリコン粒子の被覆処理によって、充放電によるリチウムの不可逆量の起因となる酸化シリコン量の低減にはつながらず、むしろ増加を引き起こす場合が多く、初期の充放電クーロン効率の低下を招いていた。
 シリコン粒子を活物質として、リチウムイオン電池の負極用電極を形成するためには、リチウム挿入放出時の体積膨張収縮に耐えられるバインダーの材質も重要で、非特許文献5ではカルボキシメチルセルロースが、非特許文献6ではアルギン酸ナトリウムが、非特許文献7ではポリアクリル酸が、提案されている。前記、いずれの材質のポリマーも少量では十分な強度が得られておらず、強度を維持するための量を使用すると、電極の導電性を低下させる問題があった。そのため、少量のバインダーでも電極の機械強度を高められる手法の開発が期待されている
 金属箔の集電体上にシリコン粒子から成る電極層が形成された電極では、リチウムの挿入放出によって膨張収縮し、集電体もそれに伴って応力を受ける。その結果、電極層は全く均一ということではないため、不均一なしわが集電体の金属箔に生じ、電極層の剥れが起き電極の電気抵抗の増大により、充放電サイクル寿命を低下させる。そのため、不均一のしわが起きない集電体や電極構造が望まれている。非特許文献8には、柔軟な基体に金属薄膜を蒸着して成るフレキシブルな集電体でリチウム挿入のストレスが解放されることが示されているが、金属薄膜では大電流の充放電には対応できないという問題がある。また、特許文献5では、負極集電体に歪みや切れが生じ負極が変形するのを抑制するために、表面に複数の凸部を有する集電体と該凸部上に合金系活物質を配置した電極が提案されているが、前記集電体形成時の歪の除去工程が必要になること、凸部のみに活物質を積層するためには、製造工程数が増し、製造コストが高まる問題点があった。
 さらに、シリコン粒子を活物質とする電極のサイクル寿命を改善するために、ビニレンカーボネートを添加した電解液が非特許文献9に、フルオロエチレンカーボネートを添加した電解液が非特許文献10に提案されているが、上記添加剤を添加しないものより寿命は延びるものの、電解液の分解から生じるSEI(Solid Electrolyte Interphase)層の膜厚は緩やかに増し、電極の導電性は低下するので、SEI層の成長抑制において十分とは言えなかった。さらにSEI層の成長抑制に効果の高い添加剤が求められている。
特開2013-219018号公報 特開2006-19309号公報 特開2006-190642号公報 特開2011-96455号公報 WO2011/093015号公報
Nature Nanotechnology, 7, 310-315(2012) The Jounal of Materials Chemistry, 22, 24618-24626(2012) The Jounal of Phsycal Chemistry Letters, 3(13), 1824-1829(2012) Carbon, 72, 38-46(2014) Chemistry of Materials, 22(3), 1229-1241(2010) Science, 334, 75-79(2011) ACS Applied Materials & Interfaces,  2(11), 3004-3010(2010) Advanced Energy Materials, 2, 68-73(2012) Journal of Power Sources, 174, 538-543(2007) Chemical Communications, 48, 7268-7270(2012)
 そこで、本発明は、電気化学的に大量のリチウムイオンを蓄積並びに放出することができ、初期のリチウムイオンの蓄積量に対する放出量の比率が高いシリコンを主成分とする材料からなる負極活物質(負極材料)とその製造方法を提供することを目的とする。
 また、上記製造方法にて調製される電気化学的に大量のリチウムイオンを蓄えまたは放出することができる活物質から構成される長寿命の電極構造体と、該電極構造体を有し充放電の繰り返しによっても容量低下の少ない、高出力密度、高エネルギー密度の、蓄電デバイスを提供することを目的とするものである。
 なお、蓄電デバイスは、キャパシタ、二次電池、キャパシタと二次電池の組み合わせたデバイス、また、それらに発電機能を組み込んだデバイスをも含む。
 本発明者は、シリコンが主成分の粒子から成る負極(シリコン負極と称する)を用いたリチウムイオン二次電池等の蓄電デバイスにおいて、高い容量を維持しつつ、高い充放電効率、充放電サイクル寿命を得るためには、シリコン負極を構成する、シリコンを主成分とする粒子そのもの、導電補助材とバインダーならびにリチウム挿入時の体積膨張を吸収する空隙、体積膨張時の応力に耐えられる集電体、安定したSEI層を形成する電解液添加物、のいずれも重要で、総合的にシリコン負極の性能が発揮できるような方策を考える必要があることを見出した。それともに、以下の(1)~(5)の発見をし、高容量でかつ長寿命のシリコン負極(シリコン電極)ならびにリチウムイオン二次電池を実現できることを見出した。
 (1)シリコンを主成分とする粒子(シリコン粒子と称する)と電解液との界面に、すなわちシリコン粒子表面に、Siより安定な金属酸化物を形成する、Al,Zr,Li,Mg,Ca,Laから選択される金属元素とLi元素を含むリチウム複合酸化物層を設けることによって、酸化シリコンの生成を抑制できるとともに、充電時にシリコン粒子表面へ金属リチウムが析出し、電解液とリチウムが反応して不活性なLiF,LiO,LiCOなどが形成されるのを抑制できること、充放電サイクル寿命の長い電極を作製できることを見出した。シリコン酸化物より熱力学的に安定なリチウム複合金属酸化物で被覆されることで、シリコン粒子の酸化は抑制され、前記リチウム複合酸化物被膜のリチウムイオンの伝導性から、充電時のリチウム析出はリチウム複合酸化物とシリコン粒子の固体-固体界面で起き、電解液成分とリチウムの反応が抑制されると考えられる。具体的な手法としては、Al,Zr,Li,Mg,Ca,Laから選択される金属の硝酸塩もしくは有機酸塩またはアルコキサイドのアルコール溶液にシリコン粒子を浸漬し乾燥後、200~1000℃の範囲で焼成して、シリコン粒子表面にリチウム複合金属酸化物被膜を形成する。シリコンの粉砕中の酸化シリコン形成をさらに抑制するために、上記アルコール溶液中で、アルミナあるいはジルコニアビーズを用い、シリコンを湿式粉砕して、ナノシリコン粒子を形成すると同時にその表面にリチウム複合酸化物被膜を形成するのがよい。また、シリコン粒子とLiOもしくはLiOHとAl,Zr,Mg,Ca,Laから選択される金属の酸化物もしくは水酸化物を混合し、遊星ボールミル、振動ミル、アトライターなどの装置にて乾式粉砕を行った後に、200~1000℃の範囲で焼成して、ナノシリコン粒子表面にリチウム複合金属酸化物被膜を形成するのも好ましい。
 (2)膨張黒鉛を湿式粉砕あるいは乾式粉砕して剥離した後、導電補助材として使用する、もしくはシリコン粒子を混合し乾燥して、膨張化黒鉛から剥離した厚み方向に対する平面方向のサイズ比の高い黒鉛片(剥片黒鉛と称する)とシリコン粒子との複合体粉末を形成する。次いで、バインダーと混合し、集電体上に電極層を形成し、プレスすることで、集電体面に平行に前記剥片黒鉛を配置することができ、導電性が高く、リチウム挿入時の体積膨張による空隙を確保し応力発生が抑えられる長寿命の電極を形成できることを見出した。前記厚み方向に対する平面方向のサイズ比の高い黒鉛片(剥片黒鉛)の作製方法としては、炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラアルキルアンモニウムから選択される塩の溶液に、膨張化黒鉛を浸漬した後、有機酸を添加して膨張黒鉛を剥離する方法がより好ましい方法である。膨張化黒鉛の層間に挿入した炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラアルキルアンモニウムは有機酸と反応して発生するガスの膨張によって、容易に剥離されることを見出した。各反応原料は高温で処理することでガス化し、剥離された膨張化黒鉛には残留しない。
 (3)少なくともシリコン粒子、導電補助材、バインダーから成る電極層に、補強材として、バインダーにセルロースナノファイバー、キチンナノファイバー、キトサンナノファイバー、カーボンファイバーミルドから選択される1種以上のファイバーを混合して複合化することで、リチウム挿入放出反応時の体積膨張収縮時に発生する応力に耐えうる機械強度が得らえることを見出した。さらに、上記バインダーとしては水溶性高分子が好ましく、バインダーとシリコン粒子、導電補助材、前記ファイバーを混練する際の溶媒としてナノメートルサイズ(100~300nm)の気泡を含有する水(ナノバブル水)を用いることで、多孔質の電極層を形成することができ、電解液の浸透を容易にし、イオン伝導性も増し、リチウム挿入時の電極層の膨張を抑制できることを見出した。
 (4)シリコン粒子から成る電極の集電体に、カーボンファイバーミルドとバインダーから成る表層を設けた金属箔、もしくは断面形状が、正弦波,三角波,矩形波,台形波,のこぎり波、から選択される波形を有し、かつ該波の山と谷が線状に形成されている金属箔を用いることによって、充放電のサイクル寿命が伸びることを見出した。
 (5)シリコン粒子から成る電極を負極に用いたリチウムイオン電池の電解液に、スチレン、1-ビニルナフタレン、2-ビニルナフタレン、アクリロニトリル、N-ビニルピロリドン、4-ビニルピロリドン、2-(2-プロピニルオキシ)-3-ビニルナフタレンから成る群から選択される少なくとも1種類以上のビニルモノマーと、N,N'-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼンから成る群から選択される少なくとも1種類以上のジビニルモノマー及び又は、アルミニウム塩、マグネシウム塩から選択される1種以上の塩が少なくとも添加された電解液を用いることで、充放電サイクルに伴う電池の内部抵抗の増加を抑制でき、充放電サイクル寿命が伸びることを見出した。上記モノマーのうち、芳香族環を有するモノマーでは、充電時の還元反応でリチウムイオンを伝導するポリマーが活物質表面に形成されること、ジビニルモノマーは安定な架橋ポリマーを形成すること、上記アルミニウム塩もしくはマグネシウム塩の添加の場合は、アルミニウムもしくはマグネシウム含有の酸化物やフッ化物の層が活物質表面に形成されることを見出した。また、上記添加剤の電解液を使用することで、蓄電デバイスの充放電サイクル寿命が伸びることがわかった。
 さらに、電解液にリチウムイオン固体電解質のナノ粒子を分散させることによって、充放電時の副反応での電解液の有機溶媒が分解されるのが抑制され、可燃性も低下し、より安全になることも見出した。
 上記課題を解決する第一の発明のリチウムイオンを蓄積・放出できる蓄電デバイスの負極活物質(負極材料)は、主成分がシリコンから構成される10nm~300nmの一次粒子が凝集して二次粒子を構成し、前記一次粒子の表層に、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから少なくとも形成される複合酸化物層を有することを特徴とする。
 上記課題を解決する第二の発明の電気化学的にリチウムイオンを蓄積・放出できる蓄電デバイスの負極活物質(負極材料)の製造方法が、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiの硝酸塩もしくは有機酸塩を溶解したアルコール溶液中にシリコン粒子を浸漬した後、熱処理する工程を含有することを特徴とする。上記硝酸塩もしくは有機酸塩のアルコール溶液中で、シリコンをビーズミル粉砕し乾燥後、熱処理して負極用活物質を得る方法も好ましい。前記アルコール溶液にエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドンから選択される1種以上の化合物を添加してもよい。また、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素の酸化物もしくは水酸化物と、水酸化リチウムもしくは酸化リチウムを混合し、メディアミルにて乾式粉砕処理する工程を含有した製造方法も好ましい。
 上記課題を解決する第三の発明のリチウムイオンの挿入脱離が可能な蓄電デバイス用電極構造体は、前記本発明のシリコンを主成分とする活物質と導電補助材、バインダー、集電体から成ることを特徴とし、前記導電補助材が膨張化黒鉛を粉砕もしくは剥離して得られた、グラフェンシートが複数層積み重なった剥片黒鉛で、該剥片黒鉛の炭素6個が正六角形構造を取る平面が集電体の広い面に平行に配向していることを特徴とする。
 さらに、前記バインダーは水溶性高分子であり、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバー、カーボンファイバーミルドから選択される1種以上のファイバーが複合化されている。また、本発明の電極構造体の前記集電体は、該断面形状が、正弦波、三角波、矩形波、台形波、のこぎり波、から選択される波形を有し、かつ該波の山と谷が線状に形成されている金属箔であるか、カーボンファイバーミルドとバインダーから成る層が表面に形成されている金属箔であることを特徴とする。
 上記の課題を解決する第四の発明の、少なくとも負極、リチウムイオン伝導体、リチウム遷移金属化合物から成る正極から構成されるリチウムイオンの挿入脱離が可能な蓄電デバイスは、前記本発明の電極構造体が負極として用いられていることを特徴とする。前記リチウムイオン伝導体には、リチウム塩を有機溶媒に溶解した電解液に無機固体リチウムイオン伝導体微粒子が分散されたものであることを特徴とする。また、前記リチウムイオン伝導体は、リチウム塩を有機溶媒に溶解した電解液にアルミニウム塩もしくはマグネシウム塩が少なくとも添加されたものであることを特徴とする。前記リチウムイオン伝導体が、リチウム塩を有機溶媒に溶解した電解液に、スチレン、1-ビニルナフタレン、2-ビニルナフタレン、アクリロニトリル、N-ビニルピロリドン、4-ビニルピロリドン、2-(2-プロピニルオキシ)-3-ビニルナフタレンから成る群から選択される少なくとも1種類以上のビニルモノマーと、N,N'-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼンから成る群から選択される少なくとも1種類以上のジビニルモノマーが添加されたものであることも好ましい。
 本発明の蓄電デバイスの前記正極は、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから構成されている複合酸化物で表層が被覆されているリチウム遷移金属化合物微粒子からなっていることを特徴とする。さらには、前記正極を構成する導電補助材に前述の剥片黒鉛が用いられているのが好ましい。
 本発明のリチウムイオンを蓄積・放出できる負極活物質はリチウムの挿入時においてSEI層の生成が抑制され、初期のリチウムの挿入脱離効率が高く、多量のリチウムイオンを蓄積・放出することが可能になる。
 また、本発明の負極活物質(負極材料)、本発明の導電補助材ならびにバインダー補強材を有した電極構造体は、電気化学的リチウムの挿入放出に伴う膨張収縮の繰り返しに耐えることができ、長寿命を可能にする。さらに、本発明のリチウムイオンの電気化学的酸化還元反応を利用する蓄電デバイスによれば、初期の高い充放電効率と、高出力密度と高エネルギー密度を得ることができ、長寿命の充放電のサイクル寿命も可能になる。急速充電も可能な蓄電デバイスも得ることができる。
本発明のシリコンが主成分の蓄電デバイス用負極活物質粒子の概略断面構成図である。 本発明の電極構造体の概略断面構成図である。 本発明の電極構造体を構成する好ましい集電体形状の模式図である。 本発明の蓄電デバイスの概略断面構成図である。 本発明の蓄電デバイスの一例であるコイン型セルの概略断面構成図である。 本発明の蓄電デバイスの一例であるラミネートセル(パウチセル)の概略断面構成図である。 本発明の蓄電デバイスの一例である円筒型セルの概略断面構成図である。
 以下、本発明を詳細に説明する。
 本発明に係る電気化学的にリチウムイオンを蓄積・放出できる蓄電デバイスの負極活物質(負極材料)は、主成分がシリコンから構成される10nm~300nmの一次粒子が凝集して二次粒子を構成し、前記一次粒子の表層に、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから少なくとも形成される複合酸化物層を有することを特徴としている。シリコンを主成分とする負極活物質に含まれるシリコンの割合は50重量%から99重量%の範囲内であることが、高エネルギー密度の二次電池を達成するためには好ましい。その製造方法は少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiの硝酸塩もしくは有機酸塩を溶解したアルコール溶液中にシリコン粒子を浸漬した後、熱処理する工程を含み、上記硝酸塩もしくは有機酸塩またはアルコキサイドのアルコール溶液中で、シリコンをビーズミル粉砕し乾燥後、熱処理して負極用活物質を得る工程を含んでいてもよい。さらに、前記アルコール溶液にエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドンから選択される1種以上の化合物を添加してもよい。上記化合物は金属元素に配位して、複合酸化物を形成しやすくする効果がある。また、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素の酸化物もしくは水酸化物と、酸化リチウムもしくは水酸化リチウムとシリコン粉末を混合し、メディアミルにて乾式粉砕処理する工程を含有した製造方法も好ましい。他の方法として、熱プラズマ中に原料となるシリコン粉末と、Al,Zr,Mg,Ca,Laから選択される1種以上の金属もしくはその化合物の粉末と、リチウム化合物粉末を導入して、シリコンナノ粒子とリチウム複合金属酸化物の複合体を形成する方法も好ましい。上記金属またはリチウムの化合物としては酸化物、水酸化物、有機酸塩、有機金属が好ましい。
 本発明のリチウムイオンの挿入脱離が可能な蓄電デバイス用電極構造体は、前記本発明のシリコンを主成分とする活物質と導電補助材、バインダー、集電体から成ることを特徴とし、前記導電補助材が、膨張化黒鉛を粉砕もしくは剥離して得られた、グラフェンシートが複数層積み重なった剥片黒鉛で、該剥片黒鉛の炭素6個が正六角形構造を取る平面が集電体の広い面に平行に配向していることを特徴とする。また、前記剥片黒鉛の製造方法は、炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラアルキルアンモニウムから選択される塩の溶液に、膨張化黒鉛を浸漬した後、有機酸を添加して膨張化黒鉛を剥離する工程を含むことを特徴としている。さらに、前記バインダーは水溶性高分子であり、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバー、カーボンファイバーミルドから選択される1種以上のファイバーが複合化されていることが好ましい。前記電極構造体の電極層(主にはバインダー)中に多数の空隙を設けるために、前記シリコンを主成分とする活物質、導電補助材、バインダーを混練する際の溶媒に、ナノメートルサイズ(100~300nm)の気泡を含有する水を用いることも好ましい。また、本発明の電極構造体の前記集電体は、該断面形状が、正弦波、三角波、矩形波、台形波、のこぎり波、から選択される波形を有し、かつ該波の山と谷が線状に形成されている金属箔であるか、カーボンファイバーミルドとバインダーから成る層が表面に形成されている金属箔であることを特徴とする。
 本発明の、少なくとも負極、リチウムイオン伝導体、リチウム遷移金属化合物から成る正極から構成されるリチウムイオンの挿入脱離が可能な蓄電デバイスは、前記本発明の電極構造体が負極として用いられていることを特徴とする。前記リチウムイオン伝導体には、リチウム塩を有機溶媒に溶解した電解液に無機固体リチウムイオン伝導体微粒子が分散されたものであることを特徴とする。また、前記リチウムイオン伝導体は、リチウム塩を有機溶媒に溶解した電解液にアルミニウム塩、マグネシウム塩から選択される1種以上の塩が少なくとも添加されていることを特徴とする。前記リチウムイオン伝導体が、リチウム塩を有機溶媒に溶解した電解液にスチレン、1-ビニルナフタレン、2-ビニルナフタレン、アクリロニトリル、N-ビニルピロリドン、4-ビニルピロリドン、2-(2-プロピニルオキシ)-3-ビニルナフタレンから成る群から選択される少なくとも1種類以上のビニルモノマーと、N,N'-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼンから成る群から選択される少なくとも1種類以上のジビニルモノマーが添加されたものであることも好ましい。本発明の蓄電デバイスの前記正極は、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから構成されている複合金属酸化物で表層が被覆されているリチウム遷移金属化合物微粒子からなっていることが好ましい。
 以下、図1乃至図7を参照して、本発明の実施の形態について説明する。
[シリコンが主成分の負極活物質]
 本発明の表面に少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから少なくとも形成される複合酸化物層を有する主成分がシリコンから成る蓄電デバイス用負極活物質の実施形態を図1の(a)と(b)を用いて、より具体的に説明する。
 図1の(a)はシリコンを主成分とする活物質粒子の断面模式図で、図1の(b)はシリコンを主成分とする活物質粒子が複数集合して構成された二次粒子の断面模式図である。図1において、101と103はシリコンを主成分とする活物質粒子であり、102と104は少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから少なくとも形成される複合金属酸化物層である。前記複合金属酸化物層は、理想的にはシリコンを主成分とする活物質粒子全表面を被覆しているのが望ましいが、必ずしも全表面を被覆していなくてもよい。前記シリコンを主成分とする活物質粒子の材質は、シリコンもしくはシリコン合金である。上記シリコンとしては、二酸化シリコンの還元から得られる純度93~99.9%程度の金属(グレード)シリコン、さらに純度の高い太陽電池グレードシリコン、半導体グレードシリコン、が好ましく、安価であることと、結晶粒が小さいので粉砕されやすいことから、金属シリコンがより好ましい。金属シリコンには、0.5重量%以下の鉄元素、0.5重量%以下のアルミニウム元素、0.3重量%以下のカルシウム元素、を含有している。前記シリコン合金はシリコンと少なくとも遷移金属との合金であることが好ましい。また、前記シリコンを主成分とする活物質粒子の一次粒子径は、10~300nmであることが好ましく、10~100nmであることがより好ましい。前記複合金属酸化物の層の厚みとしては、2~100nmの範囲であることが好ましく、2~20nmの範囲であることがより好ましい。また、図1には図示していないが、本発明の負極活物質粒子は非晶質のカーボン層で全表面あるいは一部の表面を被覆されていてもよいし、前記複合金属酸化物層に非晶質カーボンが複合されていてもよい。前記活物質粒子の粒径は小さい方が、電池の充放電での活物質粒子表面の実質的な電流密度が小さくなり、リチウムの酸化還元反応が均一に起こり、リチウムイオンの挿入脱離に伴う体積膨張収縮もより均一になるために好ましい。しかし、粒子を小さく形成する工程で酸化シリコンも形成されやすいことから、酸化シリコンの形成がより少ない粒径範囲を選択するのが望ましい。
 具体的な前記本発明の負極活物質の製造方法は、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiの硝酸塩もしくは有機酸塩を溶解したアルコール溶液中に、主成分がシリコンから構成される粒子から成る微粉末を分散させ、乾燥後、不活性ガス雰囲気下で好ましくは200~1000℃より好ましくは300~900℃の範囲で、熱処理を施すことによって得るものである。主成分がシリコンから構成される粒子から成る粉末を、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiの硝酸塩もしくは有機酸塩を溶解したアルコール溶液を媒体にして、ビーズミル装置にて湿式粉砕して、乾燥後、不活性ガス雰囲気下で好ましくは200~1000℃より好ましくは300~900℃の範囲で、熱処理を施す工程であってもよい。前記アルコール溶液にエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドンから選択される1種以上の化合物を添加することが好ましい。上記化合物は、金属イオンに配位し、複合金属酸化物の形成を容易にする。また、上記化合物の一部は熱分解により、非晶質カーボンとして前記複合金属酸化物と複合体層を形成し、シリコン主成分の粒子表面に残留し、電子伝導の向上に寄与する。
[電極構造体]
 本発明の電極構造体は、リチウムイオンの挿入脱離が可能な蓄電デバイス用電極構造体であって、前記本発明のシリコンを主成分とする活物質と導電補助材、バインダー、集電体から成っている。本発明の電極構造体の実施形態を図2を用いて、より具体的に説明する。
 図2は本発明の電極構造体の断面模式図で、図2において、200は集電体、201はシリコンを主成分とする活物質、202は導電補助材としての剥片黒鉛、203はバインダー、204はファイバー状の補強材、205は電極層,206は電極構造体、である。前記導電補助材としては、膨張化黒鉛を粉砕もしくは剥離して得られた、グラフェンシートが複数層積み重なった剥片黒鉛で、該剥片黒鉛の炭素6個が正六角形構造を取る平面が集電体の広い面に平行に配向していることが好ましい。導電補助材としては、他にカーボンブラック、カーボンナノファイバー、カーボンナノチューブなどをさらに加えても構わない。本発明の電極構造体に使用する導電補助材の上記剥片黒鉛の製造方法としては、炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラアルキルアンモニウムから選択される塩の溶液に、膨張化黒鉛を浸漬した後、有機酸を添加して膨張黒鉛を剥離する方法がより好ましい。他の製造方法として、膨張黒鉛をビーズミル、ボールミル、キャビテーション効果を利用した粉砕装置によって剥離する方法も可能である。
 また、前記バインダー203が水溶性高分子であり、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバー、カーボンファイバーミルドから選択される1種以上のファイバー状補強材204が複合化されていることが好ましい。前記セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバーは、直径が約4~100nm、長さが2μm以上の繊維で、水中カウンターコリジョン法等にて調製することができる。カーボンファイバーミルドは炭素繊維(カーボン繊維)糸を短繊維化したもので、その繊維直径は7μm程度で繊維長は30μm程度のものが好ましいが、これに限定されるものではない。上記繊維状材料のバインダーとの複合化で機械強度が増し、シリコンを主成分とする活物質にリチウムが挿入し放出されるときに生じる体積膨張と収縮に伴う応力に対する強度を高めることができる。さらに、カーボンファイバーミルドを複合化させる場合にはカーボンナノファイバーやカーボンナノチューブに比べて、凝集しにくく分散が容易で導電性も高いために、電極構造体の機械強度を高めるだけでなく、導電性も高めることが可能である。
 前記バインダーに用いる水溶性高分子の代表例としては、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロース、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリビニルアルコール、キチン、キトサン、などが挙げられ、機械強度を増すために架橋するのが好ましい。なお、ポリビニルアルコールは吸水性が高いので、そのまま蓄電デバイスの電極のバインダーとして使用した場合は、充電時に水素ガスを発生して蓄電デバイスのハウジング内の圧力が高まるので、それを抑制するために架橋剤で架橋して水酸基を減らすことが好ましい。ポリアクリル酸とポリビニルアルコールを混合して水素結合で架橋させるのもよい。
 また、本発明の電極構造体に用いる集電体としては、断面形状が、正弦波,三角波,矩形波,台形波,のこぎり波,から選択される波形を有し、かつ該波の山と谷が線状に形成されている金属箔であるか、もしくは、カーボンファイバーミルドとバインダーから成る層を表面に形成した金属箔であることが好ましい。図3において、(a)は断面形状が三角波の集電体例、(b)は断面形状が矩形波の集電体例、(c)はカーボンファイバーミルドとバインダーから成る層を表面に有した集電体例、の模式図で、301,302,303は金属箔で、304はバインダー、305はカーボンファイバーミルド、306はカーボンミルドとバインダーから成る層である。上記金属箔の材質としては、蓄電デバイスの充放電反応において、溶解することなく安定であることが必要で、具体的には、銅、ステンレス、チタン、ニッケルが挙げられる。前記断面形状の加工は、表面に凹凸のパターニングされたロールプレス機に金属箔を通してプレス加工することで容易に形成することができる。カーボンファイバーミルドとバインダーから成る層に用いるバインダーの材質としては、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロース、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリビニルアルコール、キチン、キトサン、ポリイミド、ポリアミドイミド、ポリウレタン、エポキシ樹脂が挙げられる。上記カーボンファイバーミルドの繊維直径は7μm程度で繊維長は30~150μm程度のものが好ましい。
 前記断面形状が波型の金属箔を用いた場合には、蓄電デバイスの充放電反応に伴い、本発明のシリコンが主成分の負極活物質へのリチウムの挿入放出による体積膨張と収縮に本発明の電極構造体の集電体が追従し、体積膨張と収縮によって発生する応力を緩和することができる。また、本発明の電極構造体の集電体にカーボンファイバーミルドとバインダーから成る層を表面に形成した金属箔を採用した場合には、蓄電デバイスの充放電に伴う体積膨張と収縮で発生する応力に耐えられる機械強度を保持することができる。
[電極構造体の製造方法]
 本発明の電極構造体の製造方法としては、以下の手順で行われる。
先ず、本発明の複合金属酸化物被覆のシリコンを主成分とする活物質201、導電補助材として剥片黒鉛202、バインダー203、ファイバー状補強材204のバイオナノファイバー(セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバー)及び又はカーボンファイバーミルド、を所定の混合比で混合し、バインダーの溶媒を添加し、混練機にて混練してスラリーを調製する。次いで、得られたスラリーを集電体200にコーターにて塗工し、乾燥の後、減圧下もしくは不活性ガス下で熱処理を施し、電極構造体を得る。上記熱処理温度は、100~300℃の範囲であることが好ましい。上記バインダーに水溶性高分子を用い、バインダーの溶媒にナノメートルサイズ(100~300nm)の気泡を含有する水(ナノバブル水)を用いることで、多孔質の電極層を形成することができる。上記気泡内の気体としては窒素ガスが好ましい。多孔質の空隙を有する本発明の電極構造体をリチウムイオンの還元酸化反応を利用する蓄電デバイスの負極に用いる場合、充電によるリチウム挿入時の活物質の体積膨張を緩和することができるし、電解液の浸透が容易になり、蓄電デバイスの内部インピーダンスを低下させることができる。
 本発明の複合金属酸化物被覆のシリコンを主成分とする活物質、導電補助材として剥片黒鉛、バインダー、バイオナノファイバー及び又はカーボンファイバーミルド、の各固形分としては、スラリーの固形分全体のそれぞれ、20~80重量%、10~50重量%、3~20重量%、1~5重量%の範囲であることが好ましい。前記電極層205は、厚みが10~50μmで、密度が0.8~2.0g/cmであることが好ましい。
[蓄電デバイス]
 本発明の蓄電デバイスは、リチウムイオンの還元酸化反応を利用する蓄電デバイスであって、少なくとも、前記本発明の電極構造体を負極とし、イオン伝導体、リチウム遷移金属化合物から成る正極から構成される。本発明の電極構造体の実施形態を、図4を用いてより具体的に説明する。
 図4において、401は負極集電体、402は負極活物質層、403は負極、404はリチウムイオン伝導体、405は正極集電体、406は正極活物質層、407は正極、408は外装(ハウジング)、409は負極リード、410は負極端子、411は正極リード、412は正極端子である。
 負極403には、本発明の電極構造体を用いる。リチウムイオン伝導体404には、リチウム塩を有機溶媒に溶解した電解液に無機固体リチウムイオン伝導体微粒子が分散されたものであることが好ましい。上記無機固体リチウムイオン伝導体としては、LiS-Pに代表さえるイオウ系非晶質電解質、イオウ含有ガラス、窒化リチウムLiN、Li1+x+yAlTi2-xSi3-y12(x=0.3,y=0.2)に代表されるNASICON型結晶構造を有する材料、LiLaZr12に代表されるガーネット型構造を有する材料、Li10GeP12に代表されるゲルマニウム-リン-イオウ化合物、が挙げられる。上記無機固体電解質の平均一次粒子径は10~300nmの範囲であることが好ましい。無機固体リチウムイオン伝導体微粒子を分散したスラリー状の電解液では、有機溶媒含有量を低下させることができ、充電時の副反応の分解反応が起きるのを抑制でき、SEI層の増加を防ぎ電極抵抗の増加を抑えることができ、充放電サイクル寿命を伸ばすことができ、安全性も高めることができる。リチウムイオン伝導体404のリチウム塩を有機溶媒に溶解した電解液にはアルミニウム塩、マグネシウム塩から選択される1種以上の塩が少なくとも添加されていることも好ましい。上記アルミニウム塩またはマグネシウム塩はカソード反応で、負極表面にアルミニウムまたはマグネシウム含有の酸化物被膜もしくはフッ化物被膜を形成し易く、内部短絡の可能性が高い箇所の抵抗を増し内部短絡を未然に防ぐとともに、電解液に含まれる有機溶媒の電解反応を抑制することができ、SEI層の増加を防ぎ電極抵抗の増加を抑えることができ、充放電サイクル寿命を伸ばすことができる。上記アルミニウム塩、マグネシウム塩の電解液への添加量は、0.1~3重量%の範囲が好適である。さらに前記リチウム塩を有機溶媒に溶解した電解液にスチレン、1-ビニルナフタレン、2-ビニルナフタレン、アクリロニトリル、N-ビニルピロリドン、4-ビニルピロリドン、2-(2-プロピニルオキシ)-3-ビニルナフタレンから成る群から選択される少なくとも1種類以上のビニルモノマーと、N,N'-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼンから成る群から選択される少なくとも1種類以上のジビニルモノマーを添加することも好ましく、上記ビニルモノマーは充電反応で負極表面に安定でリチウムイオンを伝導するポリマーを形成し、SEI層の膜厚の増加を防ぎ電極抵抗の増加を抑えることができ、充放電サイクル寿命を伸ばすことができる。
 正極407の正極活物質層406は、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから構成されている複合金属酸化物で表層が被覆されているリチウム遷移金属化合物微粒子からなっているのが好ましい。上記Al,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから構成されている複合金属酸化物層は、充放電時の副反応で正極活物質であるリチウム遷移金属化合物から遷移金属元素が電解液中に溶解するのを防ぐとともに、SEI層の膜厚の増加を防ぎ電極抵抗の増加を抑えることができ、充放電サイクル寿命を伸ばすことができる。前記正極の導電補助材として前記剥片黒鉛を用いて正極の電気抵抗を低減することも好ましい。
[蓄電デバイスの製造方法]
 蓄電デバイスの作製方法を、図4を用いて説明する。 先ず、負極集電体401と負極活物質層402から成る負極403と、正極集電体405と正極活物質層406から成る正極407の間に、イオン伝導体404をはさんで積層して電極群を形成し、十分に露点温度が管理された乾燥空気あるいは乾燥不活性ガス雰囲気下で、この電極群を電槽(ハウジング,外装)408に挿入した後、各電極と各電極端子410,412とを各々の電極リード409,411で接続し、電槽408を密閉することによって、蓄電デバイスは組み立てられる。なお、蓄電デバイスは、キャパシタ、二次電池、キャパシタと二次電池の組み合わせたデバイス、また、それらに発電機能を組み込んだデバイスをも含む。
 本発明で製造する蓄電デバイスの具体的なセル形状としては、例えば、扁平形、円筒形、直方体形、シート形などがある。又、セルの構造としては、例えば、単層式、多層式、スパイラル式などがある。その中でも、スパイラル式円筒形のセルは、負極と正極の間にセパレータを挟んで多重に巻くことによって、電極面積を大きくすることができ、充放電時に大電流を流すことができるという特徴を有する。また、直方体形やシート形のセルは、複数の電池を収納して構成する機器の収納スペースを有効に利用することができる特徴を有する。
 図5は単層式扁平形(コイン型)セル、図6はラミネート型セル(パウチセル)、図7はスパイラル式円筒型セルの、概略断面図を表している。各セルにおいて、負極は負極集電体と負極活物質層から成り、正極は正極集電体と正極活物質層から成り、負極と正極の間にはイオン伝導体が配置してある構成になっている。図5,6,7において、501,601,701は負極集電体、502,602,702は負極活物質層、503,603,703はイオン伝導体、504,604,704は正極集電体、505,605,705は正極活物質層、708は負極リード、709は正極リード、506,606は負極端子、507,607,707は正極端子、608は電槽(ハウジング,外装)、508,713はガスケット、710は安全弁、711,712は絶縁板、706は負極端子であり電槽である。
[正極]
 正極の電極構造も図2の電極構造体類似の構造のようになっている。正極は、正極集電体上に、正極活物質となるリチウム-遷移金属化合物とバインダーとカーボンブラック等の導電補助材から成る正極活物質層が形成されている。
 リチウムイオンの酸化還元を利用した二次電池用の正極活物質としては、遷移金属酸化物,遷移金属リン酸化合物,リチウム-遷移金属酸化物,リチウム-遷移金属リン酸化合物を使用する。上記正極活物質に含有される遷移金属元素としては、Ni,Co,Mn,Fe,Cr,Vなどが主元素としてより好ましく用いられる。上記正極活物質は、Mo,W,Nb,Ta,V,B,Ti,Ce,Al,Ba,Zr,Sr,Th,Mg,Be,La,Ca,Yから選択される元素を主成分とする酸化物もしくは複合酸化物と複合化されていてもよい。前記正極を構成する正極活物質粒子が、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから構成されている複合酸化物で表層を被覆されたリチウム遷移金属化合物微粒子であり、前記正極を構成する導電補助材として、膨張化黒鉛を粉砕もしくは剥離して得られた、グラフェンシートが複数層積み重なった剥片黒鉛が少なくとも用いられているのが好ましい。
 キャパシタ用正極活物質としては、高比表面積及び/又は多孔質のカーボンを用いる。高比表面積及び/又は多孔質のカーボンの例としては、有機高分子を不活性ガス雰囲気下で炭化して得られるカーボン材料、該炭化材料をアルカリ等の処理で細孔を形成したカーボン材料が挙げられる。また、両親媒性の界面活性剤存在下で作製された細孔の配向した酸化物等の鋳型に、有機高分子材料を挿入し炭化し、金属酸化物をエッチング除去して得られる、メソポーラスカーボンも正極活物質に使用できる。上記カーボン材の比表面積としては、10から3000m/gの範囲であることが好ましい。剥片黒鉛以外の導電補助材としては、カーボンナノファイバー(ナノメートルオーダーの炭素繊維),カーボンナノチューブ,グラフェン,粉砕処理等で比表面積を高めた黒鉛等の高比表面積及び/又は多孔質のカーボン材料,カーボンブラックと呼ばれるアセチレンブラックやケッチェンブラックなどの非晶質炭素,高比表面積のマンガン酸化物等の金属酸化物(半金属の酸化物を含む)が使用できる。
 バインダーとしては、ポリフッ化ビリニデン等のフッ素樹脂、ポリアクリレート、ポリアミック酸(ポリイミド前駆体)、ポリイミド、ポリアミドイミド、エポキシ樹脂、スチレンブタジエンコポリマー-カルボキシメチルセルロース、が使用できる。
 集電体を形成する材料としては、電気伝導度が高く、且つ、電池反応に不活性な材質が望ましい。好ましい材質としては、アルミニウム、ニッケル、鉄、ステンレススチール、チタン、白金から選択される一種類以上金属材料から成るものが挙げられる。より好ましい材料としては安価で電気抵抗の低いアルミニウムが用いられる。また、集電体の形状としては、板状であるが、この“板状”とは、厚みについては実用の範囲上で特定されず、厚み約5μmから100μm程度の“箔”といわれる形態をも包含する。また、板状であって、例えばメッシュ状、スポンジ状、繊維状をなす部材、パンチングメタル、表裏両面に三次元の凹凸パターンが形成されたメタル、エキスパンドメタル等を採用することもできる。上記三次元の凹凸パターンが形成された板状あるいは箔状金属は、例えば、マイクロアレイパターンあるいはラインアンドスペースパターンを表面に設けた金属製もしくはセラミック製のロールに圧力をかけて、板状あるいは箔状の金属に転写することで、作製できる。特に、三次元の凹凸パターンが形成された集電体を採用した蓄電デバイスには、充放電時の電極面積あたりの実質的な電流密度の低減、電極層との密着性の向上、機械的強度の向上から、充放電の電流特性の向上と充放電サイクル寿命の向上の効果がある。
[イオン伝導体]
 本発明の蓄電デバイスがリチウム二次電池である場合、イオン伝導体には、電解液(電解質を溶媒に溶解させて調製した電解質溶液)を保持させたセパレータ、固体電解質、電解液を高分子ゲルなどでゲル化した固形化電解質、高分子ゲルと固体電解質の複合体、イオン性液体などのリチウムイオンの伝導体が使用できる。実際には負極と正極間には電気的短絡を防ぐためにセパレータが設けられ、セパレータの微細孔にイオン伝導体が含浸されている。
 セパレータとしては、ミクロポア構造あるいは不織布構造を有する樹脂フィルムが用いられ、樹脂材料としては、ポリエチレン,ポリプロピレン等のポリオレフィン,ポリイミド,ポリアミドイミド,セルロースが好ましい。上記微孔性樹脂フィルムは、耐熱性を高めるために、リチウムイオンを通過する、アルミナ、ジルコニア、チタニア等の金属酸化物粒子含有層が表面に被覆されていてもよい。
 二次電池に用いるイオン伝導体の導電率は、25℃における値として、1×10-3S/cm以上であることが好ましく、5×10-3S/cm以上であることがより好ましい。
前記電解質としては、例えば、リチウムイオン(Li)とルイス酸イオン(BF ,PF ,AsF ,ClO ,CFSO ,BPh (Ph:フェニル基))からなる塩、及びこれらの混合塩、イオン性液体が挙げられる。
 上記塩は、減圧下で加熱したりして、十分な脱水と脱酸素を行なっておくことが望ましい。さらに、イオン性液体に上記リチウム塩を溶解して調製される電解質も使用できる。上記電解質の溶媒としては、例えば、アセトニトリル、ベンゾニトリル、プロピレンカーボネイト、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルホルムアミド、テトラヒドロフラン、ニトロベンゼン、ジクロロエタン、ジエトキシエタン、1,2-ジメトキシエタン、クロロベンゼン、γ-ブチロラクトン、ジオキソラン、スルホラン、ニトロメタン、ジメチルサルファイド、ジメチルサルオキシド、3-メチル-2-オキダゾリジノン、2-メチルテトラヒドロフラン、3-プロピルシドノン、二酸化イオウ、又は、これらの混合液が使用できる。上記溶媒の水素元素をフッ素元素で置換した構造の溶媒も利用できる。さらに、イオン性液体も使用できる。
 上記溶媒は、例えば、活性アルミナ、モレキュラーシーブ、五酸化リン、塩化カルシウムなどで脱水するか、溶媒によっては、不活性ガス中のアルカリ金属共存下で蒸留して不純物除去と脱水をも行なうのがよい。前記電解質を前記溶媒に溶解して調製される電解液の電解質濃度は、0.5から3.0モル/リットルの範囲の濃度であることが高いイオン伝導度を有するために好ましい。
また、電極と電解液との反応を抑制するために、電極表面に安定なフッ化物を形成する、フルオロエチレンカーボネートやジフルオロエチレンカーボネートなどの有機フッ素化合物を添加することが好ましい。
 固形化電解質としては、前記電解液をゲル化剤でゲル化して固形化したものが好ましい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマー、シリカゲルなどの吸液量の多い多孔質材料を用いるのが望ましい。上記ポリマーとしては、ポリエチレンオキサイド、ポリアクリロニトリル、ポリメチルメタクリレート、ビニリデンフルオライド-ヘキサフルオロプロピレンコポリマー、ポリエチレングリコールなどが用いられる。さらに、上記ポリマーは架橋構造のものがより好ましい。
(ガスケット)
 ガスケット(508,713)の材料としては、例えば、フッ素樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリスルフォン樹脂、各種ゴムが使用できる。電池の封口方法としては、図5と図7のようにガスケットを用いた「かしめ」以外にも、ガラス封管、接着剤、溶接、などの方法が用いられる。
 また、図7の絶縁板(711,712)の材料としては、各種有機樹脂材料やセラミックスが用いられる。
(電槽)
 電槽(ハウジング、外装)(408,608,706)の材料としては、ステンレススチール、アルミニウム合金、チタンクラッドステンレス材、銅クラッドステンレス材、ニッケルメッキ鋼板、樹脂フィルムとアルミニウム箔との積層体であるアルミニウムラミネートフィルムなども多用される。
 他の電槽の材質としては、ステンレススチール以外にも亜鉛などの金属、ポリプロピレンなどのプラスチック、または、金属もしくはガラス繊維とプラスチックの複合材、も用いることができる。
(安全弁)
 リチウム二次電池には、電池の内圧が高まった時の圧力を逃すための安全対策として、安全弁(710)が備えられている。安全弁としては、例えば、破裂箔、ゴム、スプリング、金属ボール、などが使用できる。
 以下、実施例にそって、本発明をさらに詳細に説明する。
[シリコンが主成分の蓄電デバイス用負極活物質の調製]
 実施例M1
 粒径10μm以下の金属シリコン粉末をエタノールに10重量%になるように分散した溶液に、シリコン100重量部に対して、クエン酸リチウムを1重量部、硝酸アルミニウム(9水和物)を26.7重量部の比率となるように添加しさらに少量のポリエチレングリコールを添加して混合液を得た。得られた混合液を粒径0.5mmのジルコニアビーズを充填した第一の湿式ビーズミルで循環しながら原料シリコンの平均粒径が0.5μm以下になるまで粉砕を行い、次いで、粒径0.03mmのジルコニアビーズを充填した、第二の湿式ビーズミルで、原料が平均粒径100nm以下になるまで循環しながら粉砕し、粉砕品分散スラリーを得た。
 次に、得られた粉砕品分散スラリーを窒素ガス雰囲気下でスプレードライヤーにて150℃にて噴霧乾燥して粉末を得た。ついで、焼成炉で、窒素ガス雰囲気下600℃の条件で、30分熱処理を施し、リチウム-アルミニウム複合酸化物被覆シリコンの複合体を得た。
 実施例M2
 高速遊星ボールミルで、粒径100μm以下の金属シリコン粉末100重量部、水酸化リチウム(1水和物)1.5重量部、酸化アルミニウム9.1重量部を混合し、振動ミルで10時間粉砕処理を施した後、窒素雰囲気下で800℃の熱処理を30分施し、リチウム-アルミニウム複合酸化物被覆シリコンの複合体を得た。シリコンの乾式での微粉砕後、通常の空気中での取出しでは酸化により赤熱が起きるので徐酸化が必要であったが、酸化物で被覆されているため、徐酸化の必要なく、安全に取り出すことができた。
 比較例M1
 上記実施例M1において、クエン酸リチウム、硝酸アルミニウム(9水和物)、エチレングリコールを添加しなかったことを除いて、それ以外は実施例M1と同様にしてシリコン粉末を得た。
 比較例M2
 上記実施例2において、水酸化リチウム(1水和物)、酸化アルミニウム、を混合しなかった。それ以外は、実施例2と同様にして、シリコンの微粉砕を行い、徐酸化の後シリコン粉末を得た。
(シリコンが主成分の粒子の分析)
 得られたシリコンが主成分の分析は、XPS(X-ray Photoelectron Spectroscopy)、走査電子顕微鏡(SEM)、透過電子顕微鏡(TEM)、透過電子顕微鏡に付随するEDS(エネルギー分散型X線分光器)、EELS(電子エネルギー損失分光器)で分析して評価した。
 上記実施例M1ならびに実施例M2の試料では、シリコン粒子表面層はリチウムとアルミニウムの複合酸化物で被覆され、2~10nmの厚みの酸化被膜が確認された。また、上記実施例M1では表層にカーボン元素も確認された。
上記比較例M1の表層は、炭化水素と酸素との結合のシリコン層が、上記比較例M2では、酸化シリコン層が確認された。まあ、酸化シリコン量の多い順としては、比較例M2>比較例M1>実施例M2>実施例M1の順であった。
[剥片黒鉛の調製]
 参考例G1
 イオン交換水に炭酸水素アンモニウムを溶解した溶液を調製し、平均粒径15μmの膨張化黒鉛を分散した後、撹拌しながら、クエン酸をイオン交換水に溶解した溶液を添加し、膨張化黒鉛に浸透した炭酸水素アンモニウムとクエン酸を反応させ、炭酸ガスを発生させ、発生する炭酸ガス圧で膨張化黒鉛を剥離し、剥片黒鉛の分散液を調製した。
[集電体の調製]
 参考例C1
 電子彫刻でピッチ50μm、深度25μmのV型ライン溝加工を施したクロムメッキの金属ロールとゴムロール間に、厚み12μmの電解銅箔を通して、断面形状が三角波(実際には山と谷部分は丸みを帯びたサイン波に近い形状)の集電体を形成した。
 参考例C2
 繊維径7μm、繊維長130μmのカーボンファイバーミルド95重量部、アルギン酸ナトリウム5重量部にイオン交換水を加えて、混練してスラリーを調製し、スラリーを厚み12μmの平坦な電界銅箔の両面に塗工し、100℃で乾燥して、集電体を形成した。
[電極構造体の作製]
 実施例N1
 セルロースナノファイバー1重量%分散水溶液にアルギン酸ナトリウムを10重量%溶解して調製したバインダー溶液と、前記実施例M1のシリコンが主成分の粉末60重量部、参考例G1で調製した剥片黒鉛27重量部、アセチレンブラック2重量部を、(アルギン酸ナトリウムの固形分が10重量部、セルロースナノファイバー1重量部となるように、)混合した後、窒素ガスのナノバブル水を添加して混練し、電極層形成用スラリーを調製した。得られたスラリーを、コーターを用いて、参考例C1の銅箔の両面上に塗工した後、110℃で0.5時間乾燥の上、さらに減圧下150℃で乾燥して、ロールプレス機にて厚み・密度を調整し、銅箔の集電体上に厚みが30μmで密度が1.2g/cmの電極活物質層を形成した電極構造体を得た。次いで所定のサイズに電極構造体を切断後、ニッケルリードを集電体の銅箔のタブにスポット溶接機で溶接し、リード端子を取り出して電極を作製した。
 実施例N2
 実施例N1において、実施例M1のシリコンが主成分の粉末に替えて、実施例M2の粉末を用い、それ以外は実施例N1と同様にして、電極を作製した。
 実施例N3
 実施例N1において、参考例G1の剥片黒鉛に替えて、粒径5μmの黒鉛粉を用い、それ以外は実施例N1と同様にして、電極を作製した。
 実施例N4
 実施例N1において、セルロースナノファイバーを混合せず、それ以外は実施例N1と同様にして、電極を作製した。
 実施例N5
 実施例N1において、ナノバブル水を添加せずナノバブルを含まないイオン交換水を用い、それ以外は実施例N1と同様にして、電極を作製した。
 実施例N6
 実施例N1において、参考例C1の波型断面の銅箔に替えて、参考例C2のカーボンファイバーミルド被覆の集電体を用い、それ以外は実施例N1と同様にして、電極を作製した。
 実施例N7
 実施例N1において、参考例C1の波型断面の銅箔に替えて、(カーボンファイバーミルド層で被覆しない、)厚み12μmの平坦な電界銅箔集電体を用い、それ以外は実施例N1と同様にして、電極を作製した。
 参考例N1
 実施例N1において、実施例M1のシリコンが主成分の粉末に替えて、比較例M1の粉末を用い、それ以外は実施例N1と同様にして、電極を作製した。
 参考例N2
 実施例N1において、実施例M1のシリコンが主成分の粉末に替えて、比較例M2の粉末を用い、それ以外は実施例N1と同様にして、電極を作製した。
 比較例N1
 実施例N3において、実施例M1のシリコンが主成分の粉末に替えて比較例M1の粉末を用い、さらに、セルロースナノファイバー、ナノバブル水は用いず、参考例C1の集電体に替えて加工前の平坦な厚み12μmの電解銅箔を用い、それ以外は実施例N1と同様にして、電極を作製した。
[電極構造体の電気化学的リチウム挿入量の評価]
 上記蓄電デバイスの負極用電極構造体の単極としての電気化学的リチウム挿入量の評価は、以下の手順で行った。
 上記実施例N1、実施例N2、参考例N1、参考例N2、の各電極を作用極として作製する。作製した電極に対極として金属リチウムを組み合わせたセルを作製して、電気化学的なリチウムの挿入量を評価した。リチウム極は、ニッケル箔のエキスパンドメタルに厚み140μmの金属リチウム箔を圧着して、所定の大きさに打ち抜いて作製した。評価セルとしては、パウチセルを用いた。パウチセルの評価セルは、以下の手順で作製した。パウチセル(ラミネートタイプのセル)の作製は、露点-50℃以下の水分を管理した乾燥雰囲気下で全て行なった。ポリエチレン/アルミニウム箔/ナイロン構造のアルミラミネートフィルムをポケット状にした電槽に、作用極/セパレータ/リチウム極の電極群を挿入し、電解液を注入し、電極リードを取り出し、ヒートシールして評価用のセルを作製した。上記アルミラミネートフィルムの外側はナイロンフィルム、その内側はポリエチレンフィルムとする。上記セパレータとしては厚み17μmで気孔率40%のミクロポア構造のポリエチレンフィルムを使用し、上記電解液には、十分に水分を除去したエチレンカーボネートとジエチルカーボネートとを、体積比3:7で混合した溶媒に、六フッ化リン酸リチウム塩(LiPF)を1M(モル/リットル)溶解して得られた溶液を使用した。
 電気化学的なリチウムの挿入量は、上記作製したセルのリチウム極を負極に、各作用極を正極として、セルの電圧が0.01Vになるまで放電させ、1.80Vまで充電することによって、評価した。すなわち、放電した電気量をリチウムが挿入するのに利用された電気量、充電した電気量をリチウムが放出されるのに利用された電気量とした。
 充放電は0.2C程度の定電流で行ない、1回目のLi挿入量(電気量)に対する1回目のLi放出(電気量)量のクーロン効率と、2回目のLi放出量(mAh/g)の評価を行なった。評価結果としては、以下の通りであった。
 クーロン効率、Li放出量ともに、大きかった電極の順位は、実施例N1 > 実施例N2 > 参考例N1 > 参考例N2 であった。シリコンを主成分とする活物質の酸化シリコンの含有量が少ない順と同じであった。上記電極の活物質重量当たりの容量はいずれも2500mAh/g以上で、クーロン効率は、実施例N1、実施例N2の電極においては、90%以上であった。
上記評価結果より、本発明のリチウム含有の複合酸化物被覆のシリコンを主成分とする活物質粒子は電気化学的なリチウムの挿入放出反応において、不可逆量の少ない材料であることがわかった。
[正極の作製]
 参考例P1
 ニッケルコバルトマンガン酸リチウムLiNi1/3Co1/3Mn1/3粉末100重量部、参考例G1で調製した剥片黒鉛2重量部、アセチレンブラック2重量部を混合し、ポリフッ化ビリニデン10重量%含有のN-メチル-2-ピロリドン溶液50重量部とN-メチル-2-ピロリドン50重量部を添加し、混練して電極活物質層を形成するためのスラリーを調製した。次いで、得られたスラリーを、コーターを用いて、厚み14μmのアルミニウム箔上に、塗布した後、110℃で1時間乾燥の上、さらに減圧下150℃で乾燥した。ついで、ロールプレス機で厚みを調整して、銅箔の集電体上に厚みが82μmで密度が3.2g/cmの電極活物質層を形成した電極構造体を得た。得られた電極構造体を所定の大きさに打ち抜いて、ニッケルリードを超音波溶接でアルミニウム集電体タブに溶接し、正極用電極を作製した。
 参考例P2
 硝酸リチウムと硝酸ニッケルをモル比で1:5混合しエタノールに溶解したエタノール溶液に少量のポリエチレングリコールを添加し、該エタノール溶液にニッケルコバルトマンガン酸リチウムLiNi1/3Co1/3Mn1/3粉末を分散させ、該分散液を超高圧ポンプで加圧ダイヤモンド・ディスクで 構成された微細孔を通過させ、通過時に生じるキャビテーションの局所的高衝撃力により、ニッケルコバルトマンガン酸リチウム粒子を解砕し、スプレードライヤーにて100℃で乾燥し、600℃で熱処理を施して、リチウム-アルミニウム複合酸化物層で被覆されたニッケルコバルトマンガン酸リチウム粒子を得た。次いで、上記参考例P1と同様な方法で、正極となる電極を作製した。
[電解液の調製]
 参考例E1
 十分に水分を除去したエチレンカーボネートとジエチルカーボネートとを、体積比3:7で混合した溶媒に、六フッ化リン酸リチウム塩(LiPF)を1M(モル/リットル)溶解して電解液を調製した。
 参考例E2
 前記参考例E1の電解液に、2-ビニルナフタレンとエチレングリコールジメタクリレートを各2重量%、1重量%添加した電解液を調製した。
 参考例E3
 前記参考例E1の電解液に、硝酸リチウムとヨウ化アルミニウムを各0.05重量%、1.5重量%添加した電解液を調製した。
 参考例E4
 前記参考例E1の電解液に、平均粒径100nm以下に微粉砕したNASICON型結晶構造を持つ固体電解質Li1.5l0.3Ti1.7Si0.22.812を25重量%分散した電解液を調製した。
[蓄電デバイスの作製]
 実施例B1
 蓄電デバイスとして、負極集電体の両面に負極層が設けられた負極をセパレータフィルムと正極集電体の片面に正極層が設けられた正極で挟んだ構造(正極/セパレータ/負極/セパレータ/正極)のパウチセル(ラミネートタイプ)のリチウムイオン二次電池を作製した。負極集電体の両面に電極層を設けた電極を使用したのは、リチウム挿入時の体積膨張により発生する集電体への応力を両面ともほぼ等しくするためである。
 負極には前記実施例N1、正極には参考例P1を使用し、パウチセルを作製した。パウチセル作製は、露点-50℃以下の水分を管理した乾燥雰囲気下で全て行なった。ポリエチレン/アルミニウム箔/ナイロン構造のアルミラミネートフィルムをポケット状にした電槽に、正極/セパレータ/負極/セパレータ/正極の電極群を挿入し、参考例E1の電解液を注入し、電極リードを取り出し、ヒートシールして、正極容量規制の評価用の電池を作製した。上記アルミラミネートフィルムの外側はナイロンフィルム、その内側はポリエチレンフィルムとする。上記セパレータとしては厚み17μmで気孔率40%のミクロポア構造のポリエチレンフィルムを使用した。
 実施例B2
 実施例B1において、実施例N1の電極に替わって実施例N2の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B3
 実施例B1において、実施例N1に替わって、導電補助材の剥片黒鉛に替えて粒径5μmの黒鉛粉を用いた電極のN3を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B4
 実施例B1において、実施例N1に替わって、セルロースナノファイバーを混合しないで作製した実施例N4の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B5
 実施例B1において、実施例N1に替わって、ナノバブル水を添加することなく作製した実施例N5の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B6
 実施例B1において、実施例N1に替わって、集電体にカーボンファイバーミルドをコーティングした集電体を用いた実施例N6の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B7
 実施例B1において、実施例N1に替わって、厚み12μmの平坦な電界銅箔を集電体に用いた実施例N7の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B8
 実施例B1において、電解液にビニルモノマーを添加した参考例E2を用い、正極に参考例P2の電極を用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B9
 実施例B1において、電解液にビニルモノマーを添加した参考例E2を用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B10
 実施例B1において、電解液に無機添加剤を添加した参考例E3を用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B11
 実施例B1において、電解液に固体電解質を分散した参考例E4を用いた以外は、実施例B1と同様にして、二次電池を作製した。
 実施例B12
 実施例B1において、正極に参考例P2の電極を用いた以外は、実施例B1と同様にして、二次電池を作製した。
 参考例B1
 実施例B1において、実施例N1に替わって参考例N1の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 参考例B2
 実施例B1において、実施例N1に替わって参考例N2の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
 比較例B1
 実施例B1において、実施例N1に替わって比較例N1の電極を負極に用いた以外は、実施例B1と同様にして、二次電池を作製した。
[充放電試験評価]
 上記の各蓄電デバイスを用い、電解液の分解でSEI層の生成し易くサイクル寿命が短くなりやすい条件の、1Cの一定の電流密度でセル電圧が4.4Vになるまで充電の後、10分間の休止の後、1Cの一定の電流密度でセル電圧が2.5Vになるまで放電し10分間の休止する、充放電を100回繰り返し、蓄電デバイスとしての充放電の評価を行った。評価結果としては、100回目の充放電量が大きかった順としては、実施例B8 > 実施例B9 > 実施例B10 > 実施例B11 > 実施例B12 > 実施例B1 > 実施例B6 > 実施例B2 > 実施例B4 > 実施例B5 > 実施例B7 > 実施例B3 >  参考例B1 > 参考例B2 > > 比較例B1、であった。上記評価結果から、充放電量、並びに充放電の繰り返し特性を総合的に考えると、本発明の電極構造体の電極、本発明の蓄電デバイスの性能が高いことが分かった。
 以上、説明してきたように、本発明によれば、高出力密度、高エネルギー密度の、繰り返し寿命も長い蓄電デバイス、該蓄電デバイスの負極用電極構造体、ならびに該負極用電極構造体に用いる活物質(負極材料)を提供することができる。
101,103 シリコンが主成分の粒子
102,104 リチウム複合金属酸化物
200 集電体
201 活物質
202 剥片黒鉛
203 バインダー
204 ナノファイバー
205 電極層
206 電極構造体
301,302,303 金属箔
304 バインダー
305 カーボンファイバーミルド
306 カーボンミルドとバインダーの層
401,501,601,701 負極集電体
402,502,602,702 負極活物質層
403 負極
404,503,603,703 イオン伝導体
405,504,604,704 正極集電体
406,505,605,705 正極活物質層
407 正極
408,608 電槽(ハウジング、外装)
409,708 負極リード
410,506,606,706 負極端子
411,709 正極リード
412,507,607,707 正極端子
508,713 ガスケット
710 安全弁
711,712 絶縁板

Claims (10)

  1.  シリコンを主成分とする10nm~300nmの一次粒子が凝集して二次粒子を構成し、前記一次粒子の表層に、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから少なくとも形成される複合金属酸化物層を有することを特徴とする電気化学的にリチウムイオンの挿入脱離が可能な蓄電デバイス用負極活物質。
  2.  請求項1記載のシリコンを主成分とする活物質の製造方法において、前記表層を少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiの硝酸塩もしくは有機酸塩またはアルコキサイドを溶解したアルコール溶液中にシリコンを主成分とする粒子を浸漬した後、熱処理することで形成することを特徴とする活物質の製造方法。
  3.  請求項1記載のシリコンを主成分とする活物質の製造方法において、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素の酸化物もしくは水酸化物と、水酸化リチウムもしくは酸化リチウムとを、シリコンと混合し、メディアミルにて乾式粉砕処理する工程を含有することを特徴とする活物質の製造方法。
  4.  リチウムイオンの挿入脱離が可能な蓄電デバイス用電極構造体において、該電極構造体が、請求項1記載のシリコンを主成分とする活物質と導電補助材、バインダー、集電体から成ることを特徴とする蓄電デバイス用電極構造体。
  5.  前記導電補助材が、膨張化黒鉛を粉砕もしくは剥離して得られた、グラフェンシートが複数層積み重なった剥片黒鉛で、該剥片黒鉛の炭素6個が正六角形構造を取る平面が集電体の広い面に平行に配向していることを特徴とする請求項4記載の蓄電デバイス用電極構造体。
  6.  前記バインダーが水溶性高分子であり、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバー、カーボンファイバーミルドから選択される1種以上のファイバーが複合化されていることを特徴とする請求項4記載の蓄電デバイス用電極構造体。
  7.  前記集電体は、(A)該断面形状が、正弦波、三角波、矩形波、台形波、のこぎり波、から選択される波形を有し、かつ該波の山と谷が線状に形成されている金属箔である、(B)金属箔と金属箔上にカーボンファイバーミルドとバインダーから成る層で構成されている、のいずれか1種類以上の特徴を有する請求項4記載の蓄電デバイス用電極構造体。
  8.  少なくとも負極、リチウムイオン伝導体、正極活物質としてのリチウム遷移金属化合物から成る正極から構成されるリチウムイオンの挿入脱離が可能な蓄電デバイスにおいて、請求項4~7記載の電極構造体を負極に用いたことを特徴とする蓄電デバイス。
  9.  前記リチウムイオン伝導体が、リチウム塩を有機溶媒に溶解した電解液に、(C)無機固体リチウムイオン伝導体微粒子が分散されたもの、(D)アルミニウム塩、マグネシウム塩から選択される1種以上の塩が少なくとも添加されたものる、(E)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、アクリロニトリル、N-ビニルピロリドン、4-ビニルピロリドン、2-(2-プロピニルオキシ)-3-ビニルナフタレンから成る群から選択される少なくとも1種類以上のビニルモノマーと、N,N'-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼンから成る群から選択される少なくとも1種類以上のジビニルモノマーが添加されたもの、のいずれか1種類以上の特徴を有する請求項8記載の蓄電デバイス。
  10.  前記正極を構成する正極活物質粒子が、少なくともAl,Zr,Mg,Ca,Laから選択される1種以上の金属元素とLiから構成されている複合酸化物で表層を被覆されたリチウム遷移金属化合物微粒子であり、
    かつ前記正極を構成する導電補助材として、膨張化黒鉛を粉砕もしくは剥離して得られた、グラフェンシートが複数層積み重なった剥片黒鉛が少なくとも用いられていることを特徴とする請求項8記載の蓄電デバイス。
PCT/JP2015/070212 2014-07-15 2015-07-15 蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法 WO2016010056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/326,281 US10541411B2 (en) 2014-07-15 2015-07-15 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
US16/710,997 US11018337B2 (en) 2014-07-15 2019-12-11 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014144814A JP6256855B2 (ja) 2014-07-15 2014-07-15 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法
JP2014-144814 2014-07-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/326,281 A-371-Of-International US10541411B2 (en) 2014-07-15 2015-07-15 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
US16/710,997 Continuation US11018337B2 (en) 2014-07-15 2019-12-11 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each

Publications (1)

Publication Number Publication Date
WO2016010056A1 true WO2016010056A1 (ja) 2016-01-21

Family

ID=55078546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070212 WO2016010056A1 (ja) 2014-07-15 2015-07-15 蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法

Country Status (3)

Country Link
US (2) US10541411B2 (ja)
JP (1) JP6256855B2 (ja)
WO (1) WO2016010056A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126337A1 (ja) * 2016-01-22 2017-07-27 Jfeケミカル株式会社 Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池
JP2018061039A (ja) * 2016-01-22 2018-04-12 旭化成株式会社 非水系リチウム型蓄電素子
CN109216699A (zh) * 2017-07-07 2019-01-15 聚和国际股份有限公司 具三维结构的锂电池黏着剂及含其的锂电池负极材料
WO2019058841A1 (ja) * 2017-09-19 2019-03-28 株式会社 東芝 電極、二次電池、電池パック及び車両
TWI659559B (zh) * 2016-05-17 2019-05-11 日商杰富意化學股份有限公司 鋰離子二次電池用負極材料,鋰離子二次電池用負極及鋰離子二次電池
CN110192295A (zh) * 2017-01-17 2019-08-30 株式会社大赛璐 电极用浆料、电极及其制造方法、以及二次电池
US10636582B2 (en) 2016-01-22 2020-04-28 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10825616B2 (en) 2016-01-22 2020-11-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10886533B2 (en) 2016-01-22 2021-01-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
JP2022105794A (ja) * 2021-01-05 2022-07-15 宋少華 リチウムイオン電池増ちょう剤の調製方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777098B2 (en) * 2020-04-27 2023-10-03 Enevate Corporation Method and system for functional conductive polymer initiated cathode electrolyte interface for silicon anode-based lithium ion batteries
KR101618218B1 (ko) * 2014-09-26 2016-05-09 대한민국 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법
FR3054078B1 (fr) * 2016-07-13 2018-09-07 Institut Polytechnique De Grenoble Materiau a conduction ionique pour generateur electrochimique et procedes de fabrication
US10138340B2 (en) * 2016-10-11 2018-11-27 Palo Alto Research Center Incorporated Low volatility, high efficiency gas barrier coating for cryo-compressed hydrogen tanks
JP2018074117A (ja) * 2016-11-04 2018-05-10 Jsr株式会社 蓄電デバイス用集電体、蓄電デバイス用電極、リチウムイオンキャパシタ、および蓄電デバイス用電極の製造方法
WO2018096909A1 (ja) * 2016-11-28 2018-05-31 株式会社村田製作所 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US11621422B2 (en) * 2017-01-17 2023-04-04 Daicel Corporation Electrode slurry, electrode and process for producing the same, and secondary battery
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
CN111164807B (zh) 2017-09-29 2023-12-01 Attaccato合同会社 锂离子电池用粘合剂及使用该粘合剂的电极和隔膜
WO2019079652A1 (en) * 2017-10-19 2019-04-25 Sila Nanotechnologies, Inc. LI-ION BATTERY ELEMENT ANODE ELECTRODE COMPOSITION
US10763538B2 (en) 2017-12-07 2020-09-01 Enevate Corporation Methods of forming electrochemical cells
KR102321502B1 (ko) 2017-12-19 2021-11-02 주식회사 엘지에너지솔루션 리튬이차전지용 음극 활물질, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
JP6883265B2 (ja) * 2017-12-25 2021-06-09 トヨタ自動車株式会社 リチウム二次電池
US11393641B2 (en) * 2017-12-28 2022-07-19 Skeleton Technologies Group OU Carbon electrode materials for pseudocapacitors and a pseudocapacitor
US20210078864A1 (en) * 2018-02-09 2021-03-18 University Of Maryland, College Park Graphite materials, and methods for fabricating and use thereof
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
JP2019212605A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 リチウム二次電池
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
KR101973901B1 (ko) * 2018-06-22 2019-04-29 한국과학기술원 키토산-금속 복합물을 활용하여, 나노촉매가 기능화된 금속산화물 나노섬유 및 이를 이용한 가스센서용 부재, 가스센서 및 그 제조방법
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
JP7143133B2 (ja) * 2018-07-20 2022-09-28 株式会社ダイセル 電池の電極活物質層形成用スラリー
US10947419B2 (en) 2018-07-23 2021-03-16 Palo Alto Research Center Incorporated Method for joining dissimilar materials
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
CN111146497B (zh) * 2018-11-06 2021-02-19 深圳市比克动力电池有限公司 电池电解液用添加剂、锂离子电池电解液、锂离子电池
DE102018127787A1 (de) * 2018-11-07 2020-05-07 Forschungszentrum Jülich GmbH Strukturierte Metall-Elektrode und deren Kombination mit nicht-flüssigem Elektrolyten
FR3091623B1 (fr) * 2019-01-03 2022-12-09 Commissariat Energie Atomique Cellule electrochimique pour accumulateur au lithium comprenant une electrode negative specifique en lithium metallique et une electrode positive sur collecteur en aluminium
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) * 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
KR102567400B1 (ko) * 2019-03-12 2023-08-17 주식회사 엘지에너지솔루션 이차전지
US11316142B2 (en) * 2019-09-17 2022-04-26 GM Global Technology Operations LLC Methods for fabricating silicon-based electrodes comprising naturally occurring carbonaceous filaments and battery cells utilizing the same
US20210086637A1 (en) * 2019-09-25 2021-03-25 Enevate Corporation Method And System For Collocated Gasoline Pumps And Charging Stations For Ultra-High Speed Charging
US11926680B2 (en) * 2019-10-02 2024-03-12 University Of Louisiana At Lafayette High-performance anodes for lithium ion batteries
WO2021168416A1 (en) * 2020-02-21 2021-08-26 24M Technologies, Inc. Electrochemical cells with electrode material coupled directly to film and methods of making the same
CN111755678A (zh) * 2020-07-06 2020-10-09 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法
JP7265511B2 (ja) * 2020-08-26 2023-04-26 プライムアースEvエナジー株式会社 リチウムイオン二次電池用負極板の製造方法、リチウムイオン二次電池用負極板及び、リチウムイオン二次電池
CN114597348A (zh) 2020-12-02 2022-06-07 通用汽车环球科技运作有限责任公司 通过轧制制得电极的制造方法
KR20230000609A (ko) * 2021-06-25 2023-01-03 주식회사 한솔케미칼 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지
CN114899397B (zh) * 2022-03-24 2023-01-31 楚能新能源股份有限公司 锂离子电池正极材料及二次电池的制备方法
EP4318717A1 (en) * 2022-06-07 2024-02-07 Contemporary Amperex Technology Co., Limited Non-aqueous electrolyte and preparation method therefor, and secondary battery and electric device comprising same
WO2023244967A2 (en) * 2022-06-13 2023-12-21 Ntt Research, Inc. Three-dimensional shape changing nanofiber electrodes
CN115632106B (zh) * 2022-10-17 2024-04-09 江苏正力新能电池技术有限公司 一种复合负极片和二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190642A (ja) * 2004-12-31 2006-07-20 Ind Technol Res Inst リチウム二次電池の負極材料およびその製造方法
JP2008016446A (ja) * 2006-06-09 2008-01-24 Canon Inc 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
JP2010262843A (ja) * 2009-05-08 2010-11-18 Furukawa Electric Co Ltd:The リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の集電体、リチウムイオン二次電池用の負極の製造方法
JP2011096455A (ja) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP2013051603A (ja) * 2011-08-31 2013-03-14 National Univ Corp Shizuoka Univ 開口面共用アレーアンテナ及び適応指向性受信装置
JP2013073818A (ja) * 2011-09-28 2013-04-22 Nissan Motor Co Ltd リチウムイオン二次電池用複合負極活物質

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046658A (ko) * 2000-12-15 2002-06-21 윤덕용 리튬이차전지의 양극전극용 층상구조 산화물의 표면처리방법
JP4329743B2 (ja) 2005-08-09 2009-09-09 宇部興産株式会社 非水二次電池とその製造方法
US8080335B2 (en) * 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
TWI387150B (zh) * 2007-09-06 2013-02-21 Canon Kk Lithium ion accumulation. Release material manufacturing method, lithium ion accumulation. A release material, and an electrode structure and a power storage device using the same
US8652687B2 (en) 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
WO2011093015A1 (ja) 2010-01-29 2011-08-04 パナソニック株式会社 非水電解質二次電池用負極および非水電解質二次電池
WO2012132999A1 (ja) * 2011-03-29 2012-10-04 富士フイルム株式会社 集電体用アルミニウム基材、集電体、正極、負極および二次電池
JP2013219018A (ja) 2012-03-11 2013-10-24 Connexx Systems株式会社 リチウム二次電池用複合活物質およびその製造方法
KR101735855B1 (ko) * 2012-04-16 2017-05-24 삼성에스디아이 주식회사 수용성 바인더 조성물
JP5828304B2 (ja) * 2012-06-29 2015-12-02 トヨタ自動車株式会社 複合活物質、固体電池および複合活物質の製造方法
CN103700843B (zh) * 2012-09-27 2016-03-09 清华大学 锂离子电池正极复合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190642A (ja) * 2004-12-31 2006-07-20 Ind Technol Res Inst リチウム二次電池の負極材料およびその製造方法
JP2008016446A (ja) * 2006-06-09 2008-01-24 Canon Inc 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
JP2010262843A (ja) * 2009-05-08 2010-11-18 Furukawa Electric Co Ltd:The リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の集電体、リチウムイオン二次電池用の負極の製造方法
JP2011096455A (ja) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP2013051603A (ja) * 2011-08-31 2013-03-14 National Univ Corp Shizuoka Univ 開口面共用アレーアンテナ及び適応指向性受信装置
JP2013073818A (ja) * 2011-09-28 2013-04-22 Nissan Motor Co Ltd リチウムイオン二次電池用複合負極活物質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI-FENG CUI ET AL.: "Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 158, no. issue 5, 28 March 2011 (2011-03-28), pages A592 - A596, XP055104951, ISSN: 0013-4651 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463909B (zh) * 2016-01-22 2021-03-23 杰富意化学株式会社 Li离子二次电池用负极材料及其制造方法、Li离子二次电池用负极、以及Li离子二次电池
US11387052B2 (en) 2016-01-22 2022-07-12 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10748716B2 (en) 2016-01-22 2020-08-18 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10825616B2 (en) 2016-01-22 2020-11-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
JPWO2017126337A1 (ja) * 2016-01-22 2018-08-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池
CN108463909A (zh) * 2016-01-22 2018-08-28 杰富意化学株式会社 Li离子二次电池用负极材料及其制造方法、Li离子二次电池负极、以及Li离子二次电池
US10636582B2 (en) 2016-01-22 2020-04-28 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
KR102199028B1 (ko) * 2016-01-22 2021-01-06 제이에프이 케미칼 가부시키가이샤 Li 이온 2차 전지용 부극 재료 및 그의 제조 방법, Li 이온 2차 전지용 부극 그리고 Li 이온 2차 전지
US10886533B2 (en) 2016-01-22 2021-01-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
JP2018061039A (ja) * 2016-01-22 2018-04-12 旭化成株式会社 非水系リチウム型蓄電素子
WO2017126337A1 (ja) * 2016-01-22 2017-07-27 Jfeケミカル株式会社 Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池
US10930929B2 (en) 2016-01-22 2021-02-23 Jfe Chemical Corporation Negative-electrode material for Li-ion secondary cell, method for manufacturing said material, negative electrode for Li-ion-secondary-cell, and Li-ion secondary cell
TWI623132B (zh) * 2016-01-22 2018-05-01 杰富意化學股份有限公司 鋰離子二次電池用負極材料及其製造方法、鋰離子二次電池負極與鋰離子二次電池
KR20180083432A (ko) * 2016-01-22 2018-07-20 제이에프이 케미칼 가부시키가이샤 Li 이온 2차 전지용 부극 재료 및 그의 제조 방법, Li 이온 2차 전지용 부극 그리고 Li 이온 2차 전지
TWI659559B (zh) * 2016-05-17 2019-05-11 日商杰富意化學股份有限公司 鋰離子二次電池用負極材料,鋰離子二次電池用負極及鋰離子二次電池
US11094934B2 (en) * 2017-01-17 2021-08-17 Daicel Corporation Electrode slurry, electrode and process for producing the same, and secondary battery
EP3573150A4 (en) * 2017-01-17 2019-11-27 Daicel Corporation BOILER FOR ELECTRODE, ELECTRODE AND PROCESS FOR PRODUCING THE SAME, AND SECONDARY BATTERY
CN110192295A (zh) * 2017-01-17 2019-08-30 株式会社大赛璐 电极用浆料、电极及其制造方法、以及二次电池
CN110192295B (zh) * 2017-01-17 2023-08-01 株式会社大赛璐 电极用浆料、电极及其制造方法、以及二次电池
CN109216699B (zh) * 2017-07-07 2022-04-19 聚和国际股份有限公司 具三维结构的锂电池黏着剂及含其的锂电池负极材料
CN109216699A (zh) * 2017-07-07 2019-01-15 聚和国际股份有限公司 具三维结构的锂电池黏着剂及含其的锂电池负极材料
US11888160B2 (en) 2017-09-19 2024-01-30 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JPWO2019058841A1 (ja) * 2017-09-19 2019-11-14 株式会社東芝 電極、二次電池、電池パック及び車両
WO2019058841A1 (ja) * 2017-09-19 2019-03-28 株式会社 東芝 電極、二次電池、電池パック及び車両
JP2022105794A (ja) * 2021-01-05 2022-07-15 宋少華 リチウムイオン電池増ちょう剤の調製方法

Also Published As

Publication number Publication date
JP2016021332A (ja) 2016-02-04
US20200119343A1 (en) 2020-04-16
US10541411B2 (en) 2020-01-21
JP6256855B2 (ja) 2018-01-10
US20170200943A1 (en) 2017-07-13
US11018337B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
JP6256855B2 (ja) 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法
US8673490B2 (en) High energy lithium ion batteries with particular negative electrode compositions
US9437370B2 (en) Lithium-ion cell having a high-capacity anode and a high-capacity cathode
JP6448057B2 (ja) 多孔性シリコン系負極活物質、この製造方法、及びこれを含むリチウム二次電池
JP7056567B2 (ja) リチウムイオン二次電池
JP2008016446A (ja) 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
JP6236830B2 (ja) グラフェン凝集体の製造方法及びリチウムイオン電池用負極炭素材料
JP7394406B2 (ja) リチウムイオン二次電池用負極活物質とその製造方法、および電極構造体、ならびに二次電池
JP5696904B2 (ja) リチウムイオン二次電池およびその製造方法
JP5245201B2 (ja) 負極、二次電池
CN114514638A (zh) 球化后的碳质负极活性材料、其制造方法以及包含其的负极和锂二次电池
Zeng et al. Nano-Sn doped carbon-coated rutile TiO 2 spheres as a high capacity anode for Li-ion battery
JP2011138680A (ja) 非水電解質二次電池用負極および非水電解質二次電池
KR20210062009A (ko) 이차 전지용 전극 및 리튬 이온 이차 전지
JP6810896B2 (ja) リチウムイオン二次電池用の負極、リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
JP2016134218A (ja) リチウムイオン二次電池
Fu et al. Facile synthesis of N-doped carbon-coated Li 4 Ti 5 O 12 anode for application in high-rate lithium ion batteries
WO2016031081A1 (en) Electrochemically modified carbon material for lithium-ion battery
Prosini et al. A high-voltage lithium-ion battery prepared using a Sn-decorated reduced graphene oxide anode and a LiNi 0.5 Mn 1.5 O 4 cathode
JP2012084554A (ja) 負極、二次電池、負極の製造方法
JP6607388B2 (ja) リチウムイオン二次電池用正極及びその製造方法
JP2023528519A (ja) リチウムイオン二次電池用負極
JP2023546420A (ja) リチウムイオン二次電池用負極
KR20240002356A (ko) 칼륨 이차전지용 음극 활물질 및 이를 포함하는 칼륨 이차전지
CN116072836A (zh) 锂离子电池用正极活性物质及其制造方法以及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822040

Country of ref document: EP

Kind code of ref document: A1